51
|
Bujorescu DL, Raţiu AC, Motoc AGM, Cîtu IC, Sas I, Gorun IF, Gorun OM, Folescu R, Gurguş D. Placental pathology in early-onset fetal growth restriction: insights into fetal growth restriction mechanisms. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:215-224. [PMID: 37518879 PMCID: PMC10520372 DOI: 10.47162/rjme.64.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Early-onset fetal growth restriction (FGR), an identifiable variant of FGR, exhibits divergences in its severity, management, and placental pathologies when juxtaposed with late-onset FGR. The objective of this cross-sectional investigation was to scrutinize placental pathologies in pregnancies afflicted by early-onset FGR, emphasizing a comparative analysis between cohorts with and without preeclampsia (PE). PATIENTS, MATERIALS AND METHODS The study encompassed a cohort of 85 expectant mothers who received a diagnosis of early-onset FGR. Rigorous histopathological (HP) and immunohistochemical (IHC) assessments were conducted on the placentas. Comparative analyses were performed, distinguishing between individuals diagnosed with both PE and early-onset FGR, and those presenting normotensive early-onset FGR. RESULTS HP analysis unveiled a multitude of shared placental lesions, encompassing retroplacental hemorrhage, expedited villous maturation, infarctions, and calcification-associated fibrin deposits. IHC investigations displayed affirmative immunoreactivity for anti-hypoxia-inducible factor (HIF) and anti-vascular endothelial growth factor (VEGF) antibodies within the placental infarcted villitis. Moreover, noteworthy variances in placental measurements and distinctive lesions were discerned when comparing the PE and early-onset FGR cohort with the normotensive group. CONCLUSIONS Maternal malperfusion emerged as a pivotal determinant linked to placental lesions in pregnancies affected by early-onset FGR. Remarkably, the occurrence of infarctions, specifically delayed infarctions, exhibited a noteworthy correlation with PE. These findings accentuate the significance of pursuing additional research endeavors aimed at unraveling the intricate mechanisms governing maternal malperfusion and its consequential influence on placental health in the context of early-onset FGR, with particular attention to the interplay with PE.
Collapse
Affiliation(s)
- Daniela Loredana Bujorescu
- Department of Obstetrics and Gynecology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania;
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Eaves LA, Fry RC. Invited Perspective: Toxic Metals and Hypertensive Disorders of Pregnancy. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:41303. [PMID: 37079391 PMCID: PMC10117635 DOI: 10.1289/ehp11963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/24/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pediatrics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
53
|
Fantone S, Ermini L, Piani F, Di Simone N, Barbaro G, Giannubilo SR, Gesuita R, Tossetta G, Marzioni D. Downregulation of argininosuccinate synthase 1 (ASS1) is associated with hypoxia in placental development. Hum Cell 2023; 36:1190-1198. [PMID: 36995581 DOI: 10.1007/s13577-023-00901-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Argininosuccinate synthase (ASS1) is involved in nitric oxide production, which has a key role in placental development improving pregnancy outcomes. Syncytiotrophoblast and extravillous trophoblast differentiations are milestones of placental development and their impairment can cause pathologies, such as preeclampsia (PE) and fetal growth restriction (FGR). Immunohistochemistry and Western blotting were used to localize and quantify ASS1 in first trimester (8.2 ± 1.8 weeks), third trimester (38.6 ± 1.1 weeks), and PE (36.3 ± 1.5 weeks) placentas. In addition, cell cultures were used to evaluate ASS1 expression under hypoxic conditions and the syncytialization process. Our data showed that ASS1 is localized in the villous cytotrophoblast of first trimester, third trimester, and PE placentas, while the villous cytotrophoblast adjacent to the extravillous trophoblast of cell columns as well as the extravillous trophoblast were negative for ASS1 in first trimester placentas. In addition, ASS1 was decreased in third trimester compared to the first trimester placentas (p = 0.003) and no differences were detected between third trimester and PE placentas. Moreover, ASS1 expression was decreased in hypoxic conditions and syncytialized cells compared to those not syncytialized. In conclusion, we suggest that the expression of ASS1 in villous cytotrophoblast is related to maintaining proliferative phenotype, while ASS1 absence may be involved in promoting the differentiation of villous cytotrophoblast in extravillous cytotrophoblast of cell columns in first trimester placentas.
Collapse
Affiliation(s)
- Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Leonardo Ermini
- Department of Life Science, University of Siena, 53100, Siena, Italy
| | - Federica Piani
- Cardiovascular Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40128, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, 20089, Milan, Italy
| | - Greta Barbaro
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Stefano Raffaele Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy
| | - Rosaria Gesuita
- Centre of Epidemiology and Biostatistics, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy.
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
54
|
Crute CE, Landon CD, Garner A, Hall SM, Everitt JI, Zhang S, Blake B, Olofsson D, Chen H, Stapleton HM, Murphy SK, Feng L. Maternal exposure to perfluorobutane sulfonate (PFBS) during pregnancy: evidence of adverse maternal and fetoplacental effects in New Zealand White (NZW) rabbits. Toxicol Sci 2023; 191:239-252. [PMID: 36453863 PMCID: PMC9936209 DOI: 10.1093/toxsci/kfac126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Perfluorobutanesulfonic acid (PFBS) is a replacement for perfluorooctanesulfonic acid (PFOS) that is increasingly detected in drinking water and human serum. Higher PFBS exposure is associated with risk for preeclampsia, the leading cause of maternal and infant morbidity and mortality in the United States. This study investigated relevant maternal and fetal health outcomes after gestational exposure to PFBS in a New Zealand White rabbit model. Nulliparous female rabbits were supplied drinking water containing 0 mg/l (control), 10 mg/l (low), or 100 mg/l (high) PFBS. Maternal blood pressure, body weights, liver and kidney weights histopathology, clinical chemistry panels, and thyroid hormone levels were evaluated. Fetal endpoints evaluated at necropsy included viability, body weights, crown-rump length, and liver and kidney histopathology, whereas placenta endpoints included weight, morphology, histopathology, and full transcriptome RNA sequencing. PFBS-high dose dams exhibited significant changes in blood pressure markers, seen through increased pulse pressure and renal resistive index measures, as well as kidney histopathological changes. Fetuses from these dams showed decreased crown-rump length. Statistical analysis of placental weight via a mixed model statistical approach identified a significant interaction term between PFBS high dose and fetal sex, suggesting a sex-specific effect on placental weight. RNA sequencing identified the dysregulation of angiotensin (AGT) in PFBS high-dose placentas. These results suggest that PFBS exposure during gestation leads to adverse maternal outcomes, such as renal injury and hypertension, and fetal outcomes, including decreased growth parameters and adverse placenta function. These outcomes raise concerns about pregnant women's exposure to PFBS and pregnancy outcomes.
Collapse
Affiliation(s)
- Christine E Crute
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, USA
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Chelsea D Landon
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Pathology, Duke University School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Angela Garner
- Department of Pathology, Duke University School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Samantha M Hall
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, USA
| | - Jeffery I Everitt
- Department of Pathology, Duke University School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, USA
| | - Bevin Blake
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | - Henry Chen
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Heather M Stapleton
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, USA
| | - Susan K Murphy
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, USA
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Liping Feng
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, USA
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
55
|
Arutjunyan AV, Kerkeshko GO, Milyutina YP, Shcherbitskaia AD, Zalozniaia IV, Mikhel AV, Inozemtseva DB, Vasilev DS, Kovalenko AA, Kogan IY. Imbalance of Angiogenic and Growth Factors in Placenta in Maternal Hyperhomocysteinemia. BIOCHEMISTRY (MOSCOW) 2023; 88:262-279. [PMID: 37072327 DOI: 10.1134/s0006297923020098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Numerous studies have shown that various adverse factors of different nature and action mechanisms have similar negative influence on placental angiogenesis, resulting in insufficiency of placental blood supply. One of the risk factors for pregnancy complications with placental etiology is an increased level of homocysteine in the blood of pregnant women. However, the effect of hyperhomocysteinemia (HHcy) on the development of the placenta and, in particular, on the formation of its vascular network is at present poorly understood. The aim of this work was to study the effect of maternal HHcy on the expression of angiogenic and growth factors (VEGF-A, MMP-2, VEGF-B, BDNF, NGF), as well as their receptors (VEGFR-2, TrkB, p75NTR), in the rat placenta. The effects of HHcy were studied in the morphologically and functionally different maternal and fetal parts of the placenta on the 14th and 20th day of pregnancy. The maternal HHcy caused increase in the levels of oxidative stress and apoptosis markers accompanied by an imbalance of the studied angiogenic and growth factors in the maternal and/or fetal part of the placenta. The influence of maternal HHcy in most cases manifested in a decrease in the protein content (VEGF-A), enzymatic activity (MMP-2), gene expression (VEGFB, NGF, TRKB), and accumulation of precursor form (proBDNF) of the investigated factors. In some cases, the effects of HHcy differed depending on the placental part and stage of development. The influence of maternal HHcy on signaling pathways and processes controlled by the studied angiogenic and growth factors could lead to incomplete development of the placental vasculature and decrease in the placental transport, resulting in fetal growth restriction and impaired fetal brain development.
Collapse
Affiliation(s)
- Alexander V Arutjunyan
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia.
| | - Gleb O Kerkeshko
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Yulia P Milyutina
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg State Pediatric Medical University, Russian Ministry of Health, St. Petersburg, 194100, Russia
| | - Anastasiia D Shcherbitskaia
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Irina V Zalozniaia
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Anastasiia V Mikhel
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Daria B Inozemtseva
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Dmitrii S Vasilev
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Anna A Kovalenko
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Igor Yu Kogan
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
56
|
de Alwis N, Binder NK, Beard S, Mangwiro YTM, Kadife E, Cuffe JSM, Keenan E, Fato BR, Kaitu’u-Lino TJ, Brownfoot FC, Marshall SA, Hannan NJ. The L-NAME mouse model of preeclampsia and impact to long-term maternal cardiovascular health. Life Sci Alliance 2022; 5:5/12/e202201517. [PMID: 36260752 PMCID: PMC9356384 DOI: 10.26508/lsa.202201517] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Preeclampsia affects ∼2–8% of pregnancies worldwide. It is associated with increased long-term maternal cardiovascular disease risk. This study assesses the effect of the vasoconstrictor N(ω)-nitro-L-arginine methyl ester (L-NAME) in modelling preeclampsia in mice, and its long-term effects on maternal cardiovascular health. In this study, we found that L-NAME administration mimicked key characteristics of preeclampsia, including elevated blood pressure, impaired fetal and placental growth, and increased circulating endothelin-1 (vasoconstrictor), soluble fms-like tyrosine kinase-1 (anti-angiogenic factor), and C-reactive protein (inflammatory marker). Post-delivery, mice that received L-NAME in pregnancy recovered, with no discernible changes in measured cardiovascular indices at 1-, 2-, and 4-wk post-delivery, compared with matched controls. At 10-wk post-delivery, arteries collected from the L-NAME mice constricted significantly more to phenylephrine than controls. In addition, these mice had increased kidney Mmp9:Timp1 and heart Tnf mRNA expression, indicating increased inflammation. These findings suggest that though administration of L-NAME in mice certainly models key characteristics of preeclampsia during pregnancy, it does not appear to model the adverse increase in cardiovascular disease risk seen in individuals after preeclampsia.
Collapse
Affiliation(s)
- Natasha de Alwis
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| | - Natalie K Binder
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| | - Sally Beard
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| | - Yeukai TM Mangwiro
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| | - Elif Kadife
- Mercy Perinatal, Heidelberg, Australia
- Department of Obstetrics and Gynaecology, Obstetrics Diagnostics and Therapeutics Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
| | - James SM Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Emerson Keenan
- Mercy Perinatal, Heidelberg, Australia
- Department of Obstetrics and Gynaecology, Obstetrics Diagnostics and Therapeutics Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
| | - Bianca R Fato
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| | - Tu’uhevaha J Kaitu’u-Lino
- Mercy Perinatal, Heidelberg, Australia
- Department of Obstetrics and Gynaecology, Diagnostics Discovery and Reverse Translation in Pregnancy Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
| | - Fiona C Brownfoot
- Mercy Perinatal, Heidelberg, Australia
- Department of Obstetrics and Gynaecology, Obstetrics Diagnostics and Therapeutics Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
| | - Sarah A Marshall
- Department of Obstetrics and Gynaecology, The Ritchie Centre, School of Clinical Sciences, Monash University and The Hudson Institute of Medical Research, Clayton, Australia
| | - Natalie J Hannan
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| |
Collapse
|
57
|
Reliability of Rodent and Rabbit Models in Preeclampsia Research. Int J Mol Sci 2022; 23:ijms232214344. [PMID: 36430816 PMCID: PMC9696504 DOI: 10.3390/ijms232214344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
In vivo studies on the pathology of gestation, including preeclampsia, often use small mammals such as rabbits or rodents, i.e., mice, rats, hamsters, and guinea pigs. The key advantage of these animals is their short reproductive cycle; in addition, similar to humans, they also develop a haemochorial placenta and present a similar transformation of maternal spiral arteries. Interestingly, pregnant dams also demonstrate a similar reaction to inflammatory factors and placentally derived antiangiogenic factors, i.e., soluble fms-like tyrosine kinase 1 (sFlt-1) or soluble endoglin-1 (sEng), as preeclamptic women: all animals present an increase in blood pressure and usually proteinuria. These constitute the classical duet that allows for the recognition of preeclampsia. However, the time of initiation of maternal vessel remodelling and the depth of trophoblast invasion differs between rabbits, rodents, and humans. Unfortunately, at present, no known animal replicates a human pregnancy exactly, and hence, the use of rabbit and rodent models is restricted to the investigation of individual aspects of human gestation only. This article compares the process of placentation in rodents, rabbits, and humans, which should be considered when planning experiments on preeclampsia; these aspects might determine the success, or failure, of the study. The report also reviews the rodent and rabbit models used to investigate certain aspects of the pathomechanism of human preeclampsia, especially those related to incorrect trophoblast invasion, placental hypoxia, inflammation, or maternal endothelial dysfunction.
Collapse
|
58
|
Zhou G, Winn E, Nguyen D, Kasten EP, Petroff MG, Hoffmann HM. Co-alterations of circadian clock gene transcripts in human placenta in preeclampsia. Sci Rep 2022; 12:17856. [PMID: 36284122 PMCID: PMC9596722 DOI: 10.1038/s41598-022-22507-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/17/2022] [Indexed: 01/20/2023] Open
Abstract
Pre-eclampsia (PE) is a hypertensive condition that occurs during pregnancy and complicates up to 4% of pregnancies. PE exhibits several circadian-related characteristics, and the placenta possesses a functioning molecular clock. We examined the associations of 17 core circadian gene transcripts in placenta with PE vs. non-PE (a mixture of pregnant women with term, preterm, small-for-gestational-age, or chorioamnionitis) using two independent gene expression datasets: GSE75010-157 (80 PE vs. 77 non-PE) and GSE75010-173 (77 PE and 96 non-PE). We found a robust difference in circadian gene expression between PE and non-PE across the two datasets, where CRY1 mRNA increases and NR1D2 and PER3 transcripts decrease in PE placenta. Gene set variation analysis revealed an interplay between co-alterations of circadian clock genes and PE with altered hypoxia, cell migration/invasion, autophagy, and membrane trafficking pathways. Using human placental trophoblast HTR-8 cells, we show that CRY1/2 and NR1D1/2 regulate trophoblast migration. A subgroup study including only term samples demonstrated that CLOCK, NR1D2, and PER3 transcripts were simultaneously decreased in PE placenta, a finding supported by CLOCK protein downregulation in an independent cohort of human term PE placenta samples. These findings provide novel insights into the roles of the molecular clock in the pathogenesis of PE.
Collapse
Affiliation(s)
- Guoli Zhou
- Clinical & Translational Sciences Institute, Michigan State University, 909 Wilson Rd. Suite B500, East Lansing, MI, 48824, USA.
| | - Emily Winn
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
| | - Duong Nguyen
- Department of Animal Science, Reproductive and Developmental Science Program and Neuroscience Program, College of Agriculture and Natural Resources, Michigan State University, Interdisciplinary Science and Technology Building #3010, 766 Service Road, East Lansing, MI, 48824, USA
| | - Eric P Kasten
- Clinical & Translational Sciences Institute, Michigan State University, 909 Wilson Rd. Suite B500, East Lansing, MI, 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Margaret G Petroff
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Hanne M Hoffmann
- Department of Animal Science, Reproductive and Developmental Science Program and Neuroscience Program, College of Agriculture and Natural Resources, Michigan State University, Interdisciplinary Science and Technology Building #3010, 766 Service Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
59
|
Biomarker screening in preeclampsia: an RNA-sequencing approach based on data from multiple studies. J Hypertens 2022; 40:2022-2036. [PMID: 36052525 DOI: 10.1097/hjh.0000000000003226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Biomarkers have become important in the prognosis and diagnosis of various diseases. High-throughput methods, such as RNA sequencing facilitate the detection of differentially expressed genes (DEGs), hence potential biomarker candidates. Individual studies suggest long lists of DEGs, hampering the identification of clinically relevant ones. Concerning preeclampsia - a major obstetric burden with high risk for adverse maternal and/or neonatal outcomes - limitations in diagnosis and prediction are still important issues. We, therefore, developed a workflow to facilitate the screening for biomarkers. METHODS On the basis of the tool DESeq2, a comprehensive workflow for identifying DEGs was established, analyzing data from several publicly available RNA-sequencing studies. We applied it to four RNA-sequencing datasets (one blood, three placenta) analyzing patients with preeclampsia and normotensive controls. We compared our results with other published approaches and evaluated their performance. RESULTS We identified 110 genes that are dysregulated in preeclampsia, observed in at least three of the studies analyzed, six even in all four studies. These included FLT-1, TREM-1, and FN1, which either represent established biomarkers at protein level, or promising candidates based on recent studies. For comparison, using a published meta-analysis approach, 5240 DEGs were obtained. CONCLUSION This study presents a data analysis workflow for preeclampsia biomarker screening, capable of identifying promising biomarker candidates, while drastically reducing the numbers of candidates. Moreover, we were also able to confirm its performance for heart failure. This approach can be applied to additional diseases for biomarker identification, and the set of DEGs identified in preeclampsia represents a resource for further studies.
Collapse
|
60
|
Smith TI, Russell AE. Extracellular vesicles in reproduction and pregnancy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:292-317. [PMID: 39697491 PMCID: PMC11648528 DOI: 10.20517/evcna.2022.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are small, lipid-bound packages that are secreted by all cell types and have been implicated in many diseases, such as cancer and neurodegenerative disorders. Though limited, an exciting new area of EV research focuses on their role in the reproductive system and pregnancy. In males, EVs have been implicated in sperm production and maturation. In females, EVs play a vital role in maintaining reproductive organ homeostasis and pregnancy, including the regulation of folliculogenesis, ovulation, and embryo implantation. During the development and maintenance of a pregnancy, the placenta is the main form of communication between the mother and the developing fetus. To support the developing fetus, the placenta will act as numerous vital organs until birth, and release EVs into the maternal and fetal bloodstream. EVs play an important role in cell-to-cell communication and may mediate the pathophysiology of pregnancy-related disorders such as preeclampsia, gestational diabetes mellitus, preterm birth, and intrauterine growth restriction, and potentially serve as noninvasive biomarkers for these conditions. In addition, EVs may also mediate processes involved in both male and female infertility. Together, the EVs secreted by both the male and female reproductive tracts work to promote reproductive fertility and play vital roles in mediating maternal-fetal crosstalk and pregnancy maintenance.
Collapse
Affiliation(s)
- Tahlia I. Smith
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- These authors contributed equally
| | - Ashley E. Russell
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- Magee Womens Research Institute - Allied Member, Pittsburgh, PA 15213, USA
- These authors contributed equally
| |
Collapse
|
61
|
Hebeda CB, Savioli AC, Scharf P, de Paula-Silva M, Gil CD, Farsky SHP, Sandri S. Neutrophil depletion in the pre-implantation phase impairs pregnancy index, placenta and fetus development. Front Immunol 2022; 13:969336. [PMID: 36248911 PMCID: PMC9558710 DOI: 10.3389/fimmu.2022.969336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal neutrophils cells are players in gestational tolerance and fetus delivery. Nonetheless, their actions in each phase of the pregnancy are unknown. We here investigated the role of maternal neutrophil depletion before the blastocyst implantation phase and outcomes in the pregnancy index, placenta, and fetus development. Neutrophils were pharmacologically depleted by i.p. injection of anti-Gr1 (anti-neutrophils; 200 µg) 24 hours after plug visualization in allogeneic-mated C57BL/6/BALB/c mice. Depletion of peripheral neutrophils lasted until 48 hours after anti-Gr1 injection (gestational day 1.5-3.5). On gestational day 5.5, neutrophil depletion impaired the blastocyst implantation, as 50% of pregnant mice presented reduced implantation sites. On gestational day 18.5, neutrophil depletion reduced the pregnancy rate and index, altered the placenta disposition in the uterine horns, and modified the structure of the placenta, detected by reduced junctional zone, associated with decreased numbers of giant trophoblast cells, spongiotrophoblast. Reduced number of placenta cells labeled for vascular endothelial growth factor (VEGF), platelet-endothelial cell adhesion molecule (PECAM-1), and intercellular cell adhesion molecule (ICAM-1), important markers of angiogenesis and adhesiveness, were detected in neutrophil depleted mice. Furthermore, neutrophil depletion promoted a higher frequency of monocytes, natural killers, and T regulatory cells, and lower frequency of cytotoxic T cells in the blood, and abnormal development of offspring. Associated data obtained herein highlight the pivotal role of neutrophils actions in the early stages of pregnancy, and address further investigations on the imbricating signaling evoked by neutrophils in the trophoblastic interaction with uterine epithelium.
Collapse
Affiliation(s)
- Cristina Bichels Hebeda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
- Núcleo de Pesquisa em Ciências Médicas, Fundação Universidade para o Desenvolvimento do Alto Vale do Itajaí – UNIDAVI, Rio do Sul, SC, Brazil
| | - Anna Carolina Savioli
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
| | - Marina de Paula-Silva
- Center for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
- *Correspondence: Silvana Sandri,
| |
Collapse
|
62
|
Factors Associated with the Severity of Pregnancy-Related Hypertensive Disorder: Significance of Clinical, Laboratory, and Histopathological Features. Diagnostics (Basel) 2022; 12:diagnostics12092188. [PMID: 36140589 PMCID: PMC9498006 DOI: 10.3390/diagnostics12092188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this paper is to evaluate the association of maternal clinical and laboratory features and placental histopathological changes with disease severity in pregnancy-related hypertensive disorders. From January 2021 to December 2021, clinical and laboratory data at the time of delivery and histopathological features of the placenta were collected from pregnant women with pregnancy-related hypertensive disorders at a single institution. The women were classified according to the pregnancy-related hypertensive disorder clinical severity, and each variable was compared accordingly. Gestational age-matched normotensive groups were also compared. Univariate and multivariate regression analyses were used to identify factors influencing pregnancy-related hypertensive disorder severity. Fifty-eight pregnancies were analyzed. Maternal albumin levels before delivery (beta coefficient −0.83, p = 0.043) and increased placental syncytial knots (beta coefficient 0.71, p = 0.026) are important parameters that are closely related to disease severity in women with pregnancy-related hypertensive disorders. The combination of albumin, PAPP-A, total bilirubin, and eGFR levels appears to be optimal for predicting pregnancy-related hypertensive disorder severity.
Collapse
|
63
|
Meyrueix LP, Gharaibeh R, Xue J, Brouwer C, Jones C, Adair L, Norris SA, Ideraabdullah F. Gestational diabetes mellitus placentas exhibit epimutations at placental development genes. Epigenetics 2022; 17:2157-2177. [DOI: 10.1080/15592294.2022.2111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Raad Gharaibeh
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, USA
- Bioinformatics Service Division, University of North Carolina, Charlotte, NC, USA
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL, USA
| | - Jing Xue
- Genetics Department, University of North Carolina, Chapel Hill, NC, USA
| | - Cory Brouwer
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, USA
- Bioinformatics Service Division, University of North Carolina, Charlotte, NC, USA
| | - Corbin Jones
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Linda Adair
- Nutrition Department, University of North Carolina, Chapel Hill, NC, USA
| | - Shane A. Norris
- SAMRC Developmental Health Pathways for Health Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Folami Ideraabdullah
- Nutrition Department, University of North Carolina, Chapel Hill, NC, USA
- Genetics Department, University of North Carolina, Chapel Hill, NC, USA
- SAMRC Developmental Health Pathways for Health Research Unit, University of Witwatersrand, Johannesburg, South Africa
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
64
|
Wolski H, Ożarowski M, Kurzawińska G, Bogacz A, Wolek M, Łuszczyńska M, Drews K, Mrozikiewicz AE, Mikołajczak PŁ, Kujawski R, Czerny B, Karpiński TM, Seremak-Mrozikiewicz A. Expression of ABCA1 Transporter and LXRA/LXRB Receptors in Placenta of Women with Late Onset Preeclampsia. J Clin Med 2022; 11:4809. [PMID: 36013052 PMCID: PMC9410380 DOI: 10.3390/jcm11164809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Appropriate levels of cholesterol are necessary for the mother and developing fetus, but theirexcess may cause preeclampsia. The ABCA1 transporter mediates the secretion of cholesterol and is highly regulated at the transcriptional level via the nuclear liver X receptors (LXRs). METHODS Sixteen preeclamptic and 39 normotensives healthy women with uncomplicated pregnancies were involved in the case-control study. The placental levels of ABCA1, LXRA and LXRB mRNA were quantified by real-time quantitative PCR. The concentrations of ABCA1, LXRA and LXRB proteins from the placenta were determined using an enzyme-linked immunosorbent assay Results: We found in the logistic regression model significantly lower placental expression of LXRB mRNA (crude OR = 0.26, 95% CI: 0.07-0.94, p = 0.040) and LXRA protein level (crude OR = 0.19, 95% CI: 0.05-0.69, p = 0.012) in late-onset preeclamptic women compared to healthy pregnant women. The values remained statistically significant after adjustment for possible confounders. CONCLUSIONS Our results suggest that high placenta LXRA mRNA and LXRA protein expression levels decrease the risk of late-onset preeclampsia. These nuclear receptors could play a role in the development of preeclampsia through disturbances of lipid metabolism.
Collapse
Affiliation(s)
- Hubert Wolski
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, 61-701 Poznan, Poland
- Division of Obstetrics and Gynecology, Poviat Hospital, 34-500 Zakopane, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland
| | - Grażyna Kurzawińska
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, 61-701 Poznan, Poland
- Laboratory of Molecular Biology, Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Anna Bogacz
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland
| | - Marlena Wolek
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland
| | - Małgorzata Łuszczyńska
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland
| | - Krzysztof Drews
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, 61-701 Poznan, Poland
- Laboratory of Molecular Biology, Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Aleksandra E. Mrozikiewicz
- Department of Infertility and Reproductive Endocrinology, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Radosław Kujawski
- Department of Pharmacology, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Bogusław Czerny
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, 61-701 Poznan, Poland
- Laboratory of Molecular Biology, Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
65
|
Shen Y, Yu G, Liu C, Wang W, Kan H, Zhang J, Cai J. Prenatal Exposure to PM 2.5 and Its Specific Components and Risk of Hypertensive Disorders in Pregnancy: A Nationwide Cohort Study in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11473-11481. [PMID: 35914180 DOI: 10.1021/acs.est.2c01103] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hypertensive disorders in pregnancy (HDP) are a leading cause of maternal mortality and adverse birth outcomes. Fine particulate matter (PM2.5) has been linked to HDP risk; however, limited studies have explored the relationships between specific chemical constituents of PM2.5 and HDP risk. Based on maternal data from the China Labor and Delivery Survey (CLDS), this study included a total of 67,659 participants from 95 participant hospitals in 25 provinces of China between March 1, 2015, and December 31, 2016. Maternal exposure to total PM2.5 mass and six main components during pregestation and pregnancy were estimated using the Combined Geoscience-Statistical Method. Multilevel logistic regression models were applied to quantify the associations, controlling for sociodemographic characteristics. We found that an interquartile range (IQR) increase in PM2.5 exposure during the second trimester was associated with a 14% increase in HDP risk (95% CI: 2%, 29%). We observed that black carbon (BC) and SO42- had larger or comparable estimates of the effect than total PM2.5 mass. The association estimates were greater in the gestational hypertension group than in the group of pre-eclampsia and eclampsia. Our findings suggest that PM2.5 exposure and specific chemical components (particularly BC and SO42-) were associated with an increased HDP risk in China.
Collapse
Affiliation(s)
- Yanling Shen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
66
|
Pryor JT, Cowley LO, Simonds SE. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front Public Health 2022; 10:882569. [PMID: 35910891 PMCID: PMC9329703 DOI: 10.3389/fpubh.2022.882569] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Nine out of 10 people breathe air that does not meet World Health Organization pollution limits. Air pollutants include gasses and particulate matter and collectively are responsible for ~8 million annual deaths. Particulate matter is the most dangerous form of air pollution, causing inflammatory and oxidative tissue damage. A deeper understanding of the physiological effects of particulate matter is needed for effective disease prevention and treatment. This review will summarize the impact of particulate matter on physiological systems, and where possible will refer to apposite epidemiological and toxicological studies. By discussing a broad cross-section of available data, we hope this review appeals to a wide readership and provides some insight on the impacts of particulate matter on human health.
Collapse
Affiliation(s)
- Jack T. Pryor
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Woodrudge LTD, London, United Kingdom
| | - Lachlan O. Cowley
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephanie E. Simonds
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephanie E. Simonds
| |
Collapse
|
67
|
Gyselaers W, Lees C. Maternal Low Volume Circulation Relates to Normotensive and Preeclamptic Fetal Growth Restriction. Front Med (Lausanne) 2022; 9:902634. [PMID: 35755049 PMCID: PMC9218216 DOI: 10.3389/fmed.2022.902634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
This narrative review summarizes current evidence on the association between maternal low volume circulation and poor fetal growth. Though much work has been devoted to the study of cardiac output and peripheral vascular resistance, a low intravascular volume may explain why high vascular resistance causes hypertension in women with preeclampsia (PE) that is associated with fetal growth restriction (FGR) and, at the same time, presents with normotension in FGR itself. Normotensive women with small for gestational age babies show normal gestational blood volume expansion superimposed upon a constitutionally low intravascular volume. Early onset preeclampsia (EPE; occurring before 32 weeks) is commonly associated with FGR, and poor plasma volume expandability may already be present before conception, thus preceding gestational volume expansion. Experimentally induced low plasma volume in rodents predisposes to poor fetal growth and interventions that enhance plasma volume expansion in FGR have shown beneficial effects on intrauterine fetal condition, prolongation of gestation and birth weight. This review makes the case for elevating the maternal intravascular volume with physical exercise with or without Nitric Oxide Donors in FGR and EPE, and evaluating its role as a potential target for prevention and/or management of these conditions.
Collapse
Affiliation(s)
- Wilfried Gyselaers
- Department of Obstetrics, Ziekenhuis Oost Limburg, Genk, Belgium.,Department of Physiology, Hasselt University, Hasselt, Belgium
| | - Christoph Lees
- Centre for Fetal Care, Queen Charlotte's and Chelsea Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.,Department of Metabolism, Digestion and Reproduction, Institute for Reproductive and Developmental Biology, Imperial College London, London, United Kingdom.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Centre for Fetal Care, Queen Charlotte's and Chelsea Hospital, London, United Kingdom
| |
Collapse
|
68
|
Awoyemi T, Iaccarino DA, Motta-Mejia C, Raiss S, Kandzija N, Zhang W, Vatish M. Neuropilin-1 is uniquely expressed on small syncytiotrophoblast extracellular vesicles but not on medium/large vesicles from preeclampsia and normal placentae. Biochem Biophys Res Commun 2022; 619:151-158. [PMID: 35760012 DOI: 10.1016/j.bbrc.2022.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Preeclampsia (PE) is a multisystem progressive hypertensive disorder unique to human pregnancy. The placenta is fundamental to its pathogenesis and releases placental factors as well as extracellular vesicles (small and medium/large syncytiotrophoblast extracellular vesicles (STB-EVs)) as a response to syncytiotrophoblast stress such as tissue factor and plasminogen activator inhibitors 1. Neuropilin 1 (NRP-1) is an anti-angiogenic factor involved in development, angiogenesis, arteriogenesis, and vascular permeability. NRP-1 acts as a co-receptor for growth factors such as vascular endothelial growth factor (VEGF), placenta growth factor (PLGF), and epidermal growth factor (EGF). Given the documented pro and anti-angiogenic roles of STB-EVs, we hypothesized that 1) STB-EVs might express NRP-1; and 2) the expression of NRP-1 might differ between normal and preeclampsia STB-EVs. METHODS We isolated STB-EVs (both small and medium/large) from PE and NP placentae using the physiologic ex vivo dual lobe perfusion model. The enriched STB-EVs were characterized by Western blot, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA) according to the international society of extracellular vesicles (ISEV) guidelines. We assessed for NRP-1 expression with Western blot (placenta and STB-EVs) and immunohistochemistry (placenta). We performed co-expression analysis for placenta alkaline phosphatase (PLAP - a known STB-EV marker) and NRP-1 with immunoprecipitation followed by Western blot. RESULTS We confirmed NRP-1 expression in NP and PE placenta. We showed that NRP-1 Expression was limited to small syncytiotrophoblast membrane extracellular vesicles (S STB-EVs) but not medium/large STB-EVs and that NRP-1 is co-expressed with PLAP. CONCLUSION Neuropilin-1 is uniquely expressed on small syncytiotrophoblast extracellular vesicles but not on medium/large vesicles from preeclampsia and normal placentae.
Collapse
Affiliation(s)
- Toluwalase Awoyemi
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Daniela A Iaccarino
- Vita-Salute San Raffaele University, Obstetrics and Gynecology Department, Genomic Unit for the Diagnosis of Human Pathologies, Italy
| | - Carolina Motta-Mejia
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Sina Raiss
- S Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Neva Kandzija
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Wei Zhang
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
69
|
Tarry-Adkins JL, Robinson IG, Reynolds RM, Aye ILMH, Charnock-Jones DS, Jenkins B, Koulmann A, Ozanne SE, Aiken CE. Impact of Metformin Treatment on Human Placental Energy Production and Oxidative Stress. Front Cell Dev Biol 2022; 10:935403. [PMID: 35784487 PMCID: PMC9247405 DOI: 10.3389/fcell.2022.935403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 02/02/2023] Open
Abstract
Metformin is increasingly prescribed in pregnancy, with beneficial maternal effects. However, it is not known how metformin-treatment impacts metabolism and energy production in the developing feto-placental unit. We assessed the human placental response to metformin using both in vivo and in vitro treated samples. trophoblasts were derived from placentas collected from non-laboured Caesarean deliveries at term, then treated in vitro with metformin (0.01 mM, 0.1 mM or vehicle). Metformin-concentrations were measured using liquid-chromatography mass-spectrometry. Oxygen consumption in cultured-trophoblasts was measured using a Seahorse-XF Mito Stress Test. Markers of oxidative-stress were assayed using qRT-PCR. Metformin-transporter mRNA and protein-levels were determined by quantitative RT-PCR and Western-blotting respectively. Metformin concentrations were also measured in sample trios (maternal plasma/fetal plasma/placental tissue) from pregnancies exposed to metformin on clinical-grounds. Maternal and fetal metformin concentrations in vivo were highly correlated over a range of concentrations (R2 = 0.76, p < 0.001; average fetal:maternal ratio 1.5; range 0.8-2.1). Basal respiration in trophoblasts was reduced by metformin treatment (0.01 mM metformin; p < 0.05, 0.1 mM metformin; p < 0.001). Mitochondrial-dependent ATP production and proton leak were reduced after treatment with metformin (p < 0.001). Oxidative stress markers were significantly reduced in primary-trophoblast-cultures following treatment with metformin. There is a close linear relationship between placental, fetal, and maternal metformin concentrations. Primary-trophoblast cultures exposed to clinically-relevant metformin concentrations have reduced mitochondrial-respiration, mitochondrial-dependent ATP-production, and reduced markers of oxidative-stress. Given the crucial role of placental energy-production in supporting fetal growth and well-being during pregnancy, the implications of these findings are concerning for intrauterine fetal growth and longer-term metabolic programming in metformin-exposed pregnancies.
Collapse
Affiliation(s)
- Jane L. Tarry-Adkins
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - India G. Robinson
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca M. Reynolds
- Queen’s Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Irving L. M. H. Aye
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - D. Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin Jenkins
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Albert Koulmann
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Susan E. Ozanne
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Catherine E. Aiken
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
70
|
Zhang S, Guo G. Circ_FURIN promotes trophoblast cell proliferation, migration and invasion in preeclampsia by regulating miR-34a-5p and TFAP2A. Hypertens Res 2022; 45:1334-1344. [PMID: 35697768 DOI: 10.1038/s41440-022-00934-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Emerging evidence has shown that circular RNAs (circRNAs) play vital roles in the progression of diverse human diseases. However, the functions of circRNAs in preeclampsia (PE) are largely unknown. In this study, we aimed to explore the functions of the circRNA furin, paired basic amino acid cleaving enzyme (circ_FURIN) in PE development. qRT-PCR and western blot analyses were conducted to determine the levels of circ_FURIN, miR-34a-5p and transcription factor AP-2 alpha (TFAP2A). A Cell Counting Kit-8 (CCK-8) assay and a 5'-ethynyl-2'-deoxyuridine (EdU) incorporation assay were utilized to evaluate the cell proliferation ability. Transwell assays were adopted to estimate cell migration and invasion. A dual-luciferase reporter assay and an RNA pulldown assay were utilized to analyze the relationships among circ_FURIN, miR-34a-5p and TFAP2A. It was found that circ_FURIN was downregulated in PE placental tissues and hypoxia-treated placental trophoblast cells. Overexpression of circ_FURIN promoted trophoblast cell proliferation, migration and invasion under hypoxic conditions. Circ_FURIN functioned as the sponge for miR-34a-5p. MiR-34a-5p overexpression abrogated the effects of circ_FURIN on the proliferation, migration and invasion of trophoblast cells under hypoxic conditions. In addition, TFAP2A was demonstrated to be the target gene of miR-34a-5p. TFAP2A silencing ameliorated the promotive effects of miR-34a-5p inhibition on trophoblast cell proliferation, migration and invasion under hypoxic conditions. In conclusion, circ_FURIN enhanced trophoblast cell proliferation, migration and invasion under hypoxic conditions by elevating TFAP2A expression through sponging miR-34a-5p.
Collapse
Affiliation(s)
- Shuqing Zhang
- Department of Obstetrics, Shanxi Provincial People's Hospital, Taiyuan City, Shanxi Province, China.
| | - Guoxia Guo
- Department of Obstetrics, Shanxi Provincial People's Hospital, Taiyuan City, Shanxi Province, China
| |
Collapse
|
71
|
Systemic Maternal Human sFLT1 Overexpression Leads to an Impaired Foetal Brain Development of Growth-Restricted Foetuses upon Experimental Preeclampsia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3024032. [PMID: 35693702 PMCID: PMC9184195 DOI: 10.1155/2022/3024032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
The pregnancy disorder preeclampsia (PE) is characterized by maternal hypertension, increased level of circulating antiangiogenic soluble fms-like tyrosine kinase-1 (sFLT1), and reduced placental perfusion, leading to foetal growth restriction (FGR) and preterm birth. All these adverse effects are associated with neurocognitive disorders in the offspring. However, the direct interplay between increased antiangiogenesis during PE and disturbed foetal brain development independent of prematurity has not been investigated yet. To examine foetal brain development in sFLT1-related PE, hsFLT1/rtTA-transgenic mice with systemic (maternal or maternal/fetoplacental) human sFLT1 (hsFLT1) overexpression since 10.5 days postconception (dpc) were used, and histological and molecular analyses of foetal brains were performed at 18.5 dpc. Consequences of elevated hsFLT1 on placental/foetal vascularization and hypoxia of placentas and foetal brains were analysed using the hypoxia markers pimonidazole and hemeoxygenase-1 (HO-1). Immunohistochemical analysis revealed increased hypoxia in placentas of PE-affected pregnancies. Moreover, an increase in HO-1 expression was observed upon elevated hsFLT1 in placentas and foetal brains. PE foetuses revealed asymmetrical FGR by increased brain/liver weight ratio. The brain volume was reduced combined with a reduction in the cortical/hippocampal area and an increase of the caudate putamen and its neuroepithelium, which was associated with a reduced cell density in the cortex and increased cell density in the caudate putamen upon hsFLT1 overexpression. Mild influences were observed on brain vasculature shown by free iron deposits and mRNA changes in Vegf signalling. Of note, both types of systemic hsFLT1 overexpression (indirect: maternal or direct: maternal/fetoplacental) revealed similar changes with increasing severity of impaired foetal brain development. Overall, circulating hsFLT1 in PE pregnancies impaired uteroplacental perfusion leading to disturbed foetal oxygenation and brain injury. This might be associated with a disturbed cell migration from the caudate putamen neuroepithelium to the cortex which could be due to disturbed cerebrovascular adaption.
Collapse
|
72
|
Arbildi P, Rodríguez-Camejo C, Perelmuter K, Bollati-Fogolín M, Sóñora C, Hernández A. Hypoxia and inflammation conditions differentially affect the expression of tissue transglutaminase spliced variants and functional properties of extravillous trophoblast cells. Am J Reprod Immunol 2022; 87:e13534. [PMID: 35263002 DOI: 10.1111/aji.13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Persistent hypoxia and inflammation beyond early pregnancy are involved in a bad outcome because of defective trophoblast invasiveness. Tissue transglutaminase (TG2) coregulates several cell functions. An aberrant expression and/or transamidation activity could contribute to placental dysfunction. METHOD OF STUDY The first-trimester trophoblast cell line (Swan-71) was used to study TG2 expression and cell functions in the absence or presence of inflammatory cytokines (TNF-α, IL-1β) or chemical hypoxia (CoCl2 ). We analyzed The concentration of cytokines in the supernatant by ELISA; Cell migration by scratch assay; NF-κB activation by detection of nuclear p65 by immunofluorescence or flow cytometry using a Swan-71 NF-κB-hrGFP reporter cell line. Tissue transglutaminase expression was analyzed by immunoblot and confocal microscopy. Expression of spliced mRNA variants of tissue transglutaminase was analyzed by RT-PCR. Transamidation activity was assessed by flow cytometry using 5-(biotinamido)-pentylamine substrate. RESULTS Chemical hypoxia and TGase inhibition, but not inflammatory stimuli, decreased Swan-71 migration. IL-6 production was also decreased by chemical hypoxia, but increased by inflammation. Intracellular TGase activity was increased by all stimuli, but NF-κB activation was observed only in the presence of proinflammatory cytokines. TG2 expression was decreased by CoCl2 and TNF-α. Translocation of TG2 and p65 to nuclei was observed only with TNF-α, without colocalization. Differential relative expression of spliced variants of mRNA was observed between CoCl2 and inflammatory stimuli. CONCLUSION The observed decrease in total TG2 expression and relative increase in short variants under hypoxia conditions could contribute to impaired trophoblast invasion and impact on pregnancy outcome.
Collapse
Affiliation(s)
- Paula Arbildi
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Claudio Rodríguez-Camejo
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Karen Perelmuter
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Cecilia Sóñora
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay.,Escuela Universitaria de Tecnología Médica (EUTM)-Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Ana Hernández
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| |
Collapse
|
73
|
George K, Poudel P, Chalasani R, Goonathilake MR, Waqar S, George S, Jean-Baptiste W, Yusuf Ali A, Inyang B, Koshy FS, Mohammed L. A Systematic Review of Maternal Serum Syndecan-1 and Preeclampsia. Cureus 2022; 14:e25794. [PMID: 35836437 PMCID: PMC9273188 DOI: 10.7759/cureus.25794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Exploration of novel biomarkers has been gaining popularity in preeclampsia, which is currently being diagnosed based on clinical criteria alone. Soluble syndecan-1, released from one of the proteoglycans associated with the syncytiotrophoblastic layer of the placenta, is affected in patients with abnormal placentation. This article is the first systematic literature review that evaluates the relationship between the antepartum serum levels of the syndecan-1 and preeclampsia. Eight studies were selected after screening and quality appraisal, and data were analyzed. The serum concentration of syndecan-1 was found to correlate positively with the gestational age in all pregnancies and negatively with the systolic blood pressure in patients with preeclampsia. Extremely low levels of soluble syndecan-1 may be helpful as a predictor for the development of preeclampsia during gestation.
Collapse
Affiliation(s)
- Kitty George
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Prakar Poudel
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Roopa Chalasani
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Sara Waqar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sheeba George
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wilford Jean-Baptiste
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Amina Yusuf Ali
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bithaiah Inyang
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Feeba Sam Koshy
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
74
|
Alexandrova M, Manchorova D, Dimova T. Immunity at maternal-fetal interface: KIR/HLA (Allo)recognition. Immunol Rev 2022; 308:55-76. [PMID: 35610960 DOI: 10.1111/imr.13087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Both KIR and HLA are the most variable gene families in the human genome. The recognition of the semi-allogeneic embryo-derived trophoblasts by maternal decidual NK (dNK) cells is essential for the establishment of the functional placenta. This recognition is based on the KIR-HLA interactions and trophoblast expresses a specific HLA profile that constitutes classical polymorphic HLA-C and non-classical oligomorphic HLA-E, HLA-F, and HLA-G molecules. This review highlights some features of the KIR/HLA-C (allo)recognition by decidual NK (dNK) cells as a main immune cell population specifically enriched at maternal-fetal interface during human early pregnancy. How KIR/HLA-C axis operates in pregnancy disorders and in the context of transplacental infections is discussed as well. We summarized old and new data on dNK-cell functional plasticity, their selective expression of KIR and fetal maternal/paternal HLA-C haplotypes present. Results showed that KIR-HLA-C combinations and the corresponding axis operate differently in each pregnancy, determined by the variability of both maternal KIR haplotypes and fetus' maternal/paternal HLA-C allotype combinations. Moreover, the maturation of NK cells strongly depends on if or not HLA allotypes for certain KIR are present. We suggest that the unique KIR/HLA combinations reached in each pregnancy (normal and pathological) should be studied according to well-defined guidelines and unified methodologies to have comparable results ease to interpret and use in clinics.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
75
|
Vision for Improving Pregnancy Health: Innovation and the Future of Pregnancy Research. Reprod Sci 2022; 29:2908-2920. [PMID: 35534766 PMCID: PMC9537127 DOI: 10.1007/s43032-022-00951-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/15/2022] [Indexed: 10/25/2022]
Abstract
Understanding, predicting, and preventing pregnancy disorders have been a major research target. Nonetheless, the lack of progress is illustrated by research results related to preeclampsia and other hypertensive pregnancy disorders. These remain a major cause of maternal and infant mortality worldwide. There is a general consensus that the rate of progress toward understanding pregnancy disorders lags behind progress in other aspects of human health. In this presentation, we advance an explanation for this failure and suggest solutions. We propose that progress has been impeded by narrowly focused research training and limited imagination and innovation, resulting in the failure to think beyond conventional research approaches and analytical strategies. Investigations have been largely limited to hypothesis-generating approaches constrained by attempts to force poorly defined complex disorders into a single "unifying" hypothesis. Future progress could be accelerated by rethinking this approach. We advise taking advantage of innovative approaches that will generate new research strategies for investigating pregnancy abnormalities. Studies should begin before conception, assessing pregnancy longitudinally, before, during, and after pregnancy. Pregnancy disorders should be defined by pathophysiology rather than phenotype, and state of the art agnostic assessment of data should be adopted to generate new ideas. Taking advantage of new approaches mandates emphasizing innovation, inclusion of large datasets, and use of state of the art experimental and analytical techniques. A revolution in understanding pregnancy-associated disorders will depend on networks of scientists who are driven by an intense biological curiosity, a team spirit, and the tools to make new discoveries.
Collapse
|
76
|
Manokaran K, Bhat P, Nayak D, Baskaran R, Paramasivam P, Ahmed SF, Priya K, Ranganath Pai KS, Balaji VE. Oxidative stress and female reproductive disorder. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2022; 11:107-116. [DOI: 10.4103/2305-0500.346088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress arises from an imbalance between the body's pro-oxidants and antioxidants. Recently, oxidative stress has been proven a contributing factor to many female reproductive disorders including infertility, preeclampsia, endometriosis and polycystic ovarian syndrome. Herein, we review the mechanistic role of oxidative stress in inducing the most common female reproductive disorders. The current review has also highlighted the protective role of vitamin C, necessary for certain female reproductive hormone secretion by the antral follicle and corpus luteum and also essential for collagen production in ovarian tissue remodeling after ovulation, in alleviating oxidative stress and thus improving female reproductive outcomes.
Collapse
|
77
|
Sung DC, Chen X, Chen M, Yang J, Schultz S, Babu A, Xu Y, Gao S, Keller TCS, Mericko-Ishizuka P, Lee M, Yang Y, Scallan JP, Kahn ML. VE-cadherin enables trophoblast endovascular invasion and spiral artery remodeling during placental development. eLife 2022; 11:e77241. [PMID: 35486098 PMCID: PMC9106330 DOI: 10.7554/elife.77241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
During formation of the mammalian placenta, trophoblasts invade the maternal decidua and remodel spiral arteries to bring maternal blood into the placenta. This process, known as endovascular invasion, is thought to involve the adoption of functional characteristics of vascular endothelial cells (ECs) by trophoblasts. The genetic and molecular basis of endovascular invasion remains poorly defined, however, and whether trophoblasts utilize specialized endothelial proteins in an analogous manner to create vascular channels remains untested. Vascular endothelial (VE-)cadherin is a homotypic adhesion protein that is expressed selectively by ECs in which it enables formation of tight vessels and regulation of EC junctions. VE-cadherin is also expressed in invasive trophoblasts and is a prime candidate for a molecular mechanism of endovascular invasion by those cells. Here, we show that VE-cadherin is required for trophoblast migration and endovascular invasion into the maternal decidua in the mouse. VE-cadherin deficiency results in loss of spiral artery remodeling that leads to decreased flow of maternal blood into the placenta, fetal growth restriction, and death. These studies identify a non-endothelial role for VE-cadherin in trophoblasts during placental development and suggest that endothelial proteins may play functionally unique roles in trophoblasts that do not simply mimic those in ECs.
Collapse
Affiliation(s)
- Derek C Sung
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaowen Chen
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Mei Chen
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jisheng Yang
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Susan Schultz
- Department of Radiology, Hospital of the University of PennsylvaniaPhiladelphiaUnited States
| | - Apoorva Babu
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yitian Xu
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Siqi Gao
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - TC Stevenson Keller
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Patricia Mericko-Ishizuka
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Michelle Lee
- University Laboratory Animal Resources, University of PennsylvaniaPhiladelphiaUnited States
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South FloridaTampaUnited States
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South FloridaTampaUnited States
| | - Mark L Kahn
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
78
|
Kim C, Ashrap P, Watkins DJ, Mukherjee B, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Maternal Metals/Metalloid Blood Levels Are Associated With Lipidomic Profiles Among Pregnant Women in Puerto Rico. Front Public Health 2022; 9:754706. [PMID: 35096734 PMCID: PMC8790322 DOI: 10.3389/fpubh.2021.754706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background/Aim: The association between heavy metal exposure and adverse birth outcomes is well-established. However, there is a paucity of research identifying biomarker profiles that may improve the early detection of heavy metal-induced adverse birth outcomes. Because lipids are abundant in our body and associated with important signaling pathways, we assessed associations between maternal metals/metalloid blood levels with lipidomic profiles among 83 pregnant women in the Puerto Rico PROTECT birth cohort. Methods: We measured 10 metals/metalloid blood levels during 24–28 weeks of pregnancy. Prenatal plasma lipidomic profiles were identified by liquid chromatography–mass spectrometry-based shotgun lipidomics. We derived sums for each lipid class and sums for each lipid sub-class (saturated, monounsaturated, polyunsaturated), which were then regressed on metals/metalloid. False discovery rate (FDR) adjusted p-values (q-values) were used to account for multiple comparisons. Results: A total of 587 unique lipids from 19 lipid classes were profiled. When controlling for multiple comparisons, we observed that maternal exposure to manganese and zinc were negatively associated with plasmenyl-phosphatidylethanolamine (PLPE), particularly those containing polyunsaturated fatty acid (PUFA) chains. In contrast to manganese and zinc, arsenic and mercury were positively associated with PLPE and plasmenyl-phosphatidylcholine (PLPC). Conclusion: Certain metals were significantly associated with lipids that are responsible for the biophysical properties of the cell membrane and antioxidant defense in lipid peroxidation. This study highlighted lipid-metal associations and we anticipate that this study will open up new avenues for developing diagnostic tools.
Collapse
Affiliation(s)
- Christine Kim
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Pahriya Ashrap
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Zaira Y Rosario-Pabón
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| |
Collapse
|
79
|
Novel piRNA Regulates PIWIL1 to Modulate the Behavior of Placental Trophoblast Cells and Participates in Preeclampsia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7856290. [PMID: 35464758 PMCID: PMC9023172 DOI: 10.1155/2022/7856290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Objectives This study is aimed at investigating the role of PIWIL1/piRNA in the development of preeclampsia. Methods High-throughput sequencing was performed in 5 preeclampsia and 5 normal placentas to get a piRNA expression profile. WGCNA network was constructed to find hub piRNAs. Through target gene prediction and protein interaction network analysis, we found the potential relationship between the key genes and PIWIL1. Subsequently, we detected the expression of PIWIL1 in 35 preeclampsia and 29 normal placental tissues. Overexpression and inhibition of PIWIL1 in HTR-8/SVneo trophoblast cells were achieved by transfecting an overexpression vector and siRNAs, respectively. Cell proliferation, apoptosis, and invasion were assessed using CCK-8, flow cytometric, and transwell assays, respectively. Results It was found that a total of three piRNAs were upregulated in preeclampsia (pir-hsa-1256314, uniq_271431, and uniq_277797). And two target genes with the highest connectivity (FXR1 and DDX6) both pointed to PIWIL1. PIWIL1 expression was significantly lower in preeclampsia. In vitro studies linked PIWIL1 expression to trophoblast overgrowth. Overexpression of PIWIL1 remarkably promoted cell proliferation and invasion and inhibited apoptosis of HTR-8/SVneo cells and vice versa. Conclusions PIWIL1/piRNA may be involved in the pathogenesis of preeclampsia by inhibiting the proliferation and invasion and promoting the apoptosis of placental trophoblasts. This study was registered with the China Clinical Trials Registry (http://www.clinicaltrials.gov): registration number ChiCTR1900027479.
Collapse
|
80
|
Zhang Y, Wu L, Li TC, Wang CC, Zhang T, Chung JPW. Systematic review update and meta-analysis of randomized and non-randomized controlled trials of ovarian stimulation versus artificial cycle for endometrial preparation prior to frozen embryo transfer in women with polycystic ovary syndrome. Reprod Biol Endocrinol 2022; 20:62. [PMID: 35366912 PMCID: PMC8976372 DOI: 10.1186/s12958-022-00931-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
PURPOSE This systematic review and meta-analysis aimed to compare the short-term reproductive and long-term obstetric outcomes after endometrial preparations by ovarian stimulation protocols and hormone replacement therapy (HRT) in women with polycystic ovary syndrome (PCOS) prior to frozen embryo transfer (FET). METHOD PubMed, EMBASE, Web of Science and the Cochrane Library were searched to identify relevant studies. Primary outcome was live birth rate, secondary outcomes included the rates of clinical pregnancy, miscarriage, implantation and hCG-postive, cycle cancellation, ectopic pregnancy, preterm birth, preeclampsia, gestational hypertension, gestational diabetes mellitus and abnormal placentation. RESULTS Nine studies, including 8327 patients with PCOS, were identified. Live birth rate was significantly higher (RR = 1.11, 95% CI = 1.03-1.19) and miscarriage rate (RR = 0.60, 95% CI = 0.46-0.78) was significantly lower in stimulated protocol compared to the rates in HRT. While the rates of ongoing pregnancy, clinical pregnancy, implantation, hCG-positive, cycle cancellation and ectopic pregnancy showed no significant difference between the two protocols. Compared HRT with different stimulation protocols, significantly higher clinical pregnancy rate (RR = 1.54, 95% CI = 1.20-1.98) were found in letrozole group, but not in the other subgroups. For the obstetric outcomes, the preterm birth and preeclampsia rates were significantly lower in the stimulated group compared to that in the HRT group (RR = 0.85, 95% CI = 0.74-0.98; RR = 0.57, 95% CI = 0.40-0.82, respectively), while gestational hypertension, gestational diabetes mellitus and abnormal placentation rates showed no significant difference. CONCLUSIONS The present data suggest that ovarian stimulation protocol as an endometrial preparation regimen prior to FET might be superior to HRT protocol with a significantly higher rate of live birth, lower risk of miscarriage, preterm birth and preeclampsia. Our study showed stimulated protocol is better than HRT regimen as an endometrial preparation for women with PCOS. However, quality of the evidence is low, more well-designed RCT studies are still needed to confirm the results before clinical recommendation, particularly direct comparisons between letrozole and other stimulated regimens.
Collapse
Affiliation(s)
- Yingying Zhang
- grid.10784.3a0000 0004 1937 0482Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Wu
- grid.10784.3a0000 0004 1937 0482Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin Chiu Li
- grid.10784.3a0000 0004 1937 0482Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Chiu Wang
- grid.10784.3a0000 0004 1937 0482Department of Obstetrics and Gynaecology, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tao Zhang
- grid.10784.3a0000 0004 1937 0482Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacqueline Pui Wah Chung
- grid.10784.3a0000 0004 1937 0482Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
81
|
Aberdeen GW, Babischkin JS, Lindner JR, Pepe GJ, Albrecht ED. Placental sFlt-1 Gene Delivery in Early Primate Pregnancy Suppresses Uterine Spiral Artery Remodeling. Endocrinology 2022; 163:bqac012. [PMID: 35134145 PMCID: PMC8896163 DOI: 10.1210/endocr/bqac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 02/04/2023]
Abstract
Uterine spiral artery remodeling (SAR) is essential for promoting placental perfusion and fetal development. A defect in SAR results in placental ischemia and increase in placental expression and serum levels of the soluble fms-like tyrosine kinase-1 (sFlt-1) receptor that binds to and suppresses vascular endothelial growth factor (VEGF) bioavailability, thereby leading to maternal vascular dysfunction. We have established a nonhuman primate model of impaired SAR and maternal vascular dysfunction by prematurely elevating estradiol levels in early baboon pregnancy. However, it is unknown whether this primate model of defective SAR involves an increase in placental expression of sFlt-1, which may suppress VEGF bioavailability and thus SAR in the first trimester. Therefore, to establish the role of sFlt-1 in early pregnancy, SAR was quantified in baboons treated on days 25 through 59 of gestation (term = 184 days) with estradiol or with the sFlt-1 gene targeted selectively to the placental basal plate by ultrasound-mediated/microbubble-facilitated gene delivery technology. Placental basal plate sFlt-1 protein expression was 2-fold higher (P < 0.038) and the level of SAR for vessels > 25 µm in diameter was 72% and 63% lower (P < 0.01), respectively, in estradiol-treated and sFlt-1 gene-treated baboons than in untreated animals. In summary, prematurely elevating estradiol levels or sFlt-1 gene delivery increased placental basal plate sFlt-1 protein expression and suppressed SAR in early baboon pregnancy. This study makes the novel discovery that in elevated levels sFlt-1 has a role both in suppressing SAR in early primate pregnancy and maternal vascular endothelial function in late gestation.
Collapse
Affiliation(s)
- Graham W Aberdeen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffery S Babischkin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Eugene D Albrecht
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
82
|
Duko B, Pereira G, Tait RJ, Betts K, Newnham J, Alati R. Prenatal tobacco and alcohol exposures and the risk of anxiety symptoms in young adulthood: A population-based cohort study. Psychiatry Res 2022; 310:114466. [PMID: 35219268 DOI: 10.1016/j.psychres.2022.114466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Epidemiological studies have linked prenatal tobacco and alcohol exposures to internalizing behaviours in children and adolescents with inconsistent findings. Dearth of epidemiological studies have investigated the associations with the risk of experiencing symptoms of anxiety in young adulthood. METHODS Study participants (N = 1190) were from the Raine Study, a population-based prospective birth cohort based in Perth, Western Australia. Data on prenatal tobacco and alcohol exposures were available for the first and third trimesters of pregnancy. Experiencing symptoms of anxiety in young adulthood at age 20 years was measured by a short form of the Depression Anxiety Stress Scale (DASS 21). Relative risk (RR) of experiencing symptoms of anxiety in young adulthood for prenatal tobacco and alcohol exposures were estimated with log binomial regression. RESULTS After adjusting for potential confounders, we observed increased risks of experiencing symptoms of anxiety in young adults exposed to prenatal tobacco in the first trimester [RR = 1.52, 95% CI: 1.12-2.06, p-value < 0.01] and third trimester [RR = 1.53, 95% CI: 1.10-2.13, p-value = 0.02]. However, we found insufficient statistical evidence for an association between first trimester [RR = 1.01, 95% CI: 0.76-1.22, p-value = 0.90] and third trimester [RR = 1.03, 95% CI: 0.80-1.34, p-value = 0.91] prenatal exposure to alcohol and the risk of experiencing symptoms of anxiety in young adults. There was a dose response association between prenatal tobacco exposure and increasing anxiety symptoms in offspring. CONCLUSION The findings of this study suggest that an association between prenatal tobacco exposure and risk of anxiety symptoms remains apparent into young adulthood.
Collapse
Affiliation(s)
- Bereket Duko
- Curtin School of Population Health, Curtin University, Kent Street, Bentley WA 6102, Australia.
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Kent Street, Bentley WA 6102, Australia; Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway; enAble Institute, Curtin University, Kent Street, Bentley, Western Australia 6102, Australia
| | - Robert J Tait
- National Drug Research Institute, Faculty of Health Sciences, Curtin University, 7 Parker Place Building 609, Level 2 Technology Park, Bentley WA 6102, Australia
| | - Kim Betts
- Curtin School of Population Health, Curtin University, Kent Street, Bentley WA 6102, Australia
| | - John Newnham
- Division of Obstetrics and Gynaecology, Faculty of Health and Medical Sciences, The University of Western Australia, 17 Monash Ave, Nedlands WA 6009, Australia
| | - Rosa Alati
- Curtin School of Population Health, Curtin University, Kent Street, Bentley WA 6102, Australia; Institute for Social Sciences Research, The University of Queensland, 80 Meier's Rd, Indooroopilly, Queensland 4068 Australia
| |
Collapse
|
83
|
Zhang L, Tan C, Xin Z, Huang S, Ma J, Zhang M, Shu G, Luo H, Deng B, Jiang Q, Deng J. UPLC-Orbitrap-MS/MS Combined With Biochemical Analysis to Determine the Growth and Development of Mothers and Fetuses in Different Gestation Periods on Tibetan Sow Model. Front Nutr 2022; 9:836938. [PMID: 35425793 PMCID: PMC9001880 DOI: 10.3389/fnut.2022.836938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pregnancy is a complex and dynamic process, the physiological and metabolite changes of the mother are affected by different pregnancy stages, but little information is available about their changes and potential mechanisms during pregnancy, especially in blood and amniotic fluid. Here, the maternal metabolism rules at different pregnancy stages were investigated by using a Tibetan sow model to analyze the physiological hormones and nutrient metabolism characteristics of maternal serum and amniotic fluid as well as their correlations with each other. Our results showed that amniotic fluid had a decrease (P < 0.05) in the concentrations of glucose, insulin and hepatocyte growth factor as pregnancy progressed, while maternal serum exhibited the highest concentrations of glucose and insulin at 75 days of gestation (P < 0.05), and a significant positive correlation (P < 0.05) between insulin and citric acid. Additionally, T4 and cortisol had the highest levels during late gestation (P < 0.05). Furthermore, metabolomics analysis revealed significant enrichment in the citrate cycle pathway and the phenylalanine/tyrosine/tryptophan biosynthesis pathway (P < 0.05) with the progress of gestation. This study clarified the adaptive changes of glucose, insulin and citric acid in Tibetan sows during pregnancy as well as the influence of aromatic amino acids, hepatocyte growth factor, cortisol and other physiological indicators on fetal growth and development, providing new clues for the normal development of the mother and the fetus, which may become a promising target for improving the well-being of pregnancy.
Collapse
Affiliation(s)
- Longmiao Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junwu Ma
- State Key Laboratory of Pig Genetic Improvement and Production Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Meiyu Zhang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Baichuan Deng,
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Qingyan Jiang,
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Jinping Deng,
| |
Collapse
|
84
|
Placental lesions and differential expression of pro-and anti-angiogenic growth mediators and oxidative DNA damage marker in placentae of Ghanaian suboptimal and optimal health status pregnant women who later developed preeclampsia. PLoS One 2022; 17:e0265717. [PMID: 35312727 PMCID: PMC8936490 DOI: 10.1371/journal.pone.0265717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Angiogenic growth mediators (AGMs) and oxidative stress (OS) both play essential roles in normal placental vascular development and as such, placental alterations in these factors contribute to pre-eclampsia (PE). Suboptimal health status (SHS), an intermediate between health and disease, has been associated with imbalanced AGMs and OS biomarkers. Thus, SHS pregnant women may be at increased risk of developing PE and may present abnormal placental alteration and expression of AGMs and OS compared to optimal health status (OHS) pregnant women. We examined the histopathological morphology, immunohistochemical expression of AGMs antibodies and oxidative DNA damage marker in the placentae of SHS and OHS pregnant women who developed early-onset PE (EO-PE) and late-onset (LO-PE) compared to normotensive pregnancy (NTN-P). Methods This nested case-control study recruited 593 singleton normotensive pregnant women at baseline (10–20 weeks gestation) from the Ghanaian Suboptimal Health Status Cohort Study (GHOACS) undertaken at the Komfo Anokye Teaching Hospital, Ghana. Socio-demographic, clinical and obstetrics data were collected, and a validated SHS questionnaire-25 (SHSQ-25) was used in classifying participants into SHS (n = 297) and OHS (n = 296). Participants were followed until the time of PE diagnosis and delivery (32–42 weeks gestation). Blood samples were collected at the two-time points and were assayed for AGMs; soluble fms-like tyrosine kinase-1 (sFlt-1), placental growth factor (PIGF), vascular endothelial growth factor-A (VEGF-A), and soluble endoglin (sEng), and OS biomarkers; 8-hydroxydeoxyguanosine (8-OHdG), 8-epiprostaglandinF2-alpha (8- epi-PGF2α) and total antioxidant capacity (TAC) using ELISA. Placental samples were collected for histopathological and immunohistochemical analysis. Results Of the 593 pregnant women, 498 comprising 248 SHS and 250 OHS women returned for delivery and were included in the final analysis. Of the 248 SHS women, 56, 97 and 95 developed EO-PE, LO-PE and NTN-P, respectively, whereas 14, 30 and 206 of the 250 OHS mothers developed EO-PE, LO-PE and NTN-P, respectively. At baseline, SHS_NTN pregnant women had a significant imbalance in AGMs and OS biomarkers compared to OHS_NTN pregnant women (p<0.0001). At the time of PE diagnosis, SHS_NTN-P women who developed EO-PE, LO-PE, and NTN-P had lower serum levels of P1GF, VEGF-A and TAC and correspondingly higher levels of sEng, sFlt-1, 8-epiPGF2α, and 8-OHdG than OHS-NTN-P women who developed EO-PE and LO-PE, NTN-P (p<0.0001). A reduced placental size, increased foetal/placental weight ratio, and a significantly higher proportion of fibrinoid necrosis, infarction, villous fibrin, syncytial knots, calcification, chorangiosis, tunica media/vascular wall hypertrophy and chorioamnionitis was associated with the SHS group who developed PE (EO-PE>LO-PE) more than OHS groups who developed PE (EO-PE>LO-PE) when all were compared to NTN-P (p<0.0001). The intensity of antibody expression of PIGF and VEGF-A were significantly reduced, whereas Flt-1, Eng and 8-OHdG were significantly increased in placentae from SHS-pregnant women who developed EO-PE>LO-PE more than OHS- pregnant women who developed EO-PE>LO-PE when all were compared to NTN-P (p<0.0001). Conclusion Increased lesions, oxidative DNA damage, and imbalanced expression between pro-and anti-AGMs are associated more with SHS-embodied PE placentae rather than OHS-embodied PE subtypes, thus potentially allowing differential evaluation of PE.
Collapse
|
85
|
Preeclampsia associated changes in volume density of fetoplacental vessels in Chinese women and mouse model of preeclampsia. Placenta 2022; 121:116-125. [DOI: 10.1016/j.placenta.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
|
86
|
Rees A, Richards O, Chambers M, Jenkins BJ, Cronin JG, Thornton CA. Immunometabolic adaptation and immune plasticity in pregnancy and the bi-directional effects of obesity. Clin Exp Immunol 2022; 208:132-146. [PMID: 35348641 PMCID: PMC9188350 DOI: 10.1093/cei/uxac003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
Mandatory maternal metabolic and immunological changes are essential to pregnancy success. Parallel changes in metabolism and immune function make immunometabolism an attractive mechanism to enable dynamic immune adaptation during pregnancy. Immunometabolism is a burgeoning field with the underlying principle being that cellular metabolism underpins immune cell function. With whole body changes to the metabolism of carbohydrates, protein and lipids well recognised to occur in pregnancy and our growing understanding of immunometabolism as a determinant of immunoinflammatory effector responses, it would seem reasonable to expect immune plasticity during pregnancy to be linked to changes in the availability and handling of multiple nutrient energy sources by immune cells. While studies of immunometabolism in pregnancy are only just beginning, the recognised bi-directional interaction between metabolism and immune function in the metabolic disorder obesity might provide some of the earliest insights into the role of immunometabolism in immune plasticity in pregnancy. Characterised by chronic low-grade inflammation including in pregnant women, obesity is associated with numerous adverse outcomes during pregnancy and beyond for both mother and child. Concurrent changes in metabolism and immunoinflammation are consistently described but any causative link is not well established. Here we provide an overview of the metabolic and immunological changes that occur in pregnancy and how these might contribute to healthy versus adverse pregnancy outcomes with special consideration of possible interactions with obesity.
Collapse
Affiliation(s)
- April Rees
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Oliver Richards
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Megan Chambers
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Benjamin J Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Catherine A Thornton
- Corresponding author: Cathy Thornton, ILS1, Swansea University Medical School, Singleton Campus, Swansea University, Swansea, Wales SA2 8PP, UK.
| |
Collapse
|
87
|
Vaura F, Palmu J, Aittokallio J, Kauko A, Niiranen T. Genetic, Molecular, and Cellular Determinants of Sex-Specific Cardiovascular Traits. Circ Res 2022; 130:611-631. [PMID: 35175841 DOI: 10.1161/circresaha.121.319891] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the well-known sex dimorphism in cardiovascular disease traits, the exact genetic, molecular, and cellular underpinnings of these differences are not well understood. A growing body of evidence currently points at the links between cardiovascular disease traits and the genome, epigenome, transcriptome, and metabolome. However, the sex-specific differences in these links remain largely unstudied due to challenges in bioinformatic methods, inadequate statistical power, analytic costs, and paucity of valid experimental models. This review article provides an overview of the literature on sex differences in genetic architecture, heritability, epigenetic changes, transcriptomic signatures, and metabolomic profiles in relation to cardiovascular disease traits. We also review the literature on the associations between sex hormones and cardiovascular disease traits and discuss the potential mechanisms underlying these associations, focusing on human studies.
Collapse
Affiliation(s)
- Felix Vaura
- Department of Internal Medicine (F.V., J.P., A.K., T.N.), University of Turku, Finland
| | - Joonatan Palmu
- Department of Internal Medicine (F.V., J.P., A.K., T.N.), University of Turku, Finland
| | - Jenni Aittokallio
- Department of Anesthesiology and Intensive Care (J.A.), University of Turku, Finland.,Division of Perioperative Services, Intensive Care and Pain Medicine (J.A.), Turku University Hospital, Finland
| | - Anni Kauko
- Department of Internal Medicine (F.V., J.P., A.K., T.N.), University of Turku, Finland
| | - Teemu Niiranen
- Department of Internal Medicine (F.V., J.P., A.K., T.N.), University of Turku, Finland.,Division of Medicine (T.N.), Turku University Hospital, Finland.,Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland (T.N.)
| |
Collapse
|
88
|
Association of Maternal Serum Ischemia Modified Albumin (IMA) with Placental Histopathological Changes and Fetomaternal Outcome: A Prospective Case Control Study in Normotensive and Pre-eclamptic Women. J Obstet Gynaecol India 2022; 72:166-173. [PMID: 35928062 PMCID: PMC9343519 DOI: 10.1007/s13224-021-01614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022] Open
Abstract
Introduction Ischemia and oxidative stress leads to generation of hydroxyl free radicals and modification of 'N-terminus' of human serum albumin. This modified albumin molecule, known as Ischemia Modified Albumin (IMA), is elevated in early stages of ischemia. It has recently been approved by US Food and Drug Administration (US FDA) for its clinical use, as early marker of myocardial ischemia in cardiology. IMA is a novel marker of ischemia and is elevated in other clinical conditions associated with ischemia like pulmonary embolism, uncontrolled type II diabetes mellitus, acute decompensated heart failure, preeclampsia, recurrent pregnancy losses and IUGR. Role of IMA in birth asphyxia in perinatology is of current interest and needs further research. Methodology A prospective case control study was conducted in a tertiary center in North India for one year. Total 80 pregnant women between 34 and 40 weeks were recruited and allocated in two groups. Case group comprised of 40 pre-eclamptic pregnant women and control group comprised of 40 normotensive pregnant women. Comparison and association of maternal serum IMA levels with fetomaternal outcome and number and types of placental histopathological changes was done in two groups. Results In preeclampsia group mean serum IMA (115.23 ± 49.51) was significantly higher as compared to the normotensive group (79.21 ± 14.35). The optimum cut off value of IMA to detect a case was 94.5 IU/ml (sensitivity 65%, specificity 87.5%, PPV 83.9%, NPV 71.4% and diagnostic accuracy of 76.3). Pre-eclamptic women, had significantly higher incidence of PTVD, lower fetal birth weight and placental histopathological changes as compared to normotensive group. 83.8% of the women with raised IMA levels were pre-eclamptic. Raised IMA levels were significantly associated with higher incidence of PTVD, birth weight ≤ 2 kg and hypoxic histopathological lesions of chorangiosis, intervillous fibrin and hyalinization. Conclusion Determination of maternal serum IMA levels early in pregnancy can predict preeclampsia and avoid future severe preeclampsia related complications. It might be useful to optimize both maternal and fetal/neonatal outcomes.
Collapse
|
89
|
Regulatory T Cell Apoptosis during Preeclampsia May Be Prevented by Gal-2. Int J Mol Sci 2022; 23:ijms23031880. [PMID: 35163802 PMCID: PMC8836599 DOI: 10.3390/ijms23031880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
There are several open questions to be answered regarding the pathophysiology of the development of preeclampsia (PE). Numerous factors are involved in its genesis, such as defective placentation, vascular impairment, and an altered immune response. The activation of the adaptive and innate immune system represents an immunologic, particularity during PE. Proinflammatory cytokines are predominantly produced, whereas immune regulatory and immune suppressive factors are diminished in PE. In the present study, we focused on the recruitment of regulatory T cells (Tregs) which are key players in processes mediating immune tolerance. To identify Tregs in the decidua, an immunohistochemical staining of FoxP3 of 32 PE and 34 control placentas was performed. A clearly reduced number of FoxP3-positive cells in the decidua of preeclamptic women could be shown in our analysis (p = 0.036). Furthermore, CCL22, a well-known Treg chemoattractant, was immunohistochemically evaluated. Interestingly, CCL22 expression was increased at the maternal-fetal interface in PE-affected pregnancies (psyncytiotrophoblast = 0.035, pdecidua = 0.004). Therefore, the hypothesis that Tregs undergo apoptosis at the materno-fetal interface during PE was generated, and verified by FoxP3/TUNEL (TdT-mediated dUTP-biotin nick end labeling) staining. Galectin-2 (Gal-2), a member of the family of carbohydrate-binding proteins, which is known to be downregulated during PE, seems to play a pivotal role in T cell apoptosis. By performing a cell culture experiment with isolated Tregs, we could identify Gal-2 as a factor that seems to prevent the apoptosis of Tregs. Our findings point to a cascade of apoptosis of Tregs at the materno-fetal interface during PE. Gal-2 might be a potential therapeutic target in PE to regulate immune tolerance.
Collapse
|
90
|
Gualdoni GS, Jacobo PV, Barril C, Ventureira MR, Cebral E. Early Abnormal Placentation and Evidence of Vascular Endothelial Growth Factor System Dysregulation at the Feto-Maternal Interface After Periconceptional Alcohol Consumption. Front Physiol 2022; 12:815760. [PMID: 35185604 PMCID: PMC8847216 DOI: 10.3389/fphys.2021.815760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/28/2021] [Indexed: 01/16/2023] Open
Abstract
Adequate placentation, placental tissue remodeling and vascularization is essential for the success of gestation and optimal fetal growth. Recently, it was suggested that abnormal placenta induced by maternal alcohol consumption may participate in fetal growth restriction and relevant clinical manifestations of the Fetal Alcohol Spectrum Disorders (FASD). Particularly, periconceptional alcohol consumption up to early gestation can alter placentation and angiogenesis that persists in pregnancy beyond the exposure period. Experimental evidence suggests that abnormal placenta following maternal alcohol intake is associated with insufficient vascularization and defective trophoblast development, growth and function in early gestation. Accumulated data indicate that impaired vascular endothelial growth factor (VEGF) system, including their downstream effectors, the nitric oxide (NO) and metalloproteinases (MMPs), is a pivotal spatio-temporal altered mechanism underlying the early placental vascular alterations induced by maternal alcohol consumption. In this review we propose that the periconceptional alcohol intake up to early organogenesis (first trimester) alters the VEGF-NO-MMPs system in trophoblastic-decidual tissues, generating imbalances in the trophoblastic proliferation/apoptosis, insufficient trophoblastic development, differentiation and migration, deficient labyrinthine vascularization, and uncompleted remodelation and transformation of decidual spiral arterioles. Consequently, abnormal placenta with insufficiency blood perfusion, vasoconstriction and reduced labyrinthine blood exchange can be generated. Herein, we review emerging knowledge of abnormal placenta linked to pregnancy complications and FASD produced by gestational alcohol ingestion and provide evidence of the early abnormal placental angiogenesis-vascularization and growth associated to decidual-trophoblastic dysregulation of VEGF system after periconceptional alcohol consumption up to mid-gestation, in a mouse model.
Collapse
|
91
|
Ishimwe JA, Baker MB, Garrett MR, Sasser JM. Periconceptional 1,3-butanediol supplementation suppresses the superimposed preeclampsia-like phenotype in the Dahl salt-sensitive rat. Am J Physiol Heart Circ Physiol 2022; 322:H285-H295. [PMID: 34919457 PMCID: PMC8782659 DOI: 10.1152/ajpheart.00060.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Preeclampsia is a hypertensive pregnancy disorder with no treatment beyond management of symptoms and delivery of the fetus and placenta. Chronic hypertension increases the risk of developing superimposed preeclampsia. Previous reports showed that 1,3-butanediol attenuates hypertension in rodents; however, the therapeutic potential of 1,3-butanediol for the prevention of preeclampsia has not been investigated. This study tested the hypothesis that attenuating hypertension before pregnancy and through the placentation period via 1,3-butanediol prevents the onset of preeclampsia in female Dahl salt-sensitive (SS/Jr) rats. Female Dahl SS/Jr rats were divided into two groups: 1,3-butanediol treated (20% via drinking water) and control (ad libitum water). Both groups were maintained on low-salt rodent chow (Teklad 7034, 0.3% NaCl; n = 8/group). Animals were treated with 1,3-butanediol for 7 wk (baseline), mated, and treated through day 12 of pregnancy. 1,3-Butanediol treatment increased plasma β-hydroxybutyrate (metabolite of 1,3-butanediol) that negatively correlated with maternal body weight in late pregnancy. Mean arterial pressure was lower in the treated group at baseline, early, and mid pregnancy, but no difference was observed in late pregnancy after treatment ended. Uterine artery resistance index (UARI) was reduced in the treated dams. No adverse fetal effects were observed, and there were no differences in pup weight or length. Placentas from treated dams had decreased vascular endothelial growth factor levels as well as decreased placental basal zone thickness and increased labyrinth zone thickness. These findings support the therapeutic role of physiological ketosis via 1,3-butanediol as a potential therapeutic approach for managing chronic hypertension, thereby preventing and mitigating adverse pregnancy outcomes associated with preeclampsia.NEW & NOTEWORTHY A ketogenic diet or increased β-hydroxybutyrate levels can reduce hypertension, but the potential of 1,3-butanediol, a β-hydroxybutyrate precursor, for treatment of preeclampsia is unknown. We hypothesized that attenuating hypertension before and during pregnancy via 1,3-butanediol prevents preeclampsia in Dahl Salt-sensitive rats. 1,3-Butanediol significantly lowered blood pressure and improved uterine artery resistance with no observable adverse fetal effects. Physiological ketosis via 1,3-butanediol may be a potential therapeutic approach for managing hypertension and mitigating adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Jeanne A. Ishimwe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Melanie B. Baker
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M. Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
92
|
Aye IL, Aiken CE, Charnock-Jones DS, Smith GC. Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. Am J Obstet Gynecol 2022; 226:S928-S944. [PMID: 33189710 DOI: 10.1016/j.ajog.2020.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
The placenta is a highly metabolically active organ fulfilling the bioenergetic and biosynthetic needs to support its own rapid growth and that of the fetus. Placental metabolic dysfunction is a common occurrence in preeclampsia although its causal relationship to the pathophysiology is unclear. At the outset, this may simply be seen as an "engine out of fuel." However, placental metabolism plays a vital role beyond energy production and is linked to physiological and developmental processes. In this review, we discuss the metabolic basis for placental dysfunction and propose that the alterations in energy metabolism may explain many of the placental phenotypes of preeclampsia such as reduced placental and fetal growth, redox imbalance, oxidative stress, altered epigenetic and gene expression profiles, and the functional consequences of these aberrations. We propose that placental metabolic reprogramming reflects the dynamic physiological state allowing the tissue to adapt to developmental changes and respond to preeclampsia stress, whereas the inability to reprogram placental metabolism may result in severe preeclampsia phenotypes. Finally, we discuss common tested and novel therapeutic strategies for treating placental dysfunction in preeclampsia and their impact on placental energy metabolism as possible explanations into their potential benefits or harm.
Collapse
|
93
|
Kadish E, Sela HY, Rotem R, Grisaru-Granovsky S, Rottenstreich M. Inter-delivery birthweight difference greater than 1000 grams and its effects on maternal and neonatal outcomes. J Matern Fetal Neonatal Med 2022; 35:9308-9316. [DOI: 10.1080/14767058.2022.2029839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ela Kadish
- The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hen Y. Sela
- Department of Obstetrics & Gynecology, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Rotem
- The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sorina Grisaru-Granovsky
- Department of Obstetrics & Gynecology, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Misgav Rottenstreich
- Department of Obstetrics & Gynecology, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Nursing, Jerusalem College of Technology, Jerusalem, Israel
| |
Collapse
|
94
|
Cheng TL, Chen CH, Wu MH, Lai CH, Lee KH, Lin SH, Shiau AL, Wu CL, Kang L. Upregulation of Fibrinogen-Like 1 Expression Contributes to Reducing the Progression of Preeclampsia. Front Cell Dev Biol 2021; 9:757643. [PMID: 34957095 PMCID: PMC8692364 DOI: 10.3389/fcell.2021.757643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023] Open
Abstract
Fibrinogen-like 1 (FGL1) is involved in liver injury and liver regeneration, but its role in placenta and preeclampsia (PE) remains unclear. We assessed FGL1 expression in serum and placenta from L-NAME-induced PE-like mouse and in women with (n = 38) and without (n = 42) PE. For the mouse study, pregnant C57Bl/6 mouse (n = 6/group) were subcutaneously administered L-NAME with or without FGL1 once daily starting on days 7–14 of pregnancy and were sacrificed on gestational day (GD) 20. Maternal body weight, blood pressure, and urinary protein were assessed during GDs 8–20. The weight and length of the placenta and fetus were assessed. The placental structure was evaluated using hematoxylin staining. In the human study, the sera of the pregnant women during the late trimester were assessed with enzyme-linked immunosorbent assays (ELISAs). FGL1 expression in human trophoblast cell lines under L-NAME stimulation was measured using Western blotting and immunofluorescence staining. The detected FGL1 protein levels in serum and placenta were both significantly upregulated in patients and mouse with PE compared with those in the non-PE groups. FGL1 treatment decreased maternal hypertension and proteinuria, decreased fetal weight in mouse with PE, downregulated proinflammatory cytokine (interleukin-1b and interleukin-6) levels, and maintained the balance between antiangiogenic (fms-like tyrosine kinase-1) and proangiogenic (placental growth factor) substances in the placenta. L-NAME-upregulated FGL1 expression was inhibited following overexpression of FoxO3a. In summary, FoxO3a reduction is a potential pathophysiological mechanism leading to upregulated placental FGL1 expression that may play a pivotal role in preventing PE progression.
Collapse
Affiliation(s)
- Tsung-Lin Cheng
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Hsing Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Han Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ko-Hung Lee
- An-an Women and Children Clinic, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- College of Medicine, Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
95
|
Amin-Beidokhti M, Sadeghi H, Pirjani R, Gachkar L, Gholami M, Mirfakhraie R. Differential expression of Hsa-miR-517a/b in placental tissue may contribute to the pathogenesis of preeclampsia. J Turk Ger Gynecol Assoc 2021; 22:273-278. [PMID: 34866368 PMCID: PMC8666996 DOI: 10.4274/jtgga.galenos.2021.2021.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Preeclampsia (PE) is a pregnancy hypertensive disorder that affects both maternal and fetal health. Many studies have investigated possible mechanisms in the pathogenesis of PE although the role of the placenta is undeniable. Evaluation of placental-specific microRNAs may provide additional data about the pathogenic mechanism of PE. This study compared the expression levels of Hsa-miR-517a/b in placental tissues obtained from PE patients and healthy controls. Material and Methods: One hundred tissues were obtained from fetal and maternal sides of the placenta of PE patients and healthy controls. Expression analysis was performed using quantitative real-time polymerase chain reaction. Results: Hsa-miR-517a/b level was significantly decreased in PE compared to controls (expression ratio: 0.40; p=0.007). Down-regulation of Hsa-miR-517a/b was also detected in fetal-side placental samples when compared to maternal-side in PE (expression ratio: 0.33; p=0.04). Furthermore, decreased expression of Hsa-miR-517a/b was detected in fetal-side tissue from PE cases compared to fetal-side samples from healthy pregnancies (expression ratio: 0.36; p=0.03). In maternal-side placental samples the expression level did not differ between PE and healthy pregnancies (p=0.1). Conclusion: These results demonstrate a differential expression of Hsa-miR-517a/b within placentas in pregnancies affected by PE and between placentas from PE and healthy pregnancies. Further studies are required to investigate a possible role for Hsa-miR-517a/b in the pathogenesis of PE.
Collapse
Affiliation(s)
- Mona Amin-Beidokhti
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Genomic Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reihaneh Pirjani
- Obstetrics and Gynecology Department, Arash Women Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Latif Gachkar
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Gholami
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Genomic Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
96
|
Arthurs AL, Jankovic-Karasoulos T, Roberts CT. COVID-19 in pregnancy: What we know from the first year of the pandemic. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166248. [PMID: 34461257 PMCID: PMC8397492 DOI: 10.1016/j.bbadis.2021.166248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/21/2021] [Accepted: 08/14/2021] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic has infected nearly 178 million people and claimed the lives of over 3.8 million in less than 15 months. This has prompted a flurry of research studies into the mechanisms and effects of SARS-CoV-2 viral infection in humans. However, studies examining the effects of COVID-19 in pregnant women, their placentae and their babies remain limited. Furthermore, reports of safety and efficacy of vaccines for SARS-CoV-2 in pregnancy are limited. This review concisely summarises the case studies and research on COVID-19 in pregnancy, to date. It also reviews the mechanism of infection with SARS-CoV-2, and its reliance and effects upon the renin-angiotensin-aldosterone system. Overall, the data suggest that infection during pregnancy can be dangerous at any time, but this risk to both the mother and fetus, as well as placental damage, increases during the third trimester. The possibility of vertical transmission, which is explored in this review, remains contentious. However, maternal infection with SARS-CoV-2 can increase risk of miscarriage, preterm birth and stillbirth, which is likely due to damage to the placenta.
Collapse
Affiliation(s)
- Anya Lara Arthurs
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5042, Australia.
| | | | - Claire Trelford Roberts
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5042, Australia.
| |
Collapse
|
97
|
Huang Q, Hao S, You J, Yao X, Li Z, Schilling J, Thyparambil S, Liao WL, Zhou X, Mo L, Ladella S, Davies-Balch SR, Zhao H, Fan D, Whitin JC, Cohen HJ, McElhinney DB, Wong RJ, Shaw GM, Stevenson DK, Sylvester KG, Ling XB. Early-pregnancy prediction of risk for pre-eclampsia using maternal blood leptin/ceramide ratio: discovery and confirmation. BMJ Open 2021; 11:e050963. [PMID: 34824115 PMCID: PMC8627403 DOI: 10.1136/bmjopen-2021-050963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE This study aimed to develop a blood test for the prediction of pre-eclampsia (PE) early in gestation. We hypothesised that the longitudinal measurements of circulating adipokines and sphingolipids in maternal serum over the course of pregnancy could identify novel prognostic biomarkers that are predictive of impending event of PE early in gestation. STUDY DESIGN Retrospective discovery and longitudinal confirmation. SETTING Maternity units from two US hospitals. PARTICIPANTS Six previously published studies of placental tissue (78 PE and 95 non-PE) were compiled for genomic discovery, maternal sera from 15 women (7 non-PE and 8 PE) enrolled at ProMedDx were used for sphingolipidomic discovery, and maternal sera from 40 women (20 non-PE and 20 PE) enrolled at Stanford University were used for longitudinal observation. OUTCOME MEASURES Biomarker candidates from discovery were longitudinally confirmed and compared in parallel to the ratio of placental growth factor (PlGF) and soluble fms-like tyrosine kinase (sFlt-1) using the same cohort. The datasets were generated by enzyme-linked immunosorbent and liquid chromatography-tandem mass spectrometric assays. RESULTS Our discovery integrating genomic and sphingolipidomic analysis identified leptin (Lep) and ceramide (Cer) (d18:1/25:0) as novel biomarkers for early gestational assessment of PE. Our longitudinal observation revealed a marked elevation of Lep/Cer (d18:1/25:0) ratio in maternal serum at a median of 23 weeks' gestation among women with impending PE as compared with women with uncomplicated pregnancy. The Lep/Cer (d18:1/25:0) ratio significantly outperformed the established sFlt-1/PlGF ratio in predicting impending event of PE with superior sensitivity (85% vs 20%) and area under curve (0.92 vs 0.52) from 5 to 25 weeks of gestation. CONCLUSIONS Our study demonstrated the longitudinal measurement of maternal Lep/Cer (d18:1/25:0) ratio allows the non-invasive assessment of PE to identify pregnancy at high risk in early gestation, outperforming the established sFlt-1/PlGF ratio test.
Collapse
Affiliation(s)
| | - Shiying Hao
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Jin You
- Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | | | - Zhen Li
- Department of Surgery, Stanford University, Stanford, California, USA
- Binhai Industrial Technology Research Institute, Zhejiang University, Tianjin, China
- School of Electrical Engineering, Southeast University, Nanjing, China
| | | | | | | | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| | - Lihong Mo
- Department of Obstetrics and Gynecology, University of California San Francisco, Fresno, California, USA
| | - Subhashini Ladella
- Department of Obstetrics and Gynecology, University of California San Francisco, Fresno, California, USA
| | | | - Hangyi Zhao
- Department of Mathematics, Stanford University, Stanford, California, USA
| | - David Fan
- Department of Statistics and Applied Probability, University of California Santa Barbara, Santa Barbara, California, USA
| | - John C Whitin
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Harvey J Cohen
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Doff B McElhinney
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Karl G Sylvester
- Department of Surgery, Stanford University, Stanford, California, USA
| | - Xuefeng B Ling
- Department of Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
98
|
Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ. Vascular Dysfunction in Preeclampsia. Cells 2021; 10:3055. [PMID: 34831277 PMCID: PMC8616535 DOI: 10.3390/cells10113055] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
Preeclampsia is a life-threatening pregnancy-associated cardiovascular disorder characterized by hypertension and proteinuria at 20 weeks of gestation. Though its exact underlying cause is not precisely defined and likely heterogenous, a plethora of research indicates that in some women with preeclampsia, both maternal and placental vascular dysfunction plays a role in the pathogenesis and can persist into the postpartum period. Potential abnormalities include impaired placentation, incomplete spiral artery remodeling, and endothelial damage, which are further propagated by immune factors, mitochondrial stress, and an imbalance of pro- and antiangiogenic substances. While the field has progressed, current gaps in knowledge include detailed initial molecular mechanisms and effective treatment options. Newfound evidence indicates that vasopressin is an early mediator and biomarker of the disorder, and promising future therapeutic avenues include mitigating mitochondrial dysfunction, excess oxidative stress, and the resulting inflammatory state. In this review, we provide a detailed overview of vascular defects present during preeclampsia and connect well-established notions to newer discoveries at the molecular, cellular, and whole-organism levels.
Collapse
Affiliation(s)
- Megan A. Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
| | - Matthew W. Rappelt
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - David D. Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer J. McIntosh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
99
|
He A, Wang J, Yang X, Liu J, Yang X, Wang G, Li R. Screening of differentially expressed proteins in placentas from patients with late-onset preeclampsia. Proteomics Clin Appl 2021; 16:e2100053. [PMID: 34704665 DOI: 10.1002/prca.202100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/26/2021] [Accepted: 10/22/2021] [Indexed: 01/26/2023]
Abstract
PURPOSE Preeclampsia (PE) is a severe disease that endangers the safety of mothers and fetuses worldwide. In the absence of specific treatments, more studies on novel predictive and diagnostic biomarkers for PE are required. EXPERIMENTAL DESIGN Data-independent acquisition proteomics, with five biological replicates, was used to investigate the protein expression profiles of placental tissues from patients with PE and normal pregnant women. RESULTS In total, 52 differentially expressed proteins (DEPs) were identified, 34 of them were upregulated and 18 downregulated. Bioinformatics analyses revealed that PE was associated with multiple GO terms and KEGG pathways. Arginase-1 (ARG1), ferritin light chain (FTL), and RNA cytidine acetyltransferase (NAT10) were identified as hub proteins, which were further validated in placental tissues and maternal plasma by western blot and ELISA. CONCLUSIONS AND CLINICAL RELEVANCE FTL expression was significantly lower in the placental tissues and early and late pregnancy plasma of patients with PE compared to that in normal pregnant women. This study is the first to propose that FTL may be a potential predictive and diagnostic biomarker for PE; it provides a proteomics insight for understanding the pathological mechanism of this disease.
Collapse
Affiliation(s)
- Andong He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Jingyun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Jia Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China.,Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Medical College, Jinan University, Guangzhou, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China.,Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Medical College, Jinan University, Guangzhou, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
100
|
Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin Sci (Lond) 2021; 135:2307-2327. [PMID: 34643675 DOI: 10.1042/cs20190070] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE), the leading cause of maternal and fetal morbidity and mortality, is associated with poor fetal growth, intrauterine growth restriction (IUGR) and low birth weight (LBW). Offspring of women who had PE are at increased risk for cardiovascular (CV) disease later in life. However, the exact etiology of PE is unknown. Moreover, there are no effective interventions to treat PE or alleviate IUGR and the developmental origins of chronic disease in the offspring. The placenta is critical to fetal growth and development. Epigenetic regulatory processes such as histone modifications, microRNAs and DNA methylation play an important role in placental development including contributions to the regulation of trophoblast invasion and remodeling of the spiral arteries. Epigenetic processes that lead to changes in placental gene expression in PE mediate downstream effects that contribute to the development of placenta dysfunction, a critical mediator in the onset of PE, impaired fetal growth and IUGR. Therefore, this review will focus on epigenetic processes that contribute to the pathogenesis of PE and IUGR. Understanding the epigenetic mechanisms that contribute to normal placental development and the initiating events in PE may lead to novel therapeutic targets in PE that improve fetal growth and mitigate increased CV risk in the offspring.
Collapse
|