51
|
Cichocki JA, Guyton KZ, Guha N, Chiu WA, Rusyn I, Lash LH. Target Organ Metabolism, Toxicity, and Mechanisms of Trichloroethylene and Perchloroethylene: Key Similarities, Differences, and Data Gaps. J Pharmacol Exp Ther 2016; 359:110-23. [PMID: 27511820 PMCID: PMC5034707 DOI: 10.1124/jpet.116.232629] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/09/2016] [Indexed: 01/18/2023] Open
Abstract
Trichloroethylene (TCE) and perchloroethylene or tetrachloroethylene (PCE) are high-production volume chemicals with numerous industrial applications. As a consequence of their widespread use, these chemicals are ubiquitous environmental contaminants to which the general population is commonly exposed. It is widely assumed that TCE and PCE are toxicologically similar; both are simple olefins with three (TCE) or four (PCE) chlorines. Nonetheless, despite decades of research on the adverse health effects of TCE or PCE, few studies have directly compared these two toxicants. Although the metabolic pathways are qualitatively similar, quantitative differences in the flux and yield of metabolites exist. Recent human health assessments have uncovered some overlap in target organs that are affected by exposure to TCE or PCE, and divergent species- and sex-specificity with regard to cancer and noncancer hazards. The objective of this minireview is to highlight key similarities, differences, and data gaps in target organ metabolism and mechanism of toxicity. The main anticipated outcome of this review is to encourage research to 1) directly compare the responses to TCE and PCE using more sensitive biochemical techniques and robust statistical comparisons; 2) more closely examine interindividual variability in the relationship between toxicokinetics and toxicodynamics for TCE and PCE; 3) elucidate the effect of coexposure to these two toxicants; and 4) explore new mechanisms for target organ toxicity associated with TCE and/or PCE exposure.
Collapse
Affiliation(s)
- Joseph A Cichocki
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| | - Kathryn Z Guyton
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| | - Neela Guha
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| | - Lawrence H Lash
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| |
Collapse
|
52
|
NYPD Cancer Incidence Rates 1995-2014 Encompassing the Entire World Trade Center Cohort. J Occup Environ Med 2016; 57:e101-13. [PMID: 26461871 DOI: 10.1097/jom.0000000000000542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to compare cancer incidence rates (CIRs), between preexposure (1995-2000) and postexposure (2002-2014) periods in the entire New York City Police Department cohort exposed to the 2001 World Trade Center (WTC) disaster. METHODS CIR derived from active duty officer records, including postexposure data on retired officers. RESULTS We observed 870 cancer cases in 859 officers (1995-2014), including 193 active duty cases pre-WTC and 677 cases (484 active duty, 193 retired) post-WTC. Overall, median CIR increased 1.44-fold compared with pre-WTC, with brain cancer increasing 3.27-fold, and kidney cancer increasing similarly. Thyroid cancer and non-Hodgkin's lymphoma increased 2.29 and 1.68-fold, respectively. CONCLUSIONS Findings should be interpreted cautiously, given the small number of cancers at specific sites, and possibility of confounders. However, apparent increases in cancers overall, and in highlighted sites, remain of concern, underscoring the need for continued monitoring of this cohort.
Collapse
|
53
|
Rapisarda V, Loreto C, Malaguarnera M, Ardiri A, Proiti M, Rigano G, Frazzetto E, Ruggeri MI, Malaguarnera G, Bertino N, Malaguarnera M, Catania VE, Di Carlo I, Toro A, Bertino E, Mangano D, Bertino G. Hepatocellular carcinoma and the risk of occupational exposure. World J Hepatol 2016; 8:573-90. [PMID: 27168870 PMCID: PMC4858622 DOI: 10.4254/wjh.v8.i13.573] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. The main risk factors for HCC are alcoholism, hepatitis B virus, hepatitis C virus, nonalcoholic steatohepatitis, obesity, type 2 diabetes, cirrhosis, aflatoxin, hemochromatosis, Wilson's disease and hemophilia. Occupational exposure to chemicals is another risk factor for HCC. Often the relationship between occupational risk and HCC is unclear and the reports are fragmented and inconsistent. This review aims to summarize the current knowledge regarding the association of infective and non-infective occupational risk exposure and HCC in order to encourage further research and draw attention to this global occupational public health problem.
Collapse
Affiliation(s)
- Venerando Rapisarda
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Carla Loreto
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Michele Malaguarnera
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Annalisa Ardiri
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Proiti
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Rigano
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Evelise Frazzetto
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Irene Ruggeri
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giulia Malaguarnera
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Nicoletta Bertino
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Mariano Malaguarnera
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Vito Emanuele Catania
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Isidoro Di Carlo
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Adriana Toro
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Emanuele Bertino
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Dario Mangano
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Gaetano Bertino
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
54
|
Cui Y, Choudhury SR, Irudayaraj J. Epigenetic Toxicity of Trichloroethylene: A Single-Molecule Perspective. Toxicol Res (Camb) 2016; 5:641-650. [PMID: 28944004 DOI: 10.1039/c5tx00454c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The volatile, water soluble trichloroethylene (TCE) is a hazardous industrial waste and could lead to various health problems, including cancer, neuropathy, cardiovascular defects, and immune diseases. Toxicological studies taking use of in vitro and in vivo models have been conducted to understand the biological impacts of TCE at the genetic, transcriptomic, metabolomic, and signaling levels. The epigenetic aberrations induced by TCE have also been reported in a number of model organisms, while a detailed mechanistic elucidation is lacking. In this study we uncover an unreported mechanism accounting for the epigenetic toxicity due to TCE exposure by monitoring the single-molecule dynamics of DNA methyltransferase 3a (Dnmt3a) in living cells. TCE-induced global DNA hypomethylation could be partly attributed to the disrupted Dnmt3a-DNA association. By analyzing the components of detached Dnmt3a, we found that the Dnmt3a oligomers (e.g., dimer, trimer, and high-order oligomers) dissociated from heterochromatin in a dose-dependent manner upon exposure. Thereafter the diminished DNA-binding affinity of Dnmt3a resulted in a significant decrease in 5-methylcytosine (5mC) under both acute high-dosage and chronic low-dosage TCE exposure. The resulting DNA demethylation might also be contributed by the elevated expression of ten-eleven-translocation (Tet) enzymes and reformed cysteine cycle. Besides the global effect, we further identified that a group of heterochromatin-located, cancer-related microRNAs (miRNAs) experienced promoter demethylation upon TCE exposure.
Collapse
Affiliation(s)
- Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Samrat Roy Choudhury
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
55
|
Wirbisky SE, Damayanti NP, Mahapatra CT, Sepúlveda MS, Irudayaraj J, Freeman JL. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene. Chem Res Toxicol 2016; 29:169-79. [PMID: 26745549 DOI: 10.1021/acs.chemrestox.5b00402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Nur P Damayanti
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Cecon T Mahapatra
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Maria S Sepúlveda
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Joseph Irudayaraj
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
56
|
Yoo HS, Cichocki JA, Kim S, Venkatratnam A, Iwata Y, Kosyk O, Bodnar W, Sweet S, Knap A, Wade T, Campbell J, Clewell HJ, Melnyk SB, Chiu WA, Rusyn I. The Contribution of Peroxisome Proliferator-Activated Receptor Alpha to the Relationship Between Toxicokinetics and Toxicodynamics of Trichloroethylene. Toxicol Sci 2015; 147:339-49. [PMID: 26136231 DOI: 10.1093/toxsci/kfv134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exposure to the ubiquitous environmental contaminant trichloroethylene (TCE) is associated with cancer and non-cancer toxicity in both humans and rodents. Peroxisome proliferator-activated receptor-alpha (PPARα) is thought to be playing a role in liver toxicity in rodents through activation of the receptor by the TCE metabolite trichloroacetic acid (TCA). However, most studies using genetically altered mice have not assessed the potential for PPARα to alter TCE toxicokinetics, which may lead to differences in TCA internal doses and hence confound inferences as to the role of PPARα in TCE toxicity. To address this gap, male and female wild type (129S1/SvImJ), Pparα-null, and humanized PPARα (hPPARα) mice were exposed intragastrically to 400 mg/kg TCE in single-dose (2, 5 and 12 h) and repeat-dose (5 days/week, 4 weeks) studies. Interestingly, following either a single- or repeat-dose exposure to TCE, levels of TCA in liver and kidney were lower in Pparα-null and hPPARα mice as compared with those in wild type mice. Levels of trichloroethanol (TCOH) were similar in all strains. TCE-exposed male mice consistently had higher levels of TCA and TCOH in all tissues compared with females. Additionally, in both single- and repeat-dose studies, a similar degree of induction of PPARα-responsive genes was observed in liver and kidney of hPPARα and wild type mice, despite the difference in hepatic and renal TCA levels. Additional sex- and strain-dependent effects were observed in the liver, including hepatocyte proliferation and oxidative stress, which were not dependent on TCA or TCOH levels. These data demonstrate that PPARα status affects the levels of the putative PPARα agonist TCA following TCE exposure. Therefore, interpretations of studies using Pparα-null and hPPARα mice need to consider the potential contribution of genotype-dependent toxicokinetics to observed differences in toxicity, rather than attributing such differences only to receptor-mediated toxicodynamic effects.
Collapse
Affiliation(s)
- Hong Sik Yoo
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Joseph A Cichocki
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Abhishek Venkatratnam
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Yasuhiro Iwata
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Oksana Kosyk
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Wanda Bodnar
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Stephen Sweet
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas
| | - Anthony Knap
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas
| | - Terry Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas
| | - Jerry Campbell
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina; and
| | - Harvey J Clewell
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina; and
| | - Stepan B Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
57
|
[Health evaluation of trichloroethylene in indoor air : communication from the German ad-hoc working group on indoor guidelines of the Indoor Air Hygiene Committee and of the states' supreme health authorities]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2015; 58:762-8. [PMID: 26016452 DOI: 10.1007/s00103-015-2173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the European Hazardous Substances Regulation No 1272/2008 trichloroethylene has been classified as a probable human carcinogen and a suspected mutagen. According to several Committees (German Committee on Hazardous Substances, European Scientific Committee on Occupational Exposure Limits, European Chemicals Agency´s Committee for Risk Assessment (ECHA-RAC)) concentrations of trichloroethylene cytotoxic to renal tubuli may increase the risk to develop renal cancer. At non-cytotoxic concentrations of trichloroethylene a much lower cancer risk may be assumed. Therefore, evaluating the cancer risk to the public following inhalation of trichloroethylene ECHA-RAC has assumed a sublinear exposure-response relationship for carcinogenicity of trichloroethylene. Specifically, ECHA-RAC assessed a cancer risk of 6.4 × 10(- 5) (mg/m(3))(- 1) following life time exposure to trichloroethylene below a NOAEC for renal cytotoxicity of 6 mg trichloroethylene/m(3). Further evaluation yields a life-time risk of 10(- 6) corresponding to 0.02 mg trichloroethylene/m(3). This concentration is well above the reference (e.g. background) concentration of trichloroethylene in indoor air. Consequently the Ad-hoc Working Group on Indoor Guidelines recommends 0.02 mg trichloroethylene/m(3) as a risk-related guideline for indoor air. Measures to reduce exposure are considered inappropriate at concentrations below this guideline.
Collapse
|
58
|
Ren X, Li J, Xia B, Liu W, Yang X, Hong WX, Huang P, Wang Y, Li S, Zou F, Liu J. Phosphoproteomic analyses of L-02 liver cells exposed to trichloroethylene. Toxicol Mech Methods 2015; 25:459-66. [DOI: 10.3109/15376516.2015.1045655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
59
|
Kamińska II, Śrębowata A. Active carbon-supported nickel–palladium catalysts for hydrodechlorination of 1,2-dichloroethane and 1,1,2-trichloroethene. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-1992-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Sheu YT, Chen SC, Chien CC, Chen CC, Kao CM. Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:222-232. [PMID: 25463237 DOI: 10.1016/j.jhazmat.2014.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/15/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
A long-lasting emulsified colloidal substrate (LECS) was developed for continuous carbon and nanoscale zero-valent iron (nZVI) release to remediate trichloroethylene (TCE)-contaminated groundwater under reductive dechlorinating conditions. The developed LECS contained nZVI, vegetable oil, surfactants (Simple Green™ and lecithin), molasses, lactate, and minerals. An emulsification study was performed to evaluate the globule droplet size and stability of LECS. The results show that a stable oil-in-water emulsion with uniformly small droplets (0.7 μm) was produced, which could continuously release the primary substrates. The emulsified solution could serve as the dispensing agent, and nZVI particles (with diameter 100-200 nm) were distributed in the emulsion evenly without aggregation. Microcosm results showed that the LECS caused a rapid increase in the total organic carbon concentration (up to 488 mg/L), and reductive dechlorination of TCE was significantly enhanced. Up to 99% of TCE (with initial concentration of 7.4 mg/L) was removed after 130 days of operation. Acidification was prevented by the production of hydroxide ion by the oxidation of nZVI. The formation of iron sulfide reduced the odor from produced hydrogen sulfide. Microbial analyses reveal that dechlorinating bacteria existed in soils, which might contribute to TCE dechlorination.
Collapse
Affiliation(s)
- Y T Sheu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - S C Chen
- Department of Life Sciences, National Central University, Chung-Li, Taiwan
| | - C C Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taiwan
| | - C C Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
61
|
Three common pathways of nephrotoxicity induced by halogenated alkenes. Cell Biol Toxicol 2015; 31:1-13. [DOI: 10.1007/s10565-015-9293-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/29/2015] [Indexed: 12/13/2022]
|
62
|
Yoo HS, Bradford BU, Kosyk O, Uehara T, Shymonyak S, Collins LB, Bodnar WM, Ball LM, Gold A, Rusyn I. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: kidney effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:32-49. [PMID: 25424545 PMCID: PMC4281933 DOI: 10.1080/15287394.2015.958418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal-cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, interspecies and interindividual differences, and the mode of action for kidney carcinogenicity. It was postulated that TCE renal metabolite levels are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In subacute study, interstrain differences in renal TCE metabolite levels were observed. In addition, data showed that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In subchronic study, peroxisome proliferator-marker gene induction and renal toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ but not C57BL/6J mice. Overall, data demonstrated that renal TCE metabolite levels are associated with kidney-specific toxicity and that these effects are strain dependent.
Collapse
Affiliation(s)
- Hong Sik Yoo
- a Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Yoo HS, Bradford BU, Kosyk O, Shymonyak S, Uehara T, Collins LB, Bodnar WM, Ball LM, Gold A, Rusyn I. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: liver effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:15-31. [PMID: 25424544 PMCID: PMC4281929 DOI: 10.1080/15287394.2015.958417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of interindividual variability in TCE metabolism and toxicity, especially in the liver. A hypothesis was tested that amounts of oxidative metabolites of TCE in mouse liver are associated with hepatic-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various hepatic toxicity phenotypes. In subacute study, interstrain variability in TCE metabolite amounts was observed in serum and liver. No marked induction of Cyp2e1 protein levels in liver was detected. Serum and hepatic levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1 but not with degree of induction in hepatocellular proliferation. In subchronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Hepatic protein levels of CYP2E1, ADH, and ALDH2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE.
Collapse
Affiliation(s)
- Hong Sik Yoo
- a Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver. PLoS One 2014; 9:e116179. [PMID: 25549359 PMCID: PMC4280179 DOI: 10.1371/journal.pone.0116179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022] Open
Abstract
Trichloroethylene (TCE), widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s) for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day) for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.
Collapse
|
65
|
Jiang Y, Chen J, Tong J, Chen T. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver. PLoS One 2014. [PMID: 25549359 DOI: 10.1371/-journal.pone.0116179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trichloroethylene (TCE), widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s) for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day) for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Physiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jiahong Chen
- Department of Toxicology, School of Public Health, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
66
|
Oddone E, Edefonti V, Scaburri A, Vai T, Bai E, Modonesi C, Crosignani P, Imbriani M. Female Breast Cancer and Electrical Manufacturing: Results of a Nested Case‐control Study. J Occup Health 2014; 56:369-78. [DOI: 10.1539/joh.14-0034-oa] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Enrico Oddone
- Department of Public Health, Experimental and Forensic Medicine, Occupational Medicine UnitUniversity of PaviaItaly
| | - Valeria Edefonti
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoItaly
| | - Alessandra Scaburri
- Foundation IRCCS Istituto dei Tumori, Cancer Registry and Environmental Epidemiology UnitItaly
| | | | - Edoardo Bai
- Foundation IRCCS Istituto dei Tumori, Cancer Registry and Environmental Epidemiology UnitItaly
| | - Carlo Modonesi
- Foundation IRCCS Istituto dei Tumori, Cancer Registry and Environmental Epidemiology UnitItaly
| | - Paolo Crosignani
- Department of Public Health, Experimental and Forensic Medicine, Occupational Medicine UnitUniversity of PaviaItaly
| | - Marcello Imbriani
- Department of Public Health, Experimental and Forensic Medicine, Occupational Medicine UnitUniversity of PaviaItaly
| |
Collapse
|
67
|
Lash LH, Chiu WA, Guyton KZ, Rusyn I. Trichloroethylene biotransformation and its role in mutagenicity, carcinogenicity and target organ toxicity. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 762:22-36. [PMID: 25484616 PMCID: PMC4254735 DOI: 10.1016/j.mrrev.2014.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metabolism is critical for the mutagenicity, carcinogenicity, and other adverse health effects of trichloroethylene (TCE). Despite the relatively small size and simple chemical structure of TCE, its metabolism is quite complex, yielding multiple intermediates and end-products. Experimental animal and human data indicate that TCE metabolism occurs through two major pathways: cytochrome P450 (CYP)-dependent oxidation and glutathione (GSH) conjugation catalyzed by GSH S-transferases (GSTs). Herein we review recent data characterizing TCE processing and flux through these pathways. We describe the catalytic enzymes, their regulation and tissue localization, as well as the evidence for transport and inter-organ processing of metabolites. We address the chemical reactivity of TCE metabolites, highlighting data on mutagenicity of these end-products. Identification in urine of key metabolites, particularly trichloroacetate (TCA), dichloroacetate (DCA), trichloroethanol and its glucuronide (TCOH and TCOG), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC), in exposed humans and other species (mostly rats and mice) demonstrates function of the two metabolic pathways in vivo. The CYP pathway primarily yields chemically stable end-products. However, the GST pathway conjugate S-(1,2-dichlorovinyl)glutathione (DCVG) is further processed to multiple highly reactive species that are known to be mutagenic, especially in kidney where in situ metabolism occurs. TCE metabolism is highly variable across sexes, species, tissues and individuals. Genetic polymorphisms in several of the key enzymes metabolizing TCE and its intermediates contribute to variability in metabolic profiles and rates. In all, the evidence characterizing the complex metabolism of TCE can inform predictions of adverse responses including mutagenesis, carcinogenesis, and acute and chronic organ-specific toxicity.
Collapse
Affiliation(s)
- Lawrence H. Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201 USA
| | - Weihsueh A. Chiu
- U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC, 20460 USA; Chiu.Weihsueh@.epa.gov;
| | - Kathryn Z. Guyton
- U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC, 20460 USA; Chiu.Weihsueh@.epa.gov;
| | - Ivan Rusyn
- Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 USA;
| |
Collapse
|
68
|
Mattei F, Guida F, Matrat M, Cenée S, Cyr D, Sanchez M, Radoi L, Menvielle G, Jellouli F, Carton M, Bara S, Marrer E, Luce D, Stücker I. Exposure to chlorinated solvents and lung cancer: results of the ICARE study. Occup Environ Med 2014; 71:681-9. [DOI: 10.1136/oemed-2014-102182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|