51
|
Ye G, Li J, Yu W, Xie Z, Zheng G, Liu W, Wang S, Cao Q, Lin J, Su Z, Li D, Che Y, Fan S, Wang P, Wu Y, Shen H. ALKBH5 facilitates CYP1B1 mRNA degradation via m6A demethylation to alleviate MSC senescence and osteoarthritis progression. Exp Mol Med 2023; 55:1743-1756. [PMID: 37524872 PMCID: PMC10474288 DOI: 10.1038/s12276-023-01059-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/01/2023] [Accepted: 05/24/2023] [Indexed: 08/02/2023] Open
Abstract
Improving health and delaying aging is the focus of medical research. Previous studies have shown that mesenchymal stem cell (MSC) senescence is closely related to organic aging and the development of aging-related diseases such as osteoarthritis (OA). m6A is a common RNA modification that plays an important role in regulating cell biological functions, and ALKBH5 is one of the key m6A demethylases. However, the role of m6A and ALKBH5 in MSC senescence is still unclear. Here, we found that the m6A level was enhanced and ALKBH5 expression was decreased in aging MSCs induced by multiple replications, H2O2 stimulation or UV irradiation. Downregulation of ALKBH5 expression facilitated MSC senescence by enhancing the stability of CYP1B1 mRNA and inducing mitochondrial dysfunction. In addition, IGF2BP1 was identified as the m6A reader restraining the degradation of m6A-modified CYP1B1 mRNA. Furthermore, Alkbh5 knockout in MSCs aggravated spontaneous OA in mice, and overexpression of Alkbh5 improved the efficacy of MSCs in OA. Overall, this study revealed a novel mechanism of m6A in MSC senescence and identified promising targets to protect against aging and OA.
Collapse
Affiliation(s)
- Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Shan Wang
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Qian Cao
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Dateng Li
- Department of Statistical Science, Southern Methodist University, Dallas, TX, USA
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Shuai Fan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.
| |
Collapse
|
52
|
Lin YC, Cheung G, Zhang Z, Papadopoulos V. Mitochondrial cytochrome P450 1B1 is involved in pregnenolone synthesis in human brain cells. J Biol Chem 2023; 299:105035. [PMID: 37442234 PMCID: PMC10413356 DOI: 10.1016/j.jbc.2023.105035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Neurosteroids, which are steroids synthesized by the nervous system, can exert neuromodulatory and neuroprotective effects via genomic and nongenomic pathways. The neurosteroid and major steroid precursor pregnenolone has therapeutical potential in various diseases, such as psychiatric and pain disorders, and may play important roles in myelination, neuroinflammation, neurotransmission, and neuroplasticity. Although pregnenolone is synthesized by CYP11A1 in peripheral steroidogenic organs, our recent study showed that pregnenolone must be synthesized by another mitochondrial cytochrome P450 (CYP450) enzyme other than CYP11A1 in human glial cells. Therefore, we sought to identify the CYP450 responsible for pregnenolone production in the human brain. Upon screening for CYP450s expressed in the human brain that have mitochondrial localization, we identified three enzyme candidates: CYP27A1, CYP1A1, and CYP1B1. We found that inhibition of CYP27A1 through inhibitors and siRNA knockdown did not negatively affect pregnenolone synthesis in human glial cells. Meanwhile, treatment of human glial cells with CYP1A1/CYP1B1 inhibitors significantly reduced pregnenolone production in the presence of 22(R)-hydroxycholesterol. We performed siRNA knockdown of CYP1A1 or CYP1B1 in human glial cells and found that only CYP1B1 knockdown significantly decreased pregnenolone production. Furthermore, overexpression of mitochondria-targeted CYP1B1 significantly increased pregnenolone production under basal conditions and in the presence of hydroxycholesterols and low-density lipoprotein. Inhibition of CYP1A1 and/or CYP1B1 via inhibitors or siRNA knockdown did not significantly reduce pregnenolone synthesis in human adrenal cortical cells, implying that CYP1B1 is not a major pregnenolone-producing enzyme in the periphery. These data suggest that mitochondrial CYP1B1 is involved in pregnenolone synthesis in human glial cells.
Collapse
Affiliation(s)
- Yiqi Christina Lin
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Garett Cheung
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Zeyu Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
53
|
Foti RS. Cytochrome P450 and Other Drug-Metabolizing Enzymes As Therapeutic Targets. Drug Metab Dispos 2023; 51:936-949. [PMID: 37041085 DOI: 10.1124/dmd.122.001011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Cytochrome P450 and other families of drug-metabolizing enzymes are commonly thought of and studied for their ability to metabolize xenobiotics and other foreign entities as they are eliminated from the body. Equally as important, however, is the homeostatic role that many of these enzymes play in maintaining the proper levels of endogenous signaling molecules such as lipids, steroids, and eicosanoids as well as their ability to modulate protein-protein interactions involved in downstream signaling cascades. Throughout the years, many of these endogenous ligands or protein partners of drug-metabolizing enzymes have been associated with a wide range of disease states from cancer to various cardiovascular, neurologic, or inflammatory diseases, prompting an interest in whether modulation of drug-metabolizing enzyme activity could have a subsequent pharmacological impact or lessening of disease severity. Beyond direct regulation of endogenous pathways, drug-metabolizing enzymes have also been proactively targeted for their ability to activate prodrugs with subsequent pharmacological activity or enhance the efficacy of a coadministered drug by inhibiting the metabolism of that drug through a rationally designed drug-drug interaction (i.e., ritonavir and human immunodeficiency virus antiretroviral therapy). The focus of this minireview will be to highlight research aimed at characterizing cytochrome P450 and other drug-metabolizing enzymes as therapeutic targets. Examples of successfully marketed drugs as well as early research efforts will be discussed. Finally, emerging areas of research utilizing typical drug-metabolizing enzymes to impact clinical outcomes will be discussed. SIGNIFICANCE STATEMENT: Although generally thought of for their drug-metabolizing capabilities, enzymes such as the cytochromes P450, glutathione S-transferases, soluble epoxide hydrolases, and others play a significant role in regulating key endogenous pathways, making them potential drug targets. This minireview will cover various efforts over the years to modulate drug-metabolizing enzyme activity toward pharmacological outcomes.
Collapse
Affiliation(s)
- Robert S Foti
- ADME & Discovery Toxicology, Merck & Co., Inc., Boston, Massachusetts
| |
Collapse
|
54
|
Juskevicius D, Lundberg P, Tzankov A, Dirnhofer S, Stenner F. Genetic Factors in Familial Manifestation of Primary Mediastinal Large B-Cell Lymphoma over Two Generations. Pathobiology 2023; 90:422-428. [PMID: 37490879 PMCID: PMC10733924 DOI: 10.1159/000532053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
INTRODUCTION Primary mediastinal large B-cell lymphoma (PMBL) is a rarely occurring lymphoid malignancy which typically affects young adults and presents itself as an anterior mediastinal mass. Gene expression profiling as well as somatic genetic analysis revealed that it is closely related to classical Hodgkin lymphoma, whereas morphologically, it tends to resemble diffuse large B-cell lymphoma. Familial clustering of PMBL is rare - only two reports have been published to date. While it is generally accepted that positive family history is associated with increased risk of developing a lymphoma, genetic risk factors which might predispose to PMBL are largely unknown. CASE PRESENTATION We performed germline and tumor genetic analyses by whole-exome sequencing and array-CGH of a family, in which the father and the son both developed a PMBL. Germline investigations of both affected patients and of their two unaffected family members have not been able to provide a single risk factor associated with lymphoma predisposition. In addition, genes that were previously implicated in increased risk for PMBL, namely MLL (KMT2A) and TIRAP, were found to be intact in all investigated family members. Somatic genetic investigations identified known as well as novel genetic aberrations in tumors of the affected subjects. CONCLUSION We conclude that predisposition to a PMBL might be inherited through a combination of low- or moderate-risk factors and provide a shortlist of the most likely selected candidates, which can be used in future studies.
Collapse
Affiliation(s)
- Darius Juskevicius
- Department of Laboratory Medicine, Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Pontus Lundberg
- Department of Laboratory Medicine, Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland,
| | - Stefan Dirnhofer
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Frank Stenner
- Department of Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
55
|
Manichaikul A, Hu X, Logan J, Kwon Y, Lima J, Jacobs D, Duprez D, Brumback L, Taylor K, Durda P, Johnson C, Cornell E, Guo X, Liu Y, Tracy R, Blackwell T, Papanicolaou G, Mitchell G, Rich S, Rotter J, Van Den Berg D, Chirinos J, Hughes T, Garrett-Bakelman F. Multi-ancestry epigenome-wide analyses identify methylated sites associated with aortic augmentation index in TOPMed MESA. RESEARCH SQUARE 2023:rs.3.rs-3125948. [PMID: 37502922 PMCID: PMC10371087 DOI: 10.21203/rs.3.rs-3125948/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Despite the prognostic value of arterial stiffness (AS) and pulsatile hemodynamics (PH) for cardiovascular morbidity and mortality, epigenetic modifications that contribute to AS/PH remain unknown. To gain a better understanding of the link between epigenetics (DNA methylation) and AS/PH, we examined the relationship of eight measures of AS/PH with CpG sites and co-methylated regions using multi-ancestry participants from Trans-Omics for Precision Medicine (TOPMed) Multi-Ethnic Study of Atherosclerosis (MESA) with sample sizes ranging from 438 to 874. Epigenome-wide association analysis identified one genome-wide significant CpG (cg20711926-CYP1B1) associated with aortic augmentation index (AIx). Follow-up analyses, including gene set enrichment analysis, expression quantitative trait methylation analysis, and functional enrichment analysis on differentially methylated positions and regions, further prioritized three CpGs and their annotated genes (cg23800023-ETS1, cg08426368-TGFB3, and cg17350632-HLA-DPB1) for AIx. Among these, ETS1 and TGFB3 have been previously prioritized as candidate genes. Furthermore, both ETS1 and HLA-DPB1 have significant tissue correlations between Whole Blood and Aorta in GTEx, which suggests ETS1 and HLA-DPB1 could be potential biomarkers in understanding pathophysiology of AS/PH. Overall, our findings support the possible role of epigenetic regulation via DNA methylation of specific genes associated with AIx as well as identifying potential targets for regulation of AS/PH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kent Taylor
- The Institute for Translational Genomics and Population Sciences
| | | | | | | | | | | | | | | | | | | | - Stephen Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia
| | - Jerome Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | | | | | | | | |
Collapse
|
56
|
Mohagheghzadeh A, Badr P, Mohagheghzadeh A, Hemmati S. Hypericum perforatum L. and the Underlying Molecular Mechanisms for Its Choleretic, Cholagogue, and Regenerative Properties. Pharmaceuticals (Basel) 2023; 16:887. [PMID: 37375834 PMCID: PMC10300974 DOI: 10.3390/ph16060887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Any defects in bile formation, secretion, or flow may give rise to cholestasis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. As the pathogenesis of hepatic disorders is multifactorial, targeting parallel pathways potentially increases the outcome of therapy. Hypericum perforatum has been famed for its anti-depressive effects. However, according to traditional Persian medicine, it helps with jaundice and acts as a choleretic medication. Here, we will discuss the underlying molecular mechanisms of Hypericum for its use in hepatobiliary disorders. Differentially expressed genes retrieved from microarray data analysis upon treatment with safe doses of Hypericum extract and intersection with the genes involved in cholestasis are identified. Target genes are located mainly at the endomembrane system with integrin-binding ability. Activation of α5β1 integrins, as osmo-sensors in the liver, activates a non-receptor tyrosine kinase, c-SRC, which leads to the insertion of bile acid transporters into the canalicular membrane to trigger choleresis. Hypericum upregulates CDK6 that controls cell proliferation, compensating for the bile acid damage to hepatocytes. It induces ICAM1 to stimulate liver regeneration and regulates nischarin, a hepatoprotective receptor. The extract targets the expression of conserved oligomeric Golgi (COG) and facilitates the movement of bile acids toward the canalicular membrane via Golgi-derived vesicles. In addition, Hypericum induces SCP2, an intracellular cholesterol transporter, to maintain cholesterol homeostasis. We have also provided a comprehensive view of the target genes affected by Hypericum's main metabolites, such as hypericin, hyperforin, quercitrin, isoquercitrin, quercetin, kaempferol, rutin, and p-coumaric acid to enlighten a new scope in the management of chronic liver disorders. Altogether, standard trials using Hypericum as a neo-adjuvant or second-line therapy in ursodeoxycholic-acid-non-responder patients define the future trajectories of cholestasis treatment with this product.
Collapse
Affiliation(s)
- Ala Mohagheghzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
| | - Abdolali Mohagheghzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
57
|
Butranova OI, Ushkalova EA, Zyryanov SK, Chenkurov MS, Baybulatova EA. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines 2023; 11:1633. [PMID: 37371728 DOI: 10.3390/biomedicines11061633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Infections are important factors contributing to the morbidity and mortality among elderly patients. High rates of consumption of antimicrobial agents by the elderly may result in increased risk of toxic reactions, deteriorating functions of various organs and systems and leading to the prolongation of hospital stay, admission to the intensive care unit, disability, and lethal outcome. Both safety and efficacy of antibiotics are determined by the values of their plasma concentrations, widely affected by physiologic and pathologic age-related changes specific for the elderly population. Drug absorption, distribution, metabolism, and excretion are altered in different extents depending on functional and morphological changes in the cardiovascular system, gastrointestinal tract, liver, and kidneys. Water and fat content, skeletal muscle mass, nutritional status, use of concomitant drugs are other determinants of pharmacokinetics changes observed in the elderly. The choice of a proper dosing regimen is essential to provide effective and safe antibiotic therapy in terms of attainment of certain pharmacodynamic targets. The objective of this review is to perform a structure of evidence on the age-related changes contributing to the alteration of pharmacokinetic parameters in the elderly.
Collapse
Affiliation(s)
- Olga I Butranova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Ushkalova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey K Zyryanov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- State Budgetary Institution of Healthcare of the City of Moscow "City Clinical Hospital No. 24 of the Moscow City Health Department", Pistzovaya Srt. 10, 127015 Moscow, Russia
| | - Mikhail S Chenkurov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Baybulatova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
58
|
Grishanova AY, Klyushova LS, Perepechaeva ML. AhR and Wnt/β-Catenin Signaling Pathways and Their Interplay. Curr Issues Mol Biol 2023; 45:3848-3876. [PMID: 37232717 DOI: 10.3390/cimb45050248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
As evolutionarily conserved signaling cascades, AhR and Wnt signaling pathways play a critical role in the control over numerous vital embryonic and somatic processes. AhR performs many endogenous functions by integrating its signaling pathway into organ homeostasis and into the maintenance of crucial cellular functions and biological processes. The Wnt signaling pathway regulates cell proliferation, differentiation, and many other phenomena, and this regulation is important for embryonic development and the dynamic balance of adult tissues. AhR and Wnt are the main signaling pathways participating in the control of cell fate and function. They occupy a central position in a variety of processes linked with development and various pathological conditions. Given the importance of these two signaling cascades, it would be interesting to elucidate the biological implications of their interaction. Functional connections between AhR and Wnt signals take place in cases of crosstalk or interplay, about which quite a lot of information has been accumulated in recent years. This review is focused on recent studies about the mutual interactions of key mediators of AhR and Wnt/β-catenin signaling pathways and on the assessment of the complexity of the crosstalk between the AhR signaling cascade and the canonical Wnt pathway.
Collapse
Affiliation(s)
- Alevtina Y Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Maria L Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| |
Collapse
|
59
|
Chen C, Yang Y, Guo Y, He J, Chen Z, Qiu S, Zhang Y, Ding H, Pan J, Pan Y. CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer. Cell Death Dis 2023; 14:271. [PMID: 37059712 PMCID: PMC10104818 DOI: 10.1038/s41419-023-05803-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Immune checkpoint blockade (ICB) is a promising treatment strategy for colorectal cancer (CRC) patients. However, most CRC patients do not response well to ICB therapy. Increasing evidence indicates that ferroptosis plays a critical role in immunotherapy. ICB efficacy may be enhanced by inducing tumor ferroptosis. Cytochrome P450 1B1 (CYP1B1) is a metabolic enzyme that participates in arachidonic acid metabolism. However, the role of CYP1B1 in ferroptosis remains unclear. In this study, we demonstrated that CYP1B1 derived 20-HETE activated the protein kinase C pathway to increase FBXO10 expression, which in turn promoted the ubiquitination and degradation of acyl-CoA synthetase long-chain family member 4 (ACSL4), ultimately inducing tumor cells resistance to ferroptosis. Furthermore, inhibiting CYP1B1 sensitized tumor cells to anti-PD-1 antibody in a mouce model. In addition, CYP1B1 expression was negatively correlated with ACSL4 expression, and high expression indicates poor prognosis in CRC. Taken together, our work identified CYP1B1 as a potential biomarker for enhancing anti-PD-1 therapy in CRC.
Collapse
Affiliation(s)
- Congcong Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yabing Yang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanguan Guo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiashuai He
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zuyang Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shenghui Qiu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiran Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes. Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|
60
|
Chen X, Zhao T, Du J, Guan X, Yu H, Wang D, Wang C, Meng Q, Yao J, Sun H, Liu K, Wu J. Comparative Inhibitory Effects of Natural Biflavones from Ginkgo against Human CYP1B1 in Recombinant Enzymes and MCF-7 Cells. PLANTA MEDICA 2023; 89:397-407. [PMID: 36064115 DOI: 10.1055/a-1936-4807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic enzyme overexpressed in many tumors and associated with angiogenesis. Ginkgetin, isoginkgetin, sciadopitysin, and amentoflavone, the primary biflavones found in Ginkgo biloba, have excellent anti-inflammatory and anti-tumor effects. However, the effect of biflavones on CYP1B1 activities remains unknown. In this study, 7-ethoxyresorufin O-deethylation (EROD) was used to characterize the activities of CYP1 families. The impacts of four ginkgo biflavones on CYP1B1 activity and the cellular protein expression of CYP1B1 were systematically investigated. The results showed that amentoflavone with six hydroxyl substituents exhibited the most potent selective inhibitory effect on CYP1B1 activity with IC50 of 0.054 µM in four biflavones. Sciadopitysin, with three hydroxyl and three methoxy substituents, had the weakest inhibitory activity against CYP1B1. Ginkgetin and isoginkgetin, both with four hydroxyl and two methoxy substituents, showed similar inhibitory intensity towards CYP1B1 with IC50 values of 0.289 and 0.211 µM, respectively. Kinetic analysis showed that ginkgetin and amentoflavone inhibited CYP1B1 in a non-competitive mode, whereas sciadopitysin and isoginkgetin induced competitive or mixed types of inhibition. Notably, four ginkgo biflavones were also confirmed to suppress the protein expressions of CYP1B1 and AhR in MCF-7. Furthermore, molecular docking studies indicated more hydrogen bonds formed between amentoflavone and CYP1B1, which might explain the strongest inhibitory action towards CYP1B1. In summary, these findings suggested that biflavones remarkably inhibited both the activity and protein expression of CYP1B1 and the inhibitory activities enhanced with the increasing hydroxyl substitution, providing new insights into the anti-tumor potentials of biflavones.
Collapse
Affiliation(s)
- Xiaodong Chen
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Tingting Zhao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jie Du
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xintong Guan
- College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Hong Yu
- Department of Pharmacy, Dalian Municipal Women and Children's Medical Center, Liaoning Dalian, China
| | - Dalong Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Jialin Yao
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Jingjing Wu
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
61
|
Sharma H, Raju B, Narendra G, Kumar M, Verma H, Sharma B, Tung GK, Kumar Jain S, Brás NF, Silakari O. In silico guided designing of optimized benzochalcones derivatives as potent CYP1B1 inhibitors: An integrated in vitro and ONIOM study. J Mol Graph Model 2023; 119:108390. [PMID: 36502606 DOI: 10.1016/j.jmgm.2022.108390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Cytochrome P4501B1 (CYP1B1) is reported to be overexpressed in various malignancies including ovarian, lung, lymph, and breast cancers. The overexpression of this enzyme is accountable for the biotransformation-based inactivation of some anti-cancer drugs i.e. Docetaxel, Paclitaxel, and Cisplatin. To circumvent solutions to this issue, the current study reports some optimized derivatives of benzochalcone as selective CYP1B1 inhibitors. The optimized derivatives were screened using some structure-based drug-designing approaches including molecular docking and molecular dynamics. The implemented approaches revealed that all the designed molecules demonstrated not only essential interactions with key amino acid residues but also maintained stability within the active site of CYP1B1. Furthermore, to validate the in-silico results and develop a SAR, the designed molecules were subsequently synthesized and tested for their ability to selectively inhibit CYP1B1 over CYP1A1 using well established EROD assay. This assay results suggested that compounds 1(c), 1(d), and 1(e) are eightfold more selective CYP1B1 inhibitors over CYP1A1 with IC50 values ranging from 0.06 to 0.09 μM respectively. Among these, compound 1(d) manifested potent inhibitory activity i.e. IC50 of 0.06 μM with 24 folds selectivity over 1A1. To have a better insight into the binding pattern of 1(d) within CYP1B1 and precisely compute binding affinity for 1(d)-CYP1B1 complex, one of the advanced QM/MM approaches i.e. ONIOM has been implemented. Where 1(d)-CYP1B1 complex conferred comparable binding affinity in terms of ΔG (kcal/mol) with that of ANF-CYP1B1 complex. This research could provide a suitable starting point for the development of more potent multi-functional compounds with CYP1B1 inhibitory activity.
Collapse
Affiliation(s)
- Himani Sharma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Manoj Kumar
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Bhavna Sharma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Gurleen Kaur Tung
- Center for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| | - Subheet Kumar Jain
- Center for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| | - Natércia F Brás
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
62
|
Low-Calle AM, Ghoneima H, Ortega N, Cuibus AM, Katz C, Tong D, Prives C, Prywes R. A non-canonical Hippo pathway represses the expression of ΔNp63. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528336. [PMID: 36824867 PMCID: PMC9949004 DOI: 10.1101/2023.02.13.528336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The p63 transcription factor, a member of the p53 family, plays an oncogenic role in squamous cancers, while in breast cancers its expression is often repressed. In the canonical conserved Hippo pathway, known to play a complex role in regulating growth of cancer cells, the protein kinases MST1/2 and LATS1/2 act sequentially to phosphorylate and inhibit the YAP/TAZ transcription factors. We found that in the MCF10A mammary epithelial cell line as well as in squamous and breast cancer cell lines, expression of ΔNp63 RNA and protein is strongly repressed by inhibition of the Hippo pathway protein kinases in a manner that is independent of p53. While MST1/2 and LATS1 are required for p63 expression, the next step of the pathway, namely phosphorylation and degradation of the YAP/TAZ transcriptional activators is not required for repression of p63. This suggests that regulation of p63 expression occurs by a non-canonical version of the Hippo pathway. We additionally identified additional genes that were similarly regulated suggesting the broader importance of this pathway. Interestingly, we observed that experimentally lowering p63 expression leads to increased YAP protein levels, thereby constituting a feedback loop. These results, which reveal the intersection of the Hippo and p63 pathways, may prove useful for the control of their activities in cancer cells. One Sentence Summary Regulation of p63 expression occurs by a non-canonical version of the Hippo pathway in mammary epithelial, breast carcinoma and head and neck squamous carcinoma cells.
Collapse
|
63
|
Li H, Wang X, Yang Q, Cheng L, Zeng HL. Identification of iron metabolism-related genes as diagnostic signatures in sepsis by blood transcriptomic analysis. Open Life Sci 2023; 18:20220549. [PMID: 36820206 PMCID: PMC9938542 DOI: 10.1515/biol-2022-0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 02/11/2023] Open
Abstract
Iron metabolism is considered to play the principal role in sepsis, but the key iron metabolism-related genetic signatures are unclear. In this study, we analyzed and identified the genetic signatures related to the iron-metabolism in sepsis by using a bioinformatics analysis of four transcriptomic datasets from the GEO database. A total of 21 differentially expressed iron metabolism-related signatures were identified including 9 transporters, 8 enzymes, and 4 regulatory factors. Among them, lipocalin 2 was found to have the highest diagnostic value as its expression showed significant differences in all the comparisons including sepsis vs healthy controls, sepsis vs non-sepsis diseases, and mild forms vs severe forms of sepsis. Besides, the cytochrome P450 gene CYP1B1 also showed diagnostic values for sepsis from the non-sepsis diseases. The CYP4V2, LTF, and GCLM showed diagnostic values for distinguishing the severe forms from mild forms of sepsis. Our analysis identified 21 sepsis-associated iron metabolism-related genetic signatures, which may represent diagnostic and therapeutic biomarkers of sepsis, and will improve our understanding of the molecular mechanism underlying the occurrence of sepsis.
Collapse
Affiliation(s)
- Huijun Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Yang
- Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
64
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
65
|
Hu S, Rong Y, Deng Y, Li L, Hu J, Yuan X, He H, Li L, Wang J. miR-27b-3p inhibits estrogen secretion of goose granulosa cells by targeting CYP1B1 through the AMPK signaling pathway. Poult Sci 2023; 102:102546. [PMID: 36842296 PMCID: PMC9984896 DOI: 10.1016/j.psj.2023.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/31/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Although miR-27b-3p has been evidenced to regulate the proliferation, apoptosis, and differentiation of a variety of mammalian cell types, its actions and mechanisms on ovarian cell steroidogenesis remains largely unknown in both mammalian and avian species. In this study, we aimed to determine the expression profiles of miR-27b-3p in granulosa cell layers during goose ovarian follicle development and to reveal its actions on estrogen (E2) secretion of goose granulosa cells as well as the underlying regulatory mechanisms. It was observed that miR-27b-3p was ubiquitously expressed throughout follicle development but exhibited much higher levels in hierarchical- than in prehierarchical follicles. In cultured granulosa cells from the fourth through second largest preovulatory (F4-F2) follicles of goose, up- and downregulation of miR-27b-3p by using its mimic and inhibitor significantly decreased and increased E2 secretion, respectively. Meanwhile, the mRNA levels of STAR and CYP19A1 were significantly reduced while those of CYP11A1 and 3βHSD were elevated in the mimic-transfected granulosa cells. By comparison, downregulation of miR-27b-3p enhanced the mRNA levels of STAR but had no significant effects on those of CYP19A1, CYP11A1, and 3βHSD. Results from bioinformatic prediction and luciferase reporter assay demonstrated that CYP1B1 was a downstream target of miR-27b-3p. Although the siRNA-mediated downregulation of CYP1B1 did not significantly change E2 secretion by goose granulosa cells, it reduced the mRNA levels of STAR and CYP19A1 as well as those of LKB1 and AMPKα, which are involved in the AMPK signaling pathway. Taken together, these data suggest that miR-27b-3p plays an inhibitory role in E2 secretion by goose F4-F2 granulosa cells, at least in part, by targeting CYP1B1 through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yujing Rong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xin Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
66
|
Zheng R, Shen H, Li J, Zhao J, Lu L, Hu M, Lin Z, Ma H, Tan H, Hu M, Li J. Qi Gong Wan ameliorates adipocyte hypertrophy and inflammation in adipose tissue in a PCOS mouse model through the Nrf2/HO-1/Cyp1b1 pathway: Integrating network pharmacology and experimental validation in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115824. [PMID: 36273747 DOI: 10.1016/j.jep.2022.115824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Initially recorded in Yifang Jijie (an ancient Chinese text), Qi Gong Wan (QGW) is used to treat obese women with infertility. QGW can help promote follicular development and maturation, regulate the balance of serum hormones between testosterone and estradiol, enhance endometrial receptivity, improve waist circumference, and ameliorate insulin resistance. It contains eight herbs: Pinellia ternata (Thunb.) Makino (Banxia), Citrus maxima (Burm.) (Juhong), Poria cocos (Schw.) Wolf. (Fuling), Atractylodes macrocephala Koidz (Baizhu), Cyperus rotundus L. (Xiangfu), Conioselinum anthriscoides 'Chuanxiong' (Chuanxiong), Massa Medicata Fermentata (Shenqu), and Glycyrrhiza uralensis Fisch. ex DC. (Gancao). However, the underlying mechanism of how QGW affects women with PCOS remains unclear. AIM OF THE STUDY QGW has been widely used to treat PCOS patients with obesity clinically. This study was designed to identify its chemical and pharmacological properties. MATERIALS AND METHODS Network pharmacology was used to predict the active compounds, potential targets, and pathways of QGW. Female C57BL/6J mice were injected with letrozole and fed a high-fat diet to establish a PCOS-insulin resistance (PCOS-IR) model. Body weight, estrous cycles, ovarian pathology, and serum insulin resistance were measured. qRT-PCR was used to examine the inflammation-related and steroid hormone biosynthesis-related mRNA expression in adipose tissue. Western blotting was used to determine the protein levels of Nrf2, HO-1, and Cyp1b1 in adipose tissue. Molecular docking was used to reveal the key chemical compounds of QGW. RESULTS Network pharmacology revealed a total of 91 active ingredients in QGW that were associated with 167 targets. QGW could potentially treat PCOS-IR via nitrogen metabolism, steroid hormone biosynthesis, and ovarian steroidogenesis pathways. In the PCOS-IR mouse model, we found that QGW decreased the mean diameter of adipocytes and the total adipocyte area. Furthermore, QGW was found to significantly lower the expression of inflammation-related genes including Tnfɑ and C4a/b and the steroid hormone biosynthesis-related gene Cyp1b1. QGW showed a tendency to improve cystic follicles, fasting insulin, and HOMA-IR index in the PCOS-IR mouse model. Combining these findings with the results of KEGG analysis, we conclude that QGW promotes the Nrf2/HO-1/Cyp1b1 pathway to protect adipose tissue under conditions of PCOS. Molecular docking revealed that rutin, nicotiflorin, and baicalein may be the key chemical compounds of QGW through which it improves adipocyte hypertrophy and inflammation. CONCLUSIONS QGW improved adipocyte hypertrophy and inflammation in the PCOS-IR mouse model by activating the Nrf2/HO-1/Cyp1b1 pathway to protect adipose tissue. Our work thus provides a new research avenue for the study of traditional Chinese medicine in the treatment of PCOS.
Collapse
Affiliation(s)
- Ruqun Zheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haoran Shen
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jie Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiansen Zhao
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Lingjing Lu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mianhao Hu
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Zixin Lin
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiyan Tan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
67
|
Yi L, Huang X, Yang M, Cai J, Jia J, Peng Z, Zhao Z, Yang F, Qiu D. A new class of CYP1B1 inhibitors derived from bentranil. Bioorg Med Chem Lett 2023; 80:129112. [PMID: 36565966 DOI: 10.1016/j.bmcl.2022.129112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Cytochrome P450 1B1 (CYP1B1) is highly expressed in a variety of tumors and implicated to drug resistance. More and more researches have suggested that CYP1B1 is a new target for cancer prevention and therapy. Various CYP1B1 inhibitors with a rigid polycyclic skeleton have been developed, such as flavonoids, trans-stilbenes, and quinazolines. To obtain a new class of CYP1B1 inhibitors, we designed and synthesized a series of bentranil analogues, moreover, IC50 determinations were performed for CYP1B1 inhibition of five of these compounds and found that 6o and 6q were the best inhibitors, with IC50 values in the nM range. The selectivity index (SI) of CYP1B1 over CYP1A1 and CYP1A2 was 30-fold higher than that of α-naphthoflavone (ANF). The molecular docking results showed that compound 6q fitted better into the CYP1B1 binding site than other compounds, which was consistent with our experimental results. On the basis of 6o and 6q, it is expected to develop CYP1B1 inhibitors with stronger affinity, higher selectivity and better solubility.
Collapse
Affiliation(s)
- Lan Yi
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Huang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Meixian Yang
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jiajing Cai
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Jia
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhiping Peng
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghuan Zhao
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Fengyuan Yang
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 400044, China.
| | - Dachuan Qiu
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
68
|
Treaster S, Deelen J, Daane JM, Murabito J, Karasik D, Harris MP. Convergent genomics of longevity in rockfishes highlights the genetics of human life span variation. SCIENCE ADVANCES 2023; 9:eadd2743. [PMID: 36630509 PMCID: PMC9833670 DOI: 10.1126/sciadv.add2743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/09/2022] [Indexed: 05/16/2023]
Abstract
Longevity is a defining, heritable trait that varies dramatically between species. To resolve the genetic regulation of this trait, we have mined genomic variation in rockfishes, which range in longevity from 11 to over 205 years. Multiple shifts in rockfish longevity have occurred independently and in a short evolutionary time frame, thus empowering convergence analyses. Our analyses reveal a common network of genes under convergent evolution, encompassing established aging regulators such as insulin signaling, yet also identify flavonoid (aryl-hydrocarbon) metabolism as a pathway modulating longevity. The selective pressures on these pathways indicate the ancestral state of rockfishes was long lived and that the changes in short-lived lineages are adaptive. These pathways were also used to explore genome-wide association studies of human longevity, identifying the aryl-hydrocarbon metabolism pathway to be significantly associated with human survival to the 99th percentile. This evolutionary intersection defines and cross-validates a previously unappreciated genetic architecture that associates with the evolution of longevity across vertebrates.
Collapse
Affiliation(s)
- Stephen Treaster
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Köln, Germany
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jacob M. Daane
- Department of Biology and Biochemistry, University of Houston, Houston TX, USA
| | - Joanne Murabito
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA
| | - Matthew P. Harris
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
69
|
Wang W, Liu T, Zhang Y. An integrated targeted metabolomics and network pharmacology approach to exploring the mechanism of ellagic acid against sleep deprivation-induced memory impairment and anxiety. Digit Health 2023; 9:20552076231169846. [PMID: 37101588 PMCID: PMC10123898 DOI: 10.1177/20552076231169846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Background As a neuroprotective agent, ellagic acid (EA) is extremely beneficial. Our previous study found that EA can alleviate sleep deprivation (SD)-induced abnormal behaviors, although the mechanisms underlying this protective effect have not yet been fully elucidated. Objective An integrated network pharmacology and targeted metabolomics approach was utilized in this study to investigate the mechanism of EA against SD-induced memory impairment and anxiety. Methods Behavioral tests were conducted on mice after 72 h of SD. Hematoxylin and eosin staining and nissl staining were then carried out. Integration of network pharmacology and targeted metabolomics was performed. Eventually, the putative targets were further verified using molecular docking analyses and immunoblotting assays. Results The present study findings confirmed that EA ameliorated the behavioral abnormalities induced by SD and prevented histopathological and morphological damage to hippocampal neurons. Through multivariate analysis, clear clustering was obtained among different groups, and potential biomarkers were identified. Four key targets, catechol-O-methyltransferase (COMT), cytochrome P450 1B1 (CYP1B1), glutathione S-transferase A2 (GSTA2), and glutathione S-transferase P1 (GSTP1), as well as the related potential metabolites and metabolic pathways, were determined by further integrated analysis. Meanwhile, in-silico studies revealed that EA is well located inside the binding site of CYP1B1 and COMT. The experimental results further demonstrated that EA significantly reduced the increased expression of CYP1B1 and COMT caused by SD. Conclusion The findings of this study extended our understanding of the underlying mechanisms by which EA treats SD-induced memory impairment and anxiety, and suggested a novel approach to address the increased health risks associated with sleep loss.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianlong Liu
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yi Zhang, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
70
|
Zhu X, Gao H, Qin S, Liu D, Cairns J, Gu Y, Yu J, Weinshilboum RM, Wang L. Testis- specific Y-encoded- like protein 1 and cholesterol metabolism: Regulation of CYP1B1 expression through Wnt signaling. Front Pharmacol 2022; 13:1047318. [PMID: 36518674 PMCID: PMC9742362 DOI: 10.3389/fphar.2022.1047318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
The cytochromes P450 (CYPs) represent a large gene superfamily that plays an important role in the metabolism of both exogenous and endogenous compounds. We have reported that the testis-specific Y-encoded-like proteins (TSPYLs) are novel CYP gene transcriptional regulators. However, little is known of mechanism(s) by which TSPYLs regulate CYP expression or the functional consequences of that regulation. The TSPYL gene family includes six members, TSPYL1 to TSPYL6. However, TSPYL3 is a pseudogene, TSPYL5 is only known to regulates the expression of CYP19A1, and TSPYL6 is expressed exclusively in the testis. Therefore, TSPYL 1, 2 and 4 were included in the present study. To better understand how TSPYL1, 2, and 4 might influence CYP expression, we performed a series of pull-downs and mass spectrometric analyses. Panther pathway analysis of the 2272 pulled down proteins for all 3 TSPYL isoforms showed that the top five pathways were the Wnt signaling pathway, the Integrin signaling pathway, the Gonadotropin releasing hormone receptor pathway, the Angiogenesis pathway and Inflammation mediated by chemokines and cytokines. Specifically, we observed that 177 Wnt signaling pathway proteins were pulled down with the TSPYLs. Subsequent luciferase assays showed that TSPYL1 knockdown had a greater effect on the activation of Wnt signaling than did TSPYL2 or TSPYL4 knockdown. Therefore, in subsequent experiments, we focused our attention on TSPYL1. HepaRG cell qRT-PCR showed that TSPYL1 regulated the expression of CYPs involved in cholesterol-metabolism such as CYP1B1 and CYP7A1. Furthermore, TSPYL1 and β-catenin regulated CYP1B1 expression in opposite directions and TSPYL1 appeared to regulate CYP1B1 expression by blocking β-catenin binding to the TCF7L2 transcription factor on the CYP1B1 promoter. In β-catenin and TSPYL1 double knockdown cells, CYP1B1 expression and the generation of CYP1B1 downstream metabolites such as 20-HETE could be restored. Finally, we observed that TSPYL1 expression was associated with plasma cholesterol levels and BMI during previous clinical studies of obesity. In conclusion, this series of experiments has revealed a novel mechanism for regulation of the expression of cholesterol-metabolizing CYPs, particularly CYP1B1, by TSPYL1 via Wnt/β-catenin signaling, raising the possibility that TSPYL1 might represent a molecular target for influencing cholesterol homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
71
|
Zhou H, Chen Y, Xiao Y, Wu Q, Li H, Li Y, Su G, Ke L, Wu J, Li J. Evaluation of the ability of fatty acid metabolism signature to predict response to neoadjuvant chemoradiotherapy and prognosis of patients with locally advanced rectal cancer. Front Immunol 2022; 13:1050721. [PMID: 36505493 PMCID: PMC9729334 DOI: 10.3389/fimmu.2022.1050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
Neoadjuvant chemoradiotherapy (nCRT) is widely used to treat patients with locally advanced rectal cancer (LARC), and treatment responses vary. Fatty acid metabolism (FAM) is closely associated with carcinogenesis and cancer progression. In this study, we investigated the vital role of FAM on the gut microbiome and metabolism in the context of cancer. We screened 34 disease-free survival (DFS)-related, FAM-related, and radiosensitivity-related genes based on the Gene Expression Omnibus database. Subsequently, we developed a five-gene FAM-related signature using the least absolute shrinkage and selection operator Cox regression model. The FAM-related signature was also validated in external validation from Fujian Cancer Hospital for predicting nCRT response, DFS, and overall survival (OS). Notably, patients with a low-risk score were associated with pathological complete response and better DFS and OS outcomes. A comprehensive evaluation of the tumor microenvironment based on the FAM-related signature revealed that patients with high-risk scores were closely associated with activating type I interferon response and inflammation-promoting functions. In conclusion, our findings indicate the potential ability of FAM to predict nCRT response and the prognosis of DFS and OS in patients with LARC.
Collapse
Affiliation(s)
- Han Zhou
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yanping Chen
- Department of Clinical Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yu Xiao
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Qian Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hui Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yi Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Guangjian Su
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Longfeng Ke
- Department of Clinical Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Junxin Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jinluan Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
72
|
Piekuś-Słomka N, Zapadka M, Kupcewicz B. Methoxy and methylthio-substituted trans-stilbene derivatives as CYP1B1 inhibitors – QSAR study with detailed interpretation of molecular descriptors. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
73
|
Suzuki S, Yamada S. Epigenetics in susceptibility, progression, and diagnosis of periodontitis. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:183-192. [PMID: 35754944 PMCID: PMC9218144 DOI: 10.1016/j.jdsr.2022.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is characterized by irreversible destruction of periodontal tissue. At present, the accepted etiology of periodontitis is based on a three-factor theory including pathogenic bacteria, host factors, and acquired factors. Periodontitis development usually takes a decade or longer and is therefore called chronic periodontitis (CP). To search for genetic factors associated with CP, several genome-wide association study (GWAS) analyses were conducted; however, polymorphisms associated with CP have not been identified. Epigenetics, on the other hand, involves acquired transcriptional regulatory mechanisms due to reversibly altered chromatin accessibility. Epigenetic status is a condition specific to each tissue and cell, mostly determined by the responses of host cells to stimulations by local factors, like bacterial inflammation, and systemic factors such as nutrition status, metabolic diseases, and health conditions. Significantly, epigenetic status has been linked with the onset and progression of several acquired diseases. Thus, epigenetic factors in periodontal tissues are attractive targets for periodontitis diagnosis and treatments. In this review, we introduce accumulating evidence to reveal the epigenetic background effects related to periodontitis caused by genetic factors, systemic diseases, and local environmental factors, such as smoking, and clarify the underlying mechanisms by which epigenetic alteration influences the susceptibility of periodontitis.
Collapse
Key Words
- 5mC, 5-methylcytocine
- AP, aggressive periodontitis
- ATAC-seq, assay for transposase-accessible chromatin sequencing
- CP, chronic periodontitis
- DNA methylation
- ECM, extracellular matrix
- Epigenetics
- Epigenome
- GWAS, genome-wide association study
- H3K27ac, acetylation of histone H3 lysine 27
- H3K27me3, trimethylation of histone H3 lysine 27
- H3K4me3, trimethylation of histone H3 lysine 4
- H3K9ac, histone H3 lysine 9
- HATs, histone acetyltransferases
- HDACs, histone deacetylases
- Histone modifications
- LPS, lipopolysaccharide
- PDL, periodontal ligament
- Periodontal ligament
- Periodontitis
- ceRNA, competing endogenous RNA
- lncRNAs, long ncRNAs
- m6A, N6-methyladenosine
- ncRNAs, non-coding RNAs
- sEV, small extracellular vesicles
Collapse
Affiliation(s)
- Shigeki Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
74
|
Guo Y, Zhao W, Li N, Dai S, Wu H, Wu Z, Zeng S. Integration analysis of metabolome and transcriptome reveals the effect of exogenous supplementation with mixtures of vitamins ADE, zinc, and selenium on follicular growth and granulosa cells molecular metabolism in donkeys ( Equus asinus). Front Vet Sci 2022; 9:993426. [PMID: 36387403 PMCID: PMC9650297 DOI: 10.3389/fvets.2022.993426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/06/2022] [Indexed: 09/22/2024] Open
Abstract
Vitamins and microelements play essential roles in mammalian ovarian physiology, including follicle development, ovulation, and synthesis and secretion of hormones and growth factors. However, it is nevertheless elusive to what extent exogenous supplementation with mixtures of vitamins ADE, zinc (Zn), and selenium (Se) affects follicular growth and granulosa cells (GCs) molecular function. We herein investigated their effect on follicular growth and GCs physiological function. We showed that follicular growth and ovulation time was accelerated and shortened with the increases of vitamins ADE, Zn, and Se doses by continually monitoring and recording (one estrus cycle of about 21 days) with an ultrasound scanner. Integrated omics analysis showed that there was a sophisticated network relationship, correlation expression, and enrichment pathways of the genes and metabolites highly related to organic acids and their derivatives and lipid-like molecules. Quantitative real-time PCR (qPCR) results showed that vitamin D receptor (VDR), transient receptor potential cation channel subfamily m member 6 (TRPM6), transient receptor potential cation channel subfamily v member 6 (TRPV6), solute carrier family 5 member 1 (SLC5A1), arachidonate 5-lipoxygenase (ALOX5), steroidogenic acute regulatory protein (STAR), prostaglandin-endoperoxide synthase 2 (PTGS2), and insulin like growth factor 1 (IGF-1) had a strong correlation between the transcriptome data. Combined multi-omics analysis revealed that the protein digestion and absorption, ABC transporters, biosynthesis of amino acids, aminoacyl-tRNA biosynthesis, mineral absorption, alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism, arginine biosynthesis, and ovarian steroidogenesis were significantly enriched. We focused on the gene-metabolite interactions in ovarian steroidogenesis, founding that insulin receptor (INSR), phospholipase a2 group IVA (PLA2G4A), adenylate cyclase 6 (ADCY6), cytochrome p450 family 1 subfamily b member 1 (CYP1B1), protein kinase camp-activated catalytic subunit beta (PRKACB), cytochrome p450 family 17 subfamily a member 1 (CYP17A1), and phospholipase a2 group IVF (PLA2G4F) were negatively correlated with β-estradiol (E2), progesterone (P4), and testosterone (T) (P < 0.05). while ALOX5 was a positive correlation with E2, P4, and T (P < 0.05); cytochrome p450 family 19 subfamily a member 1 (CYP19A1) was a negative correlation with cholesterol (P < 0.01). In mineral absorption, our findings further demonstrated that there was a positive correlation between solute carrier family 26 member 6 (SLC26A6), SLC5A1, and solute carrier family 6 member 19 (SLC6A19) with Glycine and L-methionine. Solute carrier family 40 member 1 (SLC40A1) was a negative correlation with Glycine and L-methionine (P < 0.01). TRPV6 and ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) were positively associated with Glycine (P < 0.05); while ATPase Na+/K+ transporting subunit beta 3 (ATP1B3) and cytochrome b reductase 1 (CYBRD1) were negatively related to L-methionine (P < 0.05). These outcomes suggested that the vitamins ADE, Zn, and Se of mixtures play an important role in the synthesis and secretion of steroid hormones and mineral absorption metabolism pathway through effects on the expression of the key genes and metabolites in GCs. Meanwhile, these also are required for physiological function and metabolism of GCs. Collectively, our outcomes shed new light on the underlying mechanisms of their effect on follicular growth and GCs molecular physiological function, helping explore valuable biomarkers.
Collapse
Affiliation(s)
- Yajun Guo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Weisen Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Nan Li
- Department of Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shizhen Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
75
|
Zhou F, Huang R, Cao T, Liu J, Yang W, Li F, Li X. 4-Phenylcoumarins from Mesua ferrea with selective CYP1B1 inhibitory activity. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
76
|
Xia QS, Gao Y, Wen-Bin W, Wu F, Dong H, Xu LJ, Fang K, Hu ML, Yuan F, Lu FE, Gong J. Ban-xia-xie-xin-tang ameliorates hepatic steatosis by regulating Cidea and Cidec expression in HFD-fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154351. [PMID: 35908522 DOI: 10.1016/j.phymed.2022.154351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ban-xia-xie-xin-tang (BXXXT) has been applied in treating metabolic diseases, such as nonalcohol fatty liver disease, diabetes mellitus, and obesity. However, the underlying molecular mechanism of BXXXT in treating diabetes mellitus is unknown. PURPOSE To clarify the underlying molecular mechanism of BXXXT in alleviating hepatic steatosis in high-fat diet (HFD)-fed mice. METHODS After 12 weeks of HFD treatment, mice were administered BXXXT for 4 weeks. The main chemical components of BXXXT were identified by UPLC-TQ-MS/MS. Indicators associated with insulin resistance and lipid metabolism were detected. The effect of improving glucose and lipid metabolism between BXXXT and the different components was compared. Differentially expressed genes (DEGs) were identified by hepatic transcriptomics. Key DEGs and proteins were further detected by real-time quantitative polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence staining. LDs and mitochondria were detected by transmission electron microscopy. RESULTS First of all, our data demonstrated that the capacity to improve glucose and lipid metabolism for BXXXT was significantly superior to different components of BXXXT. BXXXT was found to improve HFD-induced insulin resistance. Moreover, BXXXT decreased weight, serum/hepatic triglycerides, total cholesterol, and FFAs to alleviate HFD-induced hepatic steatosis. According to the results of the hepatic transcription, Cidea and Cidec were identified as critical DEGs for promoting LD fusion and reducing FFAs β-oxidation in mitochondria and peroxisome resulting in hepatic steatosis, which was reversed by BXXXT. CONCLUSION BXXXT ameliorates HFD-induced hepatic steatosis and insulin resistance by increasing Cidea and Cidec-mediated mitochondrial and peroxisomal fatty acid oxidation, which may provide a potential strategy for therapy of NAFLD and T2DM.
Collapse
Affiliation(s)
- Qing-Song Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Beijing Tcmages Pharmaceutical Co., Ltd, Beijing 100000, China
| | - Wu Wen-Bin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li-Jun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Mei-Lin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fen Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fu-Er Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
77
|
Song YS, Annalora AJ, Marcus CB, Jefcoate CR, Sorenson CM, Sheibani N. Cytochrome P450 1B1: A Key Regulator of Ocular Iron Homeostasis and Oxidative Stress. Cells 2022; 11:2930. [PMID: 36230892 PMCID: PMC9563809 DOI: 10.3390/cells11192930] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 (CYP) 1B1 belongs to the superfamily of heme-containing monooxygenases. Unlike other CYP enzymes, which are highly expressed in the liver, CYP1B1 is predominantly found in extrahepatic tissues, such as the brain, and ocular tissues including retina and trabecular meshwork. CYP1B1 metabolizes exogenous chemicals such as polycyclic aromatic hydrocarbons. CYP1B1 also metabolizes endogenous bioactive compounds including estradiol and arachidonic acid. These metabolites impact various cellular and physiological processes during development and pathological processes. We previously showed that CYP1B1 deficiency mitigates ischemia-mediated retinal neovascularization and drives the trabecular meshwork dysgenesis through increased levels of oxidative stress. However, the underlying mechanisms responsible for CYP1B1-deficiency-mediated increased oxidative stress remain largely unresolved. Iron is an essential element and utilized as a cofactor in a variety of enzymes. However, excess iron promotes the production of hydroxyl radicals, lipid peroxidation, increased oxidative stress, and cell damage. The retinal endothelium is recognized as a major component of the blood-retinal barrier, which controls ocular iron levels through the modulation of proteins involved in iron regulation present in retinal endothelial cells, as well as other ocular cell types including trabecular meshwork cells. We previously showed increased levels of reactive oxygen species and lipid peroxidation in the absence of CYP1B1, and in the retinal vasculature and trabecular meshwork, which was reversed by administration of antioxidant N-acetylcysteine. Here, we review the important role CYP1B1 expression and activity play in maintaining retinal redox homeostasis through the modulation of iron levels by retinal endothelial cells. The relationship between CYP1B1 expression and activity and iron levels has not been previously delineated. We review the potential significance of CYP1B1 expression, estrogen metabolism, and hepcidin-ferroportin regulatory axis in the local regulation of ocular iron levels.
Collapse
Affiliation(s)
- Yong-Seok Song
- Departments of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew J. Annalora
- Department of Environmental and Molecular Toxicology, Organ State University, Corvallis, OR 97331, USA
| | - Craig B. Marcus
- Department of Environmental and Molecular Toxicology, Organ State University, Corvallis, OR 97331, USA
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christine M. Sorenson
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
78
|
Xie Q, Wang C. Polyacetylenes in herbal medicine: A comprehensive review of its occurrence, pharmacology, toxicology, and pharmacokinetics (2014-2021). PHYTOCHEMISTRY 2022; 201:113288. [PMID: 35718132 DOI: 10.1016/j.phytochem.2022.113288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Polyacetylenes are a kind of small active compounds with carbon-carbon triple bond with vast occurrence in plants. Polyacetylenes have attracted considerable attention owing to their diverse biofunctions like tumor suppression, immunity regulation, depression resistance and neural protection. The present review intends to reconstruct data concerning the occurrence, pharmacology, toxicology and pharmacokinetics of polyacetylenes from herbal medicine in a systematic and integrated way, with a view to backing up their curative potential and healthcare properties (2014-2021). The natural polyacetylene-related data were all acquired from the scientific search engines and databases that are globally recognized, such as PubMed, Web of Science, Elsevier, Google Scholar, ResearchGate, SciFindern and CNKI. A total of 183 polyacetylenes were summarized in this paper. Modern pharmacological studies indicated that polyacetylenes possess multiple biological activities including antitumor, immunomodulatory, neuroprotective, anti-depression, anti-obesity, hypoglycemic, antiviral, antibacterial, antifungal, hepatoprotective and renoprotective activities. As important bioactive components of herbal medicine, the pharmacological curative potential of polyacetylenes has been described against carcinomas, inflammatory responses, central nervous system, endocrine disorders and microbial infection in this review. While, further in-depth studies on the aspects of polyacetylenes for toxicity, pharmacokinetics, and molecular mechanisms are still limited, thereby intensive research and assessments should be performed.
Collapse
Affiliation(s)
- Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
79
|
Abstract
Cytochrome P450 (CYP450) is a major drug-metabolizing enzyme system mainly distributed in liver microsomes and involved in the metabolism of many endogenous substances (such as fatty acids and arachidonic acids), and exogenous compounds (such as drugs, toxicants, carcinogens, and procarcinogens). Due to the similarity in structures and catalytic functions between CYP450 isoforms, the lack of effective selective detection tools greatly limits the understanding and the research of their respective physiological roles in living organisms. Until now, several small-molecular fluorescent probes have been employed for selective detection and monitoring of CYP450s (Cytochrome P450 enzymes) in vitro or in vivo owing to the tailored properties, biodegradability, and high temporal and spatial resolution imaging in situ. In this review, we summarize the recent advances in fluorescent probes for CYP450s (including CYP1, CYP2, and CYP3 families), and we discuss and focus on their identification mechanisms, general probe design strategies, and bioimaging applications. We also highlight the potential challenges and prospects of designing new generations of fluorescent probes in CYP450 studies, which will further enhance the diversity, practicality, and clinical feasibility of research into CYP450.
Collapse
|
80
|
Huwait E, Ayoub M, Karim S. Investigation of the Molecular Mechanisms Underlying the Antiatherogenic Actions of Kaempferol in Human THP-1 Macrophages. Int J Mol Sci 2022; 23:ijms23137461. [PMID: 35806463 PMCID: PMC9267302 DOI: 10.3390/ijms23137461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is causing high mortality worldwide (World Health Organization-WHO, 2015). Atherosclerosis, the hardening and narrowing of arteries caused by the accumulation of fatty acids and lipids (cholesterol plaques), is a main reason of stroke, myocardial infarction, and angina. Present therapies for cardiovascular disease basically use statins such as β-Hydroxy β-methylglutaryl-CoA, with <70% efficacy and multiple side effects. An in vitro investigation was conducted to evaluate the impact of kaempferol, a natural medication, in an atherosclerotic cell model. We used cytotoxicity assays, Boyden chamber invasion assays, and quantitative PCR. Affymetrix microarrays were used to profile the entire transcriptome of kaempferol-treated cell lines, and Partek Genomic Suite was used to interpret the results. Kaempferol was not cytotoxic to THP-1 macrophages. In comparison to the control, kaempferol reduced monocyte migration mediated by monocyte chemotactic protein 1 (MCP-1) by 80%. The qPCR results showed a 73.7-fold reduction in MCP-1 and a 2.5-fold reduction in intercellular adhesion molecule 1 (ICAM-1) expression in kaempferol-treated cells. In interferon gamma (IFN-γ) without kaempferol and IFN-γ with kaempferol treated cells, we found 295 and 168 differentially expressed genes (DEGs), respectively. According to DEG pathway analysis, kaempferol exhibits anti-atherosclerosis and anti-inflammatory characteristics. Kaempferol is an effective and safe therapy for atherosclerosis.
Collapse
Affiliation(s)
- Etimad Huwait
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.H.); (M.A.)
- Cell Culture Unit and Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha Ayoub
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.H.); (M.A.)
- Cell Culture Unit and Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-557581741
| |
Collapse
|
81
|
Association of Leu432Val (rs1056836) polymorphism of the CYP1B1 gene with lipid profile in hypertensive Slovak women. ANTHROPOLOGICAL REVIEW 2022. [DOI: 10.18778/1898-6773.85.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leu432Val (rs1056836) polymorphism of the CYP1B1 gene was examined in relationship with lipid profile in hypertensive Slovak women according to their menopausal status. The entire study sample comprised 255 women suffering from hypertension aged from 39 to 65 years who were recruited from different localities in the western, southern, and middle parts of Slovakia. The participants provided a saliva or blood sample for DNA genotyping and a blood sample for biochemical analysis. The Leu432Val genotypes demonstrated statistically significant associations with all monitored atherogenic indices – total cholesterol-to-HDL-Cholesterol (AI1), Non-HDL-Cholesterol (AI2), LDL-Cholesterol-to-HDL-Cholesterol (AI3), and the logarithm of the ratio of plasma concentration of triglycerides to HDL-cholesterol (AIP log) in hypertensive pre/perimenopausal women. The mean values were significantly lower in women carrying the Val/Val genotype. In early postmenopausal hypertensive women the Leu432Val genotypes were statistically significant and associated with LDL-cholesterol (LDL-C) and AI2. The mean values of LDL-C and AI2 were significantly lower in women carrying the Leu/Leu genotype. In conclusion, the Leu432Val polymorphism may be associated with the atherogenic indices and LDL-C in hypertensive women.
Collapse
|
82
|
Ding S, Lu G, Wang B, Xiang J, Hu C, Lin Z, Ding Y, Xiao W, Gong W. Astilbin Activates the Reactive Oxidative Species/PPARγ Pathway to Suppress Effector CD4 + T Cell Activities via Direct Binding With Cytochrome P450 1B1. Front Pharmacol 2022; 13:848957. [PMID: 35652039 PMCID: PMC9150850 DOI: 10.3389/fphar.2022.848957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Astilbin, as a compound of flavonoids, exerts anti-inflammation, antioxidation, and immune-suppression activities. Decreased activation of NF-κB and p38 MAPK and increased activation of SOCS3 and AMPK have been found in astilbin-treated cells. However, what molecules are docked by astilbin to initiate signaling cascades and result in functional changes remains unknown. In the study, we found that astilbin efficiently suppressed TNF-α production and increased CCR9 and CD36 expression of CD4+ T cells. In vivo administration of astilbin repressed the occurrence of type 1 diabetes mellitus in non-obese diabetic mice. The PPARγ/SOCS3, PPARγ/PTEN, and PPARγ/AMPK signaling pathways were substantially activated and played key roles in astilbin-induced downregulation of CD4+ T cell functions. Transcriptome sequencing results confirmed the changes of signaling molecules involved in the immune system, inflammatory responses, and indicated variations of multiple enzymes with oxidant or antioxidant activities. Astilbin directly induced cytoplasmic ROS production of CD4+ T cells ex vivo, but had no effects on mitochondrial ROS and mitochondrial weight. When cellular ROS was depleted, astilbin-treated CD4+ T cells remarkably reversed the expression of TNF-α, IFN-γ, CCR9, CD36, and signaling molecules (PPARγ, PTEN, p-AMPK, and SOCS3). Based on bioinformatics, two P450 enzymes (CYP1B1 and CYP19A1) were selected as candidate receptors for astilbin. CYP1B1 was identified as a real docking protein of astilbin in ROS production by AutoDock Vina software analysis and surface plasmon resonance assay. Collectively, astilbin downregulates effector CD4+ T cell activities via the CYP1B1/ROS/PPARγ pathway, which firmly supports its potential use in the treatment of inflammation.
Collapse
Affiliation(s)
- Shizhen Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Biying Wang
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Jie Xiang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Chunxia Hu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Zhijie Lin
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
83
|
Shoieb SM, Alammari AH, Levasseur J, Silver H, Dyck JRB, El-Kadi AOS. Ameliorative Role of Fluconazole Against Abdominal Aortic Constriction-Induced Cardiac Hypertrophy in Rats. J Cardiovasc Pharmacol 2022; 79:833-845. [PMID: 35266922 DOI: 10.1097/fjc.0000000000001258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/26/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Cytochrome P450 1B1 (CYP1B1) is known to be involved in the pathogenesis of several cardiovascular diseases, including cardiac hypertrophy and heart failure, through the formation of cardiotoxic metabolites named as mid-chain hydroxyeicosatetraenoic acids (HETEs). Recently, we have demonstrated that fluconazole decreases the level of mid-chain HETEs in human liver microsomes, inhibits human recombinant CYP1B1 activity, and protects against angiotensin II-induced cellular hypertrophy in H9c2 cells. Therefore, the overall purpose of this study was to elucidate the potential cardioprotective effect of fluconazole against cardiac hypertrophy induced by abdominal aortic constriction (AAC) in rats. Male Sprague-Dawley rats were randomly assigned into 4 groups such as sham control rats, fluconazole-treated (20 mg/kg daily for 4 weeks, intraperitoneal) sham rats, AAC rats, and fluconazole-treated (20 mg/kg) AAC rats. Baseline and 5 weeks post-AAC echocardiography were performed. Gene and protein expressions were measured using real-time PCR and Western blot analysis, respectively. The level of mid-chain HETEs was determined using liquid chromatography-mass spectrometry. Echocardiography results showed that fluconazole significantly prevented AAC-induced left ventricular hypertrophy because it ameliorated the AAC-mediated increase in left ventricular mass and wall measurements. In addition, fluconazole significantly prevented the AAC-mediated increase of hypertrophic markers. The antihypertrophic effect of fluconazole was associated with a significant inhibition of CYP1B1, CYP2C23, and 12-LOX and a reduction in the formation rate of mid-chain HETEs. This study demonstrates that fluconazole protects against left ventricular hypertrophy, and it highlights the potential repurposing of fluconazole as a mid-chain HETEs forming enzymes' inhibitor for the protection against cardiac hypertrophy.
Collapse
Affiliation(s)
- Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada ; and
| | - Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada ; and
| | - Jody Levasseur
- Department of Pediatrics, Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Heidi Silver
- Department of Pediatrics, Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada ; and
| |
Collapse
|
84
|
Cao TT, Huang RY, Li X, Yang TY, Xie HD, Shen YH, Li F, Li X. Xanthones from Calophyllum Polyanthum Wallich ex Choisy with CYP1 Enzymes Inhibitory Activity. Chem Biodivers 2022; 19:e202200268. [PMID: 35531592 DOI: 10.1002/cbdv.202200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023]
Abstract
Three new xanthone compounds, 1,3,5-trihydroxy-2-(2-hydroxy-3-methylbut-3-enyl)-4-(3-methylbut-2-enyl)xanthone (1), toxyloxanthone E (2), dehydrocycloguanandin B (3) along with 15 known xanthones (4-18) were isolated from the aerial parts of Calophyllum polyanthum Wall. ex Choisy. Their structures were fully characterised using spectroscopic data, as well as comparison with the previous literature data. All isolated compounds had inhibitory effects against CYP1A1, CYP1A2 and CYP1B1 enzymes at working concentration of 10 μM, 1 μM and 10 μM, respectively. Among them, compounds 10, 11, and 12 exhibited better CYP1A2 enzyme inhibitory effects than that of the positive control α-naphthoflavone, with 51.05 %, 56.82 % and 44.93 % inhibition, respectively.
Collapse
Affiliation(s)
- Ting-Ting Cao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming, 650500, Yunnan, P. R. China
| | - Ruo-Yue Huang
- West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xu Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming, 650500, Yunnan, P. R. China
| | - Teng-Yun Yang
- Departments of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P. R. China
| | - Hui-Ding Xie
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming, 650500, Yunnan, P. R. China
| | - Yun-Heng Shen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Fei Li
- West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming, 650500, Yunnan, P. R. China
| |
Collapse
|
85
|
Tonero ME, Li Z, Reinhart JM. Cytochrome P450 reaction phenotyping of itraconazole hydroxylation in the dog. J Vet Pharmacol Ther 2022; 45:255-264. [PMID: 35389533 DOI: 10.1111/jvp.13058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Itraconazole (ITZ) is an important drug in the treatment of superficial and deep mycoses in dogs. Its primary metabolite is hydroxy-itraconazole, which has antifungal activity similar to the parent compound. The purpose of this study was to identify the cytochrome P450 enzyme (CYP) isoform(s) responsible for ITZ hydroxylation in canine liver. Reaction kinetics for ITZ hydroxylation were determined in a panel of canine recombinant CYPs and dog liver microsomes (DLMs). Findings were confirmed using CYP isoform-specific inhibitors in rCYPs and DLMs. In rCYP experiments, CYP2D15 and CYP3A12 had highest activity for ITZ hydroxylation. In inhibitor experiments, quinidine and erythromycin inhibited ITZ hydroxylation in CYP2D15 and CYP3A12, respectively, in an isoform-specific manner. In DLMs, quinidine and erythromycin combined inhibited ITZ hydroxylation more than erythromycin alone but not quinidine alone. However, this may be related to inhibitor potency rather than the contribution of the individual CYP isoforms to the reaction. These findings support a role for CYP2D15 and CYP3A12 in ITZ biotransformation in canine liver.
Collapse
Affiliation(s)
- Matthew E Tonero
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois, USA
| | - Jennifer M Reinhart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
86
|
Geographical Variability in CYP1B1 Mutations in Primary Congenital Glaucoma. J Clin Med 2022; 11:jcm11072048. [PMID: 35407656 PMCID: PMC8999900 DOI: 10.3390/jcm11072048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 12/27/2022] Open
Abstract
Primary congenital glaucoma (PCG) is a rare type of glaucoma that is inherited in an autosomal recessive manner. PCG can lead to blindness if not detected early in children aged 3 or younger. PCG varies in presentation among various populations, where disease presentation and disease severity vary by mutation. The most common gene implicated in PCG is cytochrome p450 1B1 (CYP1B1). Here, we sought to review the literature for mutations in CYP1B1 and their presentation among different populations. Areas of interest include recent findings on disease presentation and potential implications on our understanding of PCG pathophysiology.
Collapse
|
87
|
Chiang YC, Wu YS, Kang YF, Wang HC, Tsai MC, Wu CC. 3,5,2′,4′-Tetramethoxystilbene, a fully methylated resveratrol analog, prevents platelet aggregation and thrombus formation by targeting the protease-activated receptor 4 pathway. Chem Biol Interact 2022; 357:109889. [DOI: 10.1016/j.cbi.2022.109889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022]
|
88
|
Li W, Ding Z, Zhang H, Shi Q, Wang D, Zhang S, Xu S, Gao B, Yan M. The Roles of Blood Lipid-Metabolism Genes in Immune Infiltration Could Promote the Development of IDD. Front Cell Dev Biol 2022; 10:844395. [PMID: 35223859 PMCID: PMC8864150 DOI: 10.3389/fcell.2022.844395] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Objectives: Intervertebral disc degeneration is a progressive and chronic disease, usually manifesting as low back pain. This study aimed to screen effective biomarkers for medical practice as well as figuring out immune infiltration situations between circulation and intervertebral discs. Methods: Gene expression profiles of GSE124272 was included for differentially analysis, WGCNA and immune infiltration analysis from GEO database, and other GSE series were used as validation datasets. A series of validation methods were conducted to verify the robustness of hub genes, such as principal component analysis, machine learning models, and expression verification. Lastly, nomogram was established for medical practice. Results: 10 genes were commonly screened via combination of DEGs, WGCNA analysis and lipid metabolism related genes. Furthermore, 3 hub gens CYP27A1, FAR2, CYP1B1 were chosen for subsequent analysis based on validation of different methods. GSEA analysis discovered that neutrophil extracellular traps formation and NOD-like receptor signaling pathway was activated during IDD. Immune infiltration analysis demonstrated that the imbalance of neutrophils and γδT cells were significantly correlated with IDD progression. Nomogram was established based on CYP27A1, FAR2, CYP1B1 and age, the calibration plot confirmed the stability of our model. Conclusion: CYP27A1, FAR2, CYP1B1 were considered as hub lipid metabolism related genes (LMRGs) in the development of IDD, which were regarded as candidate diagnostic biomarkers especially in circulation. The effects are worth expected in the early diagnosis of IDD through detecting these genes in blood.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ziyi Ding
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Huan Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Quan Shi
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Orthopaedics, Affiliated Hospital of Yanan University, Yanan, China
| | - Dong Wang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Orthopaedics, Affiliated Hospital of Yanan University, Yanan, China
| | - Shilei Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Songjie Xu
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
89
|
Kannan A, Perpetua N, Dolan M, Fasullo M. CYP1B1 converts procarcinogens into genotoxins in Saccharomyces cerevisiae. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503440. [PMID: 35151423 DOI: 10.1016/j.mrgentox.2022.503440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
CYP1B1 activates many chemical carcinogens into potent genotoxins, and allelic variants are risk factors in lung, breast, and prostate cancer. However, few eukaryotic genetic instability endpoints have been directly measured for CYP1B1-activated metabolites. In this study, we expressed human CYP1B1 in yeast strains that measure DNA damage-associated toxicity and frequencies of chromosomal translocations. DNA damage-associated toxicity was measured in a rad4 rad51 strain, defective in both DNA excision and recombinational repair. Frequencies of chromosomal translocations were measured in diploid yeast strains containing two his3 fragments. These strains were exposed to benzo[a]pyrene-7,8-dihydrodiol (BaP-DHD), aflatoxin B1 (AFB1), and the heterocyclic aromatic amines, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). We observed that AFB1, BaP-DHD, IQ, and MeIQx conferred toxicity in the DNA repair mutant expressing CYP1B1. Translocation frequencies increased eight-fold and three-fold after exposure to 50 μM AFB1 and 33 μM BaP-DHD respectively. A DNA damage response was observed after AFB1 exposure, as measured by the induction of the small subunit of ribonucleotide reductase, Rnr3. While CYP1B1-mediated activation of BaP-DHD and heterocyclic aromatic amines was expected, activation of AFB1 to become a potent recombinagen was not expected. These studies demonstrate that chromosomal rearrangement is a useful genotoxic endpoint for CYP1B1-mediated carcinogen activation.
Collapse
Affiliation(s)
- Akaash Kannan
- SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12205, United States
| | - Nicholas Perpetua
- SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12205, United States
| | - Michael Dolan
- SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12205, United States
| | - Michael Fasullo
- SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12205, United States.
| |
Collapse
|
90
|
Lidin E, Sköld MK, Angéria M, Davidsson J, Risling M. Hippocampal Expression of Cytochrome P450 1B1 in Penetrating Traumatic Brain Injury. Int J Mol Sci 2022; 23:722. [PMID: 35054909 PMCID: PMC8775891 DOI: 10.3390/ijms23020722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Hippocampal dysfunction contributes to multiple traumatic brain injury sequala. Female rodents' outcome is superior to male which has been ascribed the neuroprotective sex hormones 17β-estradiol and progesterone. Cytochrome P450 1B1 (CYP1B1) is an oxidative enzyme influencing the neuroinflammatory response by creating inflammatory mediators and metabolizing neuroprotective 17β-estradiol and progesterone. In this study, we aimed to describe hippocampal CYP1B1 mRNA expression, protein presence of CYP1B1 and its key redox partner Cytochrome P450 reductase (CPR) in both sexes, as well as the effect of penetrating traumatic brain injury (pTBI). A total 64 adult Sprague Dawley rats divided by sex received pTBI or sham-surgery and were assigned survival times of 1-, 3-, 5- or 7 days. CYP1B1 mRNA was quantified using in-situ hybridization and immunohistochemistry performed to verify protein colocalization. CYP1B1 mRNA expression was present in all subregions but greatest in CA2 irrespective of sex, survival time or intervention. At 3-, 5- and 7 days post-injury, expression in CA2 was reduced in male rats subjected to pTBI compared to sham-surgery. Females subjected to pTBI instead exhibited increased expression in all CA subregions 3 days post-injury, the only time point expression in CA2 was greater in females than in males. Immunohistochemical analysis confirmed neuronal CYP1B1 protein in all hippocampal subregions, while CPR was limited to CA1 and CA2. CYP1B1 mRNA is constitutively expressed in both sexes. In response to pTBI, females displayed a more urgent but brief regulatory response than males. This indicates there may be sex-dependent differences in CYP1B1 activity, possibly influencing inflammation and neuroprotection in pTBI.
Collapse
Affiliation(s)
- Erik Lidin
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
| | - Mattias K. Sköld
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 751 85 Uppsala, Sweden
| | - Maria Angéria
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
| | - Johan Davidsson
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Mårten Risling
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
| |
Collapse
|
91
|
Ahmad S, Sharma S, Afjal MA, Habib H, Akhter J, Goswami P, Parvez S, Akhtar M, Raisuddin S. mRNA expression and protein-protein interaction (PPI) network analysis of adrenal steroidogenesis in response to exposure to phthalates in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103780. [PMID: 34864161 DOI: 10.1016/j.etap.2021.103780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Phthalate esters such as di-butyl phthalate (DBP) and di-ethyl hexyl phthalate (DEHP) used in personal care and consumer products and medical devices have potential to affect human health. We studied the effect of DBP and DEHP on critical enzymes of glucocorticoid biosynthesis pathway in the adrenal gland and pro-inflammatory cytokines in the serum in male Wistar rats. DEHP and DBP treatment altered the mRNA expression of enzymes of glucocorticoid biosynthesis pathway accompanied by a reduction in glucocorticoid production and elevation in the level of glucocorticoid regulated pro-inflammatory cytokines indicating a cascading effect of phthalates. The analysis of PPI (protein - protein interaction) network involving Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) of enzymes through STRING database revealed that all the proteins have the maximum level of interaction with the selected number of proteins. The STRING database analysis together with in vivo data indicates the potential effects of phthalates on various targets of steroidogenesis pathway with a global biological impact.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Shikha Sharma
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Mohd Amir Afjal
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Haroon Habib
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Juheb Akhter
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Poonam Goswami
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Mohammad Akhtar
- Department of Pharmacology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
92
|
Mir R, Elfaki I, Jha CK, Javid J, Babakr AT, Banu S, Mir MM, Jamwal D, Khullar N, Alzahrani KJ, Chahal SMS. Biological and clinical implications of TNF-α promoter and CYP1B1 gene variations in Coronary Artery Disease susceptibility. Cardiovasc Hematol Disord Drug Targets 2021; 21:266-277. [PMID: 34939556 DOI: 10.2174/1871529x22666211221151830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVD) are important causes of death worldwide. Atherosclerosis is a chronic inflammatory disorder. It is the major cause of CVD and is manifested by ischemic heart disease or coronary artery disease (CAD). TNF-α is a pro-inflammatory cytokine that regulates immune response and promotes the development of atherosclerosis. Cytochrome p450 1B1 (CYP1B1) is an enzyme involved in the metabolism of endogenous and exogenous substrates. OBJECTIVES This study aimed at examining the association of TNF-α rs1800629 G >A and CYP1B1 rs1056827 G>T gene polymorphisms with CAD susceptibility in an Indian cohort. METHODS AS-PCR and direct DNA sequencing were used to examine the association of TNF-α rs1800629 G >A and CYP1B1 rs1056827 G>T gene polymorphism with CAD in an Indian cohort. A total of 100 clinically confirmed cases of CAD and 110 matched apparently healthy controls were genotyped. RESULTS Allelic and genotypic frequencies did not deviate from Hardy-Weinberg equilibrium in the controls (p>0.05) for TNF-α G-308A and CYP1B1 rs1056827G>A. There was no significant difference between the TNF-α rs1800629 A>G genotype distribution between cases and controls (P-value >0.05). A significant difference was observed between the CYP1B1 rs1056827 G>T genotype distribution between CAD cases and controls (P<0.0003). Our result indicated that in the codominant model, the GA genotype of the CYP1B1 rs1056827 G>T was associated with CAD with OR= 2.21(1.17 to 4.15), RR=1.38(1.07 to 1.78), and P<0.013. In the dominant model, the (GA+AA) genotype was associated with CAD with OR=2.79(1.54 to 5.05) and P<0.007. The CYP1B1 rs1056827 'A' allele was associated with CAD with OR = 2.30 (1.55 to 3.42) and P< 0.0001. Our results indicated that TNF-α 1800629 gene polymorphism was strongly associated with hypercholesteremia (P<0.0009), HDL (P<0.0001), TGL (P<0.039), hypertension (P<0.0001), and smoking (P<0.0001) in patients with Coronary Artery Disease. Similar correlations of CYP1B1 rs1056827 genotypes were reported with cholesterol (P<0.020), HDL (P<0.002), LDL (P<0.006), hypertension (P<0.03), and smoking (P<0.005). CONCLUSION It was reported that the GA genotype of the CYP1B1 rs1056827 G>T was strongly associated with susceptibility to Coronary Artery Disease with OR= 2.21(1.17 to 4.15)) and P<0.013, and similarly, its A allele was associated with predisposition to CAD with OR = 2.30(1.55 to 3.42) and P< 0.0001. Our results indicated that TNF-α 1800629 gene polymorphism is not associated with predisposition to Coronary Artery Disease. Nevertheless, these results should be taken with caution and further validated with larger-scale studies before being introduced in the clinical setting.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk. Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk. Saudi Arabia
| | - Chandan K Jha
- Department of Human Genetics Punjabi University, Punjab, India; 4Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah. Saudi Arabia
| | - Jamsheed Javid
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk. Saudi Arabia
| | - Abdullatif Taha Babakr
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah. Saudi Arabia
| | - Shaheena Banu
- Sri Jayadeva Institute of Cardiovascular Science and Research, Bangalore. India
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha. Saudi Arabia
| | - Dheeraj Jamwal
- Department of Human Genetics Punjabi University, Punjab. India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib - 140407. India
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Taif. Saudi Arabia
| | - S M S Chahal
- Department of Human Genetics Punjabi University, Punjab. India
| |
Collapse
|
93
|
Wright JA, Moyer AM, Sutton J, Chaney AJ, Nicholson WT, El Melik RM, Matey ET, Bielinski SJ, Mara K, Black JL, Caraballo PJ. Pharmacogenomics testing in patients with liver transplant and potential impact on prospective management. Pharmacogenomics 2021; 22:1177-1183. [PMID: 34747639 DOI: 10.2217/pgs-2021-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Pharmacogenomics (PGx) tests are performed on whole-blood or saliva specimens. In patients with a transplanted liver, PGx results may be discordant with hepatic drug metabolizing enzyme activity. We evaluate the incidence and impact of PGx testing in liver transplant recipients, detail potential errors and describe clinical decision support (CDS) solution implemented. Materials & methods: A retrospective cohort study of liver transplant recipients at Mayo Clinic who underwent PGx testing between 1 January 1996 and 7 October 2019 were characterized. Impact of a CDS solution was evaluated. Results: There were 129 PGx tests in 117 patients. PGx testing incidence increased before (per year incidence rate ratio = 1.45, 95% CI: 1.20-1.74, p < 0.001) and after transplant (incidence rate ratio = 1.48, 95% CI: 1.27-1.72, p < 0.001). Three erroneous PGx tests were avoided 6 months following CDS implementation. Conclusion: Incidence of PGx testing in liver transplant recipients is increasing, leading to erroneous therapeutic decisions. CDS interventions and education are needed to prevent errors.
Collapse
Affiliation(s)
- Jessica A Wright
- Department of Pharmacy Services, Mayo Clinic, Rochester, MN 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann M Moyer
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph Sutton
- Department of Information Technology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Amanda J Chaney
- Department of Transplant, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wayne T Nicholson
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Razan M El Melik
- Department of Pharmacy Services, Mayo Clinic, Rochester, MN 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric T Matey
- Department of Pharmacy Services, Mayo Clinic, Rochester, MN 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Suzette J Bielinski
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Kristin Mara
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - John Logan Black
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN 55905, USA.,Executive Director of Strategic Expansion, Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | - Pedro J Caraballo
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.,Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
94
|
Alshammari FOFO, Al-Saraireh YM, Youssef AMM, Al-Sarayra YM, Alrawashdeh HM. Cytochrome P450 1B1 Overexpression in Cervical Cancers: Cross-sectional Study. Interact J Med Res 2021; 10:e31150. [PMID: 34636736 PMCID: PMC8548976 DOI: 10.2196/31150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
Background Current standard treatments for patients with recurrent cervical cancer are not very effective and are associated with severe toxicity. Recently, the rational approach for the discovery of new therapies for cervical cancer is based on the alterations in the molecular biology of cancer cells. One of the emerging molecular changes in cancer cells is the aberrant expression of cytochrome P450 1B1 (CYP1B1). This unique enzyme has been reported to be selectively overexpressed in several cancers. Objective The aim of this study was to examine CYP1B1 expression in cervical cancers and to assess the enzyme’s relationship with several clinicopathological features. Methods Immunohistochemistry was performed to examine CYP1B1 expression in 100 patient samples with cervical cancer and 10 patient samples with normal healthy cervical tissues. Results CYP1B1 was expressed in the majority of the cervical cancer samples (91/100, 91.0%) but not in normal healthy cervical samples. The difference in the expression of CYP1B1 between healthy and tumorous cervical tissues was significant (P=.01). Moreover, the frequency of CYP1B1 expression was found to be significantly higher in patients with advanced grades of the disease (P=.03) and in patients having metastasis to the lymph nodes (P=.01). Surprisingly, there was a significantly higher expression of CYP1B1 in patients with a high prevalence of human papilloma virus 16/18 (P=.04). Conclusions The differential profile of CYP1B1 expression between cervical cancer tissues and normal cervical tissues suggests that CYP1B1 may be used as a target for future therapeutic exploitations.
Collapse
Affiliation(s)
- Fatemah O F O Alshammari
- Department of Medical Laboratory Technology, Faculty of Health Sciences, The Public Authority for Applied Education and Training, Shuwaikh, Kuwait
| | - Yousef M Al-Saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Ahmed M M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Yahya M Al-Sarayra
- Al-Karak Governmental Hospital, Jordan Ministry of Health, Al-Karak, Jordan
| | | |
Collapse
|
95
|
Wang Y, Hu B, Zhang Y, Wang D, Luo Z, Wang J, Zhang F. Perspective of structural flexibility on selective inhibition towards CYP1B1 over CYP1A1 by α-naphthoflavone analogs. Phys Chem Chem Phys 2021; 23:20230-20246. [PMID: 34474468 DOI: 10.1039/d1cp02541d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research on action selectivity between CYP1A1 and CYP1B1 is particularly valuable for cancer chemoprevention and chemotherapy. However, they share a very close similarity in their ligand-binding pockets that α-naphthoflavone (ANF) is the co-crystal ligand for both isoforms, which poses a major challenge in revealing their selectivity mechanism. Therefore, three selective CYP1B1 inhibitors derived from ANF were selected to illustrate the structural basis for the selectivity between the two isoforms via a comprehensive computational strategy. It was found that the sustainability of the π-π stacking interactions with the phenylalanine residues of the two isoforms, namely, Phe123, Phe224, and Phe258 for CYP1A1, and Phe134, Phe231, and Phe268 for CYP1B1, played a crucial role in determining the selectivity of ligands with a classic aromatic conjugation system like ANF and its derivatives for CYP1B1 versus CYP1A1. Of note, the structural flexibility of the corresponding protein domains mainly orchestrated the sustainability of the corresponding π-π stacking interactions, thereby determining the binding selectivity. Therefore, the structure modification of naphthoflavone lead compounds into preferable binding configurations to satisfy the π-π stacking interactions of the key phenylalanine residues within CYP1B1 would be an inspiring strategy devised to improve the inhibitory selectivity towards CYP1B1. Collectively, this study revealed valuable insight into understanding the selective mechanism between CYP1A1 and CYP1B1 from the perspective of structural flexibility, which sheds light on the future rational design of CYP1B1 selective inhibitors.
Collapse
Affiliation(s)
- Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yupeng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Dong Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Zhaohu Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fengjiao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
96
|
Huwait EA, Saddeek SY, Al-Massabi RF, Almowallad SJ, Pushparaj PN, Kalamegam G. Antiatherogenic Effects of Quercetin in the THP-1 Macrophage Model In Vitro, With Insights Into Its Signaling Mechanisms Using In Silico Analysis. Front Pharmacol 2021; 12:698138. [PMID: 34385920 PMCID: PMC8353397 DOI: 10.3389/fphar.2021.698138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Atherosclerosis (AS), a major risk factor for stroke and brain tissue destruction, is an inflammatory disease of the blood vessels, and the underlying pathology is inflammation mediated by various chemokines and cytokines. Quercetin, a natural flavonol, is reported to have both anti-inflammatory and antioxidant properties. As such, in the present study, we evaluated the antiatherogenic effects of quercetin in a human THP-1 cell line in vitro and also the signaling mechanisms using in silico analysis. Materials and Methods: THP-1 macrophages exposed to different concentrations of quercetin (5–100 μM for 24 h) were tested for cytotoxicity. Real-time gene expression assay for intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) was carried out following treatment with quercetin at 15 and 30 μM for 24 h either in the absence or presence of interferon (IFN-γ) for 3 h to induce inflammation. Monocyte migration and cholesterol efflux were also assessed. Results: Quercetin did not exert any cytotoxic effects on THP-1 cells at the various concentrations tested. The gene expression assay showed a significant decrease in ICAM-1 (by 3.05 and 2.70) and MCP-1 (by 22.71 and 27.03), respectively. Quercetin at 15 µM decreased THP-1 monocyte migration by 33% compared to the MCP-1-treated cells. It also increased cholesterol efflux significantly by1.64-fold and 1.60-fold either alone or in combination with IFN-γ, respectively. Ingenuity Pathway Analysis of the molecular interactions of quercetin identified canonical pathways directly related to lipid uptake and cholesterol efflux. Furthermore, CD36, SR-A, and LXR-α also demonstrated significant increases by 72.16-, 149.10-, and 29.68-fold, respectively. Conclusion: Our results from both in vitro and in silico studies identified that quercetin inhibited the THP-1 monocyte migration, MCP-1, and ICAM-1 and increased cholesterol efflux probably mediated via the LXR/RXR signaling pathway. Therefore, quercetin will help prevent cell infiltration in atherosclerotic plaques and reduce the risk of stroke or brain destruction.
Collapse
Affiliation(s)
- Etimad A Huwait
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cell Culture Unit and Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Y Saddeek
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cell Culture Unit and Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.,Chemistry Department, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Rehab F Al-Massabi
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cell Culture Unit and Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.,Biochemistry Department, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sanaa J Almowallad
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cell Culture Unit and Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.,Biochemistry Department, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gauthaman Kalamegam
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Pharmaceutical Division, Nibblen Life Sciences Private Limited, Chennai, India
| |
Collapse
|
97
|
Novel Synthetic Analogues of 19(S/R)-Hydroxyeicosatetraenoic Acid Exhibit Noncompetitive Inhibitory Effect on the Activity of Cytochrome P450 1A1 and 1B1. Eur J Drug Metab Pharmacokinet 2021; 46:613-624. [PMID: 34235626 DOI: 10.1007/s13318-021-00699-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Cytochrome P450 (CYP) 1A1 and CYP1B1 enzymes play a significant role in the pathogenesis of cancer and cardiovascular diseases (CVD) such as cardiac hypertrophy and heart failure. Previously, we have demonstrated that R- and S-enantiomers of 19-hydroxyeicosatetraenoic acid (19-HETE), an arachidonic acid endogenous metabolite, enantioselectively inhibit CYP1B1. The current study was conducted to test the possible inhibitory effect of novel synthetic analogues of R- and S-enantiomers of 19-HETE on the activity of CYP1A1, CYP1A2, and CYP1B1. METHODS The O-dealkylation rate of 7-ethoxyresorufin (EROD) by recombinant human CYP1A1 and CYP1B1, in addition to the O-dealkylation rate of 7-methoxyresorufin (MROD) by recombinant human CYP1A2, were measured in the absence and presence of varying concentrations (0-40 nM) of the synthetic analogues of 19(R)- and 19(S)-HETE. Also, the possible inhibitory effect of both analogues on the catalytic activity of EROD and MROD, using RL-14 cells and human liver microsomes, was assessed. RESULTS The results showed that both synthetic analogues of 19(R)- and 19(S)-HETE exhibited direct inhibitory effects on the activity of CYP1A1 and CYP1B1, while they had no significant effect on CYP1A2 activity. Nonlinear regression analysis and comparisons showed that the mode of inhibition for both analogues is noncompetitive inhibition of CYP1A1 and CYP1B1 enzymes. Also, nonlinear regression analysis and Dixon plots showed that the R- and S-analogues have KI values of 15.7 ± 4.4 and 6.1 ± 1.5 nM for CYP1A1 and 26.1 ± 2.9 and 9.1 ± 1.8 nM for CYP1B1, respectively. Moreover, both analogues were able to inhibit EROD and MROD activities in a cell-based assay and human liver microsomes. CONCLUSIONS Therefore, the synthetic analogues of 19-HETE could be considered as a novel therapeutic approach in the treatment of cancer and CVD.
Collapse
|
98
|
Hausman-Cohen SR, Hausman-Cohen LJ, Williams GE, Bilich CE. Genomics of Detoxification: How Genomics can be Used for Targeting Potential Intervention and Prevention Strategies Including Nutrition for Environmentally Acquired Illness. J Am Coll Nutr 2021; 39:94-102. [PMID: 32027241 DOI: 10.1080/07315724.2020.1713654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Due to their genomic variants, some individuals are more highly affected by toxicants than others. Toxicant metabolizing and activating variants have been linked with a wide variety of health issues including an increased risk of miscarriages, birth defects, Alzheimer's, benzene toxicity, mercury toxicity and cancer. The study of genomics allows a clinician to identify pathways that are less effective and then gives the clinician the opportunity to counsel their patients about diet, supplements and lifestyle modifications that can improve the function of these pathways or compensate to some extent for their deficits. This article will review a few of these critical pathways relating to phase I and phase 2 detox such as GSTP1, GPX1, GSTT1 deletions, PON1 and some of the CYP 450 system as examples of how an individual's genomic vulnerabilities to toxicants can be addressed by upregulating or downregulating specific pathways via genomically targeted use of foods, supplements and lifestyle changes.
Collapse
Affiliation(s)
| | | | | | - Carol E Bilich
- Resilient Health Austin and IntellxxDNATM, Austin, Texas, USA
| |
Collapse
|
99
|
Abstract
Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic heme-containing monooxygenase. CYP1B1 contributes to the oxidative metabolism of xenobiotics, drugs, and endogenous substrates like melatonin, fatty acids, steroid hormones, and retinoids, which are involved in diverse critical cellular functions. CYP1B1 plays an important role in the pathogenesis of cardiovascular diseases, hormone-related cancers and is responsible for anti-cancer drug resistance. Inhibition of CYP1B1 activity is considered as an approach in cancer chemoprevention and cancer chemotherapy. CYP1B1 can activate anti-cancer prodrugs in tumor cells which display overexpression of CYP1B1 in comparison to normal cells. CYP1B1 involvement in carcinogenesis and cancer progression encourages investigation of CYP1B1 interactions with its ligands: substrates and inhibitors. Computational methods, with a simulation of molecular dynamics (MD), allow the observation of molecular interactions at the binding site of CYP1B1, which are essential in relation to the enzyme’s functions.
Collapse
|
100
|
Association of cytochrome P450 1B1 gene polymorphisms and environmental biomarkers with hypertension in Slovak midlife women. ACTA ACUST UNITED AC 2021; 27:1287-1294. [PMID: 33110045 DOI: 10.1097/gme.0000000000001605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study investigated the association of the Leu432Val and Asn453Ser CYP1B1 polymorphisms and selected environmental biomarkers with hypertension (HT) in Slovak midlife women. METHODS We studied 575 women. Divided according to their blood pressure status: 255 with HT and 320 without HT. All data was obtained by using standard anthropometric, genetic methods and analyzed by regression models to adjust for HT risk factors such as age, obesity, smoking, and level of education. RESULTS Our findings revealed that CYP1B1 Leu432Val polymorphism was associated with HT, whereas no association was found between Asn453Ser polymorphism and HT. Women with at least one Val allele had significantly higher odds of HT compared to women with the Leu/Leu genotype in the total sample (Exp(B) = 1.82, CI 1.16-2.84, P = 0.009). After dividing women by menopausal status and the presence of HT environmental risk factor, the association between CYP1B1 polymorphism and HT was observed in pre/perimenopausal women (Exp(B), 2.36; 95% CI 1.13-4.92; P = 0.02), smokers (Exp(B), 3.40; 95% CI 1.48-7.82; P = 0.004), abdominal obesity (Exp(B), 2.41; 95% CI 1.23-4.75; P = 0.01) and in women with only basic education (Exp(B), 4.20, 95% CI 1.12-15.71; P = 0.03). However, general linear models did not reveal a statistically significant interactions between CYP1B1, menopausal status, and HT risk factors and their common association with HT (P > 0.05). CONCLUSIONS In this pilot study, we have provided novel data that supports the significant association of CYP1B1 Leu432Val gene polymorphism with HT in Slovak midlife women.
Collapse
|