51
|
Maddela NR, Venkateswarlu K, Megharaj M. Tris(2-chloroethyl) phosphate, a pervasive flame retardant: critical perspective on its emissions into the environment and human toxicity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1809-1827. [PMID: 32760963 DOI: 10.1039/d0em00222d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Regulations and the voluntary activities of manufacturers have led to a market shift in the use of flame retardants (FRs). Accordingly, organophosphate ester flame retardants (OPFRs) have emerged as a replacement for polybrominated diphenyl ethers (PBDEs). One of the widely used OPFRs is tris(2-chloroethyl) phosphate (TCEP), the considerable usage of which has reached 1.0 Mt globally. High concentrations of TCEP in indoor dust (∼2.0 × 105 ng g-1), its detection in nearly all foodstuffs (max. concentration of ∼30-300 ng g-1 or ng L-1), human body burden, and toxicological properties as revealed by meta-analysis make TCEP hard to distinguish from traditional FRs, and this situation requires researchers to rethink whether or not TCEP is an appropriate choice as a new FR. However, there are many unresolved issues, which may impede global health agencies in framing stringent regulations and manufacturers considering the meticulous use of TCEP. Therefore, the aim of the present review is to highlight the factors that influence TCEP emissions from its sources, its bioaccessibility, threat of trophic transfer, and toxicogenomics in order to provide better insight into its emergence as an FR. Finally, remediation strategies for dealing with TCEP emissions, and future research directions are addressed.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador and Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
52
|
Jarque S, Rubio-Brotons M, Ibarra J, Ordoñez V, Dyballa S, Miñana R, Terriente J. Morphometric analysis of developing zebrafish embryos allows predicting teratogenicity modes of action in higher vertebrates. Reprod Toxicol 2020; 96:337-348. [PMID: 32822784 DOI: 10.1016/j.reprotox.2020.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
The early identification of teratogens in humans and animals is mandatory for drug discovery and development. Zebrafish has emerged as an alternative model to traditional preclinical models for predicting teratogenicity and other potential chemical-induced toxicity hazards. To prove its predictivity, we exposed zebrafish embryos from 0 to 96 h post fertilization to a battery of 31 compounds classified as teratogens or non-teratogens in mammals. The teratogenicity score was based on the measurement of 16 phenotypical parameters, namely heart edema, pigmentation, body length, eye size, yolk size, yolk sac edema, otic vesicle defects, otoliths defects, body axis defects, developmental delay, tail bending, scoliosis, lateral fins absence, hatching ratio, lower jaw malformations and tissue necrosis. Among the 31 compounds, 20 were detected as teratogens and 11 as non-teratogens, resulting in 94.44 % sensitivity, 90.91 % specificity and 87.10 % accuracy compared to rodents. These percentages decreased slightly when referred to humans, with 87.50 % sensitivity, 81.82 % specificity and 74.19 % accuracy, but allowed an increase in the prediction levels reported by rodents for the same compounds. Positive compounds showed a high correlation among teratogenic parameters, pointing out at general developmental delay as major cause to explain the physiological/morphological malformations. A more detailed analysis based on deviations from main trends revealed potential specific modes of action for some compounds such as retinoic acid, DEAB, ochratoxin A, haloperidol, warfarin, valproic acid, acetaminophen, dasatinib, imatinib, dexamethasone, 6-aminonicotinamide and bisphenol A. The high degree of predictivity and the possibility of applying mechanistic approaches makes zebrafish a powerful model for screening teratogenicity.
Collapse
Affiliation(s)
- Sergio Jarque
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain.
| | - Maria Rubio-Brotons
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Jone Ibarra
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Víctor Ordoñez
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Sylvia Dyballa
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Rafael Miñana
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Javier Terriente
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain.
| |
Collapse
|
53
|
Mao L, Jia W, Zhang L, Zhang Y, Zhu L, Sial MU, Jiang H. Embryonic development and oxidative stress effects in the larvae and adult fish livers of zebrafish (Danio rerio) exposed to the strobilurin fungicides, kresoxim-methyl and pyraclostrobin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139031. [PMID: 32387777 DOI: 10.1016/j.scitotenv.2020.139031] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Two important strobilurin fungicides, kresoxim-methyl and pyraclostrobin, are widely used globally. Their effects on embryonic development and oxidative stress effects in the larvae and adult fish livers of zebrafish (Danio rerio) were assessed in our study. The hatching, mortality, and teratogenic rates were determined when the eggs of fish were exposed to kresoxim-methyl and pyraclostrobin for 24-144 h postfertilization (hpf). For further study, the effects of kresoxim-methyl and pyraclostrobin on antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD)], detoxification enzymes [carboxylesterase (CarE) and glutathione S-transferase (GST)] and the malondialdehyde (MDA) content of larval zebrafish (96 h) and male or female adult zebrafish livers (up to 28 d) were evaluated for potential toxicity mechanisms. The study of embryonic development revealed that both kresoxim-methyl and pyraclostrobin caused developmental toxicity (hatching inhibition, mortality, and teratogenic rates) increase with significant concentration- and time-dependent responses, and the 144-h median lethal values (LC50) of kresoxim-methyl and pyraclostrobin were 195.0 and 81.3 μg L-1, respectively. In the larval zebrafish study, both kresoxim-methyl and pyraclostrobin at the highest concentrations (100 μg L-1 and 15 μg L-1, respectively) significantly increased the CAT, POD and CarE activities and MDA content compared with those of the control group (P < 0.05). We further found that oxidative stress effects in adult zebrafish livers caused by long-term kresoxim-methyl and pyraclostrobin exposure differed with time and sex. Regarding the residues in natural waters, the potential adverse effects of kresoxim-methyl and pyraclostrobin would be relatively low for adult zebrafish but must not be overlooked for zebrafish embryos/larvae (hatching impairment). Our results from the detoxification enzyme study also initially indicated that adult zebrafish had a greater detoxification ability than larvae and that males had a greater detoxification ability than females.
Collapse
Affiliation(s)
- Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Wei Jia
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Muhammad Umair Sial
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China..
| |
Collapse
|
54
|
Anghel N, Winzer PA, Imhof D, Müller J, Langa X, Rieder J, Barrett LK, Vidadala RSR, Huang W, Choi R, Hulverson MA, Whitman GR, Arnold SL, Van Voorhis WC, Ojo KK, Maly DJ, Fan E, Hemphill A. Comparative assessment of the effects of bumped kinase inhibitors on early zebrafish embryo development and pregnancy in mice. Int J Antimicrob Agents 2020; 56:106099. [PMID: 32707170 DOI: 10.1016/j.ijantimicag.2020.106099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
Bumped kinase inhibitors (BKIs) are effective against a variety of apicomplexan parasites. Fifteen BKIs with promising in vitro efficacy against Neospora caninum tachyzoites, low cytotoxicity in mammalian cells, and no toxic effects in non-pregnant BALB/c mice were assessed in pregnant mice. Drugs were emulsified in corn oil and were applied by gavage for 5 days. Five BKIs did not affect pregnancy, five BKIs exhibited ~15-35% neonatal mortality and five compounds caused strong effects (infertility, abortion, stillbirth and pup mortality). Additionally, the impact of these compounds on zebrafish (Danio rerio) embryo development was assessed by exposing freshly fertilised eggs to 0.2-50 μM of BKIs and microscopic monitoring of embryo development in a blinded manner for 4 days. We propose an algorithm that includes quantification of malformations and embryo deaths, and established a scoring system that allows the calculation of an impact score (Si) indicating at which concentrations BKIs visibly affect zebrafish embryo development. Comparison of the two models showed that for nine compounds no clear correlation between Si and pregnancy outcome was observed. However, the three BKIs affecting zebrafish embryos only at high concentrations (≥40 μM) did not impair mouse pregnancy at all, and the three compounds that inhibited zebrafish embryo development already at 0.2 μM showed detrimental effects in the pregnancy model. Thus, the zebrafish embryo development test has limited predictive value to foresee pregnancy outcome in BKI-treated mice. We conclude that maternal health-related factors such as cardiovascular, pharmacokinetic and/or bioavailability properties also contribute to BKI-pregnancy effects.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Pablo A Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern, Switzerland
| | - Jessica Rieder
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Lynn K Barrett
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | | | - Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Mathew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Samuel L Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
55
|
Balkrishna A, Solleti SK, Verma S, Varshney A. Validation of a Novel Zebrafish Model of Dengue Virus (DENV-3) Pathology Using the Pentaherbal Medicine Denguenil Vati. Biomolecules 2020; 10:biom10070971. [PMID: 32605167 PMCID: PMC7408079 DOI: 10.3390/biom10070971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
Dengue is a devastating viral fever of humans, caused by dengue virus. Using a novel zebrafish model of dengue pathology, we validated the potential anti-dengue therapeutic properties of pentaherbal medicine, Denguenil Vati. At two different time points (at 7 and 14 days post infection with dengue virus), we tested three translational doses (5.8 μg/kg, 28 μg/kg, and 140 μg/kg). Dose- and time-dependent inhibition of the viral copy numbers was identified upon Denguenil Vati treatment. Hepatocyte necrosis, liver inflammation, and red blood cell (RBC) infiltration into the liver were significantly inhibited upon Denguenil treatment. Treatment with Denguenil Vati significantly recovered the virus-induced decreases in total platelet numbers and total RBC count, and concomitantly increasing hematocrit percentage, in a dose- and time-dependent manner. Conversely, virus-induced white blood cell (WBC) counts were significantly normalized. Virus-induced hemorrhage was completely abrogated by Denguenil after 14 days, at all the doses tested. Gene expression analysis identified a significant decrease in disease-induced endothelial apoptotic marker Angiopoetin2 (Ang-2) and pro-inflammatory chemokine marker CCL3 upon Denguenil treatment. Presence of gallic acid, ellagic acid, palmetin, and berberine molecules in the Denguenil formulation was detected by HPLC. Taken together, our results exhibit the potential therapeutic properties of Denguenil Vati in ameliorating pathological features of dengue.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.K.S.); (S.V.)
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249 405, Uttarakhand, India
| | - Siva Kumar Solleti
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.K.S.); (S.V.)
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.K.S.); (S.V.)
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.K.S.); (S.V.)
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249 405, Uttarakhand, India
- Correspondence: ; Tel.: +91-13-3424-4107 (ext. 7458)
| |
Collapse
|
56
|
Balkrishna A, Rustagi Y, Bhattacharya K, Varshney A. Application of Zebrafish Model in the Suppression of Drug-Induced Cardiac Hypertrophy by Traditional Indian Medicine Yogendra Ras. Biomolecules 2020; 10:E600. [PMID: 32295034 PMCID: PMC7226110 DOI: 10.3390/biom10040600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
Zebrafish is an elegant vertebrate employed to model the pathological etiologies of human maladies such as cardiac diseases. Persistent physiological stresses can induce abnormalities in heart functions such as cardiac hypertrophy (CH), which can lead to morbidity and mortality. In the present study, using zebrafish as a study model, efficacy of the traditional Indian Ayurveda medicine "Yogendra Ras" (YDR) was validated in ameliorating drug-induced cardiac hypertrophy. YDR was prepared using traditionally described methods and composed of nano- and micron-sized metal particles. Elemental composition analysis of YDR showed the presence of mainly Au, Sn, and Hg. Cardiac hypertrophy was induced in the zebrafish following a pretreatment with erythromycin (ERY), and the onset and reconciliation of disease by YDR were determined using a treadmill electrocardiogram, heart anatomy analysis, C-reactive protein release, and platelet aggregation time-analysis. YDR treatment of CH-induced zebrafish showed comparable results with the Standard-of-care drug, verapamil, tested in parallel. Under in-vitro conditions, treatment of isoproterenol (ISP)-stimulated murine cardiomyocytes (H9C2) with YDR resulted in the suppression of drug-stimulated biomarkers of oxidative stress: COX-2, NOX-2, NOX-4, ANF, troponin-I, -T, and cardiolipin. Taken together, zebrafish showed a strong disposition as a model for studying the efficacy of Ayurvedic medicines towards drug-induced cardiopathies. YDR provided strong evidence for its capability in modulating drug-induced CH through the restoration of redox homeostasis and exhibited potential as a viable complementary therapy.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249 401, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar 249 401, India
| | - Yashika Rustagi
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249 401, India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249 401, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249 401, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar 249 401, India
| |
Collapse
|
57
|
de Sá Hyacienth BM, Tavares Picanço KR, Sánchez-Ortiz BL, Barros Silva L, Matias Pereira AC, Machado Góes LD, Sousa Borges R, Cardoso Ataíde R, dos Santos CBR, de Oliveira Carvalho H, Gonzalez Anduaga GM, Navarrete A, Tavares Carvalho JC. Hydroethanolic extract from Endopleura uchi (Huber) Cuatrecasas and its marker bergenin: Toxicological and pharmacokinetic studies in silico and in vivo on zebrafish. Toxicol Rep 2020; 7:217-232. [PMID: 32042599 PMCID: PMC6997909 DOI: 10.1016/j.toxrep.2020.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
E. uchi stem bark hydroethanolic extract in zebrafish. Evaluating the in silico pharmacokinetic and toxicological parameters. Behavioral, biochemical and histopathological changes was dose dependent. In silico bergenin and its metabolites showed high intestinal absorption. Bergenin inhibited CYP2C9, CYP3A4 and CYP2C19.
Endopleura uchi, is used for the treatment of inflammatory disease and related to the female reproductive tract. The aim of this study was to evaluate the acute toxicity of the Endopleura uchi stem bark hydroethanolic extract (EEu) in zebrafish, emphasizing the histopathological and biochemical parameters, as well as evaluating the in silico pharmacokinetic and toxicological parameters of the phytochemical/pharmacological marker, bergenin, as their metabolites. The animals were orally treated with EEu at a single dose of 75 mg/kg, 500 mg/kg, 1000 mg/kg and 3000 mg/kg. the oral LD50 of the EEu higher to the dose of 3000 mg/kg. Behavioral, biochemical and histopathological changes were dose dependent. In silico pharmacokinetic predictions for bergenin and its metabolites showed moderate absorption in high human intestinal absorption (HIA) and Caco-2 models, reduced plasma protein binding, by low brain tissue binding and no P-glycoprotein (P-Gp) inhibition. Their metabolism is defined by the CYP450 enzyme, in addition to bergenin inhibition of CYP2C9, CYP3A4 and CYP2C19. In the bergenin and its metabolites in silico toxicity test it have been shown to cause carcinogenicity and a greater involvement of the bergenin with the CYP enzymes in the I and II hepatic and renal metabolism’s phases was observed. It is possible to suggest that the histopathological damages are involved with the interaction of this major compound and its metabolites at the level of the cellular-biochemical mechanisms which involve the absorption, metabolization and excretion of these possible prodrug and drug.
Collapse
Key Words
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- BBB, Brain-blood partition coefficient (C.brain/C.blood)
- Bergenin
- Biotrasformation
- EEu, Endopleura uchi stem bark hydroethanolic extract
- Endopleura uchi
- HAI, Index of Histopathological Changes
- HBA, Hydrogen bonding acceptors
- HBD, Hydrogen bonding donors
- HIA, Human intestinal absorption
- Hepatoxity
- IAN, Regional Herbarium of the Eastern Amazonian Embrapa
- MM, Molecular mass
- Nephrotoxity
- P-Gp, P-glycoprotein
- PPB, Plasma protein binding
- Toxicology
- hERG, ether-a-go-related human gene
Collapse
Affiliation(s)
- Beatriz Martins de Sá Hyacienth
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon of the BIONORTE Network, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, AP, Brazil
| | - Karyny Roberta Tavares Picanço
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Brenda Lorena Sánchez-Ortiz
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Laboratory of Natural Product Pharmacology, Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico, University City, Coyoacán, Zip Code 04510 Mexico City, Mexico
| | - Luciane Barros Silva
- Federal University of Amapá, Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Arlindo César Matias Pereira
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Larissa Daniele Machado Góes
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Raphaelle Sousa Borges
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Rodrigo Cardoso Ataíde
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Cleydson Breno Rodrigues dos Santos
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Federal University of Amapá, Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Helison de Oliveira Carvalho
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Gloria Melisa Gonzalez Anduaga
- Laboratory of Natural Product Pharmacology, Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico, University City, Coyoacán, Zip Code 04510 Mexico City, Mexico
| | - Andrés Navarrete
- Laboratory of Natural Product Pharmacology, Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico, University City, Coyoacán, Zip Code 04510 Mexico City, Mexico
| | - José Carlos Tavares Carvalho
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon of the BIONORTE Network, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, AP, Brazil
- Corresponding author.
| |
Collapse
|
58
|
Zheng C, Shan L, Tong P, Efferth T. Cardiotoxicity and Cardioprotection by Artesunate in Larval Zebrafish. Dose Response 2020; 18:1559325819897180. [PMID: 31975974 PMCID: PMC6958657 DOI: 10.1177/1559325819897180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Although artesunate (ART) is generally accepted as a safe and well-tolerated
first-line treatment of severe malaria, cases of severe side effects and
toxicity of this compound are also documented. This study applied larval
zebrafishes to determine the acute toxicity and efficacy of ART and performed
RNA-sequencing analyses to unravel the underlying signaling pathways
contributing to ART’s activities. Results from acute toxicity assay showed that
a single-dose intravenous injection of ART from 3.6 ng/fish (1/9 maximum
nonlethal concentration) to 41.8 ng/fish (lethal dose 10%) obviously induced
pericardial edema, circulation defects, yolk sac absorption delay, renal edema,
and swim bladder loss, indicating acute cardiotoxicity, nephrotoxicity, and
developmental toxicity of ART. Efficacy assay showed that ART at 1/2 lowest
observed adverse effect level (LOAEL) exerted cardioprotective effects on
zebrafishes with verapamil-induced heart failure. Artesunate significantly
restored cardiac malformation, venous stasis, cardiac output decrease, and blood
flow dynamics reduction. No adverse events were observed with this treatment,
indicating that ART at doses below LOAEL was effective and safe. These results
indicate that ART at low doses was cardioprotective, but revealed cardiotoxicity
at high doses. RNA-sequencing analysis showed that gene expression of
frizzled class receptor 7a (fzd7a) was
significantly upregulated in zebrafishes with verapamil-induced heart failure
and significantly downregulated if ART at 1/2 LOAEL was coadministrated,
indicating that fzd7a-modulated Wnt signaling may mediate the
cardioprotective effect of ART. For the first time, this study revealed the
biphasic property of ART, providing in-depth knowledge on the pharmacological
efficacy-safety profile for its therapeutic and safe applications in clinic.
Collapse
Affiliation(s)
- Chuanrui Zheng
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
59
|
Afonin S, Babii O, Reuter A, Middel V, Takamiya M, Strähle U, Komarov IV, Ulrich AS. Light-controllable dithienylethene-modified cyclic peptides: photoswitching the in vivo toxicity in zebrafish embryos. Beilstein J Org Chem 2020; 16:39-49. [PMID: 31976015 PMCID: PMC6964649 DOI: 10.3762/bjoc.16.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
This study evaluates the embryotoxicity of dithienylethene-modified peptides upon photoswitching, using 19 analogues based on the β-hairpin scaffold of the natural membranolytic peptide gramicidin S. We established an in vivo assay in two variations (with ex vivo and in situ photoisomerization), using larvae of the model organism Danio rerio, and determined the toxicities of the peptides in terms of 50% lethal doses (LD50). This study allowed us to: (i) demonstrate the feasibility of evaluating peptide toxicity with D. rerio larvae at 3–4 days post fertilization, (ii) determine the phototherapeutic safety windows for all peptides, (iii) demonstrate photoswitching of the whole-body toxicity for the dithienylethene-modified peptides in vivo, (iv) re-analyze previous structure–toxicity relationship data, and (v) select promising candidates for potential clinical development.
Collapse
Affiliation(s)
- Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Aline Reuter
- Institute of Organic Chemistry (IOC), KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Volker Middel
- Institute of Toxicology and Genetics (ITG), KIT, POB 3640, 76021 Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Toxicology and Genetics (ITG), KIT, POB 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics (ITG), KIT, POB 3640, 76021 Karlsruhe, Germany
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 1601 Kyiv, Ukraine.,Lumobiotics GmbH, Auerstr. 2, 76227 Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
60
|
Abstract
A major goal of translational toxicology is to identify adverse chemical effects and determine whether they are conserved or divergent across experimental systems. Translational toxicology encompasses assessment of chemical toxicity across multiple life stages, determination of toxic mode-of-action, computational prediction modeling, and identification of interventions that protect or restore health following toxic chemical exposures. The zebrafish is increasingly used in translational toxicology because it combines the genetic and physiological advantages of mammalian models with the higher-throughput capabilities and genetic manipulability of invertebrate models. Here, we review recent literature demonstrating the power of the zebrafish as a model for addressing all four activities of translational toxicology. Important data gaps and challenges associated with using zebrafish for translational toxicology are also discussed.
Collapse
Affiliation(s)
- Tamara Tal
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Permoserstraβe 15 04318 Leipzig, Germany
- Corresponding authors: Pamela Lein, Department of Molecular Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616 USA, +1-530-752-1970, ; Tamara Tal, Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, +49-341-236-1524,
| | - Bianca Yaghoobi
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
| | - Pamela J. Lein
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
- Corresponding authors: Pamela Lein, Department of Molecular Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616 USA, +1-530-752-1970, ; Tamara Tal, Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, +49-341-236-1524,
| |
Collapse
|
61
|
Toxicity and Antitumor Activity of a Thiophene-Acridine Hybrid. Molecules 2019; 25:molecules25010064. [PMID: 31878135 PMCID: PMC6983054 DOI: 10.3390/molecules25010064] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
The antitumor effects of thiophene and acridine compounds have been described; however, the clinical usefulness of these compounds is limited due to the risk of high toxicity and drug resistance. The strategy of molecular hybridization presents the opportunity to develop new drugs which may display better target affinity and less serious side effects. Herein, 2-((6-Chloro-2-methoxy-acridin-9-yl)amino)-5,6,7,8-tetrahydro-4H-cyclohepta[b]-thiophene-3-carbonitrile (ACS03), a hybrid thiophene–acridine compound with antileishmanial activity, was tested for toxicity and antitumor activity. The toxicity was evaluated in vitro (on HaCat and peripheral blood mononuclear cells) and in vivo (zebrafish embryos and acute toxicity in mice). Antitumor activity was also assessed in vitro in HCT-116 (human colon carcinoma cell line), K562 (chronic myeloid leukemic cell line), HL-60 (human promyelocytic leukemia cell line), HeLa (human cervical cancer cell line), and MCF-7 (breast cancer cell line) and in vivo (Ehrlich ascites carcinoma model). ACS03 exhibited selectivity toward HCT-116 cells (Half maximal inhibitory concentration, IC50 = 23.11 ± 1.03 µM). In zebrafish embryos, ACS03 induced an increase in lactate dehydrogenase, glutathione S-transferase, and acetylcholinesterase activities. The LD50 (lethal dose 50%) value in mice was estimated to be higher than 5000 mg/kg (intraperitoneally). In vivo, ACS03 (12.5 mg/kg) induced a significant reduction in tumor volume and cell viability. In vivo antitumor activity was associated with the nitric oxide cytotoxic effect. In conclusion, significant antitumor activity and weak toxicity were recorded for this hybrid compound, characterizing it as a potential anticancer compound.
Collapse
|
62
|
Velozo-Sá VS, Pereira LR, Lima AP, Mello-Andrade F, Rezende MRM, Goveia RM, Pires WC, Silva MM, Oliveira KM, Ferreira AG, Ellena J, Deflon VM, Grisolia CK, Batista AA, Silveira-Lacerda EP. In vitro cytotoxicity and in vivo zebrafish toxicity evaluation of Ru(ii)/2-mercaptopyrimidine complexes. Dalton Trans 2019; 48:6026-6039. [PMID: 30724926 DOI: 10.1039/c8dt03738h] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this paper, four new ruthenium complexes, [Ru(N-S)(dppm)2]PF6 (1), [Ru(N-S)(dppe)2]PF6 (2), [Ru(N-S)2(dppp)] (3) and [Ru(N-S)2(PPh3)2] (4) [dppm = 1,1-bis(diphenylphosphino)methane, dppe = 1,2-bis(diphenylphosphino)ethane, dppp = 1,3-bis(diphenylphosphino)propane, PPh3 = triphenylphosphine and N-S = 2-mercaptopyrimidine anion] were synthesized and characterized using spectroscopy techniques, molar conductance, elemental analysis, electrochemical techniques and X-ray diffraction. The DNA binding studies were investigated using voltammetry and spectroscopy techniques. The results show that all complexes exhibit a weak interaction with DNA. HSA interaction with the complexes was studied using fluorescence emission spectroscopy, where the results indicate a spontaneous interaction between the species by a static quenching mechanism. The cytotoxicity of the complexes was evaluated against A549, MDA-MB-231 and HaCat cells by MTT assay. Complexes (1) and (2), which are very active against triple negative MDA-MB-231, were subjected to further biological tests with this cell line. The cytotoxic activity triggered by the complexes was confirmed by clonogenic assay. Cell cycle analyses demonstrated marked anti-proliferative effects, especially at the G0/G1 and S phases. The morphological detection of apoptosis and necrosis - HO/PI and Annexin V-FITC/PI assay, elucidated that the type of cell death triggered by these complexes was probably by apoptosis. The in vivo toxicological assessment performed on zebrafish embryos revealed that complexes (1) and (2) did not present embryotoxic or toxic effects during embryonic and larval development showing that they are promising new prototypes of safer and more effective drugs for triple negative breast cancer treatment.
Collapse
Affiliation(s)
- Vivianne S Velozo-Sá
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goias-UFG, CEP 74690-900 Goiania, Goias, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bailone RL, Aguiar LKD, Roca RDO, Borra RC, Corrêa T, Janke H, Fukushima HCS. “Zebrafish as an animal model for food safety research: trends in the animal research”. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1673173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ricardo Lacava Bailone
- Department of Federal Inspection Service, Ministry of Agriculture, Livestock and Supply of Brazil, Federal Inspection Service, São Carlos, Brazil
- Food Technology, Universidade Estadual Paulista Julio de Mesquita Filho, Sao Paulo, Brazil
| | - Luís Kluwe de Aguiar
- Department of Food Technology and Innovation, Harper Adams University, Edgmond, United Kingdom of Great Britain and Northern Ireland
| | - Roberto de Oliveira Roca
- Department of Food Economics, Sociology and Technology, Universidade Estadual Paulista Julio de Mesquita Filho, Sao Paulo, Brazil
| | - Ricardo Carneiro Borra
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Tatiana Corrêa
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Helena Janke
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | |
Collapse
|
64
|
Toxicity Assessment of Herbal Medicine Using Zebrafish Embryos: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7272808. [PMID: 31781278 PMCID: PMC6875295 DOI: 10.1155/2019/7272808] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
Abstract
Herbal remedies have been practiced by humans over centuries and therefore possess time-proven safety. However, it is imperative to evaluate the toxic effects of herbal medicine to confirm their safety, particularly when developing therapeutic leads. Use of laboratory animals such as rats, mice, and rabbits was considered as gold standard in herbal toxicity assessments. However, in the last few decades, the ethical consideration of using higher vertebrates for toxicity testing has become more contentious. Thus, possible alternative models entailing lower vertebrates such as zebrafish were introduced. The zebrafish embryotoxicity model is at the forefront of toxicology assessment due to the transparent nature of embryos, low cost, short cycle, higher fecundity, and genetic redundancy to the humans. Recently, its application has been extended to herbal toxicology. The present review intends to provide a comprehensive assembly of studies that applied the zebrafish embryo model for the assessment of herbal toxicity. A systematic literature survey was carried out in popular scientific databases. The literature search identified a total of 1014 articles in PubMed = 12, Scopus SciVerse® = 623, and Google Scholar = 1000. After screening, 25 articles were included in this review, and they were categorized into three groups in which the zebrafish embryotoxicity assay has been applied to investigate the toxicity of (1) polyherbal formulae/medical prescription (2 full texts), (2) crude extracts (12 full texts), and (3) phytocompounds/isolated constituents (11 full texts). These studies have investigated the toxicity of 6 polyherbal formulae, 16 crude extracts, and more than 30 phytocompounds/isolated constituents using the zebrafish embryotoxicity model. Moreover, this model has explicated the teratogenic effects and specific organ toxicities such as the kidney, heart, and liver. Furthermore, in some studies, the molecular mechanisms underlying the toxicity of herbal medicine have been elucidated. This comprehensive collection of scientific data solidifies the zebrafish embryo model as an effective model system for studying toxicological effects of a broad spectrum of herbal remedies. Henceforth, it provides a novel insight into the toxicity assessment of herbal medicine.
Collapse
|
65
|
Cassano D, Mapanao AK, Summa M, Vlamidis Y, Giannone G, Santi M, Guzzolino E, Pitto L, Poliseno L, Bertorelli R, Voliani V. Biosafety and Biokinetics of Noble Metals: The Impact of Their Chemical Nature. ACS APPLIED BIO MATERIALS 2019; 2:4464-4470. [DOI: 10.1021/acsabm.9b00630] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Domenico Cassano
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12−56126 Pisa, Italy
| | - Ana-Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12−56126 Pisa, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro, 12−56126 Pisa, Italy
| | - Maria Summa
- In Vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Via Morego, 30−16163 Genoa, Italy
| | - Ylea Vlamidis
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12−56126 Pisa, Italy
| | - Giulia Giannone
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12−56126 Pisa, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro, 12−56126 Pisa, Italy
| | - Melissa Santi
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12−56126 Pisa, Italy
| | - Elena Guzzolino
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1−56124 Pisa, Italy
| | - Letizia Pitto
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1−56124 Pisa, Italy
| | - Laura Poliseno
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1−56124 Pisa, Italy
- Oncogenomics Unit, CRL-ISPRO, Via G. Moruzzi, 1−56124 Pisa, Italy
| | - Rosalia Bertorelli
- In Vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Via Morego, 30−16163 Genoa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12−56126 Pisa, Italy
| |
Collapse
|
66
|
Casciaro B, Lin Q, Afonin S, Loffredo MR, de Turris V, Middel V, Ulrich AS, Di YP, Mangoni ML. Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1-21)NH 2. FEBS J 2019; 286:3874-3891. [PMID: 31144441 DOI: 10.1111/febs.14940] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/22/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic bacterium known to cause serious human infections, especially in immune-compromised patients. This is due to its unique ability to transform from a drug-tolerant planktonic to a more dangerous and treatment-resistant sessile life form, called biofilm. Recently, two derivatives of the frog skin antimicrobial peptide esculentin-1a, i.e. Esc(1-21) and its D-amino acids containing diastereomer Esc(1-21)-1c, were characterized for their powerful anti-Pseudomonal activity against both forms. Prevention of biofilm formation already in its early stages could be even more advantageous for counteracting infections induced by this bacterium. In this work, we studied how the diastereomer Esc(1-21)-1c can inhibit Pseudomonas biofilm formation in comparison to the parent peptide and two clinically-used conventional antibiotics, i.e. colistin and aztreonam, when applied at dosages below the minimal growth inhibitory concentration. Biofilm prevention was correlated to the peptides' ability to inhibit Pseudomonas motility and to reduce the production of virulent metabolites, for example, pyoverdine and rhamnolipids. Furthermore, the molecular mechanism underlying these activities was evaluated by studying the peptides' effect on the expression of key genes involved in the virulence and motility of bacteria, as well as by monitoring the peptides' binding to the bacterial signaling nucleotide ppGpp. Our results demonstrate that the presence of only two D-amino acids in Esc(1-21)-1c is sufficient to downregulate ppGpp-mediated expression of biofilm-associated genes, presumably as a result of higher peptide stability and therefore prolonged interaction with the nucleotide. Overall, these studies should assist efficient design and optimization of new anti-infective agents with multiple pharmacologically beneficial properties.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Qiao Lin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Valeria de Turris
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Volker Middel
- Institute of Toxicology and Genetics (ITG), KIT, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry, KIT, Karlsruhe, Germany
| | - YuanPu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
67
|
Abstract
The laboratory zebrafish (Danio rerio) is now an accepted model in toxicologic research. The zebrafish model fills a niche between in vitro models and mammalian biomedical models. The developmental characteristics of the small fish are strategically being used by scientists to study topics ranging from high-throughput toxicity screens to toxicity in multi- and transgenerational studies. High-throughput technology has increased the utility of zebrafish embryonic toxicity assays in screening of chemicals and drugs for toxicity or effect. Additionally, advances in behavioral characterization and experimental methodology allow for observation of recognizable phenotypic changes after xenobiotic exposure. Future directions in zebrafish research are predicted to take advantage of CRISPR-Cas9 genome editing methods in creating models of disease and interrogating mechanisms of action with fluorescent reporters or tagged proteins. Zebrafish can also model developmental origins of health and disease and multi- and transgenerational toxicity. The zebrafish has many advantages as a toxicologic model and new methodologies and areas of study continue to expand the usefulness and application of the zebrafish.
Collapse
Affiliation(s)
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
68
|
Zhong H, Zhou J, An XH, Hua YR, Lai YF, Zhang R, Ahmad O, Zhang Y, Shang J. Natural product-based design, synthesis and biological evaluation of 2',3,4,4'-tetrahydrochalcone analogues as antivitiligo agents. Bioorg Chem 2019; 87:523-533. [PMID: 30928875 DOI: 10.1016/j.bioorg.2019.03.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
A bioactive component, 2',3,4,4'-tetrahydrochalcone (RY3-a) was first isolated from Vernohia anthelmintica (L.) willd seeds, and a set of its analogs, RY3-a-1-RY3-a-15 and RY3-c were designed and synthesized. Biological activity assays showed that RY3-c exhibited better melanogenesis and antioxidant activity and lower toxicity in comparison with RY3-a and butin. Further study tests showed that RY3-c exhibited better melanogenesis activity compared with the positive control 8-methoxypsoralan (8-MOP) in a vitiligo mouse model, suggesting that RY3-c is a good candidate antivitiligo agent. Mechanistic studies showed that RY3-c could repair cell damage induced by excessive oxidative stress and may exert melanin synthesis activity in the mouse melanoma B16F10 cell line by activating the mitogen-activated protein kinase (MAPK) pathway and the upregulation of c-kit.
Collapse
Affiliation(s)
- Hui Zhong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiao-Hong An
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ying-Rong Hua
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi-Fan Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rui Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Owais Ahmad
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ye Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541004, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China.
| | - Jing Shang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
69
|
Quevedo C, Behl M, Ryan K, Paules RS, Alday A, Muriana A, Alzualde A. Detection and Prioritization of Developmentally Neurotoxic and/or Neurotoxic Compounds Using Zebrafish. Toxicol Sci 2019; 168:225-240. [PMID: 30521027 PMCID: PMC6390653 DOI: 10.1093/toxsci/kfy291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The standard methods for toxicity testing using rodent models cannot keep pace with the increasing number of chemicals in our environment due to time and resource limitations. Hence, there is an unmet need for fast, sensitive, and cost-effective alternate models to reliably predict toxicity. As part of Tox21 Phase III's effort, a 90-compound library was created and made available to researchers to screen for neurotoxicants using novel technology and models. The chemical library was evaluated in zebrafish in a dose-range finding test for embryo-toxicity (ie, mortality or morphological alterations induced by each chemical). In addition, embryos exposed to the lowest effect level and nonobservable effect level were used to measure the internal concentration of the chemicals within the embryos by bioanalysis. Finally, considering the lowest effect level as the highest testing concentration, a functional assay was performed based on locomotor activity alteration in response to light-dark changes. The quality control chemicals included in the library, ie, negative controls and replicated chemicals, indicate that the assays performed were reliable. The use of analytical chemistry pointed out the importance of measuring chemical concentration inside embryos, and in particular, in the case of negative chemicals to avoid false negative classification. Overall, the proposed approach presented a good sensitivity and supports the inclusion of zebrafish assays as a reliable, relevant, and efficient screening tool to identify, prioritize, and evaluate chemical toxicity.
Collapse
Affiliation(s)
- Celia Quevedo
- *Biobide, Donostia-San Sebastián, 20009 Gipuzkoa, Spain
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences,Research Triangle Park, 27709 North Carolina
| | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences,Research Triangle Park, 27709 North Carolina
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences,Research Triangle Park, 27709 North Carolina
| | | | | | | |
Collapse
|
70
|
Zhu D, Li TT, Zheng SS, Yan LC, Wang Y, Fan LY, Li C, Zhao YH. Comparison of modes of action between fish and zebrafish embryo toxicity for baseline, less inert, reactive and specifically-acting compounds. CHEMOSPHERE 2018; 213:414-422. [PMID: 30243207 DOI: 10.1016/j.chemosphere.2018.09.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The mode of action (MOA) plays a key role in the risk assessment of pollutants in water. Although fish is a key model organism used in the risk assessment of pollutants in water, the MOAs have not been compared between fish and embryo toxicity for classified compounds. In this paper, regression analysis was carried out for fish and embryo toxicities against the calculated molecular descriptors and MOAs were evaluated from toxicity ratio. The toxicity significantly related with the chemical hydrophobicity for baseline and less inert compounds, respectively, indicates that these two classes of compounds share the same MOAs between fish and embryos. Comparison of the toxicity ratios shows that reactive compounds exhibit excess toxicity to both fish and embryos. These compounds can react covalently with biologically target molecules through nucleophilic addition reactions, Michael addition oxidation, or amination. Comparing with baseline, less inert and reactive compounds, many specifically-acting compounds have strong docking capacity with protein molecules. Some specifically-acting compounds, such as fungicides, have very similar toxic effect to both fish and embryos. However, insecticides are more toxic to fish than embryos; herbicides and medications are more toxic to embryos than fish. Differences in the interactions of chemicals with target molecules or bioconcentration potentials between fish and embryos may result in the differences in toxic effects. There are some factors that influence the identification of MOAs, such as quality of toxicity data, bioavailability and ionization. These factors should be considered in the identification of MOAs in the risk assessment of organic pollutants.
Collapse
Affiliation(s)
- Di Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Tian T Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Shan S Zheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Li C Yan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Yue Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Ling Y Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| |
Collapse
|
71
|
Hamm JT, Ceger P, Allen D, Stout M, Maull EA, Baker G, Zmarowski A, Padilla S, Perkins E, Planchart A, Stedman D, Tal T, Tanguay RL, Volz DC, Wilbanks MS, Walker NJ. Characterizing sources of variability in zebrafish embryo screening protocols. ALTEX 2018; 36:103-120. [PMID: 30415271 PMCID: PMC10424490 DOI: 10.14573/altex.1804162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/30/2018] [Indexed: 11/23/2022]
Abstract
There is a need for fast, efficient, and cost-effective hazard identification and characterization of chemical hazards. This need is generating increased interest in the use of zebrafish embryos as both a screening tool and an alternative to mammalian test methods. A Collaborative Workshop on Aquatic Models and 21st Century Toxicology identified the lack of appropriate and consistent testing protocols as a challenge to the broader application of the zebrafish embryo model. The National Toxicology Program established the Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT) initiative to address the lack of consistent testing guidelines and identify sources of variability for zebrafish-based assays. This report summarizes initial SEAZIT information-gathering efforts. Investigators in academic, government, and industry laboratories that routinely use zebrafish embryos for chemical toxicity testing were asked about their husbandry practices and standard protocols. Information was collected about protocol components including zebrafish strains, feed, system water, disease surveillance, embryo exposure conditions, and endpoints. Literature was reviewed to assess issues raised by the investigators. Interviews revealed substantial variability across design parameters, data collected, and analysis procedures. The presence of the chorion and renewal of exposure media (static versus static-renewal) were identified as design parameters that could potentially influence study outcomes and should be investigated further with studies to determine chemical uptake from treatment solution into embryos. The information gathered in this effort provides a basis for future SEAZIT activities to promote more consistent practices among researchers using zebrafish embryos for toxicity evaluation.
Collapse
Affiliation(s)
- Jon T Hamm
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | - Patricia Ceger
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | - David Allen
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | - Matt Stout
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Elizabeth A Maull
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Greg Baker
- Battelle, Life Sciences Research, Columbus, OH, USA
| | | | - Stephanie Padilla
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Edward Perkins
- United States Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Antonio Planchart
- Department of Biological Sciences and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | | | - Tamara Tal
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert L Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Mitch S Wilbanks
- United States Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Nigel J Walker
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
72
|
Jia W, Mao L, Zhang L, Zhang Y, Jiang H. Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio). CHEMOSPHERE 2018; 207:573-580. [PMID: 29843034 DOI: 10.1016/j.chemosphere.2018.05.138] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Azoxystrobin and picoxystrobin are two primary strobilurin fungicides used worldwide. This study was conducted to test their effects on embryonic development and the activity of several enzyme in the zebrafish (Danio rerio). After fish eggs were separately exposed to azoxystrobin and picoxystrobin from 24 to 144 h post fertilization (hpf), the mortality, hatching, and teratogenetic rates were measured. Additionally, effects of azoxystrobin and picoxystrobin on activities of three important antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD)] and two primary detoxification enzymes [carboxylesterase (CarE) and glutathione S-transferase (GST)] and malondialdehyde (MDA) content in zebrafish larvae (96 h) and livers of adult zebrafish of both sexes were also assessed for potential toxicity mechanisms. Based on the embryonic development test results, the mortality, hatching, and teratogenetic rates of eggs treated with azoxystrobin and picoxystrobin all showed significant dose- and time-dependent effects, and the 144-h LC50 values of azoxystrobin and picoxystrobin were 1174.9 and 213.8 μg L-1, respectively. In the larval zebrafish (96 h) test, activities of CAT, POD, CarE, and GST and MDA content in azoxystrobin and picoxystrobin-treated zebrafish larvae increased significantly with concentrations of the pesticides compared with those in the control. We further revealed that azoxystrobin and picoxystrobin exposure both caused significant oxidative stress in adult fish livers and the changes differed between the sexes. Our results indicated that picoxystrobin led to higher embryonic development toxicity and oxidative stress than azoxystrobin in zebrafish and the male zebrafish liver had stronger ability to detoxify than that of the females.
Collapse
Affiliation(s)
- Wei Jia
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
73
|
Sun W, Yan B, Wang R, Liu F, Hu Z, Zhou L, Yan L, Zhou K, Huang J, Tong P, Shan L, Efferth T. In vivo acute toxicity of detoxified Fuzi (lateral root of Aconitum carmichaeli) after a traditional detoxification process. EXCLI JOURNAL 2018; 17:889-899. [PMID: 30564068 PMCID: PMC6295630 DOI: 10.17179/excli2018-1607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022]
Abstract
Many herbs of traditional Chinese medicine (TCM) possess not only therapeutic efficacy, but also toxicity towards normal tissues. The herbal toxicities occasionally cause serious adverse events or even fatal poisoning due to the erroneous use of TCM herbs. Fuzi (lateral root of Aconitum carmichaeli) is such an herb with its toxic ingredient, aconites. Aconitine, mesaconitine, and hypaconitine are the main toxic components of Fuzi, which are hydrolyzed into non-toxic derivatives by water decoction. Therefore, long-time decoction was commonly applied as a traditional way to detoxify Fuzi before use. Nevertheless, recent clinical trials presorted on adverse events induced by long-time decocted Fuzi, putting some doubt on the safety of Fuzi after the traditional detoxification procedure. To thoroughly determine whether or not long-time decocted Fuzi was safe, we conducted in vivo acute toxicity assays using both rodent and zebrafish models and performed chemoprofile analyses using HPLC and UPLC-MS. The HPLC analysis showed that toxic aconitine components were hydrolyzed into benzoyl derivatives with increasing time of decoction. These aconitines were undetected by HPLC in Fuzi after 2 h-decoction (FZ-120), indicating seemingly non-toxicity of FZ-120. Unlike the non-decocted Fuzi (FZ-0) and 60 min-decocted Fuzi (FZ-60) with lethal toxicity, FZ-120 at 130 g/kg did not cause any deaths or side effects in mice regarding body weight and biochemical parameters. This seems to confirm safety of Fuzi after long-time decoction. However, histopathological observations revealed an abnormal liver phenotype and a significant decrease of the liver index following FZ-120 treatment, indicating a potential hepatoxicity of FZ-120. By using a zebrafish model, we observed that FZ-120 at a dose range from 288 to 896 μg/ml caused considerable adverse events including arrhythmia, liver degeneration, yolk sac absorption delay, length decrease, and swim bladder loss, which clearly speak for acute toxicity on cardiovascular, digestive, development, and respiratory systems. The dose range of FZ-120 was lower than that used for clinical application in human beings. Moreover, UPLC-MS revealed that FZ-120 still contained toxic aconitines that were not detectable by HPLC, which might explain its acute toxicity in zebrafish. We concluded that Fuzi is not sufficiently safe even after long-time decoction. The zebrafish model combined with UPLC-MS assay may represent an appropriate test system to unravel aconitine-related acute toxicity.
Collapse
Affiliation(s)
- Wan Sun
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongrong Wang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fucun Liu
- Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kang Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiawei Huang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
74
|
Xia X, Wang P, Wan R, Huo W, Chang Z. Toxic effects of cyhalofop-butyl on embryos of the Yellow River carp (Cyprinus carpio var.): alters embryos hatching, development failure, mortality of embryos, and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24305-24315. [PMID: 29948714 DOI: 10.1007/s11356-018-2489-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
As a universal environmental contaminant, the herbicide cyhalofop-butyl is considered to have infested effects on the embryonic development of aquatic species. The present study focused on an assessment of the impacts of cyhalofop-butyl on Yellow River carp embryos. It was found that cyhalofop-butyl inhibited the hatching of the embryos, and the hatching rate decreased with higher concentrations of the herbicide. The mortality rate was increased on exposure to cyhalofop-butyl and was significantly higher in the 1.6 and 2 mg/L treatment groups over 48 h. All of the embryos of the 2 mg/L treatment group died within the 48 h post-hatching stage. And the transcription of several embryos related to apoptosis was also influenced by cyhalofop-butyl exposure. Further, cyhalofop-butyl exposure leads to a series of morphological changes (pericardial edema, tail deformation, and spine deformation) in embryos, which were consistent with significant modifications in the associated genes. These results provided a scientific basis for further studies into the effects of cyhalofop-butyl on aquatic organisms.
Collapse
Affiliation(s)
- Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China.
| | - Peijin Wang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Ruyan Wan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Weiran Huo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| |
Collapse
|
75
|
Haque E, Ward AC. Zebrafish as a Model to Evaluate Nanoparticle Toxicity. NANOMATERIALS 2018; 8:nano8070561. [PMID: 30041434 PMCID: PMC6071110 DOI: 10.3390/nano8070561] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/08/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Nanoparticles are increasingly being developed for in vivo use, from targeted drug delivery to diagnostics, where they have enormous potential, while they are also being used for a variety of applications that can result in environmental exposure for humans. Understanding how specific nanoparticles interact with cells and cell systems is essential to gauge their safety with respect to either clinical or environmental exposure. Zebrafish is being increasingly employed as a model to evaluate nanoparticle biocompatibility. This review describes this model and how it can be used to assess nanoparticle toxicity at multiple levels, including mortality, teratogenicity, immunotoxicity, genotoxicity, as well as alterations in reproduction, behavior and a range of other physiological readouts. This review also provides an overview of studies using this model to assess the toxicity of metal, metal oxide and carbon-based nanoparticles. It is anticipated that this information will inform research aimed at developing biocompatible nanoparticles for a range of uses.
Collapse
Affiliation(s)
- Enamul Haque
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
76
|
Kithcart AP, MacRae CA. Zebrafish assay development for cardiovascular disease mechanism and drug discovery. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:126-131. [PMID: 30518489 DOI: 10.1016/j.pbiomolbio.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Calum A MacRae
- Brigham and Women's Hospital, Harvard Medical School, USA.
| |
Collapse
|
77
|
Myhre O, Låg M, Villanger GD, Oftedal B, Øvrevik J, Holme JA, Aase H, Paulsen RE, Bal-Price A, Dirven H. Early life exposure to air pollution particulate matter (PM) as risk factor for attention deficit/hyperactivity disorder (ADHD): Need for novel strategies for mechanisms and causalities. Toxicol Appl Pharmacol 2018; 354:196-214. [PMID: 29550511 DOI: 10.1016/j.taap.2018.03.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/14/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Epidemiological studies have demonstrated that air pollution particulate matter (PM) and adsorbed toxicants (organic compounds and trace metals) may affect child development already in utero. Recent studies have also indicated that PM may be a risk factor for neurodevelopmental disorders (NDDs). A pattern of increasing prevalence of attention deficit/hyperactivity disorder (ADHD) has been suggested to partly be linked to environmental pollutants exposure, including PM. Epidemiological studies suggest associations between pre- or postnatal exposure to air pollution components and ADHD symptoms. However, many studies are cross-sectional without possibility to reveal causality. Cohort studies are often small with poor exposure characterization, and confounded by traffic noise and socioeconomic factors, possibly overestimating the study associations. Furthermore, the mechanistic knowledge how exposure to PM during early brain development may contribute to increased risk of ADHD symptoms or cognitive deficits is limited. The closure of this knowledge gap requires the combined use of well-designed longitudinal cohort studies, supported by mechanistic in vitro studies. As ADHD has profound consequences for the children affected and their families, the identification of preventable risk factors such as air pollution exposure should be of high priority.
Collapse
Affiliation(s)
- Oddvar Myhre
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marit Låg
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Gro D Villanger
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Bente Oftedal
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Johan Øvrevik
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Ispra, Italy
| | - Hubert Dirven
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
78
|
Choo BKM, Kundap UP, Kumari Y, Hue SM, Othman I, Shaikh MF. Orthosiphon stamineus Leaf Extract Affects TNF-α and Seizures in a Zebrafish Model. Front Pharmacol 2018. [PMID: 29527169 PMCID: PMC5829632 DOI: 10.3389/fphar.2018.00139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Epileptic seizures result from abnormal brain activity and can affect motor, autonomic and sensory function; as well as, memory, cognition, behavior, or emotional state. Effective anti-epileptic drugs (AEDs) are available but have tolerability issues due to their side effects. The Malaysian herb Orthosiphon stamineus, is a traditional epilepsy remedy and possesses anti-inflammatory, anti-oxidant and free-radical scavenging abilities, all of which are known to protect against seizures. This experiment thus aimed to explore if an ethanolic leaf extract of O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures in a zebrafish model; and the effects of the extract on the expression levels of several genes in the zebrafish brain which are associated with seizures. The results of this study indicate that O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures as it is pharmacologically active against seizures in a zebrafish model. The anti-convulsive effect of this extract is also comparable to that of diazepam at higher doses and can surpass diazepam in certain cases. Treatment with the extract also counteracts the upregulation of NF-κB, NPY and TNF-α as a result of a Pentylenetetrazol (PTZ) treated seizure. The anti-convulsive action for this extract could be at least partially due to its downregulation of TNF-α. Future work could include the discovery of the active anti-convulsive compound, as well as determine if the extract does not cause cognitive impairment in zebrafish.
Collapse
Affiliation(s)
- Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Uday P Kundap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Seow-Mun Hue
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
79
|
Santos D, Vieira R, Luzio A, Félix L. Zebrafish Early Life Stages for Toxicological Screening: Insights From Molecular and Biochemical Markers. ADVANCES IN MOLECULAR TOXICOLOGY 2018. [DOI: 10.1016/b978-0-444-64199-1.00007-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
80
|
Basnet RM, Zizioli D, Guarienti M, Finazzi D, Memo M. Methylxanthines induce structural and functional alterations of the cardiac system in zebrafish embryos. BMC Pharmacol Toxicol 2017; 18:72. [PMID: 29141695 PMCID: PMC5688754 DOI: 10.1186/s40360-017-0179-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/03/2017] [Indexed: 11/10/2022] Open
Abstract
Background Zebrafish embryos are emerging as a model for pharmacological and toxicological studies. We used zebrafish embryos to study the general toxicity and cardiovascular effects of eight methylxanthines: aminophylline, caffeine, diprophylline, doxofylline, etophylline, 3-isobutyl-1-methylxanthine (IBMX), pentoxifylline and theophylline. Methods Microinjections of the eight methylxanthines were performed in 1-2 cell stage zebrafish embryos and the general toxicity and cardiovascular effects were analyzed at different time points. Embryotoxicity and teratogenicity were evaluated to understand the general toxicity of these compounds. Structural and functional alterations of the heart were evaluated to assess the cardiovascular effects. Results Our results showed different activity patterns of the methylxanthines drugs. Caffeine, IBMX, pentoxifylline and theophylline were highly embryotoxic and teratogenic; aminophylline, doxofylline and etophylline were embryotoxic and teratogenic only at higher doses, and diprophylline showed a minimal (<10%) embryotoxicity and teratogenicity. Most of these drugs induced structural alteration of the heart in 20-40% of the injected embryos with the maximum dose. This structural alteration was fatal with the embryos ultimately dying within 120 hpf. All the drugs induced a transient increase in heart rate at 48 hpf which returned to baseline within 96 hpf. This functional effect of methylxanthines showed similarity to the studies done in humans and other vertebrates. Conclusion Our results indicate the potential toxicity and teratogenicity of different methylxanthines in the embryos during embryonic development, the most sensitive period of life. Although interspecies differences need to be considered before drawing any conclusion, our study elucidated that a single exposure of methylxanthines at therapeutic range could induce cardiac dysfunction besides causing embryotoxicity and teratogenicity. Of all the drugs, diprophylline appeared to be safer, with lower degree of embryotoxicity, teratogenicity and cardiac toxicity as compared to other methylxanthines. Electronic supplementary material The online version of this article (10.1186/s40360-017-0179-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ram Manohar Basnet
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy.
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Michela Guarienti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Dario Finazzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy.,Clinical Chemistry Laboratory, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| |
Collapse
|
81
|
Palanco AC, Lacorte Singulani JD, Costa-Orlandi CB, Gullo FP, Strohmayer Lourencetti NM, Gomes PC, Ayusso GM, Dutra LA, Silva Bolzani VD, Regasini LO, Soares Mendes-Giannini MJ, Fusco-Almeida AM. Activity of 3'-hydroxychalcone against Cryptococcus gattii and toxicity, and efficacy in alternative animal models. Future Microbiol 2017; 12:1123-1134. [PMID: 28876122 DOI: 10.2217/fmb-2017-0062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM This work aimed to evaluate the activity of 3'-hydroxychalcone against Cryptococcus gattii in planktonic and biofilm forms and their toxicity using alternative animal models. MATERIALS & METHODS Minimum inhibitory concentration and minimum fungicide concentration were determined. Biofilm formation and the susceptibility tests were performed by the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-5-[carbonyl(phenylamino)]-2H-tetrazolium hydroxide assay. Toxicity and efficacy were checked in Danio rerio and Galleria mellonella models. RESULTS The compound 3'-hydroxychalcone showed fungicidal activity against C. gattii in both planktonic and biofilm forms. The toxicity in zebrafish embryos revealed a low lethal concentration. In G. mellonella, the compound did not show antifungal activity and larvae toxicity. CONCLUSION Because of the activity of 3'-hydroxychalcone against C. gattii in vitro, molecular modifications should be made to improve efficacy and to reduce toxicity in vivo. [Formula: see text].
Collapse
Affiliation(s)
- Ana Cerrejón Palanco
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, São Paulo, Brazil
| | | | | | - Fernanda Patrícia Gullo
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, São Paulo, Brazil
| | | | - Paulo César Gomes
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, São Paulo, Brazil
| | - Gabriela Miranda Ayusso
- Institute of Biosciences, Letters & Exact Sciences, UNESP - São José do Rio Preto, São Paulo, Brazil
| | | | | | - Luis Octávio Regasini
- Institute of Biosciences, Letters & Exact Sciences, UNESP - São José do Rio Preto, São Paulo, Brazil
| | | | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
82
|
Liu H, Chu T, Chen L, Gui W, Zhu G. In vivo cardiovascular toxicity induced by acetochlor in zebrafish larvae. CHEMOSPHERE 2017; 181:600-608. [PMID: 28472748 DOI: 10.1016/j.chemosphere.2017.04.090] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
The risk of acetochlor to human health is still unclear, prompting concern over its risk, especially to pesticide suicides population, occupational population (farmers, retailers and pharmaceutical workers), and special population (young children and infants, pregnant women, older people, and those with compromised immune systems). This study was to explore the toxic effect and the possible mechanism of toxic action of acetochlor using zebrafish larvae whose toxicity profiles have been confirmed to be strikingly similar with mammalian. The result indicated that the toxic target organ of acetochlor was cardiovascular system. Thus, cardiovascular toxicity evaluation was investigated systematically. The main phenotypes of cardiovascular toxicity induced by acetochlor were bradycardia, pericardial edema, circulation defect, and thrombosis; Malformed heart was confirmed by histopathological examination. Thrombosis which maybe triggered by bradycardia was further studied using o-dianisidine for erythrocyte staining; Substantial thrombus in the caudal vein and significantly reduced heart red blood cells (RBCs) intensity which can reflect the thrombosis degree were observed in zebrafish in a concentration-dependent manner. Additionally, the mRNA expression level of Nkx2.5 and Gata4 related to induction of cardiac program were down-regulated significantly by quantitative real-time polymerase chain reaction (qRT-PCR), which could cause defects in the cardiovascular system. For the first time, our results demonstrated that acetochlor induced cardiovascular toxicity, and down-regulation of Nkx2.5 and Gata4 might be its possible molecular basis. Our data generated here might provide novel insights into cardiovascular disease risk following acetochlor exposure to human, especially to pesticide suicides population, occupational population and special population.
Collapse
Affiliation(s)
- Hongcui Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Chu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Lili Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
83
|
Oh B, Lee Y, Fu M, Lee CH. Computational Analysis on Down-Regulated Images of Macrophage Scavenger Receptor. Pharm Res 2017; 34:2066-2074. [DOI: 10.1007/s11095-017-2211-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/13/2017] [Indexed: 11/28/2022]
|
84
|
Hamm J, Sullivan K, Clippinger AJ, Strickland J, Bell S, Bhhatarai B, Blaauboer B, Casey W, Dorman D, Forsby A, Garcia-Reyero N, Gehen S, Graepel R, Hotchkiss J, Lowit A, Matheson J, Reaves E, Scarano L, Sprankle C, Tunkel J, Wilson D, Xia M, Zhu H, Allen D. Alternative approaches for identifying acute systemic toxicity: Moving from research to regulatory testing. Toxicol In Vitro 2017; 41:245-259. [PMID: 28069485 DOI: 10.1016/j.tiv.2017.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 12/25/2022]
Abstract
Acute systemic toxicity testing provides the basis for hazard labeling and risk management of chemicals. A number of international efforts have been directed at identifying non-animal alternatives for in vivo acute systemic toxicity tests. A September 2015 workshop, Alternative Approaches for Identifying Acute Systemic Toxicity: Moving from Research to Regulatory Testing, reviewed the state-of-the-science of non-animal alternatives for this testing and explored ways to facilitate implementation of alternatives. Workshop attendees included representatives from international regulatory agencies, academia, nongovernmental organizations, and industry. Resources identified as necessary for meaningful progress in implementing alternatives included compiling and making available high-quality reference data, training on use and interpretation of in vitro and in silico approaches, and global harmonization of testing requirements. Attendees particularly noted the need to characterize variability in reference data to evaluate new approaches. They also noted the importance of understanding the mechanisms of acute toxicity, which could be facilitated by the development of adverse outcome pathways. Workshop breakout groups explored different approaches to reducing or replacing animal use for acute toxicity testing, with each group crafting a roadmap and strategy to accomplish near-term progress. The workshop steering committee has organized efforts to implement the recommendations of the workshop participants.
Collapse
Affiliation(s)
- Jon Hamm
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA.
| | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Ave NW, Ste 400, Washington, DC, USA
| | | | - Judy Strickland
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| | - Shannon Bell
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| | | | - Bas Blaauboer
- Institute for Risk Assessment Sciences, Division of Toxicology, Utrecht University, Utrecht, Netherlands
| | - Warren Casey
- NTP Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | - David Dorman
- North Carolina State University, Raleigh, NC, USA
| | - Anna Forsby
- Stockholm University and Swedish Toxicology Sciences Research Center (Swetox), Södertälje, Sweden
| | | | | | - Rabea Graepel
- European Union Reference Laboratory for Alternatives to Animal Testing, Ispra, Italy
| | | | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Washington, DC, USA
| | - Elissa Reaves
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Louis Scarano
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | | | | | - Dan Wilson
- The Dow Chemical Company, Midland, MI, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Hao Zhu
- Department of Chemistry(,) Rutgers University-Camden, Camden, NJ, USA
| | - David Allen
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| |
Collapse
|
85
|
A data-driven weighting scheme for multivariate phenotypic endpoints recapitulates zebrafish developmental cascades. Toxicol Appl Pharmacol 2017; 314:109-117. [PMID: 27884602 DOI: 10.1016/j.taap.2016.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/04/2016] [Accepted: 11/20/2016] [Indexed: 12/18/2022]
Abstract
Zebrafish have become a key alternative model for studying health effects of environmental stressors, partly due to their genetic similarity to humans, fast generation time, and the efficiency of generating high-dimensional systematic data. Studies aiming to characterize adverse health effects in zebrafish typically include several phenotypic measurements (endpoints). While there is a solid biomedical basis for capturing a comprehensive set of endpoints, making summary judgments regarding health effects requires thoughtful integration across endpoints. Here, we introduce a Bayesian method to quantify the informativeness of 17 distinct zebrafish endpoints as a data-driven weighting scheme for a multi-endpoint summary measure, called weighted Aggregate Entropy (wAggE). We implement wAggE using high-throughput screening (HTS) data from zebrafish exposed to five concentrations of all 1060 ToxCast chemicals. Our results show that our empirical weighting scheme provides better performance in terms of the Receiver Operating Characteristic (ROC) curve for identifying significant morphological effects and improves robustness over traditional curve-fitting approaches. From a biological perspective, our results suggest that developmental cascade effects triggered by chemical exposure can be recapitulated by analyzing the relationships among endpoints. Thus, wAggE offers a powerful approach for analysis of multivariate phenotypes that can reveal underlying etiological processes.
Collapse
|
86
|
Le Bihanic F, Di Bucchianico S, Karlsson HL, Dreij K. In vivo
micronucleus screening in zebrafish by flow cytometry. Mutagenesis 2016; 31:643-653. [DOI: 10.1093/mutage/gew032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
87
|
Cao F, Liu X, Wang C, Zheng M, Li X, Qiu L. Acute and short-term developmental toxicity of cyhalofop-butyl to zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10080-10089. [PMID: 26867686 DOI: 10.1007/s11356-016-6236-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Cyhalofop-butyl is an aryloxyphenoxypropionate post-emergence herbicide widely used around the world in agriculture. The acute toxicity of cyhalofop-butyl to embryos, larvae (12 and 72 h post-hatching), and adult zebrafish, as well as the short-term developmental toxicity of cyhalofop-butyl to embryo and sac-fry stages, was tested. The results showed that the 96-h LC50 values of cyhalofop-butyl to embryos, 12 h post-hatching larvae, 72 h post-hatching larvae, and adult fish were 2.03, 0.58, 1.42, and 3.49 mg/L, respectively, suggesting zebrafish early life stages were more sensitive to cyhalofop-butyl than adult stage. Cyhalofop-butyl would inhibit the spontaneous movement, heartbeat, hatching rate of embryos, and the body length of surviving larvae of zebrafish at 1.00 mg/L or higher concentrations. Morphological abnormalities, including pericardial edema, yolk sac edema, deformation of tail, and deformation of spine, were induced by cyhalofop-butyl. The results indicated that cyhalofop-butyl had significant negative impacts on zebrafish at different life stages, and spontaneous movement and hatching rate were sensitive endpoints for assessing short-term developmental toxicity of cyhalofop-butyl.
Collapse
Affiliation(s)
- Fangjie Cao
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoshan Liu
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Mingqi Zheng
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Lihong Qiu
- College of Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
88
|
Advancing epilepsy treatment through personalized genetic zebrafish models. PROGRESS IN BRAIN RESEARCH 2016; 226:195-207. [PMID: 27323944 DOI: 10.1016/bs.pbr.2016.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With an increase in the number of disease causing genetic mutations identified from epilepsy cohorts, zebrafish are proving to be an attractive vertebrate model for functional analysis of these allele variants. Not only do zebrafish have conserved gene functions, but larvae harboring mutations in identified human epileptic genes show spontaneous seizure activity and mimic the convulsive behavioral movements observed in humans. With zebrafish being compatible with medium to high-throughput screening, they are also proving to be a unique and powerful system for early preclinical drug screening, including novel target identification, pharmacology, and toxicology. Additionally, with recent advances in genomic engineering technologies, it is now possible to study the precise pathophysiology of patient-specific gene mutations in zebrafish. The following sections highlight how the unique attributes of zebrafish, in combination with genetic modifications, are continuing to transform our understanding of epilepsy and help identify personalized therapeutics for specific patient cohorts.
Collapse
|
89
|
In Vivo Cardiotoxicity Induced by Sodium Aescinate in Zebrafish Larvae. Molecules 2016; 21:190. [PMID: 26907249 PMCID: PMC6273315 DOI: 10.3390/molecules21030190] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/02/2016] [Indexed: 02/04/2023] Open
Abstract
Sodium aescinate (SA) is a widely-applied triterpene saponin product derived from horse chestnut seeds, possessing vasoactive and organ-protective activities with oral or injection administration in the clinic. To date, no toxicity or adverse events in SA have been reported, by using routine models (in vivo or in vitro), which are insufficient to predict all aspects of its pharmacological and toxicological actions. In this study, taking advantage of transparent zebrafish larvae (Danio rerio), we evaluated cardiovascular toxicity of SA at doses of 1/10 MNLC, 1/3 MNLC, MNLC and LC10 by yolk sac microinjection. The qualitative and quantitative cardiotoxicity in zebrafish was assessed at 48 h post-SA treatment, using specific phenotypic endpoints: heart rate, heart rhythm, heart malformation, pericardial edema, circulation abnormalities, thrombosis and hemorrhage. The results showed that SA at 1/10 MNLC and above doses could induce obvious cardiac and pericardial malformations, whilst 1/3 MNLC and above doses could induce significant cardiac malfunctions (heart rate and circulation decrease/absence), as compared to untreated or vehicle-treated control groups. Such cardiotoxic manifestations occurred in more than 50% to 100% of all zebrafish treated with SA at MNLC and LC10. Our findings have uncovered the potential cardiotoxicity of SA for the first time, suggesting more attention to the risk of its clinical application. Such a time- and cost-saving zebrafish cardiotoxicity assay is very valid and reliable for rapid prediction of compound toxicity during drug research and development.
Collapse
|
90
|
Abstract
The zebrafish has become a prominent vertebrate model for disease and has already contributed to several examples of successful phenotype-based drug discovery. For the zebrafish to become useful in drug development more broadly, key hurdles must be overcome, including a more comprehensive elucidation of the similarities and differences between human and zebrafish biology. Recent studies have begun to establish the capabilities and limitations of zebrafish for disease modelling, drug screening, target identification, pharmacology, and toxicology. As our understanding increases and as the technologies for manipulating zebrafish improve, it is hoped that the zebrafish will have a key role in accelerating the emergence of precision medicine.
Collapse
Affiliation(s)
- Calum A MacRae
- Cardiovascular Medicine and Network Medicine Divisions, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Randall T Peterson
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|