51
|
Zheng JY, Jin YY, Shi ZQ, Zhou JL, Liu LF, Xin GZ. Fluorous-paired derivatization approach towards highly sensitive and accurate determination of long chain unsaturated fatty acids by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2020; 1136:187-195. [PMID: 33081943 DOI: 10.1016/j.aca.2020.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Long chain unsaturated fatty acids (LCUFAs) are emerging as critical contributors to inflammation and its resolution. Sensitive and accurate measurement of LCUFAs in biological samples is thus of great value in disease diagnosis and prognosis. In this work, a fluorous-derivatization approach for UPLC-MS/MS quantification of LCUFAs was developed by employing a pair of fluorous reagents, namely 3-(perfluorooctyl)-propylamine (PFPA) and 2-(perfluorooctyl)-ethylamine (PFEA). With this method, the LCUFAs in biological samples were perfluoroalkylated with PFPA and specifically retained on a fluorous-phase LC column, which largely reduced matrix interferences-induced quantitation deviation. Moreover, PFEA-labeled LCUFAs standards were introduced as one-to-one internal standards to farthest ensure unbiased results. Application of the proposed method enabled a reliable determination of eight typical LCUFAs with high sensitivity (LLOQ ranged from 30 amol to 6.25 fmol) and low matrix interferences (almost less than 10%). Such a high sensitivity could facilitate the determination of small-volume and low-concentration bio-samples. Further metabolic characterization of these targeted LCUFAs was monitored in OVA-induce asthma mice, requiring only 5 μL serum sample. Our results showed that asthmatic attack led to significant disturbances not only in the concentrations but also in the ratio among these LCUFAs. In view of the favorable advantages in sensitivity and accuracy, the present fluorous-paired derivatization approach will be expected to serve as a new avenue for dissecting the physiological and clinical implications of LCUFAs, thereby shedding light on the management of diseases related to their disturbances.
Collapse
Affiliation(s)
- Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Ying-Ying Jin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Zi-Qi Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Jian-Liang Zhou
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| |
Collapse
|
52
|
Ren X, Han L, Li Y, Zhao H, Zhang Z, Zhuang Y, Zhong M, Wang Q, Ma W, Wang Y. Isorhamnetin attenuates TNF-α-induced inflammation, proliferation, and migration in human bronchial epithelial cells via MAPK and NF-κB pathways. Anat Rec (Hoboken) 2020; 304:901-913. [PMID: 32865318 DOI: 10.1002/ar.24506] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
Isorhamnetin has distinct anti-inflammatory activity and inhibits cell proliferation and migration. These effects are also involved in the pathogenesis of asthma. However, the effect of isorhamnetin on bronchial epithelial cells in patients with asthma has not been examined. Cells of human bronchial epithelial cell line BEAS-2B were cultured with isorhamnetin and tumor necrosis factor (TNF)-α. The effects of isorhamnetin on BEAS-2B cell viability were assessed using CCK8 assay. The EdU (5-ethynyl-2'-deoxyuridine) cell proliferation assay was performed to assess cell proliferation. BEAS-2B cell migration was measured using Transwell and wound healing assays. Real-time PCR and enzyme-linked immunosorbent assay were conducted to measure the expression of pro-inflammatory cytokines. Protein expression levels were determined by western blotting. Immunofluorescence was used to detect nuclear translocation of nuclear factor kappa B (NF-κB). We found that isorhamnetin at 20 and 40 μM reduced the proliferation of BEAS-2B cells induced by TNF-α. Isorhamnetin significantly decreased the expression of interleukin (IL)-1β, IL-6, IL-8, and C-X-C motif chemokine ligand 10 in BEAS-2B cells induced by TNF-α. Additionally, 10 μM isorhamnetin effectively reduced cell migration induced by TNF-α. Treatment with isorhamnetin inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) and NF-κB pathways induced by TNF-α. In summary, isorhamnetin inhibited the inflammation, proliferation, and migration of BEAS-2B cells by regulating the MAPK and NF-κB signaling pathways and is a drug candidate for asthma.
Collapse
Affiliation(s)
- Xiaojie Ren
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Longyin Han
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongxing Li
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huanyi Zhao
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ziyin Zhang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuerong Zhuang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ming Zhong
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiang Wang
- Department of Encephalology, Yangjiang People's Hospital, Yangjiang, Guangdong, China
| | - Wuhua Ma
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yong Wang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
53
|
Imbalanced serum levels of resolvin E1 (RvE1) and leukotriene B4 (LTB4) in patients with allergic rhinitis. Mol Biol Rep 2020; 47:7745-7754. [PMID: 32960415 DOI: 10.1007/s11033-020-05849-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Timely and successful resolution of acute inflammation plays a crucial role in preventing the development of chronic airway inflammation in allergic rhinitis (AR). This study intends to assess the serum levels of pro-inflammatory leukotriene B4 (LTB4), anti-inflammatory mediators, including resolvin E1 (RvE1), RvD1, IL-10, and TGF-β, besides mRNA expression level of G-protein coupled receptor 120 (GPR120) and peroxisome proliferator-activated receptor-γ (PPAR-γ) receptors in peripheral blood leukocytes of AR patients. Thirty-seven AR patients and thirty age- and gender-matched healthy subjects were enrolled in this study. The serum levels of LTB4, RvE1, RvD1, IL-10, and TGF-β were measured using enzyme-linked immunosorbent assay (ELISA) technique, and the mRNA expression level of GPR120 and PPAR-γ was assessed by the real-time PCR method. The serum levels of RvE1 and LTB4 were significantly higher in patients with AR than in healthy subjects (P < 0.01 and P < 0.0001, respectively). However, a significantly lower ratio of RvE1 and RvD1 to LTB4 was found in patients with AR relative to healthy subjects (P < 0.05 and P < 0.0001, respectively). Likewise, the serum levels of both IL-10 and TGF-β cytokines were significantly reduced in patients with AR compared to healthy subjects (P < 0.01 and P < 0.0001, respectively). Furthermore, the mRNA expression of PPAR-γ was significantly lower in patients with AR than in healthy subjects (P < 0.05). Our findings indicate that imbalanced pro-resolving lipid mediator RvE1 and pro-inflammatory LTB4 might contribute to the defective airway inflammation-resolution and subsequent progression toward chronic inflammation in AR patients.
Collapse
|
54
|
Wang M, Liu M, Zhang J, Liu J, Ye J, Xu Y, Wang Z, Ye D, Zhao M, Wan J. Resolvin D1 protects against sepsis-induced cardiac injury in mice. Biofactors 2020; 46:766-776. [PMID: 32668503 DOI: 10.1002/biof.1668] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Increased inflammation is the key mechanism that mediates sepsis induced cardiac injury. Resolvin D1 (RvD1), a bioactive lipid mediator synthesized from docosahexaenoic acid, can attenuate the severity of many inflammation-related diseases through anti-inflammatory and pro-resolving properties. However, the protective role of RvD1 in sepsis induced cardiac injury remains unclear. Mice were randomly divided into three groups: the control group, LPS group and RvD1 + LPS group. LPS (10 mg/kg, i.p.) was used to establish a sepsis-induced cardiac injury model. RvD1 (5 ug/kg, i.p.) was injected 30 min before LPS injection. RvD1 treatment significantly attenuated the deteriorated cardiac function and cardiac injury induced by LPS, as evidenced by the improved left ventricular ejection fraction, serum levels of cardiac injury markers and severity of cardiomyocyte apoptosis. In addition, RvD1 treatment significantly attenuated the infiltration of pro-inflammatory M1 macrophages and expression of inflammatory cytokines in the heart. Mechanistically, the attenuated activation of NK-κB and MAPK signaling mediated the anti-inflammatory and antiapoptotic effects of RvD1. In addition, LPS-induced infiltration of neutrophils and M1 macrophages in the spleen was significantly attenuated by the RvD1 treatment. Results of the present study suggest that RvD1 protects the heart against LPS-induced injuries by attenuating the local and systemic inflammatory response, highlighting the therapeutic effects of RvD1 in sepsis-induced cardiac injury.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglin Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
55
|
Gonzalez-Gil A, Li TA, Porell RN, Fernandes SM, Tarbox HE, Lee HS, Aoki K, Tiemeyer M, Kim J, Schnaar RL. Isolation, identification, and characterization of the human airway ligand for the eosinophil and mast cell immunoinhibitory receptor Siglec-8. J Allergy Clin Immunol 2020; 147:1442-1452. [PMID: 32791164 DOI: 10.1016/j.jaci.2020.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The immunoinhibitory receptor Siglec-8 on the surface of human eosinophils and mast cells binds to sialic acid-containing ligands in the local milieu, resulting in eosinophil apoptosis, inhibition of mast cell degranulation, and suppression of inflammation. Siglec-8 ligands were found on postmortem human trachea and bronchi and on upper airways in 2 compartments, cartilage and submucosal glands, but they were surprisingly absent from the epithelium. We hypothesized that Siglec-8 ligands in submucosal glands and ducts are normally transported to the airway mucus layer, which is lost during tissue preparation. OBJECTIVE Our aim was to identify the major Siglec-8 sialoglycan ligand on the mucus layer of human airways. METHODS Human upper airway mucus layer proteins were recovered during presurgical nasal lavage of patients at a sinus clinic. Proteins were resolved by gel electrophoresis and blotted, and Siglec-8 ligands detected. Ligands were purified by size exclusion and affinity chromatography, identified by proteomic mass spectrometry, and validated by electrophoretic and histochemical colocalization. The affinity of Siglec-8 binding to purified human airway ligand was determined by inhibition of glycan binding. RESULTS A Siglec-8-ligand with a molecular weight of approximately 1000 kDa was found in all patient nasal lavage samples. Purification and identification revealed deleted in malignant brain tumors 1 (DMBT1) (also known by the aliases GP340 and SALSA), a large glycoprotein with multiple O-glycosylation repeats. Immunoblotting, immunohistochemistry, and enzyme treatments confirmed that Siglec-8 ligand on the human airway mucus layer is an isoform of DMBT1 carrying O-linked sialylated keratan sulfate chains (DMBT1S8). Quantitative inhibition revealed that DMBT1S8 has picomolar affinity for Siglec-8. CONCLUSION A distinct DMBT1 isoform, DMBT1S8, is the major high-avidity ligand for Siglec-8 on human airways.
Collapse
Affiliation(s)
- Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - T August Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Ryan N Porell
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Steve M Fernandes
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Haley E Tarbox
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Hyun Sil Lee
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, Ga
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Ga
| | - Jean Kim
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
56
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
57
|
Bronchial Asthma: Current Trends in Treatment. ACTA MEDICA MARTINIANA 2020. [DOI: 10.2478/acm-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Asthma is a heterogenous disease which pathophysiology is still poorly understood. Asthma was traditionally divided into allergic (extrinsic) and non-allergic (intrinsic) types, while patients with allergic type responded better to corticosteroids. Since 2013 the definition of asthma has changed. Recently, better insight into clinical consi -derations and underlying inflammatory phenotypes has been gained. Defining these phenotypes has already led to more specific clinical trials and, therefore, to more personalized and successfully targeted therapy. For future, much more effort is put in identifying new phenotype-specific biomarkers which could be helpful in stratification of heterogeneous patients with asthma.
Collapse
|
58
|
Bayani A, Dunster JL, Crofts JJ, Nelson MR. Mechanisms and Points of Control in the Spread of Inflammation: A Mathematical Investigation. Bull Math Biol 2020; 82:45. [PMID: 32222839 PMCID: PMC7103018 DOI: 10.1007/s11538-020-00709-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Understanding the mechanisms that control the body’s response to inflammation is of key importance, due to its involvement in myriad medical conditions, including cancer, arthritis, Alzheimer’s disease and asthma. While resolving inflammation has historically been considered a passive process, since the turn of the century the hunt for novel therapeutic interventions has begun to focus upon active manipulation of constituent mechanisms, particularly involving the roles of apoptosing neutrophils, phagocytosing macrophages and anti-inflammatory mediators. Moreover, there is growing interest in how inflammatory damage can spread spatially due to the motility of inflammatory mediators and immune cells. For example, impaired neutrophil chemotaxis is implicated in causing chronic inflammation under trauma and in ageing, while neutrophil migration is an attractive therapeutic target in ailments such as chronic obstructive pulmonary disease. We extend an existing homogeneous model that captures interactions between inflammatory mediators, neutrophils and macrophages to incorporate spatial behaviour. Through bifurcation analysis and numerical simulation, we show that spatially inhomogeneous outcomes can present close to the switch from bistability to guaranteed resolution in the corresponding homogeneous model. Finally, we show how aberrant spatial mechanisms can play a role in the failure of inflammation to resolve and discuss our results within the broader context of seeking novel inflammatory treatments.
Collapse
Affiliation(s)
- A Bayani
- Department of Physics and Mathematics, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, UK
| | - J L Dunster
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, UK
| | - J J Crofts
- Department of Physics and Mathematics, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, UK
| | - M R Nelson
- Department of Physics and Mathematics, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, UK.
| |
Collapse
|
59
|
Wan J, Huang L, Ji X, Yao S, Hamed Abdelaziz M, Cai W, Wang H, Cheng J, Dineshkumar K, Aparna V, Su Z, Wang S, Xu H. HMGB1-induced ILC2s activate dendritic cells by producing IL-9 in asthmatic mouse model. Cell Immunol 2020; 352:104085. [PMID: 32201004 DOI: 10.1016/j.cellimm.2020.104085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/20/2023]
Abstract
Asthma is a disease of the respiratory system that is commonly considered a T-helper 2 (Th2) cell-associated inflammatory disease. Group 2 innate lymphoid cells (ILC2s) promote the inflammatory responses in asthma by secreting type 2 cytokines. Interleukin (IL)-9 also serves as a promoting factor in asthma and it is well known that ILC2s have an autocrine effect of IL-9 to sustain their survival and proliferation. However, the specific role of ILC2-derived IL-9 in asthma remains unclear. HMGB1 (High-Mobility Group Box-1) is a nuclear protein, and Previous studies have shown that HMGB1 can regulate the differentiation of T-helper cells and participate in the development of asthma. But whether HMGB1 can regulate the innate lymphocytes in the pathological process of asthma is unknown. In this study we have shown increased presence of HMGB1 protein in the lung of mice with asthma, which was associated with increased secretion of IL-9 by ILC2s. This led to the activation of dendritic cells (DCs) that can accelerate the differentiation of Th2 cells and worsen the severity of asthma. Taken together, our study provides a complementary understanding of the asthma development and highlights a novel inflammatory pathway in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyun Ji
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Shun Yao
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Wei Cai
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Huixuan Wang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Jianjun Cheng
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | | | - Vasudevan Aparna
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212001, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
60
|
Mustafa AS. Vaccine Potential of Mycobacterial Antigens against Asthma. Med Princ Pract 2020; 29:404-411. [PMID: 32422630 PMCID: PMC7511680 DOI: 10.1159/000508719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022] Open
Abstract
Asthma is a cause of substantial burden of disease in the world, including both premature deaths and reduced quality of life. A leading hypothesis to explain the worldwide increase of asthma is the "hygiene hypothesis," which suggests that the increase in the prevalence of asthma is due to the reduction in exposure to infections/microbial antigens. In allergic asthma, the most common type of asthma, antigen-specific T helper (Th)2 and Th17 cells and their cytokines are primary mediators of the pathological consequences. In contrast, Th1 and T regulatory (Treg) cells and their cytokines play a protective role. This article aims to review the information on the effect of mycobacteria and their antigens in modulating Th2/Th17 responses towards Th1/Treg responses and protection against asthma in humans and animal models.
Collapse
Affiliation(s)
- Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait,
| |
Collapse
|
61
|
Aldan JT, Jansen C, Speck M, Maaetoft-Udsen K, Cordasco EA, Faiai M, Shimoda LM, Greineisen WE, Turner H, Stokes AJ. Insulin-induced lipid body accumulation is accompanied by lipid remodelling in model mast cells. Adipocyte 2019; 8:265-279. [PMID: 31311389 PMCID: PMC6768188 DOI: 10.1080/21623945.2019.1636624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mast cell lipid bodies are key to initiation, maintenance and resolution of inflammatory responses in tissue. Mast cell lines, primary bone marrow-derived mast cells and peripheral blood basophils present a ‘steatotic’ phenotype in response to chronic insulin exposure, where cells become loaded with lipid bodies. Here we show this state is associated with reduced histamine release, but increased capacity to release bioactive lipids. We describe the overall lipid phenotype of mast cells in this insulin-induced steatotic state and the consequences for critical cellular lipid classes involved in stages of inflammation. We show significant insulin-induced shifts in specific lipid classes, especially arachidonic acid derivatives, MUFA and PUFA, the EPA/DHA ratio, and in cardiolipins, especially those conjugated to certain DHA and EPAs. Functionally, insulin exposure markedly alters the FcϵRI-induced release of Series 4 leukotriene LTC4, Series 2 prostaglandin PGD2, Resolvin-D1, Resolvin-D2 and Resolvin-1, reflecting the expanded precursor pools and impact on both the pro-inflammation and pro-resolution bioactive lipids that are released during mast cell activation. Chronic hyperinsulinemia is a feature of obesity and progression to Type 2 Diabetes, these data suggest that mast cell release of key lipid mediators is altered in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Johnny T. Aldan
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| | - Chad Jansen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Mark Speck
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | | | - Edward A. Cordasco
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| | - Mata’Uitafa Faiai
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Lori M.N. Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - William E. Greineisen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Helen Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Alexander J. Stokes
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| |
Collapse
|
62
|
Lu C, Zhang B, Xu T, Zhang W, Bai B, Xiao Z, Wu L, Liang G, Zhang Y, Dai Y. Piperlongumine reduces ovalbumin‑induced asthma and airway inflammation by regulating nuclear factor‑κB activation. Int J Mol Med 2019; 44:1855-1865. [PMID: 31485644 PMCID: PMC6777695 DOI: 10.3892/ijmm.2019.4322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/24/2019] [Indexed: 01/22/2023] Open
Abstract
Asthma is a common chronic airway inflammatory disease, characterized by airway inflammation and remodeling. Piperlongumine (PL) has a number of physiological and pharmacological properties. However, the anti‑asthmatic effect of PL has not been reported to date. In the present study, ovalbumin (OVA) was used to sensitize and challenge mice to induce asthma. The results revealed that PL pretreatment reduced OVA‑induced airway inflammatory cell infiltration, reduced Th2 cytokine expression, both in the bronchoalveolar lavage fluid and in lung tissues, reduced the serum IgE level, pro‑inflammatory cytokine [tumor necrosis factor (TNF)‑α and interleukin (IL)‑6] and intercellular adhesion molecule expression, as well as nuclear factor (NF)‑κB activation. In addition, PL also mitigated OVA‑induced goblet cell metaplasia, inhibited mucus protein secretion, mitigated airway fibrosis and downregulated fibrosis marker expression. It was also demonstrated that PL inhibited TNF‑α induced inflammatory cytokine expression and NF‑κB activation in vitro. Taken together, the findings of the present study indicated that PL can reduce OVA‑induced airway inflammation and remodeling in asthmatic mice, and that these effects may be mediated by inhibiting NF‑κB signaling.
Collapse
Affiliation(s)
- Chun Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600
| | - Tingting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000
| | - Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Bin Bai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600
| | - Liqin Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yali Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuanrong Dai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000
| |
Collapse
|
63
|
Zhu Z, Camargo CA, Hasegawa K. Metabolomics in the prevention and management of asthma. Expert Rev Respir Med 2019; 13:1135-1138. [PMID: 31561725 DOI: 10.1080/17476348.2019.1674650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
64
|
KleinJan A. Stuck in the MUC: Infinity loop of fucosylation in allergic airway inflammation. J Allergy Clin Immunol 2019; 144:665-667. [PMID: 31351101 DOI: 10.1016/j.jaci.2019.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Alex KleinJan
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
65
|
Barnig C, Bezema T, Calder PC, Charloux A, Frossard N, Garssen J, Haworth O, Dilevskaya K, Levi-Schaffer F, Lonsdorfer E, Wauben M, Kraneveld AD, Te Velde AA. Activation of Resolution Pathways to Prevent and Fight Chronic Inflammation: Lessons From Asthma and Inflammatory Bowel Disease. Front Immunol 2019; 10:1699. [PMID: 31396220 PMCID: PMC6664683 DOI: 10.3389/fimmu.2019.01699] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Formerly considered as a passive process, the resolution of acute inflammation is now recognized as an active host response, with a cascade of coordinated cellular and molecular events that promotes termination of the inflammatory response and initiates tissue repair and healing. In a state of immune fitness, the resolution of inflammation is contained in time and space enabling the restoration of tissue homeostasis. There is increasing evidence that poor and/or inappropriate resolution of inflammation participates in the pathogenesis of chronic inflammatory diseases, extending in time the actions of pro-inflammatory mechanisms, and responsible in the long run for excessive tissue damage and pathology. In this review, we will focus on how resolution can be the target for therapy in "Th1/Th17 cell-driven" immune diseases and "Th2 cell-driven" immune diseases, with inflammatory bowel diseases (IBD) and asthma, as relevant examples. We describe the main cells and mediators stimulating the resolution of inflammation and discuss how pharmacological and dietary interventions but also life style factors, physical and psychological conditions, might influence the resolution phase. A better understanding of the impact of endogenous and exogenous factors on the resolution of inflammation might open a whole area in the development of personalized therapies in non-resolving chronic inflammatory diseases.
Collapse
Affiliation(s)
- Cindy Barnig
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | | | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Anne Charloux
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Nelly Frossard
- UMR 7200 CNRS/Université de Strasbourg, Laboratoire d'Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| | - Oliver Haworth
- Biochemical Pharmacology, William Harvey Research Institute, Bart's School of Medicine and Queen Mary University of London, London, United Kingdom
| | - Ksenia Dilevskaya
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Evelyne Lonsdorfer
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Marca Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anje A Te Velde
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AGEM, Amsterdam, Netherlands
| |
Collapse
|
66
|
Pereira RB, Pereira DM, Jiménez C, Rodríguez J, Nieto RM, Videira RA, Silva O, Andrade PB, Valentão P. Anti-Inflammatory Effects of 5α,8α-Epidioxycholest-6-en-3β-ol, a Steroidal Endoperoxide Isolated from Aplysia depilans, Based on Bioguided Fractionation and NMR Analysis. Mar Drugs 2019; 17:E330. [PMID: 31163615 PMCID: PMC6628248 DOI: 10.3390/md17060330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023] Open
Abstract
Sea hares of Aplysia genus are recognized as a source of a diverse range of metabolites. 5α,8α-Endoperoxides belong to a group of oxidized sterols commonly found in marine organisms and display several bioactivities, including antimicrobial, anti-tumor, and immunomodulatory properties. Herein we report the isolation of 5α,8α-epidioxycholest-6-en-3β-ol (EnP(5,8)) from Aplysia depilans Gmelin, based on bioguided fractionation and nuclear magnetic resonance (NMR) analysis, as well as the first disclosure of its anti-inflammatory properties. EnP(5,8) revealed capacity to decrease cellular nitric oxide (NO) levels in RAW 264.7 macrophages treated with lipopolysaccharide (LPS) by downregulation of the Nos2 (inducible nitric oxide synthase, iNOS) gene. Moreover, EnP(5,8) also inhibited the LPS-induced expression of cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) at the mRNA and protein levels. Mild selective inhibition of COX-2 enzyme activity was also evidenced. Our findings provide evidence of EnP(5,8) as a potential lead drug molecule for the development of new anti-inflammatory agents.
Collapse
Affiliation(s)
- Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Carlos Jiménez
- Departamento de Química, Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, E-15071 A Coruña, Spain.
| | - Jaime Rodríguez
- Departamento de Química, Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, E-15071 A Coruña, Spain.
| | - Rosa M Nieto
- Departamento de Química, Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, E-15071 A Coruña, Spain.
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| |
Collapse
|
67
|
Thatcher TH, Woeller CF, McCarthy CE, Sime PJ. Quenching the fires: Pro-resolving mediators, air pollution, and smoking. Pharmacol Ther 2019; 197:212-224. [PMID: 30759375 DOI: 10.1016/j.pharmthera.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exposure to air pollution and other environmental inhalation hazards, such as occupational exposures to dusts and fumes, aeroallergens, and tobacco smoke, is a significant cause of chronic lung inflammation leading to respiratory disease. It is now recognized that resolution of inflammation is an active process controlled by a novel family of small lipid mediators termed "specialized pro-resolving mediators" or SPMs, derived mainly from dietary omega-3 polyunsaturated fatty acids. Chronic inflammation results from an imbalance between pro-inflammatory and pro-resolution pathways. Research is ongoing to develop SPMs, and the pro-resolution pathway more generally, as a novel therapeutic approach to diseases characterized by chronic inflammation. Here, we will review evidence that the resolution pathway is dysregulated in chronic lung inflammatory diseases, and that SPMs and related molecules have exciting therapeutic potential to reverse or prevent chronic lung inflammation, with a focus on lung inflammation due to inhalation of environmental hazards including urban particulate matter, organic dusts and tobacco smoke.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Collynn F Woeller
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Claire E McCarthy
- National Cancer Institute, Division of Cancer Biology, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Patricia J Sime
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
68
|
Gonzalez-Gil A, Porell RN, Fernandes SM, Wei Y, Yu H, Carroll DJ, McBride R, Paulson JC, Tiemeyer M, Aoki K, Bochner BS, Schnaar RL. Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways. Glycobiology 2019; 28:786-801. [PMID: 29924315 PMCID: PMC6142871 DOI: 10.1093/glycob/cwy057] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/18/2018] [Indexed: 01/02/2023] Open
Abstract
Human siglecs are a family of 14 sialic acid-binding proteins, most of which are expressed on subsets of immune cells where they regulate immune responses. Siglec-8 is expressed selectively on human allergic inflammatory cells—primarily eosinophils and mast cells—where engagement causes eosinophil apoptosis and inhibits mast cell mediator release. Evidence supports a model in which human eosinophils and mast cells bind to Siglec-8 sialoglycan ligands on inflammatory target tissues to resolve allergic inflammation and limit tissue damage. To identify Siglec-8-binding sialoglycans from human airways, proteins extracted from postmortem human trachea were resolved by size-exclusion chromatography and composite agarose–acrylamide gel electrophoresis, blotted and probed by Siglec-8-Fc blot overlay. Three size classes of Siglec-8 ligands were identified: 250 kDa, 600 kDa and 1 MDa, each of which was purified by affinity chromatography using a recombinant pentameric form of Siglec-8. Proteomic mass spectrometry identified all size classes as the proteoglycan aggrecan, a finding validated by immunoblotting. Glycan array studies demonstrated Siglec-8 binding to synthetic glycans with a terminal Neu5Acα2-3(6-sulfo)-Gal determinant, a quantitatively minor terminus on keratan sulfate (KS) chains of aggrecan. Treating human tracheal extracts with sialidase or keratanase eliminated Siglec-8 binding, indicating sialylated KS chains as Siglec-8-binding determinants. Treating human tracheal histological sections with keratanase also completely eliminated the binding of Siglec-8-Fc. Finally, Siglec-8 ligand purified from human trachea extracts induced increased apoptosis of freshly isolated human eosinophils in vitro. We conclude that sialylated KS proteoglycans are endogenous human airway ligands that bind Siglec-8 and may regulate allergic inflammation.
Collapse
Affiliation(s)
- Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan N Porell
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steve M Fernandes
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yadong Wei
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Huifeng Yu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniela J Carroll
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ryan McBride
- Departments of Chemical Physiology, Cell and Molecular Biology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - James C Paulson
- Departments of Chemical Physiology, Cell and Molecular Biology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
69
|
Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res 2019; 68:59-74. [PMID: 30306206 DOI: 10.1007/s00011-018-1191-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation in the lung is the body's natural response to injury. It acts to remove harmful stimuli such as pathogens, irritants, and damaged cells and initiate the healing process. Acute and chronic pulmonary inflammation are seen in different respiratory diseases such as; acute respiratory distress syndrome, chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF). FINDINGS In this review, we found that inflammatory response in COPD is determined by the activation of epithelial cells and macrophages in the respiratory tract. Epithelial cells and macrophages discharge transforming growth factor-β (TGF-β), which trigger fibroblast proliferation and tissue remodeling. Asthma leads to airway hyper-responsiveness, obstruction, mucus hyper-production, and airway-wall remodeling. Cytokines, allergens, chemokines, and infectious agents are the main stimuli that activate signaling pathways in epithelial cells in asthma. Mutation of the CF transmembrane conductance regulator (CFTR) gene results in CF. Mutations in CFTR influence the lung epithelial innate immune function that leads to exaggerated and ineffective airway inflammation that fails to abolish pulmonary pathogens. We present mechanistic computational models (based on ordinary differential equations, partial differential equations and agent-based models) that have been applied in studying the complex physiological and pathological mechanisms of chronic inflammation in different airway diseases. CONCLUSION The scope of the present review is to explore the inflammatory mechanism in airway diseases and highlight the influence of aging on airways' inflammation mechanism. The main goal of this review is to encourage research collaborations between experimentalist and modelers to promote our understanding of the physiological and pathological mechanisms that control inflammation in different airway diseases.
Collapse
Affiliation(s)
| | - Uduak George
- College of Engineering, University of Georgia, Athens, GA, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
70
|
Pizzini A, Lunger L, Sonnweber T, Weiss G, Tancevski I. The Role of Omega-3 Fatty Acids in the Setting of Coronary Artery Disease and COPD: A Review. Nutrients 2018; 10:nu10121864. [PMID: 30513804 PMCID: PMC6316059 DOI: 10.3390/nu10121864] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/09/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a growing healthcare concern and will represent the third leading cause of death worldwide within the next decade. COPD is the result of a complex interaction between environmental factors, especially cigarette smoking, air pollution, and genetic preconditions, which result in persistent inflammation of the airways. There is growing evidence that the chronic inflammatory state, measurable by increased levels of circulating cytokines, chemokines, and acute phase proteins, may not be confined to the lungs. Cardiovascular disease (CVD) and especially coronary artery disease (CAD) are common comorbidities of COPD, and low-grade systemic inflammation plays a decisive role in its pathogenesis. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert multiple functions in humans and are crucially involved in limiting and resolving inflammatory processes. n-3 PUFAs have been intensively studied for their ability to improve morbidity and mortality in patients with CVD and CAD. This review aims to summarize the current knowledge on the effects of n-3 PUFA on inflammation and its impact on CAD in COPD from a clinical perspective.
Collapse
Affiliation(s)
- Alex Pizzini
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Lukas Lunger
- Department of Urology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Thomas Sonnweber
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Guenter Weiss
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Ivan Tancevski
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
71
|
Lotfi R, Rezaiemanesh A, Mortazavi SH, Karaji AG, Salari F. Immunoresolvents in asthma and allergic diseases: Review and update. J Cell Physiol 2018; 234:8579-8596. [PMID: 30488527 DOI: 10.1002/jcp.27836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/07/2018] [Indexed: 01/22/2023]
Abstract
Asthma and allergic diseases are inflammatory conditions developed by excessive reaction of the immune system against normally harmless environmental substances. Although acute inflammation is necessary to eradicate the damaging agents, shifting to chronic inflammation can be potentially detrimental. Essential fatty-acids-derived immunoresolvents, namely, lipoxins, resolvins, protectins, and maresins, are anti-inflammatory compounds that are believed to have protective and beneficial effects in inflammatory disorders, including asthma and allergies. Accordingly, impaired biosynthesis and defective production of immunoresolvents could be involved in the development of chronic inflammation. In this review, recent evidence on the anti-inflam]matory effects of immunoresolvents, their enzymatic biosynthesis routes, as well as their receptors are discussed.
Collapse
Affiliation(s)
- Ramin Lotfi
- Student Research Committee, Department of immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hamidreza Mortazavi
- Department of Pediatrics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
72
|
Lee-Sarwar K, Kelly RS, Lasky-Su J, Kachroo P, Zeiger RS, O'Connor GT, Sandel MT, Bacharier LB, Beigelman A, Laranjo N, Gold DR, Weiss ST, Litonjua AA. Dietary and Plasma Polyunsaturated Fatty Acids Are Inversely Associated with Asthma and Atopy in Early Childhood. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 7:529-538.e8. [PMID: 30145365 DOI: 10.1016/j.jaip.2018.07.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFAs) influence immune function and risk of allergic disease. Prior evidence of the effect of PUFA intake on childhood asthma and allergy is inconclusive. OBJECTIVES To investigate associations of PUFA plasma levels and dietary intake with asthma and allergy at age 3 years in this ancillary study of the Vitamin D Antenatal Asthma Reduction Trial. METHODS Plasma PUFA levels were reported as relative abundances from mass spectrometry profiling, and dietary PUFA intake was derived from food frequency questionnaire responses. Associations between PUFA and outcomes, including asthma and/or recurrent wheeze, allergic sensitization, and total IgE at age 3 years, were evaluated in adjusted regression models. Additional regression models analyzed the combined effects of antenatal vitamin D and early childhood PUFA on outcomes. RESULTS Total, omega-3, and omega-6 plasma PUFA relative abundances were significantly (P < .05) inversely associated with both asthma and/or recurrent wheeze and allergic sensitization. Likewise, dietary PUFA intake was inversely associated with asthma and/or recurrent wheeze (P < .05 for omega-6 PUFA only). For both dietary and plasma measures of total, omega-3, and omega-6 PUFAs, inverse associations with outcomes were strongest among subjects with both high umbilical cord blood 25-hydroxyvitamin D and high PUFA at age 3 years. CONCLUSIONS PUFA dietary intake and plasma levels are inversely associated with asthma and/or recurrent wheeze and atopy at age 3 years. Antenatal vitamin D could modulate the effect of early childhood PUFA on risk of asthma and allergy.
Collapse
Affiliation(s)
- Kathleen Lee-Sarwar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Robert S Zeiger
- Departments of Allergy and Research and Evaluation, Kaiser Permanente Southern California, San Diego and Pasadena, Calif
| | - George T O'Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Megan T Sandel
- Department of Pediatrics, Boston Medical Center, Boston, Mass
| | - Leonard B Bacharier
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, and St Louis Children's Hospital, St Louis, Mo
| | - Avraham Beigelman
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, and St Louis Children's Hospital, St Louis, Mo
| | - Nancy Laranjo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Diane R Gold
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at University of Rochester Medical Center, Rochester, New York, NY.
| |
Collapse
|