51
|
Crouzen JA, Petoukhova AL, Wiggenraad RGJ, Hutschemaekers S, Gadellaa-van Hooijdonk CGM, van der Voort van Zyp NCMG, Mast ME, Zindler JD. Development and evaluation of an automated EPTN-consensus based organ at risk atlas in the brain on MRI. Radiother Oncol 2022; 173:262-268. [PMID: 35714807 DOI: 10.1016/j.radonc.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE During radiotherapy treatment planning, avoidance of organs at risk (OARs) is important. An international consensus-based delineation guideline was recently published with 34 OARs in the brain. We developed an MR-based OAR autosegmentation atlas and evaluated its performance compared to manual delineation. MATERIALS AND METHODS Anonymized cerebral T1-weighted MR scans (voxel size 0.9x0.9x0.9mm 3) were available. OARs were manually delineated according to international consensus. Fifty MR scans were used to develop the autosegmentation atlas in a commercially available treatment planning system (Raystation®). The performance of this atlas was tested on another 40 MR scans by automatically delineating 34 OARs, as defined by the 2018 EPTN consensus. Spatial overlap between manual and automated delineations was determined by calculating the Dice similarity coefficient (DSC). Two radiation oncologists determined the quality of each automatically delineated OAR. The time needed to delineate all OARs manually or to adjust automatically delineated OARs was determined. RESULTS DSC was ≥0.75 in 31 (91%) out of 34 automated OAR delineations. Delineations were rated by radiation oncologists as excellent or good in 29 (85%) out 34 OAR delineations, while 4 were rated fair (12%) and 1 was rated poor (3%). Interobserver agreement between the radiation oncologists ranged from 77-100% per OAR. The time to manually delineate all OARs was 88.5 minutes, while the time needed to adjust automatically delineated OARs was 15.8 minutes. CONCLUSION Autosegmentation of OARs enables high-quality contouring within a limited time. Accurate OAR delineation helps to define OAR constraints to mitigate serious complications and helps with the development of NTCP models.
Collapse
Affiliation(s)
- Jeroen A Crouzen
- Haaglanden Medical Center, Department of Radiotherapy, BA Leidschendam, The Netherlands.
| | - Anna L Petoukhova
- Haaglanden Medical Center, Department of Medical Physics, BA Leidschendam, The Netherlands.
| | - Ruud G J Wiggenraad
- Haaglanden Medical Center, Department of Radiotherapy, BA Leidschendam, The Netherlands
| | - Stefan Hutschemaekers
- Haaglanden Medical Center, Department of Radiotherapy, BA Leidschendam, The Netherlands.
| | | | | | - Mirjam E Mast
- Haaglanden Medical Center, Department of Radiotherapy, BA Leidschendam, The Netherlands.
| | - Jaap D Zindler
- Haaglanden Medical Center, Department of Radiotherapy, BA Leidschendam, The Netherlands.
| |
Collapse
|
52
|
Mirandola A, Russo S, Bonora M, Vischioni B, Camarda AM, Ingargiola R, Molinelli S, Ronchi S, Rossi E, Vai A, Iacovelli NA, Thariat J, Ciocca M, Orlandi E. A Patient Selection Approach Based on NTCP Models and DVH Parameters for Definitive Proton Therapy in Locally Advanced Sinonasal Cancer Patients. Cancers (Basel) 2022; 14:cancers14112678. [PMID: 35681661 PMCID: PMC9179408 DOI: 10.3390/cancers14112678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022] Open
Abstract
(1) Background: In this work, we aim to provide selection criteria based on normal tissue complication probability (NTCP) models and additional explanatory dose-volume histogram parameters suitable for identifying locally advanced sinonasal cancer patients with orbital invasion benefitting from proton therapy. (2) Methods: Twenty-two patients were enrolled, and two advanced radiation techniques were compared: intensity modulated proton therapy (IMPT) and photon volumetric modulated arc therapy (VMAT). Plans were optimized with a simultaneous integrated boost modality: 70 and 56 Gy(RBE) in 35 fractions were prescribed to the high risk/low risk CTV. Several endpoints were investigated, classified for their severity and used as discriminating paradigms. In particular, when NTCP models were already available, a first selection criterion based on the delta-NTCP was adopted. Additionally, an overall analysis in terms of DVH parameters was performed. Furthermore, a second selection criterion based on a weighted sum of the ΔNTCP and ΔDVH was adopted. (3) Results: Four patients out of 22 (18.2%) were suitable for IMPT due to ΔNTCP > 3% for at least one severe toxicity, 4 (18.2%) due to ΔNTCP > 20% for at least three concurrent intermediate toxicities and 16 (72.7%) due to the mixed sum of ΔNTCP and ΔDVH criterion. Since, for some cases, both criteria were contemporary fulfilled, globally 17/22 patients (77.3%) would benefit from IMPT. (4) Conclusions: For this rare clinical scenario, the use of a strategy including DVH parameters and NTCPs when comparing VMAT and IMPT is feasible. We showed that patients affected by sinonasal cancer could profit from IMPT compared to VMAT in terms of optical and central nervous system organs at risk sparing.
Collapse
Affiliation(s)
- Alfredo Mirandola
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (S.R.); (S.M.); (E.R.); (A.V.); (M.C.)
- Correspondence: ; Tel.: +39-0382-078-514
| | - Stefania Russo
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (S.R.); (S.M.); (E.R.); (A.V.); (M.C.)
| | - Maria Bonora
- Radiotherapy Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (M.B.); (B.V.); (A.M.C.); (R.I.); (S.R.); (E.O.)
| | - Barbara Vischioni
- Radiotherapy Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (M.B.); (B.V.); (A.M.C.); (R.I.); (S.R.); (E.O.)
| | - Anna Maria Camarda
- Radiotherapy Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (M.B.); (B.V.); (A.M.C.); (R.I.); (S.R.); (E.O.)
| | - Rossana Ingargiola
- Radiotherapy Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (M.B.); (B.V.); (A.M.C.); (R.I.); (S.R.); (E.O.)
| | - Silvia Molinelli
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (S.R.); (S.M.); (E.R.); (A.V.); (M.C.)
| | - Sara Ronchi
- Radiotherapy Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (M.B.); (B.V.); (A.M.C.); (R.I.); (S.R.); (E.O.)
| | - Eleonora Rossi
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (S.R.); (S.M.); (E.R.); (A.V.); (M.C.)
| | - Alessandro Vai
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (S.R.); (S.M.); (E.R.); (A.V.); (M.C.)
| | | | - Juliette Thariat
- Department of Radiation Oncology, Françoise Baclesse Center ARCHADE, Normandy University, 14000 Caen, France;
| | - Mario Ciocca
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (S.R.); (S.M.); (E.R.); (A.V.); (M.C.)
| | - Ester Orlandi
- Radiotherapy Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (M.B.); (B.V.); (A.M.C.); (R.I.); (S.R.); (E.O.)
| |
Collapse
|
53
|
Saraf A, Pike LRG, Franck KH, Horick NK, Yeap BY, Fullerton BC, Wang IS, Abazeed ME, McKenna MJ, Mehan WA, Plotkin SR, Loeffler JS, Shih HA. Fractionated Proton Radiation Therapy and Hearing Preservation for Vestibular Schwannoma: Preliminary Analysis of a Prospective Phase 2 Clinical Trial. Neurosurgery 2022; 90:506-514. [PMID: 35229827 PMCID: PMC9514734 DOI: 10.1227/neu.0000000000001869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Local management for vestibular schwannoma (VS) is associated with excellent local control with focus on preserving long-term serviceable hearing. Fractionated proton radiation therapy (FPRT) may be associated with greater hearing preservation because of unique dosimetric properties of proton radiotherapy. OBJECTIVE To investigate hearing preservation rates of FPRT in adults with VS and secondarily assess local control and treatment-related toxicity. METHODS A prospective, single-arm, phase 2 clinical trial was conducted of patients with VS from 2010 to 2019. All patients had serviceable hearing at baseline and received FPRT to a total dose of 50.4 to 54 Gy relative biological effectiveness (RBE) over 28 to 30 fractions. Serviceable hearing preservation was defined as a Gardner-Robertson score of 1 to 2, measured by a pure tone average (PTA) of ≤50 dB and a word recognition score (WRS) of ≥50%. RESULTS Twenty patients had a median follow-up of 4.0 years (range 1.0-5.0 years). Local control at 4 years was 100%. Serviceable hearing preservation at 1 year was 53% (95% CI 29%-76%), and primary end point was not yet reached. Median PTA and median WRS both worsened 1 year after FPRT (P < .0001). WRS plateaued after 6 months, whereas PTA continued to worsen up to 1 year after FPRT. Median cochlea D90 was lower in patients with serviceable hearing at 1 year (40.6 Gy [RBE] vs 46.9 Gy [RBE]), trending toward Wilcoxon rank-sum test statistical significance (P = .0863). Treatment was well-tolerated, with one grade 1 cranial nerve V dysfunction and no grade 2+ cranial nerve dysfunction. CONCLUSION FPRT for VS did not meet the goal of serviceable hearing preservation. Higher cochlea doses trended to worsening hearing preservation, suggesting that dose to cochlea correlates with hearing preservation independent of treatment modality.
Collapse
Affiliation(s)
- Anurag Saraf
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA;
| | - Luke R. G. Pike
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA;
- Memorial Sloan Kettering Cancer Center, New York, New York, USA;
| | - Kevin H. Franck
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA;
| | - Nora K. Horick
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Beow Y. Yeap
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Barbara C. Fullerton
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA;
| | - Irene S. Wang
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Mohamed E. Abazeed
- Department of Radiation Oncology, Northwestern University, Chicago, Illinois, USA;
| | - Michael J. McKenna
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA;
| | - William A. Mehan
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Scott R. Plotkin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jay S. Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Helen A. Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA;
| |
Collapse
|
54
|
Dell'Oro M, Short M, Wilson P, Peukert D, Hua CH, Merchant TE, Bezak E. Lifetime attributable risk of radiation induced second primary cancer from scattering and scanning proton therapy - A model for out-of-field organs of paediatric patients with cranial cancer. Radiother Oncol 2022; 172:65-75. [DOI: 10.1016/j.radonc.2022.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
55
|
EANM dosimetry committee recommendations for dosimetry of 177Lu-labelled somatostatin-receptor- and PSMA-targeting ligands. Eur J Nucl Med Mol Imaging 2022; 49:1778-1809. [PMID: 35284969 PMCID: PMC9015994 DOI: 10.1007/s00259-022-05727-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.
Collapse
|
56
|
Dosimetric analysis of intraocular hemorrhage in nonsquamous head and neck cancers treated with carbon-ion radiotherapy. Radiother Oncol 2022; 170:143-150. [DOI: 10.1016/j.radonc.2022.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
|
57
|
van der Weide HL, Kłos J, Langendijk JA, Brouwer CL, Sinnige PF, Borra RJ, Dierckx RA, Huitema RB, Rakers SE, Buunk AM, Spikman JM, Bosma IB, Enting RH, Blandhol M, Chiu RK, van der Hoorn A, Kramer MC. Clinical relevance of the radiation dose bath in lower grade glioma, a cross-sectional pilot study on neurocognitive and radiological outcome. Clin Transl Radiat Oncol 2022; 33:99-105. [PMID: 35198742 PMCID: PMC8843977 DOI: 10.1016/j.ctro.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Radiation-induced brain damage as a consequence of the RT dose bath was investigated. Multiple MRI-derived metrics and neurocognitive function domains were analysed. Our novel approach accounted for confounding effects associated with lower grade glioma. Higher RT dose to the left cerebrum was associated with poorer verbal memory performance. Higher RT dose correlated with hippocampal volume.
Aim To investigate the clinical relevance of the radiotherapy (RT) dose bath in patients treated for lower grade glioma (LGG). Methods Patients (n = 17) treated with RT for LGG were assessed with neurocognitive function (NCF) tests and structural Magnetic Resonance Imaging (MRI) and categorized in subgroups based on tumour lateralisation. RT dose, volumetric results and cerebral microbleed (CMB) number were extracted for contralateral cerebrum, contralateral hippocampus, and cerebellum. The RT clinical target volume (CTV) was included in the analysis as a surrogate for focal tumour and other treatment effects. The relationships between RT dose, CTV, NCF and radiological outcome were analysed per subgroup. Results The subgroup with left-sided tumours (n = 10) performed significantly lower on verbal tests. The RT dose to the right cerebrum, as well as CTV, were related to poorer performance on tests for processing speed, attention, and visuospatial abilities, and more CMB. In the subgroup with right-sided tumours (n = 7), RT dose in the left cerebrum was related to lower verbal memory performance, (immediate and delayed recall, r = −0.821, p = 0.023 and r = −0.937, p = 0.002, respectively), and RT dose to the left hippocampus was related to hippocampal volume (r = −0.857, p = 0.014), without correlation between CTV and NCF. Conclusion By using a novel approach, we were able to investigate the clinical relevance of the RT dose bath in patients with LGG more specifically. We used combined MRI-derived and NCF outcome measures to assess radiation-induced brain damage, and observed potential RT effects on the left-sided brain resulting in lower verbal memory performance and hippocampus volume.
Collapse
|
58
|
Di Perri D, Hofstede D, Postma A, Zegers CM, In't Ven L, Hoebers F, van Elmpt W, Verheesen L, Beurskens H, Troost EG, Compter I, Eekers DB. Development of explanatory movies for the delineation of new organs at risk in neuro-oncology. Clin Transl Radiat Oncol 2022; 33:112-114. [PMID: 35243021 PMCID: PMC8857542 DOI: 10.1016/j.ctro.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022] Open
Abstract
Accurate and uniform OAR delineation is essential to gather consistent toxicity data. New OARs were introduced in the 2021 update of EPTN Neurological Contouring Atlas. We developed explanatory movies for the delineation of these OARs. This aims to facilitate the training of delineation professionals.
Ten new organs at risk (OARs) were recently introduced in the updated European Particle Therapy Network neurological contouring atlas. Despite the use of the illustrated atlas and descriptive text, interindividual contouring variations may persist. To further facilitate the contouring of these OARs, educational films were developed and published on www.cancerdata.org.
Collapse
Affiliation(s)
- Dario Di Perri
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW School for Oncology, Maastricht, the Netherlands
- Corresponding author.
| | - David Hofstede
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW School for Oncology, Maastricht, the Netherlands
| | - Alida Postma
- Department of Radiology and Nuclear Medicine MUMC+, Maastricht, the Netherlands
| | - Catharina M.L. Zegers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW School for Oncology, Maastricht, the Netherlands
| | - Lieke In't Ven
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW School for Oncology, Maastricht, the Netherlands
| | - Frank Hoebers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW School for Oncology, Maastricht, the Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW School for Oncology, Maastricht, the Netherlands
| | - Lindsey Verheesen
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW School for Oncology, Maastricht, the Netherlands
| | - Hilde Beurskens
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW School for Oncology, Maastricht, the Netherlands
| | - Esther G.C. Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf Dresden, Germany
- German Cancer Consortium (DKTK), Partnersite Dresden and German Cancer Research Center (DKFZ), Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
| | - Inge Compter
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW School for Oncology, Maastricht, the Netherlands
| | - Danielle B.P. Eekers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW School for Oncology, Maastricht, the Netherlands
| |
Collapse
|
59
|
Mein S, Kopp B, Vela A, Dutheil P, Lesueur P, Stefan D, Debus J, Haberer T, Abdollahi A, Mairani A, Tessonnier T. How can we consider variable RBE and LET d prediction during clinical practice? A pediatric case report at the Normandy Proton Therapy Centre using an independent dose engine. Radiat Oncol 2022; 17:23. [PMID: 35120547 PMCID: PMC8815260 DOI: 10.1186/s13014-021-01960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To develop an auxiliary GPU-accelerated proton therapy (PT) dose and LETd engine for the IBA Proteus®ONE PT system. A pediatric low-grade glioma case study is reported using FRoG during clinical practice, highlighting potential treatment planning insights using variable RBE dose (DvRBE) and LETd as indicators for clinical decision making in PT. METHODS The physics engine for FRoG has been modified for compatibility with Proteus®ONE PT centers. Subsequently, FRoG was installed and commissioned at NPTC. Dosimetric validation was performed against measurements and the clinical TPS, RayStation (RS-MC). A head patient cohort previously treated at NPTC was collected and FRoG forward calculations were compared against RS-MC for evaluation of 3D-Γ analysis and dose volume histogram (DVH) results. Currently, treatment design at NPTC is supported with fast variable RBE and LETd calculation and is reported in a representative case for pediatric low-grade glioma. RESULTS Simple dosimetric tests against measurements of iso-energy layers and spread-out Bragg Peaks in water verified accuracy of FRoG and RS-MC. Among the patient cohort, average 3D-Γ applying 2%/2 mm, 3%/1.5 mm and 5%/1 mm were > 97%. DVH metrics for targets and OARs between FRoG and RayStation were in good agreement, with ∆D50,CTV and ∆D2,OAR both ⪅1%. The pediatric case report demonstrated implications of different beam arrangements on DvRBE and LETd distributions. From initial planning in RayStation sharing identical optimization constraints, FRoG analysis led to plan selection of the most conservative approach, i.e., minimized DvRBE,max and LETd,max in OARs, to avoid optical system toxicity effects (i.e., vision loss). CONCLUSION An auxiliary dose calculation system was successfully integrated into the clinical workflow at a Proteus®ONE IBA facility, in excellent agreement with measurements and RS-MC. FRoG may lead to further insight on DvRBE and LETd implications to help clinical decision making, better understand unexpected toxicities and establish novel clinical procedures with metrics currently absent from the standard clinical TPS.
Collapse
Affiliation(s)
- Stewart Mein
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Benedikt Kopp
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Anthony Vela
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Pauline Dutheil
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Paul Lesueur
- Radiation Oncology Department, Centre François Baclesse, Caen, France
- Radiation Oncology Department, Centre Guillaume Le Conquérant, Le Havre, France
- ISTCT UMR6030-CNRS, CEA, Université de Caen-Normandie, Equipe CERVOxy, Caen, France
| | - Dinu Stefan
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Andrea Mairani
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
- National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | - Thomas Tessonnier
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany.
- Radiation Oncology Department, Centre François Baclesse, Caen, France.
| |
Collapse
|
60
|
Engeseth GM, Hysing LB, Yepes P, Pettersen HES, Mohan R, Fuller CD, Stokkevåg CH, Wu R, Zhang X, Frank SJ, Gunn GB. Impact of RBE variations on risk estimates of temporal lobe necrosis in patients treated with intensity-modulated proton therapy for head and neck cancer. Acta Oncol 2022; 61:215-222. [PMID: 34534047 PMCID: PMC9969227 DOI: 10.1080/0284186x.2021.1979248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Temporal lobe necrosis (TLN) is a potential late effect after radiotherapy for skull base head and neck cancer (HNC). Several photon-derived dose constraints and normal tissue complication probability (NTCP) models have been proposed, however variation in relative biological effectiveness (RBE) may challenge the applicability of these dose constraints and models in proton therapy. The purpose of this study was therefore to investigate the influence of RBE variations on risk estimates of TLN after Intensity-Modulated Proton Therapy for HNC. MATERIAL AND METHODS Seventy-five temporal lobes from 45 previously treated patients were included in the analysis. Sixteen temporal lobes had radiation associated Magnetic Resonance image changes (TLIC) suspected to be early signs of TLN. Fixed (RWDFix) and variable RBE-weighed doses (RWDVar) were calculated using RBE = 1.1 and two RBE models, respectively. RWDFix and RWDVar for temporal lobes were compared using Friedman's test. Based on RWDFix, six NTCP models were fitted and internally validated through bootstrapping. Estimated probabilities from RWDFix and RWDVar were compared using paired Wilcoxon test. Seven dose constraints were evaluated separately for RWDFix and RWDVar by calculating the observed proportion of TLIC in temporal lobes meeting the specific dose constraints. RESULTS RWDVar were significantly higher than RWDFix (p < 0.01). NTCP model performance was good (AUC:0.79-0.84). The median difference in estimated probability between RWDFix and RWDVar ranged between 5.3% and 20.0% points (p < 0.01), with V60GyRBE and DMax at the smallest and largest differences, respectively. The proportion of TLIC was higher for RWDFix (4.0%-13.1%) versus RWDVar (1.3%-5.3%). For V65GyRBE ≤ 0.03 cc the proportion of TLIC was less than 5% for both RWDFix and RWDVar. CONCLUSION NTCP estimates were significantly influenced by RBE variations. Dmax as model predictor resulted in the largest deviations in risk estimates between RWDFix and RWDVar. V65GyRBE ≤ 0.03 cc was the most consistent dose constraint for RWDFix and RWDVar.
Collapse
Affiliation(s)
- Grete May Engeseth
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA,Haukeland University Hospital, Department of Oncology and Medical Physics, Bergen, Norway,University of Bergen, Department of Clinical Science, Bergen, Norway,Corresponding author: Grete May Engeseth, , Haukeland University Hospital, Department of Oncology and Medical Physics, Postboks 1400, 5021 Bergen
| | - Liv Bolstad Hysing
- Haukeland University Hospital, Department of Oncology and Medical Physics, Bergen, Norway,University of Bergen, Department of Physics and Technology, Bergen, Norway
| | - Pablo Yepes
- Rice University, Physics and Astronomy Department, Houston, USA
| | | | - Rahde Mohan
- University of Texas MD Anderson Cancer Center, Department of Radiation Physics, Houston, USA
| | - Clifton Dave Fuller
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| | - Camilla Hanquist Stokkevåg
- Haukeland University Hospital, Department of Oncology and Medical Physics, Bergen, Norway,University of Bergen, Department of Physics and Technology, Bergen, Norway
| | - Richard Wu
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| | - Xiaodong Zhang
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| | - Steven Jay Frank
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| | - Gary Brandon Gunn
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| |
Collapse
|
61
|
The european particle therapy network (EPTN) consensus on the follow-up of adult patients with brain and skull base tumours treated with photon or proton irradiation. Radiother Oncol 2022; 168:241-249. [DOI: 10.1016/j.radonc.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
|
62
|
Normal Tissue Complication Probability Modelling for Toxicity Prediction and Patient Selection in Proton Beam Therapy to the Central Nervous System: A Literature Review. Clin Oncol (R Coll Radiol) 2022; 34:e225-e237. [DOI: 10.1016/j.clon.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
|
63
|
Abstract
Dose constraints are essential for performing dosimetry, especially for intensity modulation and for radiotherapy under stereotaxic conditions. We present the update of the recommendations of the French society of oncological radiotherapy for the use of these doses in classical current practice but also for reirradiation.
Collapse
Affiliation(s)
- G Noël
- Département de radiothérapie-oncologie, Institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France.
| | - D Antoni
- Département de radiothérapie-oncologie, Institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France
| |
Collapse
|
64
|
Abstract
We present the update of the recommendations of the French society of radiotherapy and oncology on the indications and the technical methods of carrying out radiotherapy of sinonasal cancers. Sinonasal cancers (nasal fossae and sinus) account for 3 to 5% of all cancers of the head and neck. They include carcinomas, mucosal melanomas, sarcomas and lymphomas. The management of sinonasal cancers is multidisciplinary but less standardized than that of squamous cell carcinomas of the upper aerodigestive tract. As such, patients with sinonasal tumors can benefit from the expertise of the French expertise network for rare ENT cancers (Refcor). Knowledge of sinonasal tumour characteristics (histology, grade, risk of lymph node involvement, molecular characterization, type of surgery) is critical to the determination of target volumes. An update of multidisciplinary indications and recommendations for radiotherapy in terms of techniques, target volumes and radiotherapy fractionation of the French society of radiotherapy and oncology (SFRO) was reported in this manuscript.
Collapse
|
65
|
Liu J, Wang W, Zhou Y, Gan C, Wang T, Hu Z, Lou J, Wang H, Yang LZ, Wong STC, Li H. Early-Onset Micromorphological Changes of Neuronal Fiber Bundles During Radiotherapy. J Magn Reson Imaging 2021; 56:210-218. [PMID: 34854521 DOI: 10.1002/jmri.28018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients receiving cranial radiation face the risk of delayed brain dysfunction. However, an early medical imaging marker is not available until irreversible morphological changes emerge. PURPOSE To explore the micromorphological white matter changes during the radiotherapy session by utilizing an along-tract analysis framework. STUDY TYPE Prospective. POPULATION Eighteen nasopharyngeal carcinoma (two female) patients receiving cranial radiation. FIELD STRENGTH/SEQUENCE 3.0 T; Diffusion tensor imaging (DTI) and T1- and T2-weighted images (T1W, T2W); computed tomography (CT). ASSESSMENT Patients received three DTI imaging scans during the radiotherapy (RT), namely the baseline scan (1-2 days before RT began), the middle scan (the middle of the RT session), and the end scan (1-2 days after RT ended). Twelve fibers were segmented after whole-brain tractography. Then, the fractional anisotropy (FA) values and the cumulative radiation dose received for each fiber streamline were resampled and projected into their center fiber. STATISTICAL TESTS The contrast among the three scans (P1: middle scan-baseline scan; P2: end scan-middle scan; P3: end scan-baseline scan) were compared using the linear mixed model for each of the 12 center fibers. Then, a dose-responsiveness relationship was performed using Pearson correlation. P < 0.05 was considered statistically significant. RESULTS Six of the 12 center fibers showed significant changes of FA values during the RT but with heterogeneous patterns. The significant changes along a specific center fiber were associated with their cumulative dose received (Genu: P1 r = -0.6182, P2 r = -0.5907; Splenium: P1 r = 0.4055, P = 0.1063, P2 r = 0.6742; right uncinate fasciculus: P1 r = -0.3865, P2 r = -0.4912, P = 0.0533; right corticospinal tract: P1 r = 0.4273, P = 0.1122, P2 r = -0.6885). DATA CONCLUSION The along-tract analysis might provide sensitive measures on the early-onset micromorphological changes. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Jin Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Wenjuan Wang
- University of Science and Technology of China, Hefei, China.,Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China.,School of Science, Anhui Agricultural University, Hefei, China
| | - Yanfei Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Chen Gan
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Tengfei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Zongtao Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Jianjun Lou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Li-Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Houston, Texas, USA.,Department of Radiology and Neurosciences, Weill Cornell Medical College, Cornell University, Houston, Texas, USA
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
66
|
Abstract
OBJECTIVE To assess the efficacy and toxicity of proton radiotherapy in vestibular schwannoma. STUDY DESIGN Retrospective chart review and volumetric MRI-analyses. SETTING Tertiary referral center. PATIENTS Vestibular schwannoma patients treated with protons between 2003 and 2018. INTERVENTION Proton radiotherapy. MAIN OUTCOME MEASURES Tumor control was defined as not requiring salvage treatment. Progressive hearing loss was defined as a decrease in maximum speech discrimination score below the 95% critical difference in reference to the pretreatment score. Hearing assessment includes contralateral hearing and duration of follow-up. Dizziness and/or unsteadiness and facial and trigeminal nerve function were scored. Patients who had surgery prior to proton radiotherapy were separately assessed. RESULTS Of 221 included patients, 136 received single fraction and 85 fractionated proton radiotherapy. Actuarial 5-year local control rate was 96% (95% CI 90-98%). The median radiological follow-up was 4.5 years. Progressive postirradiation speech discrimination score loss occurred in 42% of patients with audiometric follow-up within a year. Facial paresis was found in 5% (usually mild), severe dizziness in 5%, and trigeminal neuralgia in 5% of patients receiving protons as primary treatment. CONCLUSIONS Proton radiotherapy achieves high tumor control with modest side effects aside from hearing loss in vestibular schwannoma patients. Limited and heterogeneous outcome reporting hamper comparisons to the literature. Potential sequelae of radiation therapy impacting vestibular function, cognitive function, and quality of life warrant further evaluation. Subgroups that benefit most from proton radiotherapy should be identified to optimize allocation and counterbalance its costs.
Collapse
|
67
|
Lis M, Newhauser W, Donetti M, Wolf M, Steinsberger T, Paz A, Graeff C. Preliminary tests of dosimetric quality and projected therapeutic outcomes of multi-phase 4D radiotherapy with proton and carbon ion beams. Phys Med Biol 2021; 66. [PMID: 34740202 DOI: 10.1088/1361-6560/ac36e7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022]
Abstract
Objective. The purpose of this study was to perform preliminary pre-clinical tests to compare the dosimetric quality of two approaches to treating moving tumors with ion beams: synchronously delivering the beam with the motion of a moving planning target volume (PTV) using the recently developed multi-phase 4D dose delivery (MP4D) approach, and asynchronously delivering the ion beam to a motion-encompassing internal tumor volume (ITV) combined with rescanning.Approach. We created 4D optimized treatment plans with proton and carbon ion beams for two patients who had previously received treatment for non-small cell lung cancer. For each patient, we created several treatment plans, using approaches with and without motion mitigation: MP4D, ITV with rescanning, static deliveries to a stationary PTV, and deliveries to a moving tumor without motion compensation. Two sets of plans were optimized with margins or robust uncertainty scenarios. Each treatment plan was delivered using a recently-developed motion-synchronized dose delivery system (M-DDS); dose distributions in water were compared to measurements using gamma index analysis to confirm the accuracy of the calculations. Reconstructed dose distributions on the patient CT were analyzed to assess the dosimetric quality of the deliveries (conformity, uniformity, tumor coverage, and extent of hotspots).Main results. Gamma index analysis pass rates confirmed the accuracy of dose calculations. Dose coverage was >95% for all static and MP4D treatments. The best conformity and the lowest lung doses were achieved with MP4D deliveries. Robust optimization led to higher lung doses compared to conventional optimization for ITV deliveries, but not for MP4D deliveries.Significance. We compared dosimetric quality for two approaches to treating moving tumors with ion beams. Our findings suggest that the MP4D approach, using an M-DDS, provides conformal motion mitigation, with full target coverage and lower OAR doses.
Collapse
Affiliation(s)
- Michelle Lis
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, United States of America.,Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.,Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, German
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, United States of America.,Department of Radiation Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, United States of America
| | - Marco Donetti
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Moritz Wolf
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Timo Steinsberger
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.,Institute of Condensed Matter Physics, Technical University of Darmstadt, Germany
| | - Athena Paz
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Christian Graeff
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
68
|
Dell'Oro M, Wilson P, Short M, Hua CH, Merchant TE, Bezak E. Normal tissue complication probability modeling to guide individual treatment planning in pediatric cranial proton and photon radiotherapy. Med Phys 2021; 49:742-755. [PMID: 34796509 DOI: 10.1002/mp.15360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Proton therapy (PT) is broadly accepted as the gold standard of care for pediatric patients with cranial cancer. The superior dose distribution of PT compared to photon radiotherapy reduces normal tissue complication probability (NTCP) for organs at risk. As NTCPs for pediatric organs are not well understood, clinics generally base radiation response on adult data. However, there is evidence that radiation response strongly depends on the age and even sex of a patient. Furthermore, questions surround the influence of individual intrinsic radiosensitivity (α/β ratio) on pediatric NTCP. While the clinical pediatric NTCP data is scarce, radiobiological modeling and sensitivity analyses can be used to investigate the NTCP trends and its dependence on individual modeling parameters. The purpose of this study was to perform sensitivity analyses of NTCP models to ascertain the dependence of radiosensitivity, sex, and age of a child and predict cranial side-effects following intensity-modulated proton therapy (IMPT) and intensity-modulated radiotherapy (IMRT). METHODS Previously, six sex-matched pediatric cranial datasets (5, 9, and 13 years old) were planned in Varian Eclipse treatment planning system (13.7). Up to 108 scanning beam IMPT plans and 108 IMRT plans were retrospectively optimized for a range of simulated target volumes and locations. In this work, dose-volume histograms were extracted and imported into BioSuite Software for radiobiological modeling. Relative-Seriality and Lyman-Kutcher-Burman models were used to calculate NTCP values for toxicity endpoints, where TD50, (based on reported adult clinical data) was varied to simulate sex dependence of NTCP. Plausible parameter ranges, based on published literature for adults, were used in modeling. In addition to sensitivity analyses, a 20% difference in TD50 was used to represent the radiosensitivity between the sexes (with females considered more radiosensitive) for ease of data comparison as a function of parameters such as α/β ratio. RESULTS IMPT plans resulted in lower NTCP compared to IMRT across all models (p < 0.0001). For medulloblastoma treatment, the risk of brainstem necrosis (> 10%) and cochlea tinnitus (> 20%) among females could potentially be underestimated considering a lower TD50 value for females. Sensitivity analyses show that the difference in NTCP between sexes was significant (p < 0.0001). Similarly, both brainstem necrosis and cochlea tinnitus NTCP varied significantly (p < 0.0001) across tested α/β as a function of TD50 values (assumption being that TD50 values are 20% lower in females). If the true α/β of these pediatric tissues is higher than expected (α/β ∼ 3), the risk of tinnitus for IMRT can significantly increase (p < 0.0001). CONCLUSION Due to the scarcity of pediatric NTCP data available, sensitivity analyses were performed using plausible ranges based on published adult data. In the clinical scenario where, if female pediatric patients were 20% more radiosensitive (lower TD50 value), they could be up to twice as likely to experience side-effects of brainstem necrosis and cochlea tinnitus compared to males, highlighting the need for considering the sex in NTCP models. Based on our sensitivity analyses, age and sex of a pediatric patient could significantly affect the resultant NTCP from cranial radiotherapy, especially at higher α/β values.
Collapse
Affiliation(s)
- Mikaela Dell'Oro
- Cancer Research Institute, University of South Australia, Adelaide, Australia.,Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, Australia
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, Australia.,UniSA STEM, University of South Australia, Adelaide, Australia
| | - Michala Short
- Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, Australia.,Department of Physics, University of Adelaide, Adelaide, Australia
| |
Collapse
|
69
|
Haldbo-Classen L, Amidi A, Wu L, Lukacova S, Oettingen G, Lassen-Ramshad Y, Zachariae R, Kallehauge J, Høyer M. Associations between patient-reported outcomes and radiation dose in patients treated with radiation therapy for primary brain tumours. Clin Transl Radiat Oncol 2021; 31:86-92. [PMID: 34693039 PMCID: PMC8515293 DOI: 10.1016/j.ctro.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
AIM This study aimed to explore associations between radiation dose and patient-reported outcomes in patients with a primary non-glioblastoma brain tumour treated with radiation therapy (RT), with a focus on health-related quality-of-life (HRQoL) and self-reported cognitive function. METHODS In this cross-sectional study, 78 patients who had received RT for a non-glioblastoma primary brain tumour, underwent neuropsychological testing and completed questionnaires on HRQoL, cognitive function, fatigue, depression, anxiety and perceived stress. The study explores the association between HRQoL scores, self-reported cognitive function and radiation doses to total brain, brainstem, hippocampus, thalamus, temporal lobes and frontal lobes. In addition, we examined correlations between neuropsychological test scores and self-reported cognitive function. RESULTS The median time between RT and testing was 4.6 years (range 1-9 years). Patients who had received high mean radiation doses to the total brain had low HRQoL scores (Cohen's d = 0.50, p = 0.04), brainstem (d = 0.65, p = 0.01) and hippocampus (d = 0.66, p = 0.01). High mean doses to the total brain were also associated with low scores on self-reported cognitive functioning (Cohen's d = 0.64, p = 0.02), brainstem (d = 0.55, p = 0.03), hippocampus (d = 0.76, p < 0.01), temporal lobes (d = 0.70, p < 0.01) and thalamus (d = 0.64, p = 0.01). Self-reported cognitive function correlated well with neuropsychological test scores (correlation range 0.27-0.54.). CONCLUSIONS High radiation doses to specific brain structures may be associated with impaired HRQoL and self-reported cognitive function with potentially negative implications to patients' daily lives. Patient-reported outcomes of treatment-related side-effects and their associations with radiation doses to the brain and its sub-structures may provide important information on radiation tolerance to the brain and sub-structures.
Collapse
Affiliation(s)
| | - A. Amidi
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Unit for Psychooncology and Health Psychology, Department of Psychology and Behavioural Sciences, Aarhus University, Denmark
| | - L.M. Wu
- Unit for Psychooncology and Health Psychology, Department of Psychology and Behavioural Sciences, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Denmark
| | - S. Lukacova
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - G. Oettingen
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Y. Lassen-Ramshad
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - R. Zachariae
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Unit for Psychooncology and Health Psychology, Department of Psychology and Behavioural Sciences, Aarhus University, Denmark
| | - J.F. Kallehauge
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - M. Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
70
|
A Prospective Study on Health-Related Quality of Life and Patient-Reported Outcomes in Adult Brain Tumor Patients Treated with Pencil Beam Scanning Proton Therapy. Cancers (Basel) 2021; 13:cancers13194892. [PMID: 34638375 PMCID: PMC8507714 DOI: 10.3390/cancers13194892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Proton therapy (PT) is delivered to complex brain tumors to obtain an optimal curative treatment with limited toxicity. Value-based oncological medicine is increasingly important, particularly when long-term survival is to be expected. This study aims to evaluate health-related quality of life (HRQOL) and patient reported outcomes (PROs) in patients treated with PT for brain tumors. Adult patients with brain tumors treated with PT filled out the EORTC-QLQ-C30 and BN20 questionnaires up to three years following PT. Toxicity was scored using the CTCAE v4.03. QoL and PRO were correlated to clinical factors. Three-year overall survival, distant brain control and local control rates were 98%, 97% and 84%, respectively. No ≥G3 acute toxicity was observed. Late PT-related ≥G3 severe toxicity occurred in seven patients (5.7%). Lower global QoL scores after PT were significantly correlated to low Karnofsky performance status (KPS) before PT (p = 0.001), surgical complications before PT (p = 0.04) and progressive disease (p = 0.017). A low QLQ-30 summary score at one year follow-up was correlated to sex (p = 0.015), low KPS before PT (p < 0.001), and central nervous system symptoms before PT (p = 0.018). Reported QLQ-BN20 neurological symptoms were correlated to lower KPS at baseline (p < 0.001) and surgical complications before PT (p = 0.03). PT-related toxicity only influenced reported symptoms directly following PT, but not QoL. Although global QoL temporarily decreased after treatment, it improved again from one year onwards. Global QoL and reported symptoms over time were not correlated with the proton therapy and were more related to preexisting symptoms and progressive disease. This study assists in improving patient support in patients with brain tumors receiving PT.
Collapse
|
71
|
Sun W, Chen K, Li Y, Xia W, Dong L, Shi Y, Ge C, Yang X, Wang L, Wang H. Optimization of collimator angles in dual-arc volumetric modulated arc therapy planning for whole-brain radiotherapy with hippocampus and inner ear sparing. Sci Rep 2021; 11:19035. [PMID: 34561504 PMCID: PMC8463591 DOI: 10.1038/s41598-021-98530-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
To optimize the collimator angles in dual-arc volumetric modulated arc therapy (VMAT) plans for whole-brain radiotherapy with hippocampus and inner ear sparing (HIS-WBRT). Two sets of dual-arc VMAT plans were generated for 13 small-cell lung cancer patients: (1) The collimator angles of arcs 1 and 2 (θ1/θ2) were 350°/10°, 350°/30°, 350°/45°, 350°/60°, and 350°/80°, i.e., the intersection angle of θ1 and θ2 (Δθ) increased. (2) θ1/θ2 were 280°/10°, 300°/30°, 315°/45°, 330°/60°, and 350°/80°, i.e., Δθ = 90°. The conformity index (CI), homogeneity index (HI), monitor units (MUs), and dosimetric parameters of organs-at-risk were analyzed. Quality assurance for Δθ = 90° plans was performed. With Δθ increasing towards 90°, a significant improvement was observed for most parameters. In 350°/80° plans compared with 350°/10° ones, CI and HI were improved by 1.1% and 25.2%, respectively; MUs were reduced by 16.2%; minimum, maximum, and mean doses (D100%, Dmax, and Dmean, respectively) to the hippocampus were reduced by 5.5%, 6.3%, and 5.4%, respectively; Dmean to the inner ear and eye were reduced by 0.7% and 5.1%, respectively. With Δθ kept at 90°, the plan quality was not significantly affected by θ1/θ2 combinations. The gamma-index passing rates in 280°/10° and 350°/80° plans were relatively lower compared with the other Δθ = 90° plans. Δθ showed a significant effect on dual-arc VMAT plans for HIS-WBRT. With Δθ approaching 90°, the plan quality exhibited a nearly continuous improvement, whereas with Δθ = 90°, the effect of θ1/θ2 combination was insignificant.
Collapse
Affiliation(s)
- Wuji Sun
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Kunzhi Chen
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yu Li
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wenming Xia
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lihua Dong
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yinghua Shi
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chao Ge
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xu Yang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Libo Wang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Huidong Wang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
72
|
Boscolo D, Kostyleva D, Safari MJ, Anagnostatou V, Äystö J, Bagchi S, Binder T, Dedes G, Dendooven P, Dickel T, Drozd V, Franczack B, Geissel H, Gianoli C, Graeff C, Grahn T, Greiner F, Haettner E, Haghani R, Harakeh MN, Horst F, Hornung C, Hucka JP, Kalantar-Nayestanaki N, Kazantseva E, Kindler B, Knöbel R, Kuzminchuk-Feuerstein N, Lommel B, Mukha I, Nociforo C, Ishikawa S, Lovatti G, Nitta M, Ozoemelam I, Pietri S, Plaß WR, Prochazka A, Purushothaman S, Reidel CA, Roesch H, Schirru F, Schuy C, Sokol O, Steinsberger T, Tanaka YK, Tanihata I, Thirolf P, Tinganelli W, Voss B, Weber U, Weick H, Winfield JS, Winkler M, Zhao J, Scheidenberger C, Parodi K, Durante M. Radioactive Beams for Image-Guided Particle Therapy: The BARB Experiment at GSI. Front Oncol 2021; 11:737050. [PMID: 34504803 PMCID: PMC8422860 DOI: 10.3389/fonc.2021.737050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.
Collapse
Affiliation(s)
- Daria Boscolo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Daria Kostyleva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Juha Äystö
- University of Jyväskylä, Jyväskylä, Finland.,Helsinki Institute of Physics, Helsinki, Finland
| | | | - Tim Binder
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Timo Dickel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Vasyl Drozd
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,University of Groningen, Groningen, Netherlands
| | | | - Hans Geissel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tuomas Grahn
- University of Jyväskylä, Jyväskylä, Finland.,Helsinki Institute of Physics, Helsinki, Finland
| | - Florian Greiner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Emma Haettner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Christine Hornung
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | - Jan-Paul Hucka
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Erika Kazantseva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Birgit Kindler
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ronja Knöbel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Bettina Lommel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ivan Mukha
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Chiara Nociforo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | | | | | - Stephane Pietri
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Wolfgang R Plaß
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | | | | | - Heidi Roesch
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | - Fabio Schirru
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Olga Sokol
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Timo Steinsberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Isao Tanihata
- Research Center for Nuclear Physics, Osaka University, Osaka, Japan.,Peking University, Beijing, China.,Institute of Modern Physics, Lanzhou, China
| | - Peter Thirolf
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Bernd Voss
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Helmut Weick
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - John S Winfield
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Martin Winkler
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Jianwei Zhao
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Peking University, Beijing, China
| | - Christoph Scheidenberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
73
|
Sørensen BS, Pawelke J, Bauer J, Burnet NG, Dasu A, Høyer M, Karger CP, Krause M, Schwarz M, Underwood TSA, Wagenaar D, Whitfield GA, Lühr A. Does the uncertainty in relative biological effectiveness affect patient treatment in proton therapy? Radiother Oncol 2021; 163:177-184. [PMID: 34480959 DOI: 10.1016/j.radonc.2021.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Clinical treatment with protons uses the concept of relative biological effectiveness (RBE) to convert the absorbed dose into an RBE-weighted dose that equals the dose for radiotherapy with photons causing the same biological effect. Currently, in proton therapy a constant RBE of 1.1 is generically used. However, empirical data indicate that the RBE is not constant, but increases at the distal edge of the proton beam. This increase in RBE is of concern, as the clinical impact is still unresolved, and clinical studies demonstrating a clinical effect of an increased RBE are emerging. Within the European Particle Therapy Network (EPTN) work package 6 on radiobiology and RBE, a workshop was held in February 2020 in Manchester with one day of discussion dedicated to the impact of proton RBE in a clinical context. Current data on RBE effects, patient outcome and modelling from experimental as well as clinical studies were presented and discussed. Furthermore, representatives from European clinical proton therapy centres, who were involved in patient treatment, laid out their current clinical practice on how to consider the risk of a variable RBE in their centres. In line with the workshop, this work considers the actual impact of RBE issues on patient care in proton therapy by reviewing preclinical data on the relation between linear energy transfer (LET) and RBE, current clinical data sets on RBE effects in patients, and applied clinical strategies to manage RBE uncertainties. A better understanding of the variability in RBE would allow development of proton treatments which are safer and more effective.
Collapse
Affiliation(s)
- Brita S Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Jörg Pawelke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Julia Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | | | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden; Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Christian P Karger
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium Dresden and German Cancer Research Center Heidelberg, Germany; Dept. of Radiation Oncology, University Hospital and Faculty of Medicine C.G. Carus, Dresden, Germany; National Center for Tumor Diseases Dresden, German Cancer Research Center Heidelberg, University Hospital and Faculty of Medicine C.G. Carus Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Marco Schwarz
- Protontherapy Department -Trento Hospital, and TIFPA-INFN, Trento, Italy
| | - Tracy S A Underwood
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, UK
| | - Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gillian A Whitfield
- The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, UK
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
74
|
Partoune E, Virzi M, Vander Veken L, Renard L, Maiter D. Occurrence of pituitary hormone deficits in relation to both pituitary and hypothalamic doses after radiotherapy for skull base meningioma. Clin Endocrinol (Oxf) 2021; 95:460-468. [PMID: 34028837 DOI: 10.1111/cen.14499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022]
Abstract
CONTEXT Little accurate information is available regarding the risk of hypopituitarism after irradiation of skull base meningiomas. DESIGN Retrospective study in a single centre. PATIENTS 48 patients with a skull base meningioma and normal pituitary function at diagnosis, treated with radiotherapy (RXT) between 1998 and 2017 (median follow-up of 90 months). MEASUREMENTS The GH, TSH, LH/FSH and ACTH hormonal axes were evaluated yearly for the entire follow-up period. Mean doses delivered to the pituitary gland (PitD) and the hypothalamus (HypoD) were calculated, as well as the doses responsible for the development of deficits in 50% of patients after 5 years (TD50). RESULTS At least one hormone deficit was observed in 38% of irradiated patients and complete hypopituitarism in 13%. The GH (35%), TSH (32%) and LH/FSH axes (28%) were the most frequently affected, while ACTH secretion axis was less altered (13%). The risk of hypopituitarism was independently related to planning target volume (PTV) and to the PitD (threshold dose 45 Gy; TD50 between 50 and 54 Gy). In this series, the risk was less influenced by the HypoD, increasing steadily between doses of 15 and 70 Gy with no clear-cut dose threshold. CONCLUSIONS Over a median follow-up period of 7.5 years, hypopituitarism occurred in more than one third of patients irradiated for a skull base meningioma, and this prevalence was time- and dose-dependent. In this setting, the risk of developing hypopituitarism was mainly determined by the irradiated target volume and by the dose delivered to the pituitary gland.
Collapse
Affiliation(s)
- Eléonore Partoune
- Departments of Radiotherapy, Cliniques Universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Virzi
- Departments of Radiotherapy, Cliniques Universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
| | - Loïc Vander Veken
- Departments of Radiotherapy, Cliniques Universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
| | - Laurette Renard
- Departments of Radiotherapy, Cliniques Universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
| | - Dominique Maiter
- Endocrinology and Nutrition, Cliniques Universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
75
|
Garbacz M, Cordoni FG, Durante M, Gajewski J, Kisielewicz K, Krah N, Kopeć R, Olko P, Patera V, Rinaldi I, Rydygier M, Schiavi A, Scifoni E, Skóra T, Tommasino F, Rucinski A. Study of relationship between dose, LET and the risk of brain necrosis after proton therapy for skull base tumors. Radiother Oncol 2021; 163:143-149. [PMID: 34461183 DOI: 10.1016/j.radonc.2021.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/27/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE We investigated the relationship between RBE-weighted dose (DRBE) calculated with constant (cRBE) and variable RBE (vRBE), dose-averaged linear energy transfer (LETd) and the risk of radiographic changes in skull base patients treated with protons. METHODS Clinical treatment plans of 45 patients were recalculated with Monte Carlo tool FRED. Radiographic changes (i.e. edema and/or necrosis) were identified by MRI. Dosimetric parameters for cRBE and vRBE were computed. Biological margin extension and voxel-based analysis were employed looking for association of DRBE(vRBE) and LETd with brain edema and/or necrosis. RESULTS When using vRBE, Dmax in the brain was above the highest dose limits for 38% of patients, while such limit was never exceeded assuming cRBE. Similar values of Dmax were observed in necrotic regions, brain and temporal lobes. Most of the brain necrosis was in proximity to the PTV. The voxel-based analysis did not show evidence of an association with high LETd values. CONCLUSIONS When looking at standard dosimetric parameters, the higher dose associated with vRBE seems to be responsible for an enhanced risk of radiographic changes. However, as revealed by a voxel-based analysis, the large inter-patient variability hinders the identification of a clear effect for high LETd.
Collapse
Affiliation(s)
- Magdalena Garbacz
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland.
| | - Francesco Giuseppe Cordoni
- University of Verona, Department of Computer Science, Verona, Italy; Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, Trento, Italy
| | - Marco Durante
- GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt, Germany; The Technical University of Darmstadt, Germany
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| | - Kamil Kisielewicz
- National Oncology Institute, National Research Institute, Krakow Branch, Krakow, Poland
| | - Nils Krah
- University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, France; University of Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, France
| | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| | - Vincenzo Patera
- INFN - Section of Rome, Italy; Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Italy
| | - Ilaria Rinaldi
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marzena Rydygier
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| | - Angelo Schiavi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Italy
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, Trento, Italy
| | - Tomasz Skóra
- National Oncology Institute, National Research Institute, Krakow Branch, Krakow, Poland
| | - Francesco Tommasino
- Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, Trento, Italy; Department of Physics, University of Trento, Trento, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| |
Collapse
|
76
|
Salans M, Tibbs MD, Karunamuni R, Yip A, Huynh-Le MP, Macari AC, Reyes A, Tringale K, McDonald CR, Hattangadi-Gluth JA. Longitudinal change in fine motor skills after brain radiotherapy and in vivo imaging biomarkers associated with decline. Neuro Oncol 2021; 23:1393-1403. [PMID: 33543265 PMCID: PMC8328007 DOI: 10.1093/neuonc/noab017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We explored fine motor skills (FMS) before and after brain radiotherapy (RT), analyzing associations between longitudinal FMS and imaging biomarkers of cortical and white matter (WM) integrity in motor regions of interest (ROIs). METHODS On a prospective trial, 52 primary brain tumor patients receiving fractionated brain RT underwent volumetric brain MRI, diffusion tensor imaging, and FMS assessments (Delis-Kaplan Executive Function System Trail Making Test Motor Speed [DKEFS-MS], Grooved Pegboard Dominant Hands [PDH], and Grooved Pegboard Nondominant Hands [PNDH]) at baseline and 3-, 6-, and 12-month post-RT. Motor ROIs autosegmented included: sensorimotor cortices and superficial WM, corticospinal tracts, cerebellar cortices and WM, and basal ganglia. Volume (cc) was measured in all ROIs at each timepoint. Diffusion biomarkers (FA [fractional anisotropy] and MD [mean diffusivity]) were additionally measured in WM ROIs. Linear mixed-effects models assessed biomarkers as predictors of FMS scores. P values were corrected for multiple comparisons. RESULTS Higher RT dose was associated with right paracentral cortical thinning (β = -2.42 Gy/(month × mm), P = .03) and higher right precentral WM MD (β = 0.69 Gy/(month × µm2/ms), P = .04). Higher left (β = 38.7 points/(month × µm2/ms), P = .004) and right (β = 42.4 points/(month × µm2/ms), P = .01) cerebellar WM MD, left precentral cortical atrophy (β = -8.67 points/(month × mm), P = .02), and reduced right cerebral peduncle FA (β = -0.50 points/month, P = .01) were associated with worse DKEFS-MS performance. Left precentral cortex thinning was associated with worse PDH scores (β = -17.3 points/(month × mm), P = .02). Left (β = -0.87 points/(month × cm3), P = .001) and right (β = -0.64 points/(month × cm3), P = .02) cerebellar cortex, left pons (β = -19.8 points/(month × cm3), P = .02), and right pallidum (β = -10.8 points/(month × cm3), P = .02) atrophy and reduced right internal capsule FA (β = -1.02 points/month, P = .03) were associated with worse PNDH performance. CONCLUSIONS Biomarkers of microstructural injury in motor-associated brain regions were associated with worse FMS. Dose avoidance in these areas may preserve FMS.
Collapse
Affiliation(s)
- Mia Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Michelle D Tibbs
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Anthony Yip
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Minh-Phuong Huynh-Le
- Department of Radiation Oncology, George Washington University, Washington DC, USA
| | - Anna Christina Macari
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Anny Reyes
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Kathryn Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Carrie R McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
77
|
Qi SN, Li YX, Specht L, Oguchi M, Tsang R, Ng A, Suh CO, Ricardi U, Mac Manus M, Dabaja B, Yahalom J. Modern Radiation Therapy for Extranodal Nasal-Type NK/T-cell Lymphoma: Risk-Adapted Therapy, Target Volume, and Dose Guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys 2021; 110:1064-1081. [PMID: 33581262 DOI: 10.1016/j.ijrobp.2021.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
In the multidisciplinary management of early-stage extranodal natural killer/T-cell lymphoma, nasal type (ENKTCL), with curative intent, radiation therapy is the most efficacious modality and is an essential component of a combined-modality regimen. In the past decade, utilization of upfront radiation therapy and non-anthracycline-based chemotherapy has improved treatment and prognosis. This guideline mainly addresses the heterogeneity of clinical features, principles of risk-adapted therapy, and the role and appropriate design of radiation therapy. Radiation therapy methods (including target volume definition, dose and delivery methods) are crucial for optimizing cure for patients with early-stage ENKTCL. The application of the principles of involved site radiation therapy in this lymphoma entity often leads to a more extended clinical target volume (CTV) than in other lymphoma types because it usually presents with primary tumor invasion, multifocal lesions, or extensive submucosal infiltration beyond the macroscopic disease. The CTV varies across different primary sites and is classified mainly into nasal, nonnasal upper aerodigestive tract (UADT), and extra-UADT entities. This review is a consensus of the International Lymphoma Radiation Oncology Group regarding the approach to radiation therapy, target-volume definition, optimal dose, and dose constraints in ENKTCL treatment.
Collapse
Affiliation(s)
- Shu-Nan Qi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Ye-Xiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
| | - Lena Specht
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Masahiko Oguchi
- Department of Radiation Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Richard Tsang
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Ng
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts
| | - Chang-Ok Suh
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Gyeonggi-do, Republic of Korea
| | - Umberto Ricardi
- Department of Radiation Oncology, University of Torino, Torino, Italy
| | - Michael Mac Manus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Bouthaina Dabaja
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Joachim Yahalom
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
78
|
Dell'Oro M, Short M, Wilson P, Bezak E. Normal tissue tolerance amongst paediatric brain tumour patients- current evidence in proton radiotherapy. Crit Rev Oncol Hematol 2021; 164:103415. [PMID: 34242771 DOI: 10.1016/j.critrevonc.2021.103415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/28/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Proton radiotherapy (PT) is used increasingly for paediatric brain cancer patients. However, as demonstrated here, the knowledge on normal tissue dose constraints, to minimize side-effects, for this cohort is limited. METHODS A search strategy was systematically conducted on MEDLINE® database. 65 papers were evaluated ranging from 2013 to 2021. RESULTS Large variations in normal tissue tolerance and toxicity reporting across PT studies makes estimation of normal tissue dose constraints difficult, with the potential for significant late effects to go unmeasured. Mean dose delivered to the pituitary gland varies from 20 to 30 Gy across literature. Similarly, the hypothalamic dose delivery ranges from 20 to 54.6 Gy for paediatric patients. CONCLUSION There is a significant lack of radiobiological data for paediatric brain cancer patients undergoing proton therapy, often using data from x-ray radiotherapy and adult populations. The way forward is through standardisation of reporting in order to validate relevant dose constraints.
Collapse
Affiliation(s)
- Mikaela Dell'Oro
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia.
| | - Michala Short
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; UniSA STEM, University of South Australia, Adelaide, SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
79
|
Fossati P, Perpar A, Stock M, Georg P, Carlino A, Gora J, Martino G, Hug EB. Carbon Ion Dose Constraints in the Head and Neck and Skull Base: Review of MedAustron Institutional Protocols. Int J Part Ther 2021; 8:25-35. [PMID: 34285933 PMCID: PMC8270085 DOI: 10.14338/ijpt-20-00093.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Dose constraints are of paramount importance for the outcome of any radiotherapy treatment. In this article, we report dose-volume constraints as well as currently used fractionation schedules for carbon ion radiotherapy as applied in MedAustron (Wiener Neustadt, Austria). MATERIALS AND METHODS For fractionation schedules, both German and Japanese regimes were used. From the clinical experience of National Institute of Radiological Sciences (Chiba, Japan) and Heidelberg Ion Therapy (Heidelberg, Germany; formerly GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany) and the work by colleagues in Centro Nazionale Adroterapia Oncologica (Pavia, Italy) recalculating the dose from the microdosimetric kinetic model to the local effect model, we have set the dose constraints for critical organs of the head and neck area. Where no clinical data was available, an educated guess was made, based on data available from photon and proton series. RESULTS We report the constraints for the optic nerve and chiasm, brainstem, spinal cord, cochlea, brain parenchyma, salivary gland, eye and adnexa, and mandibular/maxillary bone; constraints are grouped based on a fractionation scheme (German versus Japanese) and the risk of toxicity (safe, low to middle, and middle to high). CONCLUSION We think validation of dose constraints should present a relevant part of the activity of any carbon ion radiotherapy facility, and we anticipate future multicentric, joint evaluations.
Collapse
Affiliation(s)
- Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Ana Perpar
- Oncology Institute Ljubljana, Ljubljana, Slovenia
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Petra Georg
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Joanna Gora
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Eugen B. Hug
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
80
|
Wong J, Huang V, Wells D, Giambattista J, Giambattista J, Kolbeck C, Otto K, Saibishkumar EP, Alexander A. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers. Radiat Oncol 2021; 16:101. [PMID: 34103062 PMCID: PMC8186196 DOI: 10.1186/s13014-021-01831-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/01/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose We recently described the validation of deep learning-based auto-segmented contour (DC) models for organs at risk (OAR) and clinical target volumes (CTV). In this study, we evaluate the performance of implemented DC models in the clinical radiotherapy (RT) planning workflow and report on user experience. Methods and materials DC models were implemented at two cancer centers and used to generate OAR and CTVs for all patients undergoing RT for a central nervous system (CNS), head and neck (H&N), or prostate cancer. Radiation Therapists/Dosimetrists and Radiation Oncologists completed post-contouring surveys rating the degree of edits required for DCs (1 = minimal, 5 = significant) and overall DC satisfaction (1 = poor, 5 = high). Unedited DCs were compared to the edited treatment approved contours using Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD). Results Between September 19, 2019 and March 6, 2020, DCs were generated on approximately 551 eligible cases. 203 surveys were collected on 27 CNS, 54 H&N, and 93 prostate RT plans, resulting in an overall survey compliance rate of 32%. The majority of OAR DCs required minimal edits subjectively (mean editing score ≤ 2) and objectively (mean DSC and 95% HD was ≥ 0.90 and ≤ 2.0 mm). Mean OAR satisfaction score was 4.1 for CNS, 4.4 for H&N, and 4.6 for prostate structures. Overall CTV satisfaction score (n = 25), which encompassed the prostate, seminal vesicles, and neck lymph node volumes, was 4.1. Conclusions Previously validated OAR DC models for CNS, H&N, and prostate RT planning required minimal subjective and objective edits and resulted in a positive user experience, although low survey compliance was a concern. CTV DC model evaluation was even more limited, but high user satisfaction suggests that they may have served as appropriate starting points for patient specific edits. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01831-4.
Collapse
Affiliation(s)
- Jordan Wong
- BC Cancer - Vancouver, 600 W 10th Ave, Rm 4550, Vancouver, BC, V5Z 4E6, Canada.
| | - Vicky Huang
- BC Cancer - Fraser Valley, 13750 96th Avenue, Surrey, BC, V3V 1Z2, Canada
| | - Derek Wells
- BC Cancer - Victoria, 2410 Lee Avenue, Victoria, BC, V8R 6V5, Canada
| | - Joshua Giambattista
- Saskatchewan Cancer Agency, 503-1801 Hamilton St, Regina, SK, S4P 4B4, Canada.,Limbus AI Inc, 2076 Athol Street, Regina, SK, S4T 3E5, Canada
| | | | - Carter Kolbeck
- Limbus AI Inc, 2076 Athol Street, Regina, SK, S4T 3E5, Canada
| | - Karl Otto
- Limbus AI Inc, 2076 Athol Street, Regina, SK, S4T 3E5, Canada
| | | | - Abraham Alexander
- BC Cancer - Victoria, 2410 Lee Avenue, Victoria, BC, V8R 6V5, Canada
| |
Collapse
|
81
|
Update of the EPTN atlas for CT- and MR-based contouring in Neuro-Oncology. Radiother Oncol 2021; 160:259-265. [PMID: 34015385 DOI: 10.1016/j.radonc.2021.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE To update the digital online atlas for organs at risk (OARs) delineation in neuro-oncology based on high-quality computed tomography (CT) and magnetic resonance (MR) imaging with new OARs. MATERIALS AND METHODS In this planned update of the neurological contouring atlas published in 2018, ten new clinically relevant OARs were included, after thorough discussion between experienced neuro-radiation oncologists (RTOs) representing 30 European radiotherapy-oncology institutes. Inclusion was based on daily practice and research requirements. Consensus was reached for the delineation after critical review. Contouring was performed on registered CT with intravenous (IV) contrast (soft tissue & bone window setting) and 3 Tesla (T) MRI (T1 with gadolinium & T2 FLAIR) images of one patient (1 mm slices). For illustration purposes, delineation on a 7 T MRI without IV contrast from a healthy volunteer was added. OARs were delineated by three experienced RTOs and a neuroradiologist based on the relevant literature. RESULTS The presented update of the neurological contouring atlas was reviewed and approved by 28 experts in the field. The atlas is available online and includes in total 25 OARs relevant to neuro-oncology, contoured on CT and MRI T1 and FLAIR (3 T & 7 T). Three-dimensional (3D) rendered films are also available online. CONCLUSION In order to further decrease inter- and intra-observer OAR delineation variability in the field of neuro-oncology, we propose the use of this contouring atlas in photon and particle therapy, in clinical practice and in the research setting. The updated atlas is freely available on www.cancerdata.org.
Collapse
|
82
|
Patel S, Vargo JA, Olson A, Mahajan A. Supportive care for toxicities in children undergoing radiation therapy. Pediatr Blood Cancer 2021; 68 Suppl 2:e28597. [PMID: 33818886 DOI: 10.1002/pbc.28597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 11/08/2022]
Abstract
Radiation therapy (RT) is an integral part of the management of many pediatric tumors; however, it is associated with both acute and permanent adverse events that can significantly impact a child's quality of life, lead to treatment delays, and potentially affect outcomes of cancer therapy. Prevention, early detection, and optimal management of these adverse effects will help reduce their impact on the patients' quality of life and overall well-being. Unfortunately, there has not been a coordinated effort to study the etiology, evaluate risk factors, and explore novel treatments for these conditions. Studies of supportive care for children undergoing RT are often small and uncontrolled. This review will focus on the impact of irradiation on the different organ systems and their current management. Further studies are required to improve our understanding of the contributing factors and explore novel treatment options for these adverse effects and to enable children and their families to better cope with some of the unavoidable toxicities following multimodality therapy.
Collapse
Affiliation(s)
- Samir Patel
- Divisions of Radiation Oncology and Pediatric Hematology, Oncology and Palliative Care, University of Alberta, Stollery Children's Hospital, Edmonton, Canada
| | - John Austin Vargo
- Department of Radiation Oncology, UPMC Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Adam Olson
- Department of Radiation Oncology, UPMC Children's Hospital of Pittsburg, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
83
|
in 't Ven L, Roelofs E, Cubillos Mesías M, Compter I, Klaver YL, Smeenk RJ, Janssens GO, Kaanders JH, Fajardo RD, Oldenburger F, de Ruysscher D, Troost EG, Eekers DB. The ROCOCO performance scoring system translates dosimetric differences into clinically relevant endpoints: Comparing IMPT to VMAT in an example pilocytic astrocytoma dataset. Clin Transl Radiat Oncol 2021; 28:32-38. [PMID: 33748441 PMCID: PMC7966832 DOI: 10.1016/j.ctro.2021.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Proton therapy is expected to outperform photon-based treatment regarding organs at risk (OAR) sparing but to date there is no method to practically measure clinical benefit. Here, we introduce the novel ROCOCO Performance Scoring System (RPSS) translating dose differences into clinically relevant endpoints and apply this to a treatment plan comparison of volumetric modulated arc therapy (VMAT) and intensity modulated proton therapy (IMPT) in 20 pilocytic astrocytoma patients. MATERIAL AND METHODS The RPSS was developed on the basis of expert-based weighting factors and toxicity scores per OAR. The imaging datasets of 20 pilocytic astrocytoma patients having undergone radiotherapy were included in this in silico dosimetric comparison trial as proof of principle. For each of these patients, treatment plans to a total dose of 54 Gy (RBE) were generated for VMAT and IMPT and these were compared regarding radiation dose to the clinical target volume (CTV) and OARs. The RPSS was calculated for each treatment plan comparing VMAT and IMPT. RESULTS In 40 analysed treatment plans, the average and low dose volumes to various OARs were significantly reduced when using IMPT compared to VMAT (p < 0.05). Using the RPSS, a significant difference between both treatment modalities was found, with 85% of the patients having a lower RPSS in favour of the IMPT plan. CONCLUSION There are dosimetric differences between IMPT and VMAT in pilocytic astrocytoma patients. In absence of clinically validated NTCP models we introduce the RPSS model in order to objectively compare treatment modalities by translating dosimetric differences in potential clinical differences.
Collapse
Affiliation(s)
- Lieke in 't Ven
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Erik Roelofs
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Robert Jan Smeenk
- Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Geert O. Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Raquel Davila Fajardo
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Foppe Oldenburger
- Department of Radiation Oncology, Academic Medical Centers, Location AMC, Amsterdam , the Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands
- KU Leuven, Radiation Oncology University Hospitals Leuven, Department of Radiation Oncology/KU Leuven, Radiation Oncology, Leuven, Belgium
| | - Esther G.C. Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Dresden, Germany
| | - Daniëlle B.P. Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
84
|
Dutz A, Lühr A, Troost EGC, Agolli L, Bütof R, Valentini C, Baumann M, Vermeren X, Geismar D, Timmermann B, Krause M, Löck S. Identification of patient benefit from proton beam therapy in brain tumour patients based on dosimetric and NTCP analyses. Radiother Oncol 2021; 160:69-77. [PMID: 33872640 DOI: 10.1016/j.radonc.2021.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND The limited availability of proton beam therapy (PBT) requires individual treatment selection strategies, such as the model-based approach. In this study, we assessed the dosimetric benefit of PBT compared to photon therapy (XRT), analysed the corresponding changes in normal tissue complication probability (NTCP) on a variety of available models, and illustrated model-based patient selection in an in-silico study for patients with brain tumours. METHODS For 92 patients treated at two PBT centres, volumetric modulated arc therapy treatment plans were retrospectively created for comparison with the clinically applied PBT plans. Several dosimetric parameters for the brain excluding tumour and margins, cerebellum, brain stem, frontal and temporal lobes, hippocampi, cochleae, chiasm, optic nerves, lacrimal glands, lenses, pituitary gland, and skin were compared between both modalities using Wilcoxon signed-rank tests. NTCP differences (ΔNTCP) were calculated for 11 models predicting brain necrosis, delayed recall, temporal lobe injury, hearing loss, tinnitus, blindness, ocular toxicity, cataract, endocrine dysfunction, alopecia, and erythema. A patient was assumed to be selected for PBT if ΔNTCP exceeded a threshold of 10 percentage points for at least one of the side-effects. RESULTS PBT substantially reduced the dose in almost all investigated OARs, especially in the low and intermediate dose ranges and for contralateral organs. In general, NTCP predictions were significantly lower for PBT compared to XRT, in particular in ipsilateral organs. Considering ΔNTCP of all models, 80 patients (87.0%) would have been selected for PBT in this in-silico study, mainly due to predictions of a model on delayed recall (51 patients). CONCLUSION In this study, substantial dose reductions for PBT were observed, mainly in contralateral organs. However, due to the sigmoidal dose response, NTCP was particularly reduced in ipsilateral organs. This underlines that physical dose-volume parameters alone may not be sufficient to describe the clinical relevance between different treatment techniques and highlights potential benefits of NTCP models. Further NTCP models for different modern treatment techniques are mandatory and existing models have to be externally validated in order to implement the model-based approach in clinical practice for cranial radiotherapy.
Collapse
Affiliation(s)
- Almut Dutz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Armin Lühr
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Physics and Radiotherapy, Faculty of Physics, TU Dortmund University, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Linda Agolli
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rebecca Bütof
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Chiara Valentini
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Xavier Vermeren
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, Germany
| | - Dirk Geismar
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, Germany; Department of Particle Therapy, University Hospital Essen, Germany; West German Cancer Center (WTZ), University Hospital Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, Germany; Department of Particle Therapy, University Hospital Essen, Germany; West German Cancer Center (WTZ), University Hospital Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
85
|
Ermiş E, Anschuetz L, Leiser D, Poel R, Raabe A, Manser P, Aebersold DM, Caversaccio M, Mantokoudis G, Abu-Isa J, Wagner F, Herrmann E. Vestibular dose correlates with dizziness after radiosurgery for the treatment of vestibular schwannoma. Radiat Oncol 2021; 16:61. [PMID: 33771181 PMCID: PMC7995572 DOI: 10.1186/s13014-021-01793-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/18/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) has been recognized as a first-line treatment option for small to moderate sized vestibular schwannoma (VS). Our aim is to evaluate the impact of SRS doses and other patient and disease characteristics on vestibular function in patients with VS. METHODS Data on VS patients treated with single-fraction SRS to 12 Gy were retrospectively reviewed. No dose constraints were given to the vestibule during optimization in treatment planning. Patient and tumor characteristics, pre- and post-SRS vestibular examination results and patient-reported dizziness were assessed from patient records. RESULTS Fifty-three patients were analyzed. Median follow-up was 32 months (range, 6-79). The median minimum, mean and maximum vestibular doses were 2.6 ± 1.6 Gy, 6.7 ± 2.8 Gy, and 11 ± 3.6 Gy, respectively. On univariate analysis, Koos grade (p = 0.04; OR: 3.45; 95% CI 1.01-11.81), tumor volume (median 6.1 cm3; range, 0.8-38; p = 0.01; OR: 4.85; 95% CI 1.43-16.49), presence of pre-SRS dizziness (p = 0.02; OR: 3.98; 95% CI 1.19-13.24) and minimum vestibular dose (p = 0.033; OR: 1.55; 95% CI 1.03-2.32) showed a significant association with patient-reported dizziness. On multivariate analysis, minimum vestibular dose remained significant (p = 0.02; OR: 1.75; 95% CI 1.05-2.89). Patients with improved caloric function had received significantly lower mean (1.5 ± 0.7 Gy, p = 0.01) and maximum doses (4 ± 1.5 Gy, p = 0.01) to the vestibule. CONCLUSIONS Our results reveal that 5 Gy and above minimum vestibular doses significantly worsened dizziness. Additionally, mean and maximum doses received by the vestibule were significantly lower in patients who had improved caloric function. Further investigations are needed to determine dose-volume parameters and their effects on vestibular toxicity.
Collapse
Affiliation(s)
- Ekin Ermiş
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Lukas Anschuetz
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominic Leiser
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Robert Poel
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Marco Caversaccio
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georgios Mantokoudis
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Janine Abu-Isa
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Evelyn Herrmann
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
- Department of Radiation Oncology, Hôpital Riviera-Chablais, Rennaz, Switzerland.
| |
Collapse
|
86
|
Vogin G, Hettal L, Bartau C, Thariat J, Claeys MV, Peyraga G, Retif P, Schick U, Antoni D, Bodgal Z, Dhermain F, Feuvret L. Cranial organs at risk delineation: heterogenous practices in radiotherapy planning. Radiat Oncol 2021; 16:26. [PMID: 33541394 PMCID: PMC7863275 DOI: 10.1186/s13014-021-01756-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Segmentation is a crucial step in treatment planning that directly impacts dose distribution and optimization. The aim of this study was to evaluate the inter-individual variability of common cranial organs at risk (OAR) delineation in neurooncology practice. METHODS Anonymized simulation contrast-enhanced CT and MR scans of one patient with a solitary brain metastasis was used for delineation and analysis. Expert professionals from 16 radiotherapy centers involved in brain structures delineation were asked to segment 9 OAR on their own treatment planning system. As reference, two experts in neurooncology, produced a unique consensual contour set according to guidelines. Overlap ratio, Kappa index (KI), volumetric ratio, Commonly Contoured Volume, Supplementary Contoured Volume were evaluated using Artiview™ v 2.8.2-according to occupation, seniority and level of expertise of all participants. RESULTS For the most frequently delineated and largest OAR, the mean KI are often good (0.8 for the parotid and the brainstem); however, for the smaller OAR, KI degrade (0.3 for the optic chiasm, 0.5% for the cochlea), with a significant discrimination (p < 0.01). The radiation oncologists, members of Association des Neuro-Oncologue d'Expression Française society performed better in all indicators compared to non-members (p < 0.01). Our exercise was effective in separating the different participating centers with 3 of the reported indicators (p < 0.01). CONCLUSION Our study illustrates the heterogeneity in normal structures contouring between professionals. We emphasize the need for cerebral OAR delineation harmonization-that is a major determinant of therapeutic ratio and clinical trials evaluation.
Collapse
Affiliation(s)
- Guillaume Vogin
- Department of Radiation Oncology, Institut de Cancérologie de Lorraine, Vandoeuvre Les Nancy, France
- IMoPA, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre Les Nancy, France
- Centre National de radiothérapie du Grand-Duché de Luxembourg, Centre François Baclesse, Boîte postale 436, 4005 Esch sur Alzette, Luxembourg
| | - Liza Hettal
- IMoPA, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre Les Nancy, France
| | - Clarisse Bartau
- Aquilab SAS, Parc Eurasanté - 250 rue Salvador Allende, Loos, France
| | - Juliette Thariat
- Département de Radiothérapie, Centre François Baclesse/ARCHADE, 3 Av General Harris, Caen, France
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN - UMR6534 - Unicaen, Normandie Université, Caen, France
| | | | - Guillaume Peyraga
- Service de Radiothérapie, Institut Universitaire du Cancer de Toulouse (Oncopole), Toulouse, France
| | - Paul Retif
- Service de Radiothérapie, CHR de Metz-Thionville Site Mercy, Metz, France
| | - Ulrike Schick
- Département de radiothérapie, CHU de Brest, Brest, France
| | - Delphine Antoni
- Département de radiothérapie, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Zsuzsa Bodgal
- Centre National de radiothérapie du Grand-Duché de Luxembourg, Centre François Baclesse, Boîte postale 436, 4005 Esch sur Alzette, Luxembourg
| | - Frederic Dhermain
- Radiation Oncology Department, Gustave Roussy University Hospital, Villejuif, France
| | - Loic Feuvret
- Department of Radiation Oncology, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Sorbonne Université, Paris, France
| |
Collapse
|
87
|
Sundlöv A, Sjögreen-Gleisner K, Tennvall J, Dahl L, Svensson J, Åkesson A, Bernhardt P, Lindgren O. Pituitary Function after High-Dose 177Lu-DOTATATE Therapy and Long-Term Follow-Up. Neuroendocrinology 2021; 111:344-353. [PMID: 32259830 PMCID: PMC8117394 DOI: 10.1159/000507761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The pituitary gland has a high expression of somatostatin receptors and is therefore a potential organ at risk for radiation-induced toxicity after 177Lu-DOTATATE treatment. OBJECTIVE To study changes in pituitary function in patients with neuroendocrine tumors (NETs) treated with dosimetry-based 177Lu-DOTATATE to detect possible late toxicity. METHODS 68 patients from a phase II clinical trial of dosimetry-based, individualized 177Lu-DOTATATE therapy were included in this analysis. Patients had received a median of 5 (range 3-9) treatment cycles of 7.4 GBq/cycle. Median follow-up was 30 months (range 11-89). The GH/IGF-1 axis, gonadotropins, and adrenal and thyroid axes were analyzed at baseline and on a yearly basis thereafter. Percent changes in hormonal levels over time were analyzed statistically using a linear mixed model and described graphically using box plots. The absorbed radiation dose to the pituitary was estimated based on post-therapeutic imaging, and the results analyzed versus percent change in IGF-1 levels over time. RESULTS A statistically significant decrease in IGF-1 levels was found (p < 0.005), which correlated with the number of treatment cycles (p = 0.008) and the absorbed radiation dose (p = 0.03). A similar decrease, although non-significant, was seen in gonadotropins in postmenopausal women, while in men there was an increase during the first years after therapy, after which the levels returned to baseline. No change was observed in the adrenal or thyroid axes. CONCLUSIONS No signs of severe endocrine disorders were detected, although a significant decrease in the GH/IGF-1 axis was found, where dosimetric analyses indicated radiation-induced damage to the pituitary gland as a probable cause.
Collapse
Affiliation(s)
- Anna Sundlöv
- Department of Clinical Sciences, Oncology, and Pathology, Skåne University Hospital, Lund University, Lund, Sweden,
| | | | - Jan Tennvall
- Department of Clinical Sciences, Oncology, and Pathology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Ludvig Dahl
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Johanna Svensson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Åkesson
- Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
| | - Peter Bernhardt
- Department of Radiation Physics, University of Gothenburg, Gothenburg, Sweden
| | - Ola Lindgren
- Department of Clinical Sciences, Oncology, and Pathology, Skåne University Hospital, Lund University, Lund, Sweden
- Department of Endocrinology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
88
|
Weber DC, Bizzocchi N, Bolsi A, Jenkinson MD. Proton Therapy for Intracranial Meningioma for the Treatment of Primary/Recurrent Disease Including Re-Irradiation. Front Oncol 2020; 10:558845. [PMID: 33381447 PMCID: PMC7769250 DOI: 10.3389/fonc.2020.558845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/28/2020] [Indexed: 01/14/2023] Open
Abstract
Meningeal tumors represent approximately 10-25% of primary brain tumors and occur usually in elderly female patients. Most meningiomas are benign (80-85%) and for symptomatic and/or large tumors, surgery, with or without radiation therapy (RT), has been long established as an effective means of local tumor control. RT can be delivered to inoperable lesions or to those with non-benign histology and for Simpson I-III and IV-V resection. RT can be delivered with photons or particles (protons or carbon ions) in stereotactic or non-stereotactic conditions. Particle therapy delivered for these tumors uses the physical properties of charged carbon ions or protons to spare normal brain tissue (i.e. Bragg peak), with or without or a dose-escalation paradigm for non-benign lesions. PT can substantially decrease the dose delivered to the non-target brain tissues, including but not limited to the hippocampi, optic apparatus or cochlea. Only a limited number of meningioma patients have been treated with PT in the adjuvant or recurrent setting, as well as for inoperable lesions with pencil beam scanning and with protons only. Approximately 500 patients with image-defined or WHO grade I meningioma have been treated with protons. The reported outcome, usually 5-year local tumor control, ranges from 85 to 99% (median, 96%). For WHO grade II or III patients, the outcome of only 97 patients has been published, reporting a median tumor local control rate of 52% (range, 38-71.1). Only 24 recurring patients treated previously with photon radiotherapy and re-treated with PT were reported. The clinical outcome of these challenging patients seems interesting, provided that they presented initially with benign tumors, are not in the elderly category and have been treated previously with conventional radiation dose of photons. Overall, the number of meningioma patients treated or-re-irradiated with this treatment modality is small and the clinical evidence level is somewhat low (i.e. 3b-5). In this review, we detail the results of upfront PT delivered to patients with meningioma in the adjuvant setting and for inoperable tumors. The outcome of meningioma patients treated with this radiation modality for recurrent tumors, with or without previous RT, will also be reviewed.
Collapse
Affiliation(s)
- Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland.,Radiation Oncology Department, University Hospital Zürich, Zürich, Switzerland.,Radiation Oncology Department, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
89
|
Combs SE, Baumert BG, Bendszus M, Bozzao A, Brada M, Fariselli L, Fiorentino A, Ganswindt U, Grosu AL, Lagerwaard FL, Niyazi M, Nyholm T, Paddick I, Weber DC, Belka C, Minniti G. ESTRO ACROP guideline for target volume delineation of skull base tumors. Radiother Oncol 2020; 156:80-94. [PMID: 33309848 DOI: 10.1016/j.radonc.2020.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE For skull base tumors, target definition is the key to safe high-dose treatments because surrounding normal tissues are very sensitive to radiation. In the present work we established a joint ESTRO ACROP guideline for the target volume definition of skull base tumors. MATERIAL AND METHODS A comprehensive literature search was conducted in PubMed using various combinations of the following medical subjects headings (MeSH) and free-text words: "radiation therapy" or "stereotactic radiosurgery" or "proton therapy" or "particle beam therapy" and "skull base neoplasms" "pituitary neoplasms", "meningioma", "craniopharyngioma", "chordoma", "chondrosarcoma", "acoustic neuroma/vestibular schwannoma", "organs at risk", "gross tumor volume", "clinical tumor volume", "planning tumor volume", "target volume", "target delineation", "dose constraints". The ACROP committee identified sixteen European experts in close interaction with the ESTRO clinical committee who analyzed and discussed the body of evidence concerning target delineation. RESULTS All experts agree that magnetic resonance (MR) images with high three-dimensional spatial accuracy and tissue-contrast definition, both T2-weighted and volumetric T1-weighted sequences, are required to improve target delineation. In detail, several key issues were identified and discussed: i) radiation techniques and immobilization, ii) imaging techniques and target delineation, and iii) technical aspects of radiation treatments including planning techniques and dose-fractionation schedules. Specific target delineation issues with regard to different skull base tumors, including pituitary adenomas, meningiomas, craniopharyngiomas, acoustic neuromas, chordomas and chondrosarcomas are presented. CONCLUSIONS This ESTRO ACROP guideline achieved detailed recommendations on target volume definition for skull base tumors, as well as comprehensive advice about imaging modalities and radiation techniques.
Collapse
Affiliation(s)
- Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Munich, Germany; German Cancer Consortium (DKTK) Partner Site (DKTK), Munich, Germany
| | - Brigitta G Baumert
- Institute of Radiation Oncology, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Germany
| | - Alessandro Bozzao
- Dipartimento NESMOS, Università Sapienza Roma, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Michael Brada
- Department of Radiation Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
| | - Laura Fariselli
- Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alba Fiorentino
- Radiation Oncology Department, General Regional Hospital F. Miulli, Acquaviva delle fonti, Italy
| | - Ute Ganswindt
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Faculty, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| | - Frank L Lagerwaard
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, The Netherlands
| | - Maximilian Niyazi
- German Cancer Consortium (DKTK) Partner Site (DKTK), Munich, Germany; Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Tufve Nyholm
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Ian Paddick
- Queen Square Radiosurgery Centre, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | | | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
90
|
Clement P, Booth T, Borovečki F, Emblem KE, Figueiredo P, Hirschler L, Jančálek R, Keil VC, Maumet C, Özsunar Y, Pernet C, Petr J, Pinto J, Smits M, Warnert EAH. GliMR: Cross-Border Collaborations to Promote Advanced MRI Biomarkers for Glioma. J Med Biol Eng 2020; 41:115-125. [PMID: 33293909 PMCID: PMC7712600 DOI: 10.1007/s40846-020-00582-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
Abstract
Purpose There is an annual incidence of 50,000 glioma cases in Europe. The optimal treatment strategy is highly personalised, depending on tumour type, grade, spatial localization, and the degree of tissue infiltration. In research settings, advanced magnetic resonance imaging (MRI) has shown great promise as a tool to inform personalised treatment decisions. However, the use of advanced MRI in clinical practice remains scarce due to the downstream effects of siloed glioma imaging research with limited representation of MRI specialists in established consortia; and the associated lack of available tools and expertise in clinical settings. These shortcomings delay the translation of scientific breakthroughs into novel treatment strategy. As a response we have developed the network “Glioma MR Imaging 2.0” (GliMR) which we present in this article. Methods GliMR aims to build a pan-European and multidisciplinary network of experts and accelerate the use of advanced MRI in glioma beyond the current “state-of-the-art” in glioma imaging. The Action Glioma MR Imaging 2.0 (GliMR) was granted funding by the European Cooperation in Science and Technology (COST) in June 2019. Results GliMR’s first grant period ran from September 2019 to April 2020, during which several meetings were held and projects were initiated, such as reviewing the current knowledge on advanced MRI; developing a General Data Protection Regulation (GDPR) compliant consent form; and setting up the website. Conclusion The Action overcomes the pre-existing limitations of glioma research and is funded until September 2023. New members will be accepted during its entire duration.
Collapse
Affiliation(s)
- Patricia Clement
- Ghent Institute for Metabolic and Functional Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Thomas Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH UK.,Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, SE5 9RS UK
| | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Kyrre E Emblem
- Division of Radiology and Nuclear Medicine, Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Lydiane Hirschler
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Radim Jančálek
- Department of Neurosurgery, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Vera C Keil
- Department of Radiology, Amsterdam University Medical Center, VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Yelda Özsunar
- Department of Radiology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Cyril Pernet
- Centre for Clinical Brain Sciences & Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Jan Petr
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Esther A H Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
91
|
Dale JE, Molinelli S, Vischioni B, Vitolo V, Bonora M, Magro G, Mairani A, Hasegawa A, Ohno T, Dahl O, Valvo F, Fossati P. Brainstem NTCP and Dose Constraints for Carbon Ion RT-Application and Translation From Japanese to European RBE-Weighted Dose. Front Oncol 2020; 10:531344. [PMID: 33330020 PMCID: PMC7735105 DOI: 10.3389/fonc.2020.531344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose The Italian National Center of Oncological Hadrontherapy (CNAO) has applied dose constraints for carbon ion RT (CIRT) as defined by Japan’s National Institute of Radiological Sciences (NIRS). However, these institutions use different models to predict the relative biological effectiveness (RBE). CNAO applies the Local Effect Model I (LEM I), which in most clinical situations predicts higher RBE than NIRS’s Microdosimetric Kinetic Model (MKM). Equal constraints therefore become more restrictive at CNAO. Tolerance doses for the brainstem have not been validated for LEM I-weighted dose (DLEM I). However, brainstem constraints and a Normal Tissue Complication Probability (NTCP) model were recently reported for MKM-weighted dose (DMKM), showing that a constraint relaxation to DMKM|0.7 cm3 <30 Gy (RBE) and DMKM|0.1 cm3 <40 Gy (RBE) was feasible. The aim of this work was to evaluate the brainstem NTCP associated with CNAO’s current clinical practice and to propose new brainstem constraints for LEM I-optimized CIRT at CNAO. Material and Methods We reproduced the absorbed dose of 30 representative patient treatment plans from CNAO. Subsequently, we calculated both DLEM I and DMKM, and the relationship between DMKM and DLEM I for various brainstem dose metrics was analyzed. Furthermore, the NTCP model developed for DMKM was applied to estimate the NTCPs of the delivered plans. Results The translation of CNAO treatment plans to DMKM confirmed that the former CNAO constraints were conservative compared with DMKM constraints. Estimated NTCPs were 0% for all but one case, in which the NTCP was 2%. The relationship DMKM/DLEM I could be described by a quadratic regression model which revealed that the validated DMKM constraints corresponded to DLEM I|0.7 cm3 <41 Gy (RBE) (95% CI, 38–44 Gy (RBE)) and DLEM I|0.1 cm3 <49 Gy (RBE) (95% CI, 46–52 Gy (RBE)). Conclusion Our study demonstrates that RBE-weighted dose translation is of crucial importance in order to exchange experience and thus harmonize CIRT treatments globally. To mitigate uncertainties involved, we propose to use the lower bound of the 95% CI of the translation estimates, i.e., DLEM I|0.7 cm3 <38 Gy (RBE) and DLEM I|0.1 cm3 <46 Gy (RBE) as brainstem dose constraints for 16 fraction CIRT treatments optimized with LEM I.
Collapse
Affiliation(s)
- Jon Espen Dale
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | | | - Viviana Vitolo
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Maria Bonora
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Giuseppe Magro
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Andrea Mairani
- National Center of Oncological Hadrontherapy, Pavia, Italy.,Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
| | - Azusa Hasegawa
- National Center of Oncological Hadrontherapy, Pavia, Italy.,Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Olav Dahl
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | - Piero Fossati
- National Center of Oncological Hadrontherapy, Pavia, Italy.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
92
|
Liu Y, Gu X. Evaluation and comparison of global-feature-based and local-feature-based segmentation algorithms in intracranial visual pathway delineation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1766-1769. [PMID: 33018340 DOI: 10.1109/embc44109.2020.9175937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intracranial visual pathway is related to the effective transmission of visual signals to brain. It was not only the target organ of diseases but also the organs at risk in radiotherapy thus its delineation plays an important role in both diagnosis and treatment planning. Traditional manual segmentation method suffered from time- and labor- consuming as well as intra- and inter- variability. In order to overcome these problems, state-of-the-art segmentation models were designed and various features were extracted and utilized, but it's hard to tell their effectiveness on intracranial visual pathway delineation. It's because that these methods worked on different dataset and accompanied with different training tricks. This study aimed to research the contribution of global features and local features in delineating the intracranial visual pathway from MRI scans. The two typical segmentation models, 3D UNet and DeepMedic, were chosen since they focused on global features and local features respectively. We constructed the hybrid model through serially connecting the two mentioned models to validate the performance of combined global and local features. Validation results showed that the hybrid model outperformed the individual ones. It proved that multi scale feature fusion was important in improving the segmentation performance.
Collapse
|
93
|
Brandal P, Bergfeldt K, Aggerholm-Pedersen N, Bäckström G, Kerna I, Gubanski M, Björnlinger K, Evensen ME, Kuddu M, Pettersson E, Brydøy M, Hellebust TP, Dale E, Valdman A, Weber L, Høyer M. A Nordic-Baltic perspective on indications for proton therapy with strategies for identification of proper patients. Acta Oncol 2020; 59:1157-1163. [PMID: 32902341 DOI: 10.1080/0284186x.2020.1817977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The beneficial effects of protons are primarily based on reduction of low to intermediate radiation dose bath to normal tissue surrounding the radiotherapy target volume. Despite promise for reduced long-term toxicity, the percentage of cancer patients treated with proton therapy remains low. This is probably caused by technical improvements in planning and delivery of photon therapy, and by high cost, low availability and lack of high-level evidence on proton therapy. A number of proton treatment facilities are under construction or have recently opened; there are now two operational Scandinavian proton centres and two more are under construction, thereby eliminating the availability hurdle. Even with the advantageous physical properties of protons, there is still substantial ambiguity and no established criteria related to which patients should receive proton therapy. This topic was discussed in a session at the Nordic Collaborative Workshop on Particle Therapy, held in Uppsala 14-15 November 2019. This paper resumes the Nordic-Baltic perspective on proton therapy indications and discusses strategies to identify patients for proton therapy. As for indications, neoplastic entities, target volume localisation, size, internal motion, age, second cancer predisposition, dose escalation and treatment plan comparison based on the as low as reasonably achievable (ALARA) principle or normal tissue complication probability (NTCP) models were discussed. Importantly, the patient selection process should be integrated into the radiotherapy community and emphasis on collaboration across medical specialties, involvement of key decision makers and knowledge dissemination in general are important factors. An active Nordic-Baltic proton therapy organisation would also serve this purpose.
Collapse
Affiliation(s)
- Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Irina Kerna
- North Estonia Medical Centre, Tallinn, Estonia
| | | | | | | | - Maire Kuddu
- North Estonia Medical Centre, Tallinn, Estonia
| | | | | | - Taran P. Hellebust
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Einar Dale
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | | | - Morten Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
94
|
Baumann M, Ebert N, Kurth I, Bacchus C, Overgaard J. What will radiation oncology look like in 2050? A look at a changing professional landscape in Europe and beyond. Mol Oncol 2020; 14:1577-1585. [PMID: 32463984 PMCID: PMC7332208 DOI: 10.1002/1878-0261.12731] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
The number of newly diagnosed cancers per year is predicted to almost double in the next two decades worldwide, and it remains unclear if and when this alarming trend will level off or even reverse. As such, cancer is very likely to continue to pose a major threat to human health. Radiation oncology is an indispensable pillar of cancer treatment and a well‐developed discipline. Nevertheless, key trends in cancer research and care, including improved primary prevention, early detection, integrated multidisciplinary approaches, personalized strategies at all levels of care, value‐based assessments of healthcare systems, and global health perspectives, will all shape the future of radiation oncology. Broader scientific advances, such as rapid progress in digitization, automation, and in our biological understanding of cancer, as well as the wider societal view of healthcare systems will also influence radiation oncology and how it is practiced. To stimulate a proactive discussion on how to adapt and reshape our discipline, this review provides some predictions on what the role and practice of radiation oncology might look like in 30 years’ time.
Collapse
Affiliation(s)
- Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Ruprecht-Karls-University, Heidelberg, Germany
| | - Nadja Ebert
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carol Bacchus
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| |
Collapse
|
95
|
Grau C, Durante M, Georg D, Langendijk JA, Weber DC. Particle therapy in Europe. Mol Oncol 2020; 14:1492-1499. [PMID: 32223048 PMCID: PMC7332216 DOI: 10.1002/1878-0261.12677] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 03/22/2020] [Indexed: 12/16/2022] Open
Abstract
Particle therapy using protons or heavier ions is currently the most advanced form of radiotherapy and offers new opportunities for improving cancer care and research. Ions deposit the dose with a sharp maximum – the Bragg peak – and normal tissue receives a much lower dose than what is delivered by X‐ray therapy. Particle therapy has also biological advantages due to the high linear energy transfer of the charged particles around the Bragg peak. The introduction of particle therapy has been slow in Europe, but within the last decade, more than 20 clinical facilities have opened and facilitated access to this frontline therapy. In this review article, the basic concepts of particle therapy are reviewed along with a presentation of the current clinical indications, the European clinical research, and the established networks.
Collapse
Affiliation(s)
- Cai Grau
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Institut für Festkörperphysik, Technische Universität Darmstadt, Germany
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna/AKH Wien, Vienna, Austria
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Centrum Groningen, Groningen, The Netherlands
| | | |
Collapse
|
96
|
Bahn E, Bauer J, Harrabi S, Herfarth K, Debus J, Alber M. Late Contrast Enhancing Brain Lesions in Proton-Treated Patients With Low-Grade Glioma: Clinical Evidence for Increased Periventricular Sensitivity and Variable RBE. Int J Radiat Oncol Biol Phys 2020; 107:571-578. [PMID: 32234554 DOI: 10.1016/j.ijrobp.2020.03.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/12/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Late radiation-induced contrast-enhancing brain lesions (CEBLs) on magnetic resonance imaging (MRI) after proton therapy of brain tumors have been observed to occur frequently in regions of high linear energy transfer (LET) and in proximity to the ventricular system. We analyzed 110 patients with low-grade glioma treated with proton therapy to determine whether the risk for CEBLs is increased in proximity to the ventricular system and if there is a relationship between relative biological effectiveness (RBE) and LET. METHODS AND MATERIALS We contoured CEBLs identified on follow-up T1-MRI scans and computed dose and dose-averaged LET (LETd) distributions for all patients using the Monte Carlo method. We then performed cross-validated voxel-level logistic regression to predict local risks for image change and to extract model parameters, such as the RBE. From the voxel-level model, we derived a model for patient-level risk prediction based on the treatment plan. RESULTS Of 110 patients, 23 exhibited 1 or several CEBLs on follow-up MRI scans. The voxel-level logistic model has an accuracy as follows: area under the curve of 0.94 and Brier score of 2.6 × 10-5. Model predictions are a 3-fold increased risk in the 4 mm region around the ventricular system and an LETd-dependent RBE of, for example, 1.20 for LETd = 2 keV/μm and 1.50 for LETd = 5 keV/μm. The patient-level risk model has an accuracy as follows: area under the curve of 0.78 and Brier score of 0.13. CONCLUSIONS Our findings present clinical evidence for an increased risk in ventricular proximity and for a proton RBE that increases significantly with increasing LET. We present a voxel-level model that accurately predicts the localization of late MRI contrast change and extrapolate a patient-level model that allows treatment plan-based risk prediction.
Collapse
Affiliation(s)
- Emanuel Bahn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Julia Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Heidelberg, Germany
| | - Markus Alber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
97
|
Burnet NG, Mackay RI, Smith E, Chadwick AL, Whitfield GA, Thomson DJ, Lowe M, Kirkby NF, Crellin AM, Kirkby KJ. Proton beam therapy: perspectives on the National Health Service England clinical service and research programme. Br J Radiol 2020; 93:20190873. [PMID: 31860337 PMCID: PMC7066938 DOI: 10.1259/bjr.20190873] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
The UK has an important role in the evaluation of proton beam therapy (PBT) and takes its place on the world stage with the opening of the first National Health Service (NHS) PBT centre in Manchester in 2018, and the second in London coming in 2020. Systematic evaluation of the role of PBT is a key objective. By September 2019, 108 patients had started treatment, 60 paediatric, 19 teenagers and young adults and 29 adults. Obtaining robust outcome data is vital, if we are to understand the strengths and weaknesses of current treatment approaches. This is important in demonstrating when PBT will provide an advantage and when it will not, and in quantifying the magnitude of benefit.The UK also has an important part to play in translational PBT research, and building a research capability has always been the vision. We are perfectly placed to perform translational pre-clinical biological and physical experiments in the dedicated research room in Manchester. The nature of DNA damage from proton irradiation is considerably different from X-rays and this needs to be more fully explored. A better understanding is needed of the relative biological effectiveness (RBE) of protons, especially at the end of the Bragg peak, and of the effects on tumour and normal tissue of PBT combined with conventional chemotherapy, targeted drugs and immunomodulatory agents. These experiments can be enhanced by deterministic mathematical models of the molecular and cellular processes of DNA damage response. The fashion of ultra-high dose rate FLASH irradiation also needs to be explored.
Collapse
Affiliation(s)
| | | | - Ed Smith
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Gillian A Whitfield
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | - David J Thomson
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | | | - Norman F Kirkby
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | | | - Karen J Kirkby
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| |
Collapse
|
98
|
van der Heyden B, Almeida IP, Vilches-Freixas G, Van Beveren C, Vaniqui A, Ares C, Terhaag K, Fonseca GP, Eekers DBP, Verhaegen F. A comparison study between single- and dual-energy CT density extraction methods for neurological proton monte carlo treatment planning. Acta Oncol 2020; 59:171-179. [PMID: 31646923 DOI: 10.1080/0284186x.2019.1679879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Monte Carlo proton dose calculations requires mass densities calculated from the patient CT image. This work investigates the impact of different single-energy CT (SECT) and dual-energy CT (DECT) to density conversion methods in proton dose distributions for brain tumours.Material and methods: Head CT scans for four patients were acquired in SECT and DECT acquisition modes. Commercial software was used to reconstruct DirectDensity™ images in Relative Electron Densities (RED, [Formula: see text]) and to obtain DECT-based pseudo-monoenergetic images (PMI). PMI and SECT images were converted to RED using piecewise linear interpolations calibrated on a head-sized phantom, these fits were referred to as "PMI2RED" and "CT2RED". Two DECT-based calibration methods ("Hünemohr-15it" and "Saito-15it") were also investigated. [Formula: see text] images were converted to mass-densities ([Formula: see text]) to investigate [Formula: see text]differences and one representative patient case was used to make a proton treatment plan. Using CT2RED as reference method, dose distribution differences in the target and in five organs-at-risk (OARs) were quantified.Results: In the phantom study, Saito-15it and Hünemohr-15it produced the lowest [Formula: see text]root-mean-square error (0.7%) and DirectDensity™ the highest error (2.7%). The proton plan evaluated in the Saito-15it and Hünemohr-15it datasets showed the largest relative differences compared to initial CT2RED plan down to -6% of the prescribed dose. Compared to CT2RED, average range differences were calculated: -0.1 ± 0.3 mm for PMI2RED; -0.8 ± 0.4 mm for Hünemohr-15it, and -1.2 ± 0.4 mm for Saito-15it.Conclusion: Given the wide choice of available conversion methods, studies investigating the density accuracy for proton dose calculations are necessary. However, there is still a gap between performing accuracy studies in reference [Formula: see text]phantoms and applying these methods in human CT images. For this treatment case, the PMI2RED method was equivalent to the conventional CT2RED method in terms of dose distribution, CTV coverage and OAR sparing, whereas Hünemohr-15it and Saito-15it presented the largest differences.
Collapse
Affiliation(s)
- B. van der Heyden
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - I. P. Almeida
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- Maastro Protonentherapie, Maastricht, Netherlands
| | | | - C. Van Beveren
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - A. Vaniqui
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - C. Ares
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - K. Terhaag
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - G. P. Fonseca
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - D. B. P. Eekers
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- Maastro Protonentherapie, Maastricht, Netherlands
| | - F. Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
99
|
Nakashima T, Nonoshita T, Hirata H, Inoue K, Nagashima A, Yoshitake T, Asai K, Shioyama Y. Adverse Events of Concurrent Radiotherapy and ALK Inhibitors for Brain Metastases of ALK-Rearranged Lung Adenocarcinoma. In Vivo 2020; 34:247-253. [PMID: 31882485 PMCID: PMC6984098 DOI: 10.21873/invivo.11767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND We investigated acute adverse events in patients with brain metastases (BMs) of anaplastic lymphoma kinase-rearranged (ALKr) non-small cell lung cancer (NSCLC) treated with both cranial radiotherapy and tyrosine kinase inhibitors (TKIs) of ALK. PATIENTS AND METHODS Acute AEs were retrospectively investigated in patients with BMs of ALKr-NSCLC who received both whole-brain radiotherapy (WBRT) and ALK-TKI. For comparison, they were also assessed in patients with epidermal growth factor receptor (EGFR)-mutated NSCLC and wild-type with neither ALK rearrangement nor EGFR mutation treated with WBRT. RESULTS Two ALKr cases were consequently eligible. Grade 3 otitis media unexpectedly occurred in both cases, while there was one case out of 11 and one case out of 18 of grade 2 otitis media among the EGFR-mutated cases and wild-type cases (p=0.013), respectively. CONCLUSION Concurrent treatment with WBRT and ALK-TKI may be associated with acute severe ear toxicity in patients with BMs of ALKr-NSCLC.
Collapse
Affiliation(s)
- Takaaki Nakashima
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Radiology, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Takeshi Nonoshita
- Department of Radiology, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Hidenari Hirata
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kouji Inoue
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Akira Nagashima
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaori Asai
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiyuki Shioyama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
100
|
Eckert F, Clasen K, Kelbsch C, Tonagel F, Bender B, Tabatabai G, Zips D, Thorwarth D, Frey B, Becker G, Wilhelm H, Paulsen F. Retrospective analysis of fractionated intensity-modulated radiotherapy (IMRT) in the interdisciplinary management of primary optic nerve sheath meningiomas. Radiat Oncol 2019; 14:240. [PMID: 31881902 PMCID: PMC6935075 DOI: 10.1186/s13014-019-1438-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background As optic nerve sheath meningiomas (ONSM) are rare, there are no prospective studies. Our retrospective analysis focusses on a cohort of patients with uniform disease characteristics all treated with the same radiotherapy regimen. We describe treatment decision making, radiotherapy planning and detailed neuro-ophthalmological outcome of the patients. Methods 26 patients with unilateral ONSM extending only to the orbit and the optic canal were evaluated for neuro-ophthalmological outcome. Radiation treatment was planned in a simultaneous integrated boost approach to gross tumor volume (GTV) + 2 mm / 5 mm to 54 Gy / 51 Gy in 1.8 Gy / 1.7 Gy fractions. Follow-up was done by specialized neuro-ophthalmologists. Visual acuity and visual field defects were evaluated after therapy as well as during follow-up. Results Interdisciplinary treatment decision for patients with ONSM follows a rather complex decision tree. Radiation treatment planning (equivalent uniform dose (EUD), maximum dose to the optic nerve) improved with experience over time. With this patient selection visual acuity as well as visual field improved significantly at first follow-up after treatment. For visual acuity this also applied to patients with severe defects before treatment. Long term evaluation showed 16 patients with improved visual function, 6 were stable, in 4 patients visual function declined. Interdisciplinary case discussion rated the visual decline as radiation-associated in two patients. Conclusions With stringent patient selection radiotherapy for unilateral primary ONSM to 51 Gy / 54 Gy is safe and leads to significantly improved visual function. Interdisciplinary treatment decision and experience of the radiation oncology team play a major role.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany. .,Centre for Neurooncology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany.
| | - Kerstin Clasen
- Department of Radiation Oncology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Carina Kelbsch
- Department for Ophthalmology, Eberhard-Karls-University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany
| | - Felix Tonagel
- Department for Ophthalmology, Eberhard-Karls-University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Ghazaleh Tabatabai
- Centre for Neurooncology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany.,Centre for Neurooncology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, Section for Biomedical Physics, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Bettina Frey
- Department of Radiation Oncology, Section for Biomedical Physics, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Gerd Becker
- RadioChirurgicum, CyberKnife Suedwest, Klinik am Eichert, Eichertstr. 3, 73035, Goeppingen, Germany
| | - Helmut Wilhelm
- Department for Ophthalmology, Eberhard-Karls-University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| |
Collapse
|