51
|
Yu Z, Wang H, Meng J, Miao M, Kong Q, Wang R, Liu J. Quantifying the responses of biological indices to rare macroinvertebrate taxa exclusion: Does excluding more rare taxa cause more error? Ecol Evol 2017; 7:1583-1591. [PMID: 28261467 PMCID: PMC5330898 DOI: 10.1002/ece3.2798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/02/2017] [Accepted: 01/14/2017] [Indexed: 11/10/2022] Open
Abstract
Including or excluding rare taxa in bioassessment is a controversial topic, which essentially affects the reliability and accuracy of the result. In the present paper, we hypothesize that biological indices such as Shannon-Wiener index, Simpson's index, Margalef index, evenness, BMWP (biological monitoring working party), and ASPT (Average Score Per Taxon) respond differently to rare taxa exclusion. To test this hypothesis, a benthic macroinvertebrate data set based on recent fifteen-year studies in China was built for suppositional plot analyses. A field research was conducted in the Nansi Lake to perform related analyses. The results of suppositional plot simulations showed that Simpson's index placed more weight on common taxa than any other studied indices, followed by Shannon-Wiener index which remained a high value with the exclusion of rare taxa. The results indicated that there was not much of effect on Simpson's index and Shannon-Wiener index when rare taxa were excluded. Rare taxa played an important role in Margalef index and BMWP than in other indices. Evenness showed an increase trend, while ASPT varied inconsistently with the exclusion of rare taxa. Results of the field study also indicated that rare taxa had few impacts on the Shannon-Wiener index. By examining the relationships between the rare taxa and biological indices in our study, it is suggested that including the rare taxa when using BMWP and excluding them in the proposed way (e.g., fixed-count subsampling) to calculate Shannon-Wiener index and Simpson's index could raise the efficiency and reduce the biases in the bioassessment of freshwater ecosystems.
Collapse
Affiliation(s)
- Zhengda Yu
- Institute of Environmental ResearchShandong UniversityJinanChina
| | - Hui Wang
- Institute of Environmental ResearchShandong UniversityJinanChina
| | - Jiao Meng
- Institute of Environmental ResearchShandong UniversityJinanChina
| | - Mingsheng Miao
- College of Life ScienceShandong Normal UniversityJinanChina
| | - Qiang Kong
- College of Geography and EnvironmentShandong Normal UniversityJinanChina
| | - Renqing Wang
- Institute of Environmental ResearchShandong UniversityJinanChina
- School of Life SciencesShandong UniversityJinanChina
| | - Jian Liu
- Institute of Environmental ResearchShandong UniversityJinanChina
| |
Collapse
|
52
|
Posthuma L, Dyer SD, de Zwart D, Kapo K, Holmes CM, Burton GA. Eco-epidemiology of aquatic ecosystems: Separating chemicals from multiple stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:1303-1319. [PMID: 27519323 DOI: 10.1016/j.scitotenv.2016.06.242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 04/13/2023]
Abstract
A non-toxic environment and a good ecological status are policy goals guiding research and management of chemicals and surface water systems in Europe and elsewhere. Research and policies on chemicals and water are however still disparate and unable to evaluate the relative ecological impacts of chemical mixtures and other stressors. This paper defines and explores the use of eco-epidemiological analysis of surveillance monitoring data sets via a proxy to quantify mixture impacts on ecosystems. Case studies show examples of different, progressive steps that are possible. Case study data were obtained for various regions in Europe and the United States. Data types relate to potential stressors at various scales, concerning landscape, land-use, in-stream physico-chemical and pollutant data, and data on fish and invertebrates. The proxy-values for mixture impacts were quantified as predicted (multi-substance) Potentially Affected Fractions of species (msPAF), using Species Sensitivity Distribution (SSD) models in conjunction with bioavailability and mixture models. The case studies summarize the monitoring data sets and the subsequent diagnostic bioassessments. Variation in mixture toxic pressures amongst sites appeared to covary with abundance changes in large (50-86%) percentages of taxa for the various study regions. This shows that an increased mixture toxic pressure (msPAF) relates to increased ecological impacts. Subsequent multi-stressor evaluations resulted in statistically significant, site-specific diagnosis of the magnitudes of ecological impacts and the relative contributions of different stress factors to those impacts. This included both mixtures and individual chemicals. These results allow for ranking stressors, sites and impacted species groups. That is relevant information for water management. The case studies are discussed in relation to policy and management strategies that support reaching a non-toxic environment and good ecological status. Reaching these goals requires not only focused sectoral policies, such as on chemical- or water management, but also an overarching and solution-focused view.
Collapse
Affiliation(s)
- Leo Posthuma
- RIVM, Centre for Sustainability, Environment and Health, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Scott D Dyer
- The Procter & Gamble Company, Cincinnati, OH, USA
| | - Dick de Zwart
- RIVM, Centre for Sustainability, Environment and Health, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; DdZ Ecotox, Odijk, The Netherlands
| | | | | | - G Allen Burton
- School of Natural Resources & Environment, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
53
|
Chiu MC, Hunt L, Resh VH. Response of macroinvertebrate communities to temporal dynamics of pesticide mixtures: A case study from the Sacramento River watershed, California. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:89-98. [PMID: 27744143 DOI: 10.1016/j.envpol.2016.09.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/29/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Pesticide pollution from agricultural field run-off or spray drift has been documented to impact river ecosystems worldwide. However, there is limited data on short- and long-term effects of repeated pulses of pesticide mixtures on biotic assemblages in natural systems. We used reported pesticide application data as input to a hydrological fate and transport model (Soil and Water Assessment Tool) to simulate spatiotemporal dynamics of pesticides mixtures in streams on a daily time-step. We then applied regression models to explore the relationship between macroinvertebrate communities and pesticide dynamics in the Sacramento River watershed of California during 2002-2013. We found that both maximum and average pesticide toxic units were important in determining impacts on macroinvertebrates, and that the compositions of macroinvertebrates trended toward taxa having higher resilience and resistance to pesticide exposure, based on the Species at Risk pesticide (SPEARpesticides) index. Results indicate that risk-assessment efforts can be improved by considering both short- and long-term effects of pesticide mixtures on macroinvertebrate community composition.
Collapse
Affiliation(s)
- Ming-Chih Chiu
- Department of Environmental Science, Policy & Management, University of California at Berkeley, Berkeley, 94720 CA, USA.
| | - Lisa Hunt
- Department of Environmental Science, Policy & Management, University of California at Berkeley, Berkeley, 94720 CA, USA.
| | - Vincent H Resh
- Department of Environmental Science, Policy & Management, University of California at Berkeley, Berkeley, 94720 CA, USA.
| |
Collapse
|
54
|
Arenas-Sánchez A, Rico A, Vighi M. Effects of water scarcity and chemical pollution in aquatic ecosystems: State of the art. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:390-403. [PMID: 27513735 DOI: 10.1016/j.scitotenv.2016.07.211] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Water scarcity is an expanding climate and human related condition, which drives and interacts with other stressors in freshwater ecosystems such as chemical pollution. In this study we provide an overview of the existing knowledge regarding the chemical fate, biological dynamics and the ecological risks of chemicals under water scarcity conditions. We evaluated a total of 15 studies dealing with the combined effects of chemicals and water scarcity under laboratory conditions and in the field. The results of these studies have been elaborated in order to evaluate additive, synergistic or antagonistic responses of the studied endpoints. As a general rule, it can be concluded that, in situations of water scarcity, the impacts of extreme water fluctuations are much more relevant than those of an additional chemical stressor. Nevertheless, the presence of chemical pollution may result in exacerbated ecological risks in some particular cases. We conclude that further investigations on this topic would take advantage on the focus on some specific issues. Experimental (laboratory and model ecosystem) studies should be performed on different biota groups and life stages (diapausing eggs, immature stages), with particular attention to those including traits relevant for the adaptation to water scarcity. More knowledge on species adaptations and recovery capacity is essential to predict community responses to multiple stressors and to assess the community vulnerability. Field studies should be performed at different scales, particularly in lotic systems, in order to integrate different functional dynamics of the river ecosystem. Combining field monitoring and experimental studies would be the best option to reach more conclusive, causal relationships on the effects of co-occurring stressors. Contribution of these studies to develop ecological models and scenarios is also suggested as an improvement for the prospective aquatic risk assessment of chemicals in (semi-)arid areas.
Collapse
Affiliation(s)
- Alba Arenas-Sánchez
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain.
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
55
|
Clavijo A, Kronberg MF, Rossen A, Moya A, Calvo D, Salatino SE, Pagano EA, Morábito JA, Munarriz ER. The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:252-261. [PMID: 27343944 DOI: 10.1016/j.scitotenv.2016.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 05/14/2023]
Abstract
Determination of water quality status in rivers is critical to establish a sustainable water management policy. For this reason, over the last decades it has been recommended to perform integrated water assessments that include water quantities and physicochemical, ecological and toxicological tests. However, sometimes resources are limited and it is not possible to perform large-scale chemical determinations of pollutants or conduct numerous ecotoxicological tests. To overcome this problem we use and measure the growth, as a response parameter, of the soil nematode Caenorhabditis elegans to assess water quality in rivers. The C. elegans is a ubiquitous organism that has emerged as an important model organism in aquatic and soil toxicology research. The Tunuyán River Basin (Province of Mendoza, Argentina) has been selected as a representative traditional water monitoring system to test the applicability of the C. elegans toxicological bioassay to generate an integrated water quality evaluation. Jointly with the C. elegans toxic assays, physicochemical and bacteriological parameters were determined for each monitoring site. C. elegans bioassays help to identify different water qualities in the river basin. Multivariate statistical analysis (PCA and linear regression models) has allowed us to confirm that traditional water quality studies do not predict potential toxic effects on living organisms. On the contrary, physicochemical and bacteriological analyzes explain <62% of the C. elegans growth response variability, showing that ecotoxicological bioassays are important to obtain a realistic scenario of water quality threats. Our results confirm that the C. elegans bioassay is a sensible and suitable tool to assess toxicity and should be implemented in routine water quality monitoring.
Collapse
Affiliation(s)
- Araceli Clavijo
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, CONICET-Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martín 4453 C1417DSE, CABA, Argentina; Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 C1417DSE, CABA, Argentina
| | - María Florencia Kronberg
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, CONICET-Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martín 4453 C1417DSE, CABA, Argentina; Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 C1417DSE, CABA, Argentina
| | - Ariana Rossen
- Laboratorio Experimental de Tecnologías Sustentables, Instituto Nacional del Agua, Av. Ezeiza-Cañuelas, tramo Jorge Newbery Km 1,620 Pcia, Buenos Aires, Argentina
| | - Aldana Moya
- Cátedra de Protección Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 C1417DSE, CABA, Argentina
| | - Daniel Calvo
- Dirección de Servicios Hidrológicos, Instituto Nacional del Agua, Av. Ezeiza-Cañuelas, tramo Jorge Newbery Km 1,620 Pcia, Buenos Aires, Argentina
| | | | - Eduardo Antonio Pagano
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, CONICET-Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martín 4453 C1417DSE, CABA, Argentina; Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 C1417DSE, CABA, Argentina
| | - José Antonio Morábito
- Centro Regional Andino, Instituto Nacional del Agua, Belgrano 210 (M5500FIF) Mendoza, Argentina; Facultad de Ciencias Agrarias (UNCuyo), Alte. Brown 500, Chacras de Coria, Luján de Cuyo, Mendoza, Argentina
| | - Eliana Rosa Munarriz
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, CONICET-Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martín 4453 C1417DSE, CABA, Argentina; Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 C1417DSE, CABA, Argentina.
| |
Collapse
|
56
|
Baldantoni D, Alfani A. Usefulness of different vascular plant species for passive biomonitoring of Mediterranean rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13907-17. [PMID: 27040538 DOI: 10.1007/s11356-016-6592-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/28/2016] [Indexed: 05/13/2023]
Abstract
Choosing native vascular plants as nutrient and toxic element accumulators for passive biomonitoring of urban river quality is not an easy task in Mediterranean rivers, due to the particular climate determining high variations in river hydrology. To identify potential biomonitors for this area, the roots of seven species (Angelica sylvestris, Apium nodiflorum, Tradescantia fluminensis, Nasturtium officinale, Persicaria lapathifolia, Arctium lappa, Typha latifolia), growing in seven sites along the River Irno (Southern Italy), were collected in July 2010 and analyzed regarding their capability to accumulate Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, and Zn through atomic absorption spectrometry. Notwithstanding the expected different accumulation degree among the species, they highlighted similar spatial contamination gradients, and all of them appeared suitable, alone or in combination, for river passive biomonitoring. A. nodiflorum, in particular, appeared the best biomonitor for the River Irno, where severe anthropogenic impacts were detected: high Cu and Cd contamination from vine cultivation in the upper stretch, and Pb, Zn, and Mn contamination in the medium stretch from airborne dusts coming from a cast iron foundry.
Collapse
Affiliation(s)
- Daniela Baldantoni
- Dipartimento di Chimica e Biologia, "Adolfo Zambelli" Università degli Studi di Salerno, Via Giovanni Paolo II, 132-84084, Fisciano, SA, Italy.
| | - Anna Alfani
- Dipartimento di Chimica e Biologia, "Adolfo Zambelli" Università degli Studi di Salerno, Via Giovanni Paolo II, 132-84084, Fisciano, SA, Italy
| |
Collapse
|
57
|
Ccanccapa A, Masiá A, Navarro-Ortega A, Picó Y, Barceló D. Pesticides in the Ebro River basin: Occurrence and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:414-24. [PMID: 26802514 DOI: 10.1016/j.envpol.2015.12.059] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 05/04/2023]
Abstract
In this study, 50 pesticides were analyzed in the Ebro River basin in 2010 and 2011 to assess their impact in water, sediment and biota. A special emphasis was placed on the potential effects of both, individual pesticides and their mixtures, in three trophic levels (algae, daphnia and fish) using Risk Quotients (RQs) and Toxic Units (TUs) for water and sediments. Chlorpyrifos, diazinon and carbendazim were the most frequent in water (95, 95 and 70% of the samples, respectively). Imazalil (409.73 ng/L) and diuron (150 ng/L) were at the highest concentrations. Sediment and biota were less contaminated. Chlorpyrifos, diazinon and diclofenthion were the most frequent in sediments (82, 45 and 21% of the samples, respectively). The only pesticide detected in biota was chlorpyrifos (up to 840.2 ng g(-1)). Ecotoxicological risk assessment through RQs showed that organophosphorus and azol presented high risk for algae; organophosphorus, benzimidazoles, carbamates, juvenile hormone mimic and other pesticides for daphnia, and organophosphorus, azol and juvenile hormone mimics for fish. The sum TUsite for water and sediments showed values < 1 for the three bioassays. In both matrices, daphnia and fish were more sensitive to the mixture of pesticide residues present.
Collapse
Affiliation(s)
- Alexander Ccanccapa
- Food and Environmental Safety Research Group (SAMA-UV), Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Ana Masiá
- Food and Environmental Safety Research Group (SAMA-UV), Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Alícia Navarro-Ortega
- Water and Soil Quality Research Group, Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group (SAMA-UV), Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Damià Barceló
- Water and Soil Quality Research Group, Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|