51
|
Saad MS, Kai OB, Wirzal MDH. Process modelling and techno economic analysis for optimal design of integrated electrocoagulation-membrane system for dye removal in wastewater. CHEMOSPHERE 2022; 306:135623. [PMID: 35817180 DOI: 10.1016/j.chemosphere.2022.135623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Textile industry, one of the largest exporting industries in Malaysia, generates azo dyes wastewater which cannot be easily decomposed biologically due to its high stability and xenobiotic nature. Conventional electrocoagulation (EC) system requires high energy consumption, resulting in higher operating cost while membrane system suffers from fouling. To eliminate these drawbacks, an integrated electrocoagulation - membrane (ECM) system has been proposed as one of the emerging methods for treating dye wastewater. However, feasibility analysis of the proposed system is yet to be conducted. This study proposes a statistical technique to evaluate the techno-economic feasibility of the system via John's Macintosh Project (JMP) software. From JMP, an equation represents the whole model had been obtained for each of the system, EC standalone and ECM system. The models have been validated experimentally it is proven all the models can reach dye removal efficiency of 96%. Overall, the total cost for ECM system (1 V and 1.0 g of NaCl) was 40.44% cheaper than the conventional dye treatment method with total cost of 1.079 million MYR. EC standalone system at 1 V and 1.0 g however were found to be more economically feasible with 0.325 million MYR or 82.07% cheaper compared to conventional photocatalytic method. EC standalone system was also more economical than ECM system due to lower capital cost expended for installation of membrane tank and additional membrane purchase.
Collapse
Affiliation(s)
- Muhammad Syaamil Saad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Ong Ben Kai
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Mohd Dzul Hakim Wirzal
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
52
|
Fei Y, Han N, Zhang M, Yang F, Yu X, Shi L, Khataee A, Zhang W, Tao D, Jiang M. Facile preparation of visible light-sensitive layered g-C 3N 4 for photocatalytic removal of organic pollutants. CHEMOSPHERE 2022; 307:135718. [PMID: 35842043 DOI: 10.1016/j.chemosphere.2022.135718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The graphite-phase carbon nitride (g-C3N4) photocatalytic materials were prepared by one-step calcination method to degrade methylene blue (MB) and potassium butyl xanthate (PBX) under visible light irradiation. The prepared g-C3N4 photocatalytic materials were investigated in detail by various characterizations, and the experiments showed that the graphitic phase carbon nitride photocatalytic materials were successfully prepared by the one-step calcination method. The material possesses excellent optical properties and strong visible light absorption, thus achieving photocatalytic degradation of MB and PBX. The catalyst dosage, pH, the initial concentration of pollutants have important effects on photocatalytic activity of MB and PBX. The photocatalytic degradation efficiency was 98.99% for MB and 96.83% for PBX under the optimal conditions (catalyst dosage, initial pollutant concentration and pH value were 500 mg L-1, 20 mg L-1 and 7, respevtively). The photocatalytic mechanisms on MB and PBX were elucidated. ·OH was the key specie for MB, while ·O2- was the key specie for PBX. This study advances the development of photocatalytic technology for mineral wastewater.
Collapse
Affiliation(s)
- Yawen Fei
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium.
| | - Minghui Zhang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Feixue Yang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Xiaobing Yu
- Shandong Jinfu Mining Co. Ltd., Zibo, 255000, PR China
| | - Lilong Shi
- Shandong Yanggu Huatai Chemical Co. Ltd., Liaocheng, 252300, PR China
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation.
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Dongping Tao
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Man Jiang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China; State Key Laboratory of Mineral Processing, Beijing, 100160, PR China.
| |
Collapse
|
53
|
Tulashie SK, Kotoka F, Botchway BN, Adu K. Removal of reactive violet 5 azodye (V5R) using bamboo, and calabash biochar. Heliyon 2022; 8:e10908. [PMID: 36247136 PMCID: PMC9557873 DOI: 10.1016/j.heliyon.2022.e10908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/25/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
We assess the adsorption capacity of bamboo and calabash biochar (BB and CB). Using 10-50 mg/L Reactive Violet 5 Azo dye (V5R) adsorbate, the kinetics, and adsorption isotherms are investigated. We pyrolyzed the bamboo, and calabash biomass at 500 °C, washed, and oven dried at 120 °C for 48 h. The Brunauer-Emmett-Teller (BET) method indicates that the BB and CB average pore diameters are 21.1 nm and 26.5 nm, with specific surface areas of 174.67 m2/g and 44.78 m2/g, respectively. The SEM reveals a larger granular shape of the CB having pinholes on the surface, but the BB exhibited interconnected structures like a mesh. The FTIR shows C=C, C=O, O-H, and C-O-C as the predominant functional groups on both BB and CB. The adsorption of V5R on BB and CB follows pseudo-second-order kinetics and favors Langmuir isotherm with maximum adsorption capacities of 5.106 mg/g, and 0.010 mg/g, respectively. The BB adsorbs 70.9-96% V5R, whilst CB adsorbs 0.1-0.2 % only. The results suggest that bamboo biochar has the potential to eliminate 70.9-96% of 10-50 mg/L V5R from an aqueous solution, hence suitable for removing V5R. In this study, we have also presented a prototype expected to eliminate 91.6%-99.8% of the V5R from an aqueous solution.
Collapse
Affiliation(s)
- Samuel Kofi Tulashie
- University of Cape Coast, College of Agriculture and Natural Sciences, School of Physical Sciences, Department of Chemistry, Industrial Chemistry Unit, Cape Coast, Ghana,Corresponding author.
| | - Francis Kotoka
- University of Cape Coast, College of Agriculture and Natural Sciences, School of Physical Sciences, Department of Chemistry, Industrial Chemistry Unit, Cape Coast, Ghana
| | - Bennett Nana Botchway
- University of Cape Coast, College of Agriculture and Natural Sciences, School of Physical Sciences, Department of Chemistry, Industrial Chemistry Unit, Cape Coast, Ghana
| | - Kofi Adu
- University of Cape Coast, College of Agriculture and Natural Sciences, School of Physical Sciences, Department of Physics, Industrial Chemistry Unit, Cape Coast, Ghana
| |
Collapse
|
54
|
Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
55
|
Accelerated Removal of Acid Orange 7 by Natural Iron Ore Activated Peroxymonosulfate System with Hydroxylamine for Promoting Fe(III)/Fe(II) Cycle. Catalysts 2022. [DOI: 10.3390/catal12101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this study, peroxymonosulfate (PMS) was activated by cheap and readily available natural iron ore to remove Acid Orange 7 (AO7) in water with the assistance of hydroxylamine (HA). Results show that the presence of HA could accelerate the Fe(II)/Fe(III) cycle on the ore surface, promoting the activation of PMS to generate reactive oxidative species. The effects of ore dosage, PMS dosage, HA dosage and initial pH on the degradation of AO7 were investigated in the HA/Ore/PMS system. Under the optimal conditions, the removal of AO7 could reach 93.1% during 30 min, which was 41.4% higher than the ore/PMS system. The AO7 removal increased with the increase of HA, PMS and ore dosage, but was unaffected by the initial solution pH. Based on radical scavenging experiments and EPR tests, the dominant reactive species in the HA/Ore/PMS system were revealed to be the sulfate radical (SO4•−), singlet oxygen (1O2), superoxide radical (O2•−) and hydroxyl radical (•OH), which were responsible for the AO7 degradation. Furthermore, the possible reaction mechanism of PMS activation was proposed. This study provides an efficient technique for the removal of azo dye organic contaminant in water, which has great practical significance.
Collapse
|
56
|
Bacillus subtilis: As an Efficient Bacterial Strain for the Reclamation of Water Loaded with Textile Azo Dye, Orange II. Int J Mol Sci 2022; 23:ijms231810637. [PMID: 36142543 PMCID: PMC9505759 DOI: 10.3390/ijms231810637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
The azo dye orange II is used extensively in the textile sector for coloring fabrics. High concentrations of it are released into aqueous environments through textile effluents. Therefore, its removal from textile wastewater and effluents is necessary. Herein, initially, we tested 11 bacterial strains for their capabilities in the degradation of orange II dye. It was revealed in the preliminary data that B. subtilis can more potently degrade the selected dye, which was thus used in the subsequent experiments. To achieve maximum decolorization, the experimental conditions were optimized whereby maximum degradation was achieved at: a 25 ppm dye concentration, pH 7, a temperature of 35 °C, a 1000 mg/L concentration of glucose, a 1000 mg/L urea concentration, a 666.66 mg/L NaCl concentration, an incubation period of 3 days, and with hydroquinone as a redox mediator at a concentration of 66.66 mg/L. The effects of the interaction of the operational factors were further confirmed using response surface methodology, which revealed that at optimum conditions of pH 6.45, a dye concentration of 17.07 mg/L, and an incubation time of 9.96 h at 45.38 °C, the maximum degradation of orange II can be obtained at a desirability coefficient of 1, estimated using the central composite design (CCD). To understand the underlying principles of degradation of the metabolites in the aliquot mixture at the optimized condition, the study steps were extracted and analyzed using GC-MS(Gas Chromatography Mass Spectrometry), FTIR(Fourier Transform Infrared Spectroscopy), 1H and carbon 13 NMR(Nuclear Magnetic Resonance Spectroscopy). The GC-MS pattern revealed that the original dye was degraded into o-xylene and naphthalene. Naphthalene was even obtained in a pure state through silica gel column isolation and confirmed using 1H and 13C NMR spectroscopic analysis. Phytotoxicity tests on Vigna radiata were also conducted and the results confirmed that the dye metabolites were less toxic than the parent dye. These results emphasize that B. subtilis should be used as a potential strain for the bioremediation of textile effluents containing orange II and other toxic azo dyes.
Collapse
|
57
|
Antioxidant, Anti-Bacterial, and Congo Red Dye Degradation Activity of AgxO-Decorated Mustard Oil-Derived rGO Nanocomposites. Molecules 2022; 27:molecules27185950. [PMID: 36144688 PMCID: PMC9505018 DOI: 10.3390/molecules27185950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Scaling up the production of functional reduced graphene oxide (rGO) and its composites requires the use of low-cost, simple, and sustainable synthesis methods, and renewable feedstocks. In this study, silver oxide-decorated rGO (AgxO−rGO) composites were prepared by open-air combustion of mustard oil, essential oil-containing cooking oil commercially produced from the seeds of Brassica juncea. Silver oxide (AgxO) nanoparticles (NPs) were synthesized using Coleus aromaticus leaf extract as a reducing agent. Formation of mustard seed rGO and AgxO NPs was confirmed by UV-visible characteristic peaks at 258 nm and 444 nm, respectively. rGO had a flake-like morphology and a crystalline structure, with Raman spectra showing clear D and G bands with an ID/IG ratio of 0.992, confirming the fewer defects in the as-prepared mustard oil-derived rGO (M−rGO). The rGO-AgxO composite showed a degradation efficiency of 81.9% with a rate constant k−1 of 0.9506 min−1 for the sodium salt of benzidinediazo-bis-1-naphthylamine-4-sulfonic acid (known as the azo dye Congo Red) in an aqueous solution under visible light irradiation. The composite also showed some antimicrobial activity against Klebsilla pneomoniae, Escherichiacoli, and Staphylococcusaureus bacterial cells, with inhibition zones of ~15, 18, and 14 mm, respectively, for a concentration of 300 µg/mL. At 600 µg/mL concentration, the composite also showed moderate scavenging activity for 2,2-diphenyl-1-picrylhydrazyl of ~30.6%, with significantly lower activities measured for AgxO (at ~18.1%) and rGO (~8%) when compared to control.
Collapse
|
58
|
Sehar S, Rasool T, Syed HM, Mir MA, Naz I, Rehman A, Shah MS, Akhter MS, Mahmood Q, Younis A. Recent advances in biodecolorization and biodegradation of environmental threatening textile finishing dyes. 3 Biotech 2022; 12:186. [PMID: 35875175 PMCID: PMC9304469 DOI: 10.1007/s13205-022-03247-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/02/2022] [Indexed: 11/01/2022] Open
Abstract
Organic nature of dyes and their commercially made products are widely utilized in many industries including paper, cosmetics, pharmaceuticals, photography, petroleum as well as in textile manufacturing. The textile industry being the top most consumer of a large variety of dyes during various unit processes operation generates substantial amount of wastewater; hence, nominated as "Major Polluter of Potable Water". The direct discharge of such effluents into environment poses serious threats to the functioning of biotic communities of natural ecosystems. The detection of these synthetic dyes is considered as relatively easy, however, it is extremely difficult to completely eliminate them from wastewater and freshwater ecosystems. Aromatic chemical structure seems to be the main reason behind low biodegradability of these dyes. Currently, various physiochemical and biological methods are employed for their remediation. Among them, microbial degradation has attracted greater attention due to its sustainability, high efficiency, cost effectiveness, and eco-friendly nature. The current review presents recent advances in biodegradation of industrial dyes towards a sustainable and tangible technological innovative solutions as an alternative to existing conventional physicochemical treatment processes.
Collapse
Affiliation(s)
- Shama Sehar
- Department of Biology, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| | - Tabassum Rasool
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Hasnain M. Syed
- Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952 Kingdom of Saudi Arabia
| | - M. Amin Mir
- Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952 Kingdom of Saudi Arabia
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, 51452 Kingdom of Saudi Arabia
| | - Abdul Rehman
- Department of Microbiology, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, 26000 Pakistan
| | - Mir Sadiq Shah
- Department of Zoology, University of Science and Technology, Bannu, 28100 Khyber Pakhtunkhwa Pakistan
| | - Mohammad Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| | - Qaisar Mahmood
- Department of Biology, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| | - Adnan Younis
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| |
Collapse
|
59
|
Li S, Zhang Y, Xiang K, Chen J, Wang J. Designing a novel type of multifunctional soil conditioner based on 4-arm star-shaped polymer modified mesoporous MCM-41. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
60
|
Nanjani S, Patel Z, Sharma S, Pandita PR, Pandit R, Joshi MN, Patel AK, Joshi C. Transcriptome profiling reveals upregulation of benzoate degradation and related genes in Pseudomonas aeruginosa D6 during textile dye degradation. ENVIRONMENTAL RESEARCH 2022; 212:113288. [PMID: 35427588 DOI: 10.1016/j.envres.2022.113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
An upsurge in textile dye pollution has demanded immediate efforts to develop an optimum technology for their bioremediation. However, the molecular mechanism underpinning aerobic decolorization of dyes is still in its infancy. Thus, in the current work, the intricacies of aerobic remediation of textile dyes by Pseudomonas aeruginosa D6 were understood via a transcriptomic approach. The bacterium isolated from the sludge sample of a common effluent treatment plant was able to decolorize 54.42, 57.66, 50.84 and 65.86% of 100 mg L-1 of four different dyes i.e., TD01, TD04, TD05, and TD06, respectively. The maximum decolorization was achieved within six days and thus, the first and sixth day of incubation were selected for transcriptome analysis at the early and late phase of the decolorization, respectively. The expression profiles of all samples were compared to gain insight into the dye-specific response of bacterium and it was found that it behaved most uniquely in the presence of the dye TD01. Several genes critical to core metabolic processes like the TCA cycle, glycolysis, pentose phosphate pathway, translation, cell motility etc. Were found to be overexpressed in the presence of dyes. Interestingly, in response to dyes, the benzoate degradation pathway was significantly upregulated in the bacterium as compared to control (i.e., bacterium without dye). Thus, seven genes contributing to the induction of the same were further studied by RT-qPCR analysis. Overall, the involvement of the benzoate pathway implies the appearance of aromatic intermediates during decolorization, which in turn infers dye degradation.
Collapse
Affiliation(s)
- Sandhya Nanjani
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), 6th Floor, MS Building, Gandhinagar, Gujarat, 382011, India
| | - Zarna Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), 6th Floor, MS Building, Gandhinagar, Gujarat, 382011, India
| | - Shruti Sharma
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), 6th Floor, MS Building, Gandhinagar, Gujarat, 382011, India
| | - Priti Raj Pandita
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), 6th Floor, MS Building, Gandhinagar, Gujarat, 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), 6th Floor, MS Building, Gandhinagar, Gujarat, 382011, India
| | - Madhvi N Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), 6th Floor, MS Building, Gandhinagar, Gujarat, 382011, India.
| | - Amrutlal K Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), 6th Floor, MS Building, Gandhinagar, Gujarat, 382011, India.
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), 6th Floor, MS Building, Gandhinagar, Gujarat, 382011, India
| |
Collapse
|
61
|
Wang L, Tao Y, Wang J, Tian M, Liu S, Quan T, Yang L, Wang D, Li X, Gao D. A novel hydroxyl-riched covalent organic framework as an advanced adsorbent for the adsorption of anionic azo dyes. Anal Chim Acta 2022; 1227:340329. [DOI: 10.1016/j.aca.2022.340329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
|
62
|
Bekhit F, Farag S, Attia AM. Characterization of Immobilized Magnetic Fe 3O 4 Nanoparticles on Raoultella Ornithinolytica sp. and Its Application for Azo Dye Removal. Appl Biochem Biotechnol 2022; 194:6068-6090. [PMID: 35881226 DOI: 10.1007/s12010-022-04076-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
A high-performance immobilized bacterial strain coated with magnetic iron oxide nanoparticles was used for Basic Blue 41 azo dye (BB 41 dye) decolorization. To create the coated bacterial strain, Raoultella Ornithinolytica sp. was isolated and identified under the accession number KT213695, then coated with manufactured magnetic iron oxide nanoparticles. SEM and SEM-EDX were used to characterize the coated bacteria and validate its morphological structure formation. The coated Raoultella Ornithinolytica sp. A1 (coated A1) generated a 95.20% decolorization for BB 41 dye at 1600 ppm starting concentration with an optimal dose of coated A1 5 mL/L, pH 8, under static conditions for 24 h at 37 °C. Continuous batch cycles were used, with BB 41 dye (1600 ppm) added every 24 h four times, to achieve a high decolorization efficiency of 80.14%. Furthermore, the metabolites of BB 41 dye biodegradation were investigated by gas chromatographic-mass spectrum analysis (GC-MS) and showed a less toxic effect on the bioindicator Artemia salina. Additionally, 5 mL/L of coated A1 demonstrated the highest decolorization rate (47.2%) when applied to a real wastewater sample after 96 h with a consequent reduction in COD from 592 to 494 ppm.
Collapse
Affiliation(s)
- Fatma Bekhit
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Soha Farag
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | - Ahmed M Attia
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
63
|
Lanfranconi I, Ceretta MB, Bertola N, Wolski EA, Durruty I. Textile dyeing wastewater treatment by Penicillium chrysogenum: Design of a sustainable process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:292-301. [PMID: 35906908 DOI: 10.2166/wst.2022.204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work a parametric study and a bench bioreactor degradation test of Direct Black 22 (DB22) by Penicillium chrysogenum was performed as a first approach to an industrial application, framed within a policy of sustainable processes development. Three ancillary carbon sources and their optimum initial concentrations were studied. These were: glucose, potato starch and potato industry wastewater. Their optimum initial concentration was 6 g/L. The use of potato starch as co-substrate showed the highest decolorization rate and COD removal. Degradation of DB22 using different immobilization supports (stainless steel sponge, loofah sponge and polyethylene strips) was studied and the results showed that the time needed for the treatment decreased from 6 to 4 d. Phytotoxicity was evaluated in the final products of the immobilized cells assays, using Lactuca sativa seeds. For all treatments phytoxicity was reduced with respect to the untreated wastewater, except for the assays using polyethylene strips. Finally, the reuse of the biomass attached to different carriers and the performance of the treatment of DB22 in a 1 L bench scale bioreactor were tested. P. chrysogenum decolorized at least four sucesives reuses. The reactor assays showed a better performance of the treatment.
Collapse
Affiliation(s)
- Ines Lanfranconi
- Biochemical Engineering Group, INCITAA, CIC, CONICET, Ingeniering School, Mar del Plata National University, Av Juan B Justo 4302, Mar del Plata B7608FDQ, Argentina E-mail:
| | - María Belén Ceretta
- Biochemical Engineering Group, INCITAA, CIC, CONICET, Ingeniering School, Mar del Plata National University, Av Juan B Justo 4302, Mar del Plata B7608FDQ, Argentina E-mail:
| | - Nora Bertola
- CIDCA, CONICET, CIC, La Plata National University, 47 y 116, La Plata B1900AJJ, Argentina
| | - Erika Alejandra Wolski
- Biochemical Engineering Group, INCITAA, CIC, CONICET, Ingeniering School, Mar del Plata National University, Av Juan B Justo 4302, Mar del Plata B7608FDQ, Argentina E-mail:
| | - Ignacio Durruty
- Biochemical Engineering Group, INCITAA, CIC, CONICET, Ingeniering School, Mar del Plata National University, Av Juan B Justo 4302, Mar del Plata B7608FDQ, Argentina E-mail:
| |
Collapse
|
64
|
Enhanced Degradation of Rhodamine B through Peroxymonosulfate Activated by a Metal Oxide/Carbon Nitride Composite. WATER 2022. [DOI: 10.3390/w14132054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The development of high catalytic performance heterogeneous catalysts such as peroxymonosulfate (PMS) activators is important for the practical remediation of organic pollution caused by Rhodamine B (RhB). An economical and facile synthesized composite of copper–magnesium oxide and carbon nitride (CM/g-C3N4) was prepared by the sol-gel/high-temperature pyrolysis method to activate PMS for RhB degradation. CM/g-C3N4 exhibited a splendid structure for PMS activation, and the aggregation of copper–magnesium oxide was decreased when it was combined with carbon nitride. The introduction of magnesium oxide and carbon nitride increased the specific surface area and pore volume of CM/g-C3N4, providing more reaction sites. The low usage of CM/g-C3N4 (0.3 g/L) and PMS (1.0 mM) could rapidly degrade 99.88% of 10 mg/L RhB, and the RhB removal efficiency maintained 99.30% after five cycles, showing the superior catalytic performance and reusability of CM/g-C3N4. The synergistic effect of copper and g-C3N4 improved the PMS activation. According to the analyses of EPR and quenching experiments, SO4•−, •OH and O2•− radicals and 1O2 were generated in the activation of PMS, of which SO4•− and 1O2 were important for RhB removal. The toxicity of RhB was alleviated after being degraded by the CM/g-C3N4/PMS system. This study provides an efficient and promising strategy for removing dyes in water due to the hybrid reaction pathways in the CM/g-C3N4/PMS system.
Collapse
|
65
|
Moyo S, Makhanya BP, Zwane PE. Use of bacterial isolates in the treatment of textile dye wastewater: A review. Heliyon 2022; 8:e09632. [PMID: 35677403 PMCID: PMC9168152 DOI: 10.1016/j.heliyon.2022.e09632] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 05/26/2022] [Indexed: 01/15/2023] Open
Abstract
The textile industry uses large amounts of dyes like reactive, azo, anthraquinone, and triphenylmethane to colour textiles. Dyes that are not used up during the colouration process usually end up in water bodies as waste leading to the pollution of the water bodies. This makes the industry to be one of the major contributors to water pollution in the world. Bacterial agents isolated from various sources like dye contaminated soil and textile wastewater have shown to have the ability to effectively decolourise and degrade these dye pollutants leading to improved water quality. This review discusses bacterial isolates that have been used successfully to degrade and decolourise textile dyes, their mode of dye removal as well as the factors that affect their dye degradation ability. It further looks at the latest wastewater treatment technologies that incorporate bacterial microorganisms to treat dye wastewater.
Collapse
Affiliation(s)
- Senelisile Moyo
- Department of Textile and Apparel Design, University of Eswatini, Eswatini
| | | | - Pinkie E. Zwane
- University of Eswatini, Private Bag 4, Kwaluseni Campus, Eswatini
| |
Collapse
|
66
|
Kong F, Ren HY, Liu D, Wang Z, Nan J, Ren NQ, Fu Q. Improved decolorization and mineralization of azo dye in an integrated system of anaerobic bioelectrochemical modules and aerobic moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2022; 353:127147. [PMID: 35421561 DOI: 10.1016/j.biortech.2022.127147] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In this study, a stacked integrated system with anaerobic bioelectrochemical system (BES) and aerobic moving bed biofilm reactor (MBBR) was developed to improve the decolorization and mineralization of azo dye. This stacked BES-MBBR exhibited better performance with acid orange (AO7) decolorization of 96.4 ± 0.6% and chemical oxygen demand (COD) removal of 87.7 ± 4.4%. Contribution of each module in the BES and MBBR stages indicated that BES modules enhanced the pretreatment process in AO7 decolorization, and MBBR played an important role in further removal of COD. The mechanism analysis indicated that the azo bond was cleaved with reductive decolorization at biocathode in the anaerobic BES stages, and then the intermediate products can be further oxidized with COD removal in the aerobic MBBR stage. This work demonstrated that the integrated system with stacked anaerobic BES and aerobic MBBR could provide a promising way for the pretreatment and post-treatment of refractory wastewater.
Collapse
Affiliation(s)
- Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dong Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zilong Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
67
|
Biodegradation, Decolorization, and Detoxification of Di-Azo Dye Direct Red 81 by Halotolerant, Alkali-Thermo-Tolerant Bacterial Mixed Cultures. Microorganisms 2022; 10:microorganisms10050994. [PMID: 35630437 PMCID: PMC9147255 DOI: 10.3390/microorganisms10050994] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Azo dyes impact the environment and deserve attention due to their widespread use in textile and tanning industries and challenging degradation. The high temperature, pH, and salinity used in these industries render industrial effluent decolorization and detoxification a challenging process. An enrichment technique was employed to screen for cost-effective biodegraders of Direct Red 81 (DR81) as a model for diazo dye recalcitrant to degradation. Our results showed that three mixed bacterial cultures achieved ≥80% decolorization within 8 h of 40 mg/L dye in a minimal salt medium with 0.1% yeast extract (MSM-Y) and real wastewater. Moreover, these mixed cultures showed ≥70% decolorization within 24 h when challenged with dye up to 600 mg/L in real wastewater and tolerated temperatures up to 60 °C, pH 10, and 5% salinity in MSM-Y. Azoreductase was the main contributor to DR81 decolorization based on crude oxidative and reductive enzymatic activity of cell-free supernatants and was stable at a wide range of pH and temperatures. Molecular identification of azoreductase genes suggested multiple AzoR genes per mixed culture with a possible novel azoreductase gene. Metabolite analysis using hyphenated techniques suggested two reductive pathways for DR81 biodegradation involving symmetric and asymmetric azo-bond cleavage. The DR81 metabolites were non-toxic to Artemia salina nauplii and Lepidium sativum seeds. This study provided evidence for DR81 degradation using robust stress-tolerant mixed cultures with potential use in azo dye wastewater treatment.
Collapse
|
68
|
Madhushika HG, Ariyadasa TU, Gunawardena SHP. Decolorization of Textile Dyes in a Fixed‐Bed Biofilm Reactor. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- H. Gimhani Madhushika
- University of Moratuwa Department of Chemical and Process Engineering, Katubedda 10400 Moratuwa Sri Lanka
| | - Thilini U. Ariyadasa
- University of Moratuwa Department of Chemical and Process Engineering, Katubedda 10400 Moratuwa Sri Lanka
| | - Sanja H. P. Gunawardena
- University of Moratuwa Department of Chemical and Process Engineering, Katubedda 10400 Moratuwa Sri Lanka
| |
Collapse
|
69
|
Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084740. [PMID: 35457607 PMCID: PMC9026373 DOI: 10.3390/ijerph19084740] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Azo dyes have become a staple in various industries, as colors play an important role in consumer choices. However, these dyes pose various health and environmental risks. Although different wastewater treatments are available, the search for more eco-friendly options persists. Bioremediation utilizing microorganisms has been of great interest to researchers and industries, as the transition toward greener solutions has become more in demand through the years. This review tackles the health and environmental repercussions of azo dyes and its metabolites, available biological approaches to eliminate such dyes from the environment with a focus on the use of different microorganisms, enzymes that are involved in the degradation of azo dyes, and recent trends that could be applied for the treatment of azo dyes.
Collapse
|
70
|
Mendes M, Cassoni AC, Alves S, Pintado ME, Castro PM, Moreira P. Screening for a more sustainable solution for decolorization of dyes and textile effluents using Candida and Yarrowia spp. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114421. [PMID: 35093754 DOI: 10.1016/j.jenvman.2021.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Dyed effluents from textile industry are toxic and difficult to treat by conventional methods and biotechnological approaches are generally considered more environmentally friendly. In this work, yeast strains Candida parapsilosis, Yarrowia lipolytica and Candida pseudoglaebosa, isolated from wastewater treatment plants, were tested for their ability to decolorize textile dyes. Both commercial textile synthetic dyes (reactive, disperse, direct, acid and basic) and simulated textile effluents (a total of 32 solutions) were added to a Normal Decolorization Medium along with the yeast (single strains and consortia) and the decolorization was evaluated spectrophotometrically for 48-72 h. Yeasts were able to perform decolorization through adsorption and biodegradation for 28 of the dyes and simulated effluents by more than 50%. Y. lipolytica and C. pseudoglaebosa presented the best results with a true decolorization of reactive dyes, above 90% at 100 mg l-1, and simulated effluents at 5 g l-1 of concentration. Enzyme production was evaluated: oxidoreductase was found in the three yeasts, whereas tyrosinase was only found in Y. lipolytica and C. pseudoglaebosa. Y. lipolytica and C. pseudoglaebosa are a potential biotechnological tool for dye degradation in textile wastewaters, especially those containing reactive dyes and a promising tool to integrate in bioremediation solutions, contributing to circular economy and eco sustainability in the water sector since the treated water could possibly be reused for irrigation.
Collapse
Affiliation(s)
- Marta Mendes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana C Cassoni
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Soraia Alves
- Aquitex, Rua Augusto Simões 1042, 4425-626, Pedrouços, Maia, Porto, Portugal
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula Ml Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Patrícia Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal; Universidade Católica Portuguesa, CITAR - Centro de Investigação em Ciência e Tecnologia das Artes, Escola das Artes, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
71
|
Ponnambalam P, Kamalakkannan J, Jayaseelan R, Selvi G. Novel synthesis of Cu–ZnO heterostructure for photoelectric, medicinal, and sun-light dye degradative applications. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- P. Ponnambalam
- Research and Development Centre, Bharathiar University, Coimbatore, India
| | - J. Kamalakkannan
- PG & Research Department of Chemistry, Srivinayaga College of Arts and Science, Ulundurpet, India
| | - R. Jayaseelan
- PG Department of Chemistry, DR. R.K.S College of Arts and Science, Kallakurichi, India
| | - G. Selvi
- Department of Chemistry, PSGR. Krishnammal College for Women, Coimbatore, India
| |
Collapse
|
72
|
Saha P, Madliya S, Khare A, Subudhi I, Bhaskara Rao KV. Enzymatic biodegradation, kinetic study, and detoxification of Reactive Red-195 by Halomonas meridiana isolated from Marine Sediments of Andaman Sea, India. ENVIRONMENTAL TECHNOLOGY 2022:1-20. [PMID: 35112994 DOI: 10.1080/09593330.2022.2038276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Azo dyes are a significant class of hazardous chemicals that are extensively utilised in diverse industries. Industries that manufacture and consume reactive azo dyes generate hyper-saline wastewater. The ability of halotolerant bacteria to thrive under extreme environmental conditions thus makes them a potential candidate for reactive azo dye degradation. An efficient halotolerant bacterium (isolate SAIBP-6) with the capability to degrade 87.15% of azo dye Reactive Red 195 (RR-195) was isolated from sea sediment and identified as Halomonas meridiana SAIBP-6. Strain SAIBP-6 maintained potential decolourisation under a wide range of environmental conditions viz. 35-45°C temperature, 50-450 mg/L RR-195, pH 7-9, and 50-150 g/L NaCl. However, maximum decolourisation occurred at 40°C, 200 mg/L RR-195 dye, pH 9, and 50 g/L NaCl, under static conditions. Tyrosinase and azoreductase were responsible for dye degradation. The reaction catalysed by these enzymes followed zero-order kinetics. The maximum velocity (Vmax) of the enzymatic reaction was 4.221 mg/(L.h) and the Michaelis constant (Km) was 517.982 mg/L. Strain SAIBP-6 also efficiently decolourised Reactive Black-5 and Reactive Yellow-160 dye. The biodegradation process was further studied with the help of UV-Vis spectral scan, ultra-high performance liquid chromatography (UPLC), fourier-transform infra-red spectroscopy (FT-IR), and proton nuclear magnetic resonance (1H NMR) analysis. Finally, cytogenotoxicity assay conducted with the meristematic root tip cells of Allium cepa and phytotoxicity assay conducted with the seeds of Vigna mungo led to the inference that strain SAIBP-6 significantly reduced the toxicity of RR-195 after biodegradation.
Collapse
Affiliation(s)
- Purbasha Saha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sonal Madliya
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anmol Khare
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ikshita Subudhi
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kokati Venkata Bhaskara Rao
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
73
|
Tong S, Chen D, Mao P, Jiang X, Sun A, Xu Z, Liu X, Shen J. Synthesis of magnetic hydrochar from Fenton sludge and sewage sludge for enhanced anaerobic decolorization of azo dye AO7. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127622. [PMID: 34749999 DOI: 10.1016/j.jhazmat.2021.127622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
A novel magnetic hydrochar synthesized from Fenton sludge (FS) and sewage sludge (SS) was employed in the anaerobic decolorization of acid orange 7 (AO7). The stable presence of Fe3O4 in magnetic hydrochar was confirmed by physicochemical characterization. The degradation efficiency of AO7 in the anaerobic system with the addition of hydrochar prepared in an optimal proportion (SS:FS=1:3, named as HC-1:3) could reach 98.55%, which was 1.91 times higher than the control system. Particularly, superior electrical conductivity, electron transport system activity and azo reductase activity of the sludge in anaerobic system with HC-1:3 were achieved. The redox of Fe(Ⅲ)/Fe(Ⅱ) in anaerobic system was realized by dissimilatory iron-reducing bacteria enriched with HC-1:3. According to the six-cycle batch experiments and 120-day continuous-flow UASB experiments, the addition of HC-1:3 into the anaerobic system facilitated the diversity of microbiological community and increased the ecological stability of anaerobic system. The possible electron transfer mechanism involving in the magnetic hydrochar-based anaerobic system for AO7 removal was speculated preliminarily. The as-prepared magnetic hydrochar not only showed a promising future in anaerobic system for recalcitrant contaminants degradation, but also provided a new approach for the resource utilization of FS and SS.
Collapse
Affiliation(s)
- Siqi Tong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Chemical Pollution Control Engineering Research Center of Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Chemical Pollution Control Engineering Research Center of Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China.
| | - Ping Mao
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaiyin 223001, Jiangsu Province, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Chemical Pollution Control Engineering Research Center of Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Aiwu Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Chemical Pollution Control Engineering Research Center of Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaiyin 223001, Jiangsu Province, China
| | - Zhixiang Xu
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Chemical Pollution Control Engineering Research Center of Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Chemical Pollution Control Engineering Research Center of Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
74
|
Santhanarajan AE, Rhee C, Sul WJ, Yoo K, Seong HJ, Kim HG, Koh SC. Transcriptomic Analysis of Degradative Pathways for Azo Dye Acid Blue 113 in Sphingomonas melonis B-2 from the Dye Wastewater Treatment Process. Microorganisms 2022; 10:microorganisms10020438. [PMID: 35208892 PMCID: PMC8877305 DOI: 10.3390/microorganisms10020438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Acid Blue 113 (AB113) is a typical azo dye, and the resulting wastewater is toxic and difficult to remove. Methods: The experimental culture was set up for the biodegradation of the azo dye AB113, and the cell growth and dye decolorization were monitored. Transcriptome sequencing was performed in the presence and absence of AB113 treatment. The key pathways and enzymes involved in AB113 degradation were found through pathway analysis and enrichment software (GO, EggNog and KEGG). Results: S. melonis B-2 achieved more than 80% decolorization within 24 h (50 and 100 mg/L dye). There was a positive relationship between cell growth and the azo dye degradation rate. The expression level of enzymes involved in benzoate and naphthalene degradation pathways (NADH quinone oxidoreductase, N-acetyltransferase and aromatic ring-hydroxylating dioxygenase) increased significantly after the treatment of AB113. Conclusions: Benzoate and naphthalene degradation pathways were the key pathways for AB113 degradation. NADH quinone oxidoreductase, N-acetyltransferase, aromatic ring-hydroxylating dioxygenase and CYP450 were the key enzymes for AB113 degradation. This study provides evidence for the process of AB113 biodegradation at the molecular and biochemical level that will be useful in monitoring the dye wastewater treatment process at the full-scale treatment.
Collapse
Affiliation(s)
- Aalfin-Emmanuel Santhanarajan
- Department of Environmental Engineering, Korea Maritime and Ocean University, Yeongdo-gu, Busan 49112, Korea; (A.-E.S.); (K.Y.)
| | - Chaeyoung Rhee
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea;
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong 06974, Korea; (W.J.S.); (H.J.S.)
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Yeongdo-gu, Busan 49112, Korea; (A.-E.S.); (K.Y.)
| | - Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong 06974, Korea; (W.J.S.); (H.J.S.)
| | | | - Sung-Cheol Koh
- Department of Environmental Engineering, Korea Maritime and Ocean University, Yeongdo-gu, Busan 49112, Korea; (A.-E.S.); (K.Y.)
- Correspondence: ; Tel.: +82-10-9900-7294
| |
Collapse
|
75
|
Bharathi D, Nandagopal JGT, Ranjithkumar R, Gupta PK, Djearamane S. Microbial approaches for sustainable remediation of dye-contaminated wastewater: a review. Arch Microbiol 2022; 204:169. [PMID: 35157149 DOI: 10.1007/s00203-022-02767-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
Abstract
The coloured effluents produced from different industries, such as textile, plastics, printing, cosmetics, leather and paper, are extremely toxic and a tremendous threat to the aquatic organisms and human beings. The removal of coloured dye pollutants from the aqueous environment is a great challenge and a pressing task. The growing demand for low-cost and efficient treatment approaches has given rise to alternative and eco-friendly methods, such as biodegradation and microbial remediation. This work summarizes the overview and current research on the remediation of dye pollutants from the aqueous environment by microbial bio-sorbents, such as bacteria, fungi, algae, and yeast. In addition, dye degradation capabilities of microbial enzymes have been highlighted and discussed. Further, the influence of various experimental parameters, such as temperature, pH, and concentrations of nutrients, and dye, has been summarized. The proposed mechanism for dye removal by microorganisms is also discussed. The object of this review is to provide a state-of-the-art of microbial remediation technologies in eliminating dye pollutants from water resources.
Collapse
Affiliation(s)
- Devaraj Bharathi
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamil Nadu, 641028, India.
| | | | | | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900, Kampar, Perak, Malaysia
| |
Collapse
|
76
|
Introducing a flexible and Y-shaped tricarboxylic acid linker into functional complex: Photocatalytic dye degradation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
77
|
Compact Carbon-Based Membrane Reactors for the Intensified Anaerobic Decolorization of Dye Effluents. MEMBRANES 2022; 12:membranes12020174. [PMID: 35207095 PMCID: PMC8877846 DOI: 10.3390/membranes12020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022]
Abstract
Carbon-based membranes integrated with anaerobic biodegradation are presented as a unique wastewater treatment approach to deal with dye effluents. This study explores the scope of ceramic-supported carbon membrane bioreactors (B-CSCM) and ceramic-supported graphene oxide membrane bioreactors (B-CSGOM) to decolorize azo dye mixtures (ADM) and other dyes. The mixture was prepared using an equimolar composition of monoazo Acid Orange 7, diazo Reactive Black 5, and triazo Direct Blue 71 dye aqueous solution. Afterwards, as in the ADM experiment, both compact units were investigated for their ability in the biodecolorization of Methylene Blue (MB) and Rhodamine B (RhB) dye solutions, which do not belong to the azo family. The obtained outcomes revealed that the conductive surface of the graphene oxide (GO) membrane resulted in a more efficient and higher color removal of all dye solutions than B-CSCM under a wide feed concentration and permeate flux ranges. The maximum color removal at low feed concentration (50 mg·L−1) and permeate flux (0.05 L·m−2·h−1) was 96% for ADM, 98% for MB and 94% for RhB, whereas it was 89%, 94% and 66%, respectively, for B-CSCM. This suggests that the robust, cost-effective, efficient nanostructures of B-CSGOM can successfully remove diverse azo dye solutions from wastewater better than the B-CSCM does.
Collapse
|
78
|
Abstract
The use of dyes dates to ancient times and has increased due to population and industrial growth, leading to the rise of synthetic dyes. These pollutants are of great environmental impact and azo dyes deserve special attention due their widespread use and challenging degradation. Among the biological solutions developed to mitigate this issue, bacteria are highlighted for being versatile organisms, which can be applied as single organism cultures, microbial consortia, in bioreactors, acting in the detoxification of azo dyes breakage by-products and have the potential to combine biodegradation with the production of products of economic interest. These characteristics go hand in hand with the ability of various strains to act under various chemical and physical parameters, such as a wide range of pH, salinity, and temperature, with good performance under industry, and environmental, relevant conditions. This review encompasses studies with promising results related to the use of bacteria in the bioremediation of environments contaminated with azo dyes in the most diverse techniques and parameters, both in environmental and laboratory samples, also addressing their mechanisms and the legislation involving these dyes around the world, showcasing the importance of bacterial bioremediation, specialty in a scenario in an ever-increasing pursuit for sustainable production.
Collapse
|
79
|
Sarvestani MRJ, Doroudi Z. A Comprehensive Review on Electroanalytical Methodologies for the Determination of Carmoisine (E122). FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02217-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
80
|
Synthesis and Characterization of High-Purity Mesoporous Alumina with Excellent Adsorption Capacity for Congo Red. MATERIALS 2022; 15:ma15030970. [PMID: 35160916 PMCID: PMC8838947 DOI: 10.3390/ma15030970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022]
Abstract
We explore a more concise process for the preparation of high-purity alumina and to address the problem of some conventional micro- and nano-adsorbents having difficulty in exposing their adsorption sites to target pollutants in solution due to the heavy aggregation of the adsorbent, which confers poor adsorption properties. The methods of using gamma-phase high-purity mesoporous alumina (HPMA), with its excellent adsorption properties and high adsorption rates of Congo Red, and of using lower-cost industrial aluminum hydroxide by direct aging and ammonium salt substitution were successfully employed. The results showed that the purity of HPMA was as high as 99.9661% and the total removal rate of impurities was 98.87%, a consequence of achieving a large specific surface area of 312.43 m2 g-1, a pore volume of 0.55 cm3 g-1, and an average pore diameter of 3.8 nm. The adsorption process was carried out at 25 °C, the concentration of Congo Red (CR) dye was fixed at 250 mg L-1 and the amount of adsorbent used was 100 mg. The HPMA sample exhibited an extremely fast adsorption rate in the first 10 min, with adsorption amounts up to 476.34 mg g-1 and adsorption efficiencies of 96.27%. The adsorption equilibrium was reached in about 60 min, at which time the adsorbed amount was 492.19 mg g-1 and the dye removal rate was as high as 98.44%. One-hundred milligrams of adsorbent were weighed and dispersed in 200-mL CR solutions with mass concentrations ranging from 50-1750 mg L-1 to study the adsorption isotherms. This revealed that the saturation adsorption capacity of the produced HPMA was 1984.64 mg g-1. Furthermore, the process of adsorbing Congo Red in the synthesized product was consistent with a pseudo-second order model and the Langmiur model. It is expected that this method of producing HPMA will provide a productive, easy and efficient means of treating toxic dyes in industrial wastewater.
Collapse
|
81
|
Ngo ACR, Qi J, Juric C, Bento I, Tischler D. Identification of molecular basis that underlie enzymatic specificity of AzoRo from Rhodococcus opacus 1CP: A potential NADH:quinone oxidoreductase. Arch Biochem Biophys 2022; 717:109123. [PMID: 35051387 DOI: 10.1016/j.abb.2022.109123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 12/15/2022]
Abstract
Azo dyes are important to various industries such as textile industries. However, these dyes are known to comprise toxic, mutagenic, and carcinogenic representatives. Several approaches have already been employed to mitigate the problem such as the use of enzymes. Azoreductases have been well-studied in its capability to reduce azo dyes. AzoRo from Rhodococcus opacus 1CP has been found to be accepting only methyl red as a substrate, surmising that the enzyme may have a narrow active site. To determine the active site configuration of AzoRo at atomic level and identify the key residues involved in substrate binding and enzyme specificity, we have determined the crystal structure of holo-AzoRo and employed a rational design approach to generate AzoRo variants. The results reported here show that AzoRo has a different configuration of the active site when compared with other bacterial NAD(P)H azoreductases, having other key residues playing a role in the substrate binding and restricting the enzyme activity towards different azo dyes. Moreover, it was observed that AzoRo has only about 50% coupling yield to methyl red and p-benzoquinone - giving rise to the possibility that NADH oxidation still occurs even during catalysis. Results also showed that AzoRo is more active and more efficient towards quinones (about four times higher than methyl red).
Collapse
Affiliation(s)
- Anna Christina R Ngo
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Jingxian Qi
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Cindy Juric
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Isabel Bento
- European Molecular Biology Laboratory, EMBL c/o DESY, Building 25A, Notkestr. 85, 22607, Hamburg, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
82
|
In vitro and in silico analysis of Brilliant Black degradation by Actinobacteria and a Paraburkholderia sp. Genomics 2022; 114:110266. [PMID: 35031427 DOI: 10.1016/j.ygeno.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022]
Abstract
The soil bacteria isolated in this study, including three strains of actinobacteria and one Paraburkholderia sp., showed decolorization activity of azo dyes in the resting cell assay and were shown to use methyl red as the sole carbon source to proliferate. Therefore, their ability to degrade, bioabsorb, or a combination of both was investigated using the substrate brilliant black. The strains DP-A9 and DP-L11, within 24 h of incubation, showed complete biodegradation of 173.54 mg/L brilliant black and the strains DP-D10 and DP-P12 showed partial decolorization of 83.3 mg/L and 36.4 mg/L, respectively, by both biosorption and biodegradation. In addition, the shotgun assembled genome of strains studied included a highly diverse set of genes encoding for candidate dye degrading enzymes, providing avenues to study azo dye metabolism in more detail.
Collapse
|
83
|
Degradation of Azo Dyes with Different Functional Groups in Simulated Wastewater by Electrocoagulation. WATER 2022. [DOI: 10.3390/w14010123] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing attention has been paid to the widespread contamination of azo dyes in water bodies globally. These chemicals can present high toxicity, possibly causing severe irritation of the respiratory tract and even carcinogenic effects. The present study focuses on the periodically reverse electrocoagulation (PREC) treatment of two typical azo dyes with different functional groups, involving methyl orange (MO) and alizarin yellow (AY), using Fe-Fe electrodes. Based upon the comparative analysis of three main parameters, including current intensity, pH, and electrolyte, the optimal color removal rates for MO and AY could be achieved at a rate of up to 98.7% and 98.6%, respectively, when the current intensity is set to 0.6 A, the pH is set at 6.0, and the electrolyte is selected as NaCl. An accurate predicted method of response surface methodology (RSM) was established to optimize the PREC process involving the three parameters above. The reaction time was the main influence for both azo dyes, while the condition of PREC treatment for AY simulated wastewater was time-saving and energy conserving. According to the further UV–Vis spectrophotometry analysis throughout the procedure of the PREC process, the removal efficiency for AY was better than that of MO, potentially because hydroxyl groups might donate electrons to iron flocs or electrolyze out hydroxyl free radicals. The present study revealed that the functional groups might pose a vital influence on the removal efficiencies of the PREC treatment for those two azo dyes.
Collapse
|
84
|
Bakaraki Turan N, Sari Erkan H, Ilhan F, Onkal Engin G. Decolorization of textile wastewater by electrooxidation process using different anode materials: Statistical optimization. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e1683. [PMID: 35044018 DOI: 10.1002/wer.1683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The presence of reactive dyes in textile wastewater is a serious environmental concern due to their associated mutagenic and carcinogenic effects. The present study aims to analyze the effect of different anodic materials on the decolorization of a real textile wastewater effluent. For this purpose, four different anodic materials-TiO2-coated platine, TiO2-coated ruthenium dioxide (RuO2) (viz., RuO2), titanium dioxide (TiO2), and graphite-were connected, respectively, to titanium dioxide (TiO2) used as a cathode electrode. Color and cost optimization studies were performed using the response surface methodology and the Box-Behnken experimental design (BBD). According to ANOVA results, the R2 values for Pt/TiO2, RuO2/TiO2, TiO2/TiO2, and graphite/TiO2 electrode pairs were found to be 97.4%, 93.8%, 92.44%, and 92.2%, respectively, indicating a good compatibility as it is close to one. The results show that color removal efficiencies at the optimal conditions were 86.3%, 90.8%, 91.5%, and 93.6% for Pt/TiO2, graphite/TiO2, TiO2/TiO2, and RuO2/TiO2, respectively. Furthermore, energy consumption cost at the optimum conditions was also evaluated, and the results were as follows: Pt/TiO2 (0.95 €/m3), graphite/TiO2 (0.74 €/m3), TiO2/TiO2 (0.31 €/m3), and RuO2/TiO2 (0.26 €/m3). Consequently, this research paper shows that all of the tested anodic materials give satisfactory color removal efficiencies higher than 86%. When energy consumption and color removal are considered together, the use of TiO2/TiO2 and RuO2/TiO2 pairs would be preferred. PRACTITIONER POINTS: Anodic contribution was investigated for decolorization of textile wastewater by electrooxidation process. Graphite, TiO2-coated Pt, TiO2-coated RuO2, and TiO2 were used as anode materials. Highest color removal with lowest energy consumption was achieved with TiO2-coated RuO2 anode material (93.6%).
Collapse
Affiliation(s)
- Nouha Bakaraki Turan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Hanife Sari Erkan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Fatih Ilhan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Guleda Onkal Engin
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
85
|
Santoso SP, Angkawijaya AE, Bundjaja V, Hsieh CW, Go AW, Yuliana M, Hsu HY, Tran-Nguyen PL, Soetaredjo FE, Ismadji S. TiO 2/guar gum hydrogel composite for adsorption and photodegradation of methylene blue. Int J Biol Macromol 2021; 193:721-733. [PMID: 34655594 DOI: 10.1016/j.ijbiomac.2021.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022]
Abstract
The development of porous adsorbent materials from renewable resources for water and wastewater treatment has received considerable interest from academia and industry. This work aims to synthesize composite hydrogel from the combination of guar gum (a neutral galactomannan polysaccharide) and TiO2. The TiO2-embedded guar gum hydrogel (TiO2@GGH) was utilized to remove methylene blue through adsorption and photodegradation. The presence of TiO2 particles in the hydrogel matrix (TiO2@GGH) was confirmed by scanning electron microscopy-energy dispersive X-ray and X-ray photoelectron spectroscopy analysis. The mercury intrusion and N2 sorption isotherm indicate the macroporous structure of the TiO2@GGH composite, showing the presence of pore sizes ~420 μm. The dye removal efficiency of the GGH and TiO2@GGH was evaluated in batch mode at ambient temperature under varying pH. The effect of UV radiation on the dye removal efficiency was also assessed. The results demonstrated that the highest dye removal was recorded at pH 10, with the equilibrium condition achieved within 5 h. UV radiation was shown to enhance dye removal. The maximum adsorption capacity of TiO2@GGH is 198.61 mg g-1, while GGH sorbent is 188.53 mg g-1. The results imply that UV radiation gives rise to the photodegradation effect.
Collapse
Affiliation(s)
- Shella Permatasari Santoso
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Jl. Kalijudan No. 37, Surabaya 60114, East Java, Indonesia; Chemical Engineering Department, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan.
| | - Artik Elisa Angkawijaya
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan
| | - Vania Bundjaja
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Xingda Road, 402, South District, Taichung City, Taiwan
| | - Alchris Woo Go
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan
| | - Maria Yuliana
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Jl. Kalijudan No. 37, Surabaya 60114, East Java, Indonesia
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Phuong Lan Tran-Nguyen
- Mechanical Engineering Department, Can Tho University, 3/2 Street, Ninh Kieu Dist., Can Tho City, Viet Nam
| | - Felycia Edi Soetaredjo
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Jl. Kalijudan No. 37, Surabaya 60114, East Java, Indonesia; Chemical Engineering Department, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan
| | - Suryadi Ismadji
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Jl. Kalijudan No. 37, Surabaya 60114, East Java, Indonesia; Chemical Engineering Department, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan
| |
Collapse
|
86
|
Mehta K, Shukla A, Saraf M. Articulating the exuberant intricacies of bacterial exopolysaccharides to purge environmental pollutants. Heliyon 2021; 7:e08446. [PMID: 34877428 PMCID: PMC8628041 DOI: 10.1016/j.heliyon.2021.e08446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Microbial exopolysaccharide (EPS) is composed of a mixture of macromolecules such as proteins, polysaccharides, humic-like compounds, and nucleic acids, which encase microbial cells in a three-dimensional matrix. The literature shows that the EPS possess significant properties such as renewable, biodegradable, eco-friendly, non-toxic, and economically valued product, representing it as a green alternative to the synthetic polymer. The cost-effective and green synthesis of the EPS must be encouraged by using agro-waste as a raw material. The main objective of the manuscript is to provide a comprehensive update on the various aspects pertaining to EPS, including the economic aspects of EPS production, provide an insight into the latest tools and techniques used for detailed structural EPS characterization along with updates in the integration of CRISPR/Cas9 technology for engineering the modification in EPS production, the role of newly discovered EPR3 as a signalling molecule in plant growth-promoting properties (PGP) or agricultural microbiology. Furthermore, the EPS achieved prospective interest prevailing potential environmental issues which can be subject to EPS treatment including, landfill leachate treatment, decolourization of dye from the effluent or waste generated by an industry, removal of radionuclides, heavy metals and toxic compounds from the various environments (aquatic and terrestrial), industry effluents, waste waters etc. are comprehensively discussed.
Collapse
Affiliation(s)
- Krina Mehta
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Arpit Shukla
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, University of Innovation, Koba Institutional Area, Gandhinagar 382426, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
- Corresponding author.
| |
Collapse
|
87
|
Thangaraj S, Bankole PO, Sadasivam SK, Kumarvel V. Biodegradation of Reactive Red 198 by textile effluent adapted microbial strains. Arch Microbiol 2021; 204:12. [PMID: 34881397 DOI: 10.1007/s00203-021-02608-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
A sustainable technology to eliminate the persistent reactive dyes from the textile effluents discharged indiscriminately in the environment is highly desirous given the explosive growth of textile industries. The present study investigated the potential of two different bacterial strains, Bacillus cereus SKB12 and Enterobacter hormaechei SKB16 isolated from the dye house effluent sludge in the biotransformation of Reactive Red 198 (RR 198). Process variables such as temperature, pH, shaking conditions and contact time were optimized for the successful decolourization of RR 198. Maximum decolourization of 80% and 85% of RR 198 was achieved at pH 6 and 7, and 40 °C in microaerophilic conditions on treatment with B. cereus and E. hormaechei, respectively. High-Performance Liquid Chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) analyses conducted further affirmed that the decolourization of RR 198 was rather due to biodegradation than biosorption through shift in wavenumbers, retention time variations and the appearance of lesser molecular weight peaks. Degradative pathway for RR 198 predicted based on the enzyme assay data and dye degraded metabolite peaks acquired through GC-MS analysis highlighted the significance of azoreductase and laccase in the degradation of RR 198 into smaller non-toxic compounds. In addition, toxicity assessment through zootoxicological and phytotoxicological experiments using brine shrimp and Vigna radiata validated the detoxified status of the metabolites thus proving the promising potentials of the bacterial strains in the remediation of azo dyes.
Collapse
Affiliation(s)
- Sheela Thangaraj
- Geobiotechnology Laboratory, National College (Autonomous), Affiliated To Bharathidasan University, Tiruchirapalli, Tamil Nadu, 620001, India
| | - Paul Olusegun Bankole
- Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
| | - Senthil Kumar Sadasivam
- Geobiotechnology Laboratory, National College (Autonomous), Affiliated To Bharathidasan University, Tiruchirapalli, Tamil Nadu, 620001, India.,PG and Research Department of Botany, National College (Autonomous), Tiruchirapalli, Tamil Nadu, 620001, India
| | - Varuna Kumarvel
- PG and Research Department of Biotechnology and Microbiology, National College (Autonomous), Tiruchirapalli, Tamil Nadu, 620001, India
| |
Collapse
|
88
|
Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation – A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
89
|
Chang BP, Gupta A, Mekonnen TH. Flame synthesis of carbon nanoparticles from corn oil as a highly effective cationic dye adsorbent. CHEMOSPHERE 2021; 282:131062. [PMID: 34102492 DOI: 10.1016/j.chemosphere.2021.131062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 05/27/2023]
Abstract
Carbon nanoparticles (CNP) were synthesized through flame deposition method from a sustainable corn oil precursor. The morphology, particle size, surface chemistry, thermal stability, and zeta potential of the CNP were characterized. The batch adsorption of a cationic dye, methylene blue (MB), by the CNP at various concentrations, pH, and temperatures was evaluated to investigate the CNP's efficacy in industrial wastewater treatment applications. Results revealed the excellent adsorption of MB onto the CNP. The experimental data were then fitted into isotherm models, kinetic models, and thermodynamic models, and the model parameters, constants, Gibb free energy, enthalpy, and entropy were calculated and discussed. Hydrogen bonding and strong electrostatic interaction were the main adsorption mechanism for MB adsorption by the CNP. The CNP exhibited a maximum adsorption capacity of 138.89 mg/g, indicating superior adsorption of MB dye without the need for any further purification and activation steps. The adsorption efficiency did not compromise as the solution temperature increased up to 60 °C, and it can further be enhanced under alkaline conditions. To simulate the practical and industrial use of the developed CNP in textile effluent treatment, successful experiments were conducted in continuous flow adsorption by allowing concentrated MB solution to flow through a designed fixed bed purification system with a CNP filter bed.
Collapse
Affiliation(s)
- Boon Peng Chang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Arvind Gupta
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada; Institute of Polymer Research, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
90
|
Sun W, Liu D, Zhang M. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2108-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
91
|
Verdel N, Rijavec T, Rybkin I, Erzin A, Velišček Ž, Pintar A, Lapanje A. Isolation, Identification, and Selection of Bacteria With Proof-of-Concept for Bioaugmentation of Whitewater From Wood-Free Paper Mills. Front Microbiol 2021; 12:758702. [PMID: 34671337 PMCID: PMC8521037 DOI: 10.3389/fmicb.2021.758702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
In the wood-free paper industry, whitewater is usually a mixture of additives for paper production. We are currently lacking an efficient, cost-effective purification technology for their removal. In closed whitewater cycles the additives accumulate, causing adverse production problems, such as the formation of slime and pitch. The aim of our study was to find an effective bio-based strategy for whitewater treatment using a selection of indigenous bacterial isolates. We first obtained a large collection of bacterial isolates and then tested them individually by simple plate and spectrophotometric methods for their ability to degrade the papermaking additives, i.e., carbohydrates, resin acids, alkyl ketene dimers, polyvinyl alcohol, latex, and azo and fluorescent dyes. We examined correlation between carbon source use, genera, and inoculum source of isolates using two multivariate methods: principal component analysis and FreeViz projection. Of the 318 bacterial isolates, we selected a consortium of four strains (Xanthomonadales bacterium sp. CST37-CF, Sphingomonas sp. BLA14-CF, Cellulosimicrobium sp. AKD4-BF and Aeromonas sp. RES19-BTP) that degrade the entire spectrum of tested additives by means of dissolved organic carbon measurements. A proof-of-concept study on a pilot scale was then performed by immobilizing the artificial consortium of the four strains and inserting them into a 33-liter, tubular flow-through reactor with a retention time of < 15 h. The consortium caused an 88% reduction in the COD of the whitewater, even after 21 days.
Collapse
Affiliation(s)
- Nada Verdel
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Iaroslav Rybkin
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anja Erzin
- Faculty of Chemistry and Chemical Technology, Graduate School, University of Ljubljana, Ljubljana, Slovenia
| | | | - Albin Pintar
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
92
|
Li HZ, Zhang YN, Guo JZ, Lv JQ, Huan WW, Li B. Preparation of hydrochar with high adsorption performance for methylene blue by co-hydrothermal carbonization of polyvinyl chloride and bamboo. BIORESOURCE TECHNOLOGY 2021; 337:125442. [PMID: 34175769 DOI: 10.1016/j.biortech.2021.125442] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Polyvinyl chloride (PVC) was blended into bamboo powder during co-hydrothermal carbonization (Co-HTC) to understand the effects on the physicochemical properties and adsorbing ability of hydrochar. The properties of hydrochar were characterized by Zeta potential, elemental analyses, BET, FTIR, XPS, Boehm titration and SEM. The addition of PVC into bamboo in Co-HTC decreased the BET area, and pore volume and radius of hydrochar, but increased the contents of surface hydroxyl and carboxyl groups. The adsorption ability of hydrochar produced by addition of PVC at 473 K over methylene blue (MB) increased significantly. The main adsorption mechanism was electrostatic attraction by -N(CH3)2+ of MB and carboxylate of hydrochar, and hydrogen-bonding interaction through N atom of phenothiazine in MB and C-OH of hydrochar. Thus, Co-HTC offers a facile, green and economical alternative for conversion of waste into high-value adsorbents.
Collapse
Affiliation(s)
- Hao-Zhe Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yu-Nan Zhang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Quan Lv
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Wei-Wei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
93
|
Fazeliyan E, Sadeghi M, Forouzandeh S, Doosti A, Mohammadi Moghadam F, Sedehi M, Emadi Z, Sadeghi R. Decolorization mechanism, identification of an FMN-dependent NADH-azoreductase from a moderately halotolerant Staphylococcus sp. MEH038S, and toxicity assessment of biotransformed metabolites. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2072-2083. [PMID: 33977577 DOI: 10.1002/wer.1580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The application of halotolerant microorganisms capable of decolorizing is attractive. Decolorization mechanism, the effect of different parameters on the decolorization percentage, and toxicity analysis of Reactive Black 5 before and after decolorization were investigated in the present study. The decolorization percentage for live cells of Staphylococcus sp. strain MEH038S was more than dead cells, which demonstrated that Reactive Black 5 was decolorized through the degradation process. The results confirmed that an FMN-dependent NADH-azoreductase gene was responsible for the decolorization and then was identified as Staphylococcus sp. EFS01 azoreductase from a moderately halotolerant Staphylococcus strain for the first time. The maximal decolorization of 98.15% was observed at pH 6.5 and 35 ° C for 50 mg/L of Reactive Black 5. In addition, more than 90% decolorization was achieved with 5-40 g/L of NaCl. The results of Gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy showed that Reactive Black 5 was broken to the lower molecular weight compounds without any chromophoric azo groups. Phytotoxicity and fish toxicity proved that the biotransformed metabolites of Reactive Black 5 degradation were more toxic than the original dye. The moderate halotolerant strain exhibited a remarkable decolorization capability and can be applied for textile wastewater treatment. PRACTITIONER POINTS: An azoreductase gene from a moderately halotolerant Staphylococcus was identified. More than 90% decolorization efficiency was observed under high-salt conditions. Biotransformed metabolites of RB5 degradation were identified. Toxicity analysis of biotransformed metabolites was investigated.
Collapse
Affiliation(s)
- Ebrahim Fazeliyan
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehraban Sadeghi
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Solieman Forouzandeh
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Islamic Azad University, Shahrekord, Iran
| | - Fazel Mohammadi Moghadam
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Sedehi
- Department of Biostatistics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Emadi
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ramin Sadeghi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
94
|
Energy-efficient removal of acid red 14 by UV-LED/persulfate advanced oxidation process: Pulsed irradiation, duty cycle, reaction kinetics, and energy consumption. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
95
|
Decolourisation and Biodegradation of Textile Di-azo Dye Congo Red by Chryseobacterium geocarposphaerae DD3. SUSTAINABILITY 2021. [DOI: 10.3390/su131910850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, Chryseobacterium geocarposphaerae DD3 isolated from textile industry dye effluent in West Bengal, India, displayed significant tolerance to sulfonated di-azo dye Congo red (CR), up to 500 ppm. The optimum decolourisation revealed that C. geocarposphaerae DD3 was capable of 96.52% decolourisation of 0.2 g L−1 CR within 12 h of treatment in the presence of 5 g L−1 glucose as supplementary carbon source. Biodegradation analysis of decolourised CR containing water was investigated by FTIR, MS and 1H NMR, which confirmed the absence of azo bond as well as the toxic aromatic amines. Further, phytotoxicity analysis was performed to assess the toxicity of CR before and after bacterial treatment. Growth indexes of Vigna radiata L. seed confirmed that the biodegraded water was non-phytotoxic in comparison to the control CR solution. Multivariate analyses confirmed the same, showing significant differences between measured plant health indicators for CR solutions, whereas no significant differences were found between distilled and treated water. This study is novel as it is the first report of dye degradation by C. geocarposphaerae and may lead to a sustainable way of treating dye-contaminated water in the near future.
Collapse
|
96
|
McLaughlin C, Bitai J, Barber LJ, Slawin AMZ, Smith AD. Catalytic enantioselective synthesis of 1,4-dihydropyridines via the addition of C(1)-ammonium enolates to pyridinium salts. Chem Sci 2021; 12:12001-12011. [PMID: 34667566 PMCID: PMC8457386 DOI: 10.1039/d1sc03860e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
The regio- and stereoselective addition of C(1)-ammonium enolates - generated in situ from aryl esters and the isothiourea catalyst (R)-BTM - to pyridinium salts bearing an electron withdrawing substituent in the 3-position allows the synthesis of a range of enantioenriched 1,4-dihydropyridines. This represents the first organocatalytic approach to pyridine dearomatisation using pronucleophiles at the carboxylic acid oxidation level. Optimisation studies revealed a significant solvent dependency upon product enantioselectivity, with only toluene providing significant asymmetric induction. Using DABCO as a base also proved beneficial for product enantioselectivity, while investigations into the nature of the counterion showed that co-ordinating bromide or chloride substrates led to higher product er than the corresponding tetrafluoroborate or hexafluorophosphate. The scope and limitations of this process are developed, with enantioselective addition to 3-cyano- or 3-sulfonylpyridinium salts giving the corresponding 1,4-dihydropyridines (15 examples, up to 95 : 5 dr and 98 : 2 er).
Collapse
Affiliation(s)
- Calum McLaughlin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Jacqueline Bitai
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Lydia J Barber
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
97
|
Nho SW, Cui X, Kweon O, Jin J, Chen H, Moon MS, Kim SJ, Cerniglia CE. Phylogenetically diverse bacteria isolated from tattoo inks, an azo dye-rich environment, decolorize a wide range of azo dyes. ANN MICROBIOL 2021; 71. [PMID: 34744534 PMCID: PMC8569640 DOI: 10.1186/s13213-021-01648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Purpose There has been an interest in the microbial azo dye degradation as an optional method for the treatment of azo dye-containing wastes. Tattoo ink is an extremely unique azo dye-rich environment, which have never been explored in terms of microorganisms capable of degrading azo dyes. Previously, we isolated 81 phylogenetically diverse bacteria, belonging to 18 genera and 52 species, contaminated in tattoo inks. In this study, we investigated if these bacteria, which can survive in the azo dye-rich environment, have an ability to degrade azo dyes. Methods We conducted a two-step azo dye degradation (or decolorization) assay. In step 1, a high-throughput degradability assay was done for 79 bacterial isolates using Methyl Red and Orange II. In step 2, a further degradation assay was done for 10 selected bacteria with a representative of 11 azo dyes, including 3 commercial tattoo ink azo dyes. Degradation of azo dyes were calculated from measuring optical absorbance of soluble dyes at specific wavelengths. Results The initial high-throughput azo dye assay (step 1) showed that 79 isolates had a complete or partial degradation of azo dyes; > 90% of Methyl Red and Orange II were degraded within 24 h, by 74 and 20 isolates, respectively. A further evaluation of azo dye degradability for 10 selected isolates in step 2 showed that the isolates, belonging to Bacillus, Brevibacillus, Paenibacillus, and Pseudomonas, exhibited an excellent decolorization ability for a wide range of azo dyes. Conclusions This study showed that phylogenetically diverse bacteria, isolated from azo dye-rich tattoo inks, is able to degrade a diverse range of azo dyes, including 3 azo dyes used in commercial tattoo inks. Some of the strains would be good candidates for future studies to provide a systematic understanding of azo dye degradation mechanisms.
Collapse
Affiliation(s)
- Seong Won Nho
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xuewen Cui
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.,Present address: Sichuan Institute for Food and Drug Control, Chengdu 611731, Sichuan, China
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Jinshan Jin
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Huizhong Chen
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Mi Sun Moon
- Office of Cosmetics and Colors, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
98
|
Pan J, Zhou L, Chen H, Liu X, Hong C, Chen D, Pan B. Mechanistically understanding adsorption of methyl orange, indigo carmine, and methylene blue onto ionic/nonionic polystyrene adsorbents. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126300. [PMID: 34111742 DOI: 10.1016/j.jhazmat.2021.126300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The involved interaction information concerning adsorbate-adsorbate and adsorbate-adsorbent is indispensable for developing and optimizing adsorption treatment of dye wastewater. Single and bi-solute adsorption of methyl orange (MO), indigo carmine (IC), and methylene blue (MB) on polystyrene anion exchanger (PsAX), defunctionalized version of PsAX (DF-PsAX), and hyper-cross-linked polystyrene adsorbent (MN200) were investigated to obtain a mechanistic understanding. Under acidic condition, higher adsorption efficiencies of PsAX due to extra intermolecular interactions of MO between the protonated tertiary amine group and the sulfate groups were observed, while strong alkaline condition is favorable for the adsorption of IC and MB by PsAX. MN200 exhibited much larger adsorption capacity toward MB than that toward MO or IC, because the fused-rings structure of MB is more polarizable and can form stronger nonionic intermolecular attractions with the matrix structure of polystyrene adsorbents. Bi-solute adsorption reveals that MO has obvious competitive effect toward IC adsorption at low concentrations, but it is not the case for the adsorption at high concentrations, where IC molecules can form intermolecular H-bonding interactions to defend the competition. the thermodynamic parameters confirm the endothermic and spontaneous nature of MO adsorption by PsAX, and ≈ 48 KJ mol-1 of the enthalpy change (∆H) imply the adsorption is not just physical absorption. Additionally, water/ethanol mixture solution of NaCl can almost thoroughly regenerate the exhausted PsAX, whereas only aqueous solution without ethanol is invalid.
Collapse
Affiliation(s)
- Junyin Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Lijia Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Haihua Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaohan Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenlu Hong
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Du Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
99
|
Mendes IV, Garcia MB, Bitencourt ACA, Santana RH, Lins PDC, Silveira R, Simmons BA, Gladden JM, Kruger RH, Quirino BF. Bacterial diversity dynamics in microbial consortia selected for lignin utilization. PLoS One 2021; 16:e0255083. [PMID: 34516585 PMCID: PMC8437272 DOI: 10.1371/journal.pone.0255083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/10/2021] [Indexed: 01/23/2023] Open
Abstract
Lignin is nature's largest source of phenolic compounds. Its recalcitrance to enzymatic conversion is still a limiting step to increase the value of lignin. Although bacteria are able to degrade lignin in nature, most studies have focused on lignin degradation by fungi. To understand which bacteria are able to use lignin as the sole carbon source, natural selection over time was used to obtain enriched microbial consortia over a 12-week period. The source of microorganisms to establish these microbial consortia were commercial and backyard compost soils. Cultivation occurred at two different temperatures, 30°C and 37°C, in defined culture media containing either Kraft lignin or alkaline-extracted lignin as carbon source. iTag DNA sequencing of bacterial 16S rDNA gene was performed for each of the consortia at six timepoints (passages). The initial bacterial richness and diversity of backyard compost soil consortia was greater than that of commercial soil consortia, and both parameters decreased after the enrichment protocol, corroborating that selection was occurring. Bacterial consortia composition tended to stabilize from the fourth passage on. After the enrichment protocol, Firmicutes phylum bacteria were predominant when lignin extracted by alkaline method was used as a carbon source, whereas Proteobacteria were predominant when Kraft lignin was used. Bray-Curtis dissimilarity calculations at genus level, visualized using NMDS plots, showed that the type of lignin used as a carbon source contributed more to differentiate the bacterial consortia than the variable temperature. The main known bacterial genera selected to use lignin as a carbon source were Altererythrobacter, Aminobacter, Bacillus, Burkholderia, Lysinibacillus, Microvirga, Mycobacterium, Ochrobactrum, Paenibacillus, Pseudomonas, Pseudoxanthomonas, Rhizobiales and Sphingobium. These selected bacterial genera can be of particular interest for studying lignin degradation and utilization, as well as for lignin-related biotechnology applications.
Collapse
Affiliation(s)
- Isis Viana Mendes
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | - Mariana Botelho Garcia
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Ana Carolina Araújo Bitencourt
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | | | - Philippe de Castro Lins
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | | | - Blake A. Simmons
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California, United States of America
| | - John M. Gladden
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California, United States of America
| | | | - Betania Ferraz Quirino
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
- Universidade Católica de Brasília, Brasília, DF, Brazil
- * E-mail: ,
| |
Collapse
|
100
|
The decolorization and degradation of azo dyes by two Stenotrophomonas strains isolated from textile effluent (Tepetitla, Mexico). Braz J Microbiol 2021; 52:1755-1767. [PMID: 34494227 DOI: 10.1007/s42770-021-00542-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/08/2021] [Indexed: 10/20/2022] Open
Abstract
Stenotrophomonas' metabolic versatility plays important roles in the remediation of contaminated environment and plant growth promotion. We investigated two Stenotrophomonas strains isolated from textile polluted sewage for their ability to decolorize and degrade azo dyes. Two Stenotrophomonas strains (TepeL and TepeS) were isolated from textile effluents (Tepetitla, Mexico) using the selective agar Stenotrophomonas vancomycin, imipenem, amphotericin B agar (SVIA). Isolates' identity was determined by the sequencing of their partial 16S rRNA fragments. Their abilities to decolorize dyes were tested in a Luria broth supplemented with varying concentrations (50 mg/L-1 g/L) of textile dyes (acidic red, methyl orange, reactive green, acidic yellow, and reactive black). Fourier-transform infrared (FTIR) spectroscopy and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) metabolite analyses were used to determine the effect of the isolates' growth on the dyes (acidic red, methyl orange). We also identified the enzymes that may be involved in the degradation process. Phylogenetic analysis based on the 16S rDNA sequences showed that the isolates belong to the genus Stenotrophomonas. Stenotrophomonas sp. TepeL and TepeS respectively decolorize all the azo dyes at the tested concentration except at 1 g/L and degraded the azo dyes. The degradation resulted in the formation of N, N-dimethyl p-phenylenediamine, and sodium 4-amino-1-naphthalenesulfonate from methyl orange and acid red. TepeL and TepeS rapidly decolorized and degraded the azo dyes tested. This result showed that the two isolates have a good potential for the decontamination of textile effluents.
Collapse
|