51
|
El-Ramady H, Abdalla N, Elbasiouny H, Elbehiry F, Elsakhawy T, Omara AED, Amer M, Bayoumi Y, Shalaby TA, Eid Y, Zia-Ur-Rehman M. Nano-biofortification of different crops to immune against COVID-19: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112500. [PMID: 34274837 PMCID: PMC8270734 DOI: 10.1016/j.ecoenv.2021.112500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 05/04/2023]
Abstract
Human health and its improvement are the main target of several studies related to medical, agricultural and industrial sciences. The human health is the primary conclusion of many studies. The improving of human health may include supplying the people with enough and safe nutrients against malnutrition to fight against multiple diseases like COVID-19. Biofortification is a process by which the edible plants can be enriched with essential nutrients for human health against malnutrition. After the great success of biofortification approach in the human struggle against malnutrition, a new biotechnological tool in enriching the crops with essential nutrients in the form of nanoparticles to supplement human diet with balanced diet is called nano-biofortification. Nano biofortification can be achieved by applying the nano particles of essential nutrients (e.g., Cu, Fe, Se and Zn) foliar or their nano-fertilizers in soils or waters. Not all essential nutrients for human nutrition can be biofortified in the nano-form using all edible plants but there are several obstacles prevent this approach. These stumbling blocks are increased due to COVID-19 and its problems including the global trade, global breakdown between countries, and global crisis of food production. The main target of this review was to evaluate the nano-biofortification process and its using against malnutrition as a new approach in the era of COVID-19. This review also opens many questions, which are needed to be answered like is nano-biofortification a promising solution against malnutrition? Is COVID-19 will increase the global crisis of malnutrition? What is the best method of applied nano-nutrients to achieve nano-biofortification? What are the challenges of nano-biofortification during and post of the COVID-19?
Collapse
Affiliation(s)
- Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Neama Abdalla
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Center, 12622 Cairo, Egypt.
| | - Heba Elbasiouny
- Department of Environmental and Biological Sciences, Home Economy faculty, Al-Azhar University, 31732 Tanta, Egypt.
| | - Fathy Elbehiry
- Central Laboratory of Environmental Studies, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Tamer Elsakhawy
- Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Alaa El-Dein Omara
- Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Megahed Amer
- Soils Improvement Department, Soils, Water and Environment Research Institute (SWERI), Sakha Station, Agricultural Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Yousry Bayoumi
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Tarek A Shalaby
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Yahya Eid
- Poultry Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
52
|
Faizan M, Rajput VD, Al-Khuraif AA, Arshad M, Minkina T, Sushkova S, Yu F. Effect of Foliar Fertigation of Chitosan Nanoparticles on Cadmium Accumulation and Toxicity in Solanum lycopersicum. BIOLOGY 2021; 10:biology10070666. [PMID: 34356521 PMCID: PMC8301443 DOI: 10.3390/biology10070666] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary The experiment conducted on Solanum lycopersicum provided an insight about Cd uptake, and the way a Solanum lycopersicum changes its physiological, biochemical and morphological responses when CTS-NPs are administered against Cd. As an effective important polymer, CTS-NPs enhanced the plant biomass, SPAD index, photosynthetic rate, and protein content in the Solanum lycopersicum plants grown in Cd stress, as a study herein. Addition of CTS-NPs reduced Cd accumulation by increasing the nutrient uptake. Furthermore, CTS-NPs treatment enhances tolerance to Cd stress through hampering ROS production accompanied by H2O2 activity, through reducing the peroxidation of lipids by minimizing MDA content, and through improving enzymatic (CAT, POX, SOD), non-enzymatic (GSH and AsA), and osmoprotectants (proline) antioxidant contents that are considered as a first line of defense to protect plants from stress. Abstract Cadmium (Cd) stress is increasing at a high pace and is polluting the agricultural land. As a result, it affects animals and the human population via entering into the food chain. The aim of this work is to evaluate the possibility of amelioration of Cd stress through chitosan nanoparticles (CTS-NPs). After 15 days of sowing (DAS), Solanum lycopersicum seedlings were transplanted into maintained pots (20 in number). Cadmium (0.8 mM) was providing in the soil as CdCl2·2.5H2O at the time of transplanting; however, CTS-NPs (100 µg/mL) were given through foliar spray at 25 DAS. Data procured from the present experiment suggests that Cd toxicity considerably reduces the plant morphology, chlorophyll fluorescence, in addition to photosynthetic efficiency, antioxidant enzyme activity and protein content. However, foliar application of CTS-NPs was effective in increasing the shoot dry weight (38%), net photosynthetic rate (45%) and SPAD index (40%), while a decrease in malondialdehyde (24%) and hydrogen peroxide (20%) was observed at the 30 DAS stage as compared to control plants. On behalf of the current results, it is demonstrated that foliar treatment of CTS-NPs might be an efficient approach to ameliorate the toxic effects of Cd.
Collapse
Affiliation(s)
- Mohammad Faizan
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (M.F.); (V.D.R.); (F.Y.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (T.M.); (S.S.)
- Correspondence: (M.F.); (V.D.R.); (F.Y.)
| | - Abdulaziz Abdullah Al-Khuraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (A.A.A.-K.); (M.A.)
| | - Mohammed Arshad
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (A.A.A.-K.); (M.A.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (T.M.); (S.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (T.M.); (S.S.)
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (M.F.); (V.D.R.); (F.Y.)
| |
Collapse
|
53
|
Yahyazadeh M, Jerz G, Winterhalter P, Selmar D. The complexity of sound quantification of specialized metabolite biosynthesis: The stress related impact on the alkaloid content of Catharanthus roseus. PHYTOCHEMISTRY 2021; 187:112774. [PMID: 33930669 DOI: 10.1016/j.phytochem.2021.112774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 05/24/2023]
Abstract
Medicinal plants grown under stress conditions reveal higher concentrations of relevant specialized metabolites than well-watered plants, putatively due to an enhanced biosynthesis. Yet, stress also reduced the biomass gain. Accordingly, the concentration increase in comparison to control plants could also be due to lesser biomass employed as the reference value, whereas the rate of biosynthesis may remain unchanged. For an unequivocal proof that stress indeed enhances the biosynthesis, the total amount of the substances per plant has to be determined. In this study, we investigated the stress-induced impact on the alkaloids accumulated in Catharanthus roseus and quantified both, the changes in concentration and in the entire amount of alkaloids. At any time, all Catharanthus roseus plants grown under drought stress exhibited a markedly higher alkaloid concentration compared to the well-watered controls. However, by calculating the entire alkaloid content per plant, a corresponding increment occurred only within the first two weeks of drought stress. Thereafter, no significant differences among drought treatments and control were detected. Finally, within the last week, the alkaloid content per plant decreased markedly, although there was a meaningfully higher concentration of alkaloids in the drought-stressed plants. In contrast, when plants had been exposed to high salt concentrations, the alkaloid concentrations were quite the same in stressed and control plants. The related total contents were significantly lower in plants exposed to salt stress. These results display that both phenomena, an increased rate of biosynthesis and lesser reference values, i.e., the biomass, contribute to the stress-related increase in the concentration of natural product. Moreover, it has to be considered that the enhancement of biosynthesis could be due to either an "active" up-regulation of biosynthetic capacity or a "passive" shift caused by the over-reduced status as a result of the stress-induced stomatal closure.
Collapse
Affiliation(s)
- Mahdi Yahyazadeh
- Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran; Institute of Plant Biology, TU Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Gerold Jerz
- Institute of Food Chemistry, TU Braunschweig, Schleinitzstr. 20, 38106, Braunschweig, Germany
| | - Peter Winterhalter
- Institute of Food Chemistry, TU Braunschweig, Schleinitzstr. 20, 38106, Braunschweig, Germany
| | - Dirk Selmar
- Institute of Plant Biology, TU Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany.
| |
Collapse
|
54
|
Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. PLANTS 2021; 10:plants10061221. [PMID: 34203954 PMCID: PMC8232821 DOI: 10.3390/plants10061221] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Abiotic stress in plants is a crucial issue worldwide, especially heavy-metal contaminants, salinity, and drought. These stresses may raise a lot of issues such as the generation of reactive oxygen species, membrane damage, loss of photosynthetic efficiency, etc. that could alter crop growth and developments by affecting biochemical, physiological, and molecular processes, causing a significant loss in productivity. To overcome the impact of these abiotic stressors, many strategies could be considered to support plant growth including the use of nanoparticles (NPs). However, the majority of studies have focused on understanding the toxicity of NPs on aquatic flora and fauna, and relatively less attention has been paid to the topic of the beneficial role of NPs in plants stress response, growth, and development. More scientific attention is required to understand the behavior of NPs on crops under these stress conditions. Therefore, the present work aims to comprehensively review the beneficial roles of NPs in plants under different abiotic stresses, especially heavy metals, salinity, and drought. This review provides deep insights about mechanisms of abiotic stress alleviation in plants under NP application.
Collapse
|