51
|
Zhou X, Gao Y, Wang D, Chen W, Zhang X. Association Between Sulfur Dioxide and Daily Inpatient Visits With Respiratory Diseases in Ganzhou, China: A Time Series Study Based on Hospital Data. Front Public Health 2022; 10:854922. [PMID: 35433609 PMCID: PMC9008542 DOI: 10.3389/fpubh.2022.854922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Background Sulfur dioxide (SO2) has been reported to be related to the mortality of respiratory diseases, but the relationship between SO2 and hospital inpatient visits with respiratory diseases and the potential impact of different seasons on this relationship is still unclear. Methods The daily average concentrations of air pollutants, including SO2 and meteorological data in Ganzhou, China, from 2017 to 2019 were collected. The data on daily hospitalization for respiratory diseases from the biggest hospital in the city were extracted. The generalized additive models (GAM) and the distributed lag non-linear model (DLNM) were employed to evaluate the association between ambient SO2 and daily inpatient visits for respiratory diseases. Stratified analyses by gender, age, and season were performed to find their potential effects on this association. Results There is a positive exposure-response relationship between SO2 concentration and relative risk of respiratory inpatient visits. Every 10 μg/m3 increase in SO2 was related to a 3.2% (95% CI: 0.6–6.7%) exaltation in daily respiratory inpatient visits at lag3. In addition, SO2 had a stronger association with respiratory inpatient visits in women, older adults (≥65 years), and warmer season (May-Oct) subgroups. The relationship between SO2 and inpatient visits for respiratory diseases was robust after adjusting for other air pollutants, including PM10, NO2, O3, and CO. Conclusion This time-series study showed that there is a positive association between short-term SO2 exposure and daily respiratory inpatient visits. These results are important for local administrators to formulate environmental public health policies.
Collapse
Affiliation(s)
- Xingye Zhou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yanfang Gao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaokang Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| |
Collapse
|
52
|
Relationship between Meteorological and Air Quality Parameters and COVID-19 in Casablanca Region, Morocco. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094989. [PMID: 35564384 PMCID: PMC9100265 DOI: 10.3390/ijerph19094989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the relationship between meteorological parameters, air quality and daily COVID-19 transmission in Morocco. We collected daily data of confirmed COVID-19 cases in the Casablanca region, as well as meteorological parameters (average temperature, wind, relative humidity, precipitation, duration of insolation) and air quality parameters (CO, NO2, 03, SO2, PM10) during the period of 2 March 2020, to 31 December 2020. The General Additive Model (GAM) was used to assess the impact of these parameters on daily cases of COVID-19. A total of 172,746 confirmed cases were reported in the study period. Positive associations were observed between COVID-19 and wind above 20 m/s and humidity above 80%. However, temperatures above 25° were negatively associated with daily cases of COVID-19. PM10 and O3 had a positive effect on the increase in the number of daily confirmed COVID-19 cases, while precipitation had a borderline effect below 25 mm and a negative effect above this value. The findings in this study suggest that significant associations exist between meteorological factors, air quality pollution (PM10) and the transmission of COVID-19. Our findings may help public health authorities better control the spread of COVID-19.
Collapse
|
53
|
Mu J, Zeng D, Zeng H. Effects of nitrogen dioxide exposure on the risk of eye and adnexa diseases among children in Shenzhen, China: an assessment using the generalized additive modeling approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:840-849. [PMID: 32746628 DOI: 10.1080/09603123.2020.1801603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to assess the relationship between nitrogen dioxide (NO2) exposure and the risk of eye and adnexa diseases (EADs) among children in Shenzhen, China. Information about the daily number of outpatients with EADs and the concentration of air pollutants and meteorological data were collected. A generalized additive model was used to assess the effect of NO2 exposure on the risk of EADs during outpatient visits. An increase in NO2 level by 10 μg/m3 was related to an increase in the daily number of outpatients by 5.43% (95% confidence interval [CI]: 2.25%, 8.70%) at lag0, by 4.35% (95% CI: 1.15%, 7.66%) at lag1, and by 3.21% (95% CI: 0.05%, 6.47%) at lag3. In addition, the relationship between NO2 exposure and the risk of dacryoadenitis was the strongest, with an estimated value of 15.0% (95% CI: 7.99%, 22.5%) at lag0. Moreover, the association between NO2 exposure and the risk of EADs among children in Shenzhen was confirmed in this study. Therefore, the government should introduce stringent environmental policies to control air pollution and protect human health, particularly that of the vulnerable population.
Collapse
Affiliation(s)
- Jingfeng Mu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | - Dan Zeng
- Department of Pharmacy, Shenzhen Maternal and Child Health Care Hospital, Shenzhen, China
| | - Hongwu Zeng
- Department of medical imaging, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
54
|
Shen WT, Yu X, Zhong SB, Ge HR. Population Health Effects of Air Pollution: Fresh Evidence From China Health and Retirement Longitudinal Survey. Front Public Health 2022; 9:779552. [PMID: 35004584 PMCID: PMC8733201 DOI: 10.3389/fpubh.2021.779552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of air pollution on population health are currently a hot topic. However, few studies have examined the physical and mental health effects of air pollution jointly in China. Using data from the China Health and Retirement Longitudinal Study (CHARLS) in 2015 and 2018, this study explores how air pollution affects the physical and mental health of middle-aged and elderly residents. The empirical results highlight that air pollution can negatively affect both physical and mental health. In terms of physical health, those exposed to chronic shock are likely to suffer more adverse effects from air pollution than those exposed to acute shock. In terms of mental health, those exposed to depression suffer greater adverse effects than those exposed to episodic memory and mental cognition. Besides, heterogeneity analysis also shows that air pollution affects the mental and physical health of males more than females. Furthermore, the increase in air pollution is expected to result in huge hospitalization costs. Therefore, the Chinese government should formulate differentiated public health policies to reduce the effects of air pollution on the health of middle-aged and elderly residents.
Collapse
Affiliation(s)
- Wei-Teng Shen
- Business School, Zhejiang Wanli University, Ningbo, China
| | - Xuan Yu
- Business School, Ningbo University, Ningbo, China
| | - Shun-Bin Zhong
- School of Information, Central University of Finance and Economics, Beijing, China
| | - Hao-Ran Ge
- Business School, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
55
|
Marwah M, Agrawala PK. COVID-19 lockdown and environmental pollution: an Indian multi-state investigation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:49. [PMID: 34978634 PMCID: PMC8721483 DOI: 10.1007/s10661-021-09693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/14/2021] [Indexed: 05/09/2023]
Abstract
Originating from China, COVID-19 became the first-ever coronavirus pandemic, wreaking havoc in 218 nations. The lack of a potential treatment exacerbated by the inability of the healthcare infrastructure to contain the viral trajectory led to a worldwide lockdown. The anthropogenic halt presented an unprecedented background to quantify the effect of the anthroposphere on environmental pollution. Consequently, we analyzed the variations in the air (PM10, PM2.5, NO2, SO2) and water pollutants (BOD, COD, DO, coliform) using real-time monitoring data in the majorly hit Indian metropolitan states during the lockdown in contrast to 2019 levels. The overall AQI (air quality index) de-escalated by -31.35%, -34.35%, -32.63%, -29.25% in Delhi, Tamil Nadu, West Bengal, and Karnataka, respectively, from the 2019 levels. The daily concentrations of NO2, PM2.5, and PM10 plunged tremendously. The exact pre-disposing factors responsible for higher COVID-19 transmission in some geographical centers remain elusive. Investigations have corroborated putative links between air pollutants and COVID-19 mortalities. Therefore, we further mapped PM2.5, PM10, NO2, and SO2 to co-relate with COVID-19 infectivity and mortality across the study states. Significant (P < 0.001) positive correlation between COVID-19 transmission was established for all pollutants with maximum co-relation with AQI followed by NO2. River Ganga water in Uttarakhand was deemed "fit for drinking" for the first time in two decades. An aggregate of -71.94, -61.32, and -77.94 decrease in BOD, COD, total coliform levels, and an 11.75 rise in the average DO levels from 2019 data. This study will better assist the future framework of health and environment restoration policies.
Collapse
Affiliation(s)
- Mansi Marwah
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Delhi, India
- Institute of Nuclear Medicine and Allied Sciences, DRDO, Brig SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Paban K Agrawala
- Institute of Nuclear Medicine and Allied Sciences, DRDO, Brig SK Mazumdar Marg, Timarpur, Delhi, 110054, India.
| |
Collapse
|
56
|
Thermal Conditions and Hospital Admissions: Analysis of Longitudinal Data from Cyprus (2009-2018). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413361. [PMID: 34948967 PMCID: PMC8702178 DOI: 10.3390/ijerph182413361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
The state of the thermal environment can affect human health and well-being. Heat stress is associated with a wide range of health outcomes increasing morbidity and mortality and is recognized as an important health risk posed by climate change. This study aims at examining the effect of thermal conditions on the daily number of hospital admissions in Cyprus. Data from eight public hospitals located in five districts of Cyprus were analyzed from 2009 to 2018. Meteorological hourly gridded data were extracted by the ERA-5 Land reanalysis database with a spatial horizontal resolution of 0.1° × 0.1°. The Physiologically Equivalent Temperature (PET) and the Universal Thermal Climate Index (UTCI) were calculated as measures of the integrated effect of meteorological variables. Negative binomial regression was fitted to examine associations between the daily number of hospital admissions and meteorological variables, PET, and UTCI. The results showed that the mean daily temperature (Tair) was positively associated with hospital admissions from any cause. Hospital admissions increased by 0.6% (p < 0.001) for each 1 °C increase of Tair and by 0.4% (p < 0.001) for each 1 °C increase of PET and UTCI. Ozone and nitrogen oxides act as confounding factors. An effect of particulate matter (less than 10 μm in diameter) was observed when the analysis focused on April to August. Thresholds above which hospital admissions are likely to increase include daily mean Tair = 26.1 °C, PET = 29 °C, and UTCI = 26 °C. Studies on heat-related health effects are necessary to monitor health patterns, raise awareness, and design adaptation and mitigation measures.
Collapse
|
57
|
Zhang M, Zhu Y. Association between particulate matter pollution and the incidence of mumps in 31 provinces from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51210-51216. [PMID: 33977431 DOI: 10.1007/s11356-021-14287-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Previous studies have found that particulate matter (PM) pollution is a risk factor for respiratory disease by affecting body's immunity and carrying microorganisms. This study aimed to explore the association between PM and the incidence of mumps in 31 provinces from China. Monthly mumps cases, air pollution concentration, and meteorological factors in each province were obtained between January 2014 to December 2017. We used a generalized additive model (GAM) to investigate the associations of PM2.5 and PM10 with monthly mumps cases. We also tested the statistical significance of the differences between effect estimates in the warm season (April to September) and cold season (October to March) to explore potential effect modification. We found that a 10-μg/m3 increase (lag0) in PM2.5, and PM10 was associated with a 2.34% (95% CI: 1.32 to 3.36) and 1.90% (95% CI: 1.19 to 2.62) increase in the monthly counts of mumps cases, respectively. We also observed significant positive associations of PM2.5 and PM10 with mumps cases at lag0-1. These results were robust in our sensitivity analyses. No significant differences were found between the season-specific effects. Our results indicate that there is a positive relationship between PM and the incidence of mumps, which provides important implications for the prevention and control of mumps.
Collapse
Affiliation(s)
- Mengru Zhang
- School of Management, University of Science and Technology of China, Hefei, China
| | - Yongjian Zhu
- School of Management, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
58
|
Leili M, Nadali A, Karami M, Bahrami A, Afkhami A. Short-term effect of multi-pollutant air quality indexes and PM 2.5 on cardiovascular hospitalization in Hamadan, Iran: a time-series analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53653-53667. [PMID: 34036506 DOI: 10.1007/s11356-021-14386-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Air pollutants are the most important environmental factors that contributed to cardiovascular disease (CVD). The present study aimed to investigate the number of hospitalization due to heart failure (HF) and myocardial infarction (MI) following the air pollutant exposure using a time-series regression analysis with a distributed lag model in Hamadan, Iran (2015-2019). A total of 2091 cases of CVD were registered. Based on the findings, the highest health effects on HF hospitalization were observed with air quality health index (AQHI) at lag 9 (RR = 1.043, 95% CI 0.991-1.098), and air quality index (AQI) at lags 2, 7, and 9 (RR = 1.001, 95% CI 0.998-1.002), for an increase in 1 unit of the indexes, and with PM2.5 at lag 0 (RR = 1.001, 95% CI 0.996-1.004) for 10 μg/m3 increase in PM2.5 levels. The highest health effects on MI hospitalization were calculated with AQHI at lag 10 (RR = 1.059, 95% CI 1.001-1.121) and AQI at lags 1 and 2 (RR = 1.001, 95% CI 0.998-1.002), for an increase in 1 unit of the indexes, and with PM2.5 at lag 8 (RR = 1.002, 95% CI 0.997-1.005) for 10 μg/m3 increase in PM2.5 levels. According to a seasonal classification, results showed that hospitalization in the warm season was higher than that of the cold season. Based on our knowledge, the current study is the first study that investigated the effect of air quality indexes on hospitalization due to HF and MI in Iran. Findings can provide basic information to plan preventive measures for reducing exposure chance and hospitalization rate in high-risk people.
Collapse
Affiliation(s)
- Mostafa Leili
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Azam Nadali
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Manoochehr Karami
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Bahrami
- Department of Occupational Health, Faculty of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Fahmideh Av, Hamadan, 65174, Iran
| |
Collapse
|
59
|
Priyankara S, Senarathna M, Jayaratne R, Morawska L, Abeysundara S, Weerasooriya R, Knibbs LD, Dharmage SC, Yasaratne D, Bowatte G. Ambient PM 2.5 and PM 10 Exposure and Respiratory Disease Hospitalization in Kandy, Sri Lanka. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9617. [PMID: 34574538 PMCID: PMC8466407 DOI: 10.3390/ijerph18189617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023]
Abstract
Evidence of associations between exposure to ambient air pollution and health outcomes are sparse in the South Asian region due to limited air pollution exposure and quality health data. This study investigated the potential impacts of ambient particulate matter (PM) on respiratory disease hospitalization in Kandy, Sri Lanka for the year 2019. The Generalized Additive Model (GAM) was applied to estimate the short-term effect of ambient PM on respiratory disease hospitalization. As the second analysis, respiratory disease hospitalizations during two distinct air pollution periods were analyzed. Each 10 μg/m3 increase in same-day exposure to PM2.5 and PM10 was associated with an increased risk of respiratory disease hospitalization by 1.95% (0.25, 3.67) and 1.63% (0.16, 3.12), respectively. The effect of PM2.5 or PM10 on asthma hospitalizations were 4.67% (1.23, 8.23) and 4.04% (1.06, 7.11), respectively (p < 0.05). The 65+ years age group had a higher risk associated with PM2.5 and PM10 exposure and hospital admissions for all respiratory diseases on the same day (2.74% and 2.28%, respectively). Compared to the lower ambient air pollution period, higher increased hospital admissions were observed among those aged above 65 years, males, and COPD and pneumonia hospital admissions during the high ambient air pollution period. Active efforts are crucial to improve ambient air quality in this region to reduce the health effects.
Collapse
Affiliation(s)
- Sajith Priyankara
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79409, USA;
| | - Mahesh Senarathna
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (M.S.); (R.W.)
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Rohan Jayaratne
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4000, Australia; (R.J.); (L.M.)
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4000, Australia; (R.J.); (L.M.)
| | - Sachith Abeysundara
- Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Rohan Weerasooriya
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (M.S.); (R.W.)
- National Center for Water Quality Research, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Luke D. Knibbs
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Shyamali C. Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3053, Australia;
| | - Duminda Yasaratne
- Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Gayan Bowatte
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (M.S.); (R.W.)
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3053, Australia;
- Department of Basic Sciences, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
60
|
Anwar MN, Shabbir M, Tahir E, Iftikhar M, Saif H, Tahir A, Murtaza MA, Khokhar MF, Rehan M, Aghbashlo M, Tabatabaei M, Nizami AS. Emerging challenges of air pollution and particulate matter in China, India, and Pakistan and mitigating solutions. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125851. [PMID: 34492802 DOI: 10.1016/j.jhazmat.2021.125851] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
This study examines point and non-point sources of air pollution and particulate matter and their associated socioeconomic and health impacts in South Asian countries, primarily India, China, and Pakistan. The legislative frameworks, policy gaps, and targeted solutions are also scrutinized. The major cities in these countries have surpassed the permissible limits defined by WHO for sulfur dioxide, carbon monoxide, particulate matter, and nitrogen dioxide. As a result, they are facing widespread health problems, disabilities, and causalities at extreme events. Populations in these countries are comparatively more prone to air pollution effects because they spend more time in the open air, increasing their likelihood of exposure to air pollutants. The elevated level of air pollutants and their long-term exposure increases the susceptibility to several chronic/acute diseases, i.e., obstructive pulmonary diseases, acute respiratory distress, chronic bronchitis, and emphysema. More in-depth spatial-temporal air pollution monitoring studies in China, India, and Pakistan are recommended. The study findings suggest that policymakers at the local, national, and regional levels should devise targeted policies by considering all the relevant parameters, including the country's economic status, local meteorological conditions, industrial interests, public lifestyle, and national literacy rate. This approach will also help design and implement more efficient policies which are less likely to fail when brought into practice.
Collapse
Affiliation(s)
- Muhammad Naveed Anwar
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan.
| | - Muneeba Shabbir
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Eza Tahir
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Mahnoor Iftikhar
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Hira Saif
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Ajwa Tahir
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Malik Ashir Murtaza
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Muhammad Fahim Khokhar
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan.
| |
Collapse
|
61
|
Lebbie TS, Moyebi OD, Asante KA, Fobil J, Brune-Drisse MN, Suk WA, Sly PD, Gorman J, Carpenter DO. E-Waste in Africa: A Serious Threat to the Health of Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8488. [PMID: 34444234 PMCID: PMC8392572 DOI: 10.3390/ijerph18168488] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022]
Abstract
Waste electronic and electrical equipment (e-waste) consists of used and discarded electrical and electronic items ranging from refrigerators to cell phones and printed circuit boards. It is frequently moved from developed countries to developing countries where it is dismantled for valuable metals in informal settings, resulting in significant human exposure to toxic substances. E-waste is a major concern in Africa, with large sites in Ghana and Nigeria where imported e-waste is dismantled under unsafe conditions. However, as in many developing countries, used electronic and electrical devices are imported in large quantities because they are in great demand and are less expensive than new ones. Many of these used products are irreparable and are discarded with other solid waste to local landfills. These items are then often scavenged for the purpose of extracting valuable metals by heating and burning, incubating in acids and other methods. These activities pose significant health risks to workers and residents in communities near recycling sites. E-waste burning and dismantling activities are frequently undertaken at e-waste sites, often in or near homes. As a result, children and people living in the surrounding areas are exposed, even if they are not directly involved in the recycling. While toxic substances are dangerous to individuals at any age, children are more vulnerable as they are going through important developmental processes, and some adverse health impacts may have long-term impacts. We review the e-waste situation in Africa with a focus on threats to children's health.
Collapse
Affiliation(s)
- Tamba S. Lebbie
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
| | - Omosehin D. Moyebi
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
| | | | - Julius Fobil
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, Accra, Ghana;
| | - Marie Noel Brune-Drisse
- Department of Environment, Climate Change and Health, World Organization, 1211 Geneva, Switzerland;
| | - William A. Suk
- A World Health Organization Collaborating Center on Children’s Environmental Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Peter D. Sly
- A World Health Organization Collaborating Center for Children’s Health and the Environment, Child Health Research Center, The University of Queensland, South Brisbane 4101, Australia;
| | - Julia Gorman
- Graduate School of Humanities and Social Sciences, University of Melbourne, Melbourne 3010, Australia;
| | - David O. Carpenter
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
- A World Health Organization Collaborating Center on Environmental Health, Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
62
|
Wu S, Zhang Y, Wu X, Hao G, Ren H, Qiu J, Zhang Y, Bi X, Yang A, Bai L, Tan J. Association between exposure to ambient air pollutants and the outcomes of in vitro fertilization treatment: A multicenter retrospective study. ENVIRONMENT INTERNATIONAL 2021; 153:106544. [PMID: 33819722 DOI: 10.1016/j.envint.2021.106544] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure to ambient air pollution has been reported to be inversely correlated with human reproductive health. However, the results of previous studies exploring the association between air pollution and in vitro fertilization (IVF) outcomes are conflicting, and further research is needed to clarify this association. OBJECTIVES This study aimed to investigate the associations between exposure to air pollutants and IVF outcomes. METHODS We conducted a multicenter retrospective cohort study involving 20,835 patients from four cities in Northern China, contributing to 11,787 fresh embryo transfer cycles, 9050 freeze-all cycles, and 17,676 frozen-thawed embryo transfer (FET) cycles during 2014-2018. We calculated the daily average concentrations of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO, and SO2) during different exposure windows in IVF treatment timeline using data from the air monitoring station nearest to the residential site as approximate individual exposure. Generalized estimation equation models were used to assess the association between air pollution exposure and IVF outcomes. RESULTS Exposure to O3, NO2, and CO during most exposure windows in fresh embryo transfer cycles were correlated with lower possibilities of biochemical pregnancy, clinical pregnancy, and live birth. An inverse association of exposure to O3 and SO2 with pregnancy outcomes was observed in FET cycles. In addition, we found a significant association of exposure to air pollutants with a higher risk of ectopic pregnancy and lower oocyte yield. CONCLUSIONS Our study provided large-scale human evidence of the association between air pollution and adverse human reproductive outcomes in the population opting for IVF. Thus, exposure to air pollutants in the population opting for IVF should be limited to improve treatment outcomes.
Collapse
Affiliation(s)
- Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, PR China
| | - Yunshan Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, PR China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, PR China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Haiqin Ren
- Jinghua Hospital, Shenyang, Liaoning 110022, PR China
| | - Jiahui Qiu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, PR China
| | - Yinfeng Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, PR China
| | - Xingyu Bi
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, PR China
| | - Aimin Yang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Lina Bai
- Jinghua Hospital, Shenyang, Liaoning 110022, PR China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, PR China.
| |
Collapse
|
63
|
Sahoo MM. Significance between air pollutants, meteorological factors, and COVID-19 infections: probable evidences in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40474-40495. [PMID: 33638789 PMCID: PMC7912974 DOI: 10.1007/s11356-021-12709-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/25/2021] [Indexed: 04/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease represents the causative agent with a potentially fatal risk which is having great global human health concern. Earlier studies suggested that air pollutants and meteorological factors were considered as the risk factors for acute respiratory infection, which carries harmful pathogens and affects the immunity. The study intended to explore the correlation between air pollutants, meteorological factors, and the daily reported infected cases caused by novel coronavirus in India. The daily positive infected cases, concentrations of air pollutants, and meteorological factors in 288 districts were collected from January 30, 2020, to April 23, 2020, in India. Spearman's correlation and generalized additive model (GAM) were applied to investigate the correlations of four air pollutants (PM2.5, PM10, NO2, and SO2) and eight meteorological factors (Temp, DTR, RH, AH, AP, RF, WS, and WD) with COVID-19-infected cases. The study indicated that a 10 μg/m3 increase during (Lag0-14) in PM2.5, PM10, and NO2 resulted in 2.21% (95%CI: 1.13 to 3.29), 2.67% (95% CI: 0.33 to 5.01), and 4.56 (95% CI: 2.22 to 6.90) increase in daily counts of Coronavirus Disease 2019 (COVID 19)-infected cases respectively. However, only 1 unit increase in meteorological factor levels in case of daily mean temperature and DTR during (Lag0-14) associated with 3.78% (95%CI: 1.81 to 5.75) and 1.82% (95% CI: -1.74 to 5.38) rise of COVID-19-infected cases respectively. In addition, SO2 and relative humidity were negatively associated with COVID-19-infected cases at Lag0-14 with decrease of 7.23% (95% CI: -10.99 to -3.47) and 1.11% (95% CI: -3.45 to 1.23) for SO2 and for relative humidity respectively. The study recommended that there are significant correlations between air pollutants and meteorological factors with COVID-19-infected cases, which substantially explain the effect of national lockdown and suggested positive implications for control and prevention of the spread of SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Mrunmayee Manjari Sahoo
- Domain of Environmental and Water Resources Engg, SCE, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
64
|
Lorenzo JSL, Tam WWS, Seow WJ. Association between air quality, meteorological factors and COVID-19 infection case numbers. ENVIRONMENTAL RESEARCH 2021; 197:111024. [PMID: 33744266 PMCID: PMC7968307 DOI: 10.1016/j.envres.2021.111024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 03/13/2021] [Indexed: 05/07/2023]
Abstract
The coronavirus disease (COVID-19) has become a global pandemic affecting many countries, including Singapore. Previous studies have investigated the relationship of air pollutant levels and meteorological factors with respiratory disease risk and hospital admission rates. However, associations between air pollutant concentrations and meteorological factors with COVID-19 infection have been equivocal. This study aimed to assess the association between core air pollutant concentrations, meteorological variables and daily confirmed COVID-19 case numbers in Singapore. Data on air pollutant levels (particulate matter [PM2.5, PM10], ozone [O3], carbon monoxide [CO], nitrogen dioxide [NO2], sulphur dioxide [SO2], pollutant standards index [PSI]) and meteorological factors (rainfall, humidity, temperature) was obtained from the Singapore National Environment Agency (NEA) from January 23, 2020 to April 6, 2020. The daily reported COVID-19 case numbers were retrieved from the Singapore Ministry of Health (MOH). Generalized linear models with Poisson family distribution and log-link were used to estimate the model coefficients and 95% confidence intervals (CIs) for the association between air pollutant concentrations and meteorological factors (8-day and 15-day moving averages (MA)) with COVID-19 case numbers, adjusting for humidity, rainfall and day of week. We observed significantly positive associations between NO2, PSI, PM2.5 and temperature with COVID-19 case numbers. Every 1-unit increase (15-day MA) in PSI, 1 μg/m3 increase (15-day MA) in PM2.5, NO2 and 0.1 °C increase in temperature were significantly associated with a 35.0% (95% CI: 29.7%-40.5%), 22.6% (95% CI: 12.0%-34.3%), 34.8% (95% CI: 29.3%-40.4%) and 28.6% (95% CI: 25.0%-32.4%) increase in the average daily number of COVID-19 cases respectively. On the contrary, PM10, O3, SO2, CO, rainfall and humidity were significantly associated with lower average daily numbers of confirmed COVID-19 cases. Similar associations were observed for the 8-day MAs. Future studies could explore the long-term consequences of the air pollutants on COVID-19 infection and recovery.
Collapse
Affiliation(s)
- Jason Sam Leo Lorenzo
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, 117549, Singapore
| | - Wilson Wai San Tam
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, 117597, Singapore
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, 117549, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 117597, Singapore.
| |
Collapse
|
65
|
Zhang F, Zhang H, Wu C, Zhang M, Feng H, Li D, Zhu W. Acute effects of ambient air pollution on clinic visits of college students for upper respiratory tract infection in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29820-29830. [PMID: 33566291 DOI: 10.1007/s11356-021-12828-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Ambient air pollutants have been linked to adverse health outcomes, but evidence is still relatively rare in college students. Upper respiratory tract infection (URTI) is a common disease of respiratory system among college students. In this study, we assess the acute effect of air pollution on clinic visits of college students for URTI in Wuhan, China. Data on clinic visits due to URTI were collected from Wuhan University Hospital, meteorological factors (including daily temperature and relative humidity) provided by Wuhan Meteorological Bureau, and air pollutants by Wuhan Environmental Protection Bureau. In the present study, generalized additive model with a quasi-Poisson distribution link function was used to examine the association between ambient air pollutants (fine particulate matter (PM2.5), particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3)) and the daily number of clinic visits of college students for URTI at Wuhan University Hospital in Wuhan, China. In the meantime, the model was adjusted for the confounding effects of long-term trends, seasonality, day of the week, public holidays, vacation, and meteorological factors. The best degrees of free in model were selected based on AIC (Akaike Information Criteria). The effect modification by gender was also examined. A total of 44,499 cases with principal diagnosis of URTI were included from January 1, 2016, to December 31, 2018. In single-pollutant models, the largest increment of URTI visits were found at lag 0 day in single-day lags, and the effect values in cumulative lags were greater than those in single-day lags. PM2.5 (0.74% (95%CI: 0.05, 1.44)) at lag 0 day, PM10 (0.61% (95%CI: 0.12, 1.11)) and O3 (1.01% (95%CI: 0.24, 1.79)) at lag 0-1 days, and SO2 (9.18% (95%CI: 3.27, 15.42)) and NO2 (3.40% (95% CI:1.64, 5.19)) at lag 0-3 days were observed to be strongly and significantly associated with clinic visits for URTI. PM10 and NO2 were almost still significantly associated with URTI after controlling for the other pollutants in our two-pollutant models, where the effect value of SO2 after inclusion of O3 appeared to be the largest and the effects of NO2 were also obvious compared with the other pollutants. Subgroups analysis demonstrated that males were more vulnerable to PM10 and O3, while females seemed more vulnerable to exposure to SO2 and NO2. This study implied that short-term exposure to ambient air pollution was associated with increased risk of URTI among college students at Wuhan University Hospital in Wuhan, China. And gaseous pollutants had more negative health impact than solid pollutants. SO2 and NO2 were the major air pollutants affecting the daily number of clinic visits on URTI, to which females seemed more vulnerable than males.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Han Zhang
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Chuangxin Wu
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Miaoxuan Zhang
- Hospital of Wuhan University, Wuhan, 430072, Hubei, China
| | - Huan Feng
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, Wuhan, 430071, China.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
66
|
Yan Y, Chen X, Guo Y, Wu C, Zhao Y, Yang N, Dai J, Gong J, Xiang H. Ambient air pollution and cerebrovascular disease mortality: an ecological time-series study based on 7-year death records in central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27299-27307. [PMID: 33511535 DOI: 10.1007/s11356-021-12474-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Most studies of short-term exposure to ambient air pollution and cerebrovascular diseases focused on specific stroke-related outcomes, and results were inconsistent due to data unavailability and limited sample size. It is unclear yet how ambient air pollution contributes to the total cardiovascular mortality in central China. Daily deaths from cerebrovascular diseases were obtained from the Disease Surveillance Point System (DSPs) of Wuhan Center for Disease Control and Prevention during the period from 2013 to 2019. Air pollution data were obtained from Wuhan Ecology and Environment Institute from 10 national air quality monitoring stations, including average daily PM2.5, PM10, SO2, NO2, and O3. Average daily temperature and relative humidity were obtained from Wuhan Meteorological Bureau. We performed a Poisson regression in generalized additive models (GAM) to examine the association between ambient air pollution and cerebrovascular disease mortality. We observed a total of 84,811 deaths from cerebrovascular diseases from 1 January 2013 to 31 December 2019 in Wuhan. Short-term exposure to PM2.5, PM10, SO2, and NO2 was positively associated with daily deaths from cerebrovascular diseases, and no significant association was found for O3. The largest effect on cerebrovascular disease mortality was found at lag0 for PM2.5 (ERR: 0.927, 95% CI: 0.749-1.105 per 10 μg/m3) and lag1 for PM10 (ERR: 0.627, 95% CI: 0.493-0.761 per 10 μg/m3), SO2 (ERR: 2.518, 95% CI: 1.914, 3.122 per 10 μg/m3), and NO2 (ERR: 1.090, 95% CI: 0.822-1.358 per 10 μg/m3). The trends across lags were statistically significant. The stratified analysis demonstrated that females were more susceptible to SO2 and NO2, while elder individuals aged above 65 years old, compared with younger people, suffered more from air pollution, especially from SO2. Short-term exposure to PM2.5, PM10, SO2, and NO2 were significantly associated with a higher risk of cerebrovascular disease mortality, and elder females seemed to suffer more from air pollution. Further research is required to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Yaqiong Yan
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Xi Chen
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Yan Guo
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Chuangxin Wu
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Yuanyuan Zhao
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Niannian Yang
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Juan Dai
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Jie Gong
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China.
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
67
|
Zhou YM, Fan YN, Yao CY, Xu C, Liu XL, Li X, Xie WJ, Chen Z, Jia XY, Xia TT, Li YF, Ji AL, Cai TJ. Association between short-term ambient air pollution and outpatient visits of anxiety: A hospital-based study in northwestern China. ENVIRONMENTAL RESEARCH 2021; 197:111071. [PMID: 33798515 DOI: 10.1016/j.envres.2021.111071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Anxiety, a common and devastating mental disorder, has raised widespread interests. The impacts of air pollution on physical health are well known, whereas few studies have explored the association of atmospheric pollution, especially short-term air pollution exposure, with the risk of anxiety disorders. In addition, there are increasing concerns in emerging evidence supporting a possible etiological link. Therefore, our aim was to evaluate the relationship between short-term exposure to atmospheric pollutants and anxiety outpatient visits in Xi'an, a city of northwestern China and a metropolis with relatively heavy air pollution. We collected the data of both daily outpatient visits and daily air pollution (SO2, NO2, and PM10) between January 1, 2010 and January 31, 2016 (2222 days). To clarify the association between short-term ambient atmospheric pollution exposure and anxiety outpatient visits, an over-dispersed Poisson generalized additive model was applied by adjusting the day of the week and weather conditions (including temperature, humidity, sunlight hours, and rainfalls). Positive association between gaseous air pollutants (SO2 and NO2) and anxiety daily outpatient visits was observed. Moreover, the largest estimated values of both SO2 and NO2 were evidence at lag 03 (4-day moving average lag), with 10 μg/m3 increase corresponded to the increase of outpatient anxiety visits at 4.11% (95% CI: 2.15%, 6.06%) for SO2 and 3.97% (95% CI: 1.90%, 6.06%) for NO2. However, there was no differences in susceptibility to air pollutants between different genders as well as different ages. Taken together, short-term exposure to ambient air pollutants, especially gaseous air pollutants (NO2 and SO2), can be related to higher risk of anxiety outpatient visits.
Collapse
Affiliation(s)
- Yu-Meng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Yan-Ni Fan
- Medical Record Room of Information Department, Second Affiliated Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, China.
| | - Chun-Yan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Chen Xu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China.
| | - Xiao-Ling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiang Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Wei-Jia Xie
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Zheng Chen
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiao-Yue Jia
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Ting-Ting Xia
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Ai-Ling Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Tong-Jian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
68
|
Zhou YM, An SJ, Tang EJ, Xu C, Cao Y, Liu XL, Yao CY, Xiao H, Zhang Q, Liu F, Li YF, Ji AL, Cai TJ. Association between short-term ambient air pollution exposure and depression outpatient visits in cold seasons: a time-series analysis in northwestern China. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:389-398. [PMID: 33622183 DOI: 10.1080/15287394.2021.1880507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Depression is known to be one of the most common mental disorders raising global concerns. However, evidence regarding the association between short-term air pollution exposure and risk of development of depression is limited. The aim of this was to assess the relationship between short-term ambient air pollution exposure and depression in outpatient visits in Xi'an, a northwestern Chinese metropolis. Data for air pollutants including particulate matter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) levels from October 1, 2010 to December 31, 2013 and number of daily depression outpatient visits (92,387 in total) were collected. A time-series quasi-Poisson regression model was adopted to determine the association between short-term air pollutant concentrations and frequency of outpatient visits for depression with different lag models. Consequently, 10 μg/m3 increase of SO2 and NO2 levels corresponded to significant elevation in number of outpatient-visits for depression on concurrent days (lag 0), and this relationship appeared stronger in cool seasons (October to March). However, the association of PM10 was only significant in males aged 30-50 at lag 0. Evidence indicated that short-term exposure to ambient air pollutants especially in cool seasons might be associated with increased risk of outpatient visits for depression.
Collapse
Affiliation(s)
- Yu-Meng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shu-Jie An
- Medical Department, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - En-Jie Tang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Xu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Yi Cao
- Department of Health Economics Management, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xiao-Ling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chun-Yan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hua Xiao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian Zhang
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Feng Liu
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ai-Ling Ji
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tong-Jian Cai
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
69
|
Gujral H, Sinha A. Association between exposure to airborne pollutants and COVID-19 in Los Angeles, United States with ensemble-based dynamic emission model. ENVIRONMENTAL RESEARCH 2021; 194:110704. [PMID: 33417905 PMCID: PMC7836725 DOI: 10.1016/j.envres.2020.110704] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 05/09/2023]
Abstract
This study aims to find the association between short-term exposure to air pollutants, such as particulate matters and ground-level ozone, and SARS-CoV-2 confirmed cases. Generalized linear models (GLM), a typical choice for ecological modeling, have well-established limitations. These limitations include apriori assumptions, inability to handle multicollinearity, and considering differential effects as the fixed effect. We propose an Ensemble-based Dynamic Emission Model (EDEM) to address these limitations. EDEM is developed at the intersection of network science and ensemble learning, i.e., a specialized approach of machine learning. Generalized Additive Model (GAM), i.e., a variant of GLM, and EDEM are tested in Los Angeles and Ventura counties of California, which is one of the biggest SARS-CoV-2 clusters in the US. GAM depicts that a 1 μg/m3, 1 μg/m3, and 1 ppm increase (lag 0-7) in PM 2.5, PM 10, and O3 is associated with 4.51% (CI: 7.01 to -2.00) decrease, 1.62% (CI: 2.23 to -1.022) decrease, and 4.66% (CI: 0.85 to 8.47) increase in daily SARS-CoV-2 cases, respectively. Subsequent increment in lag resulted in the negative association between pollutants and SARS-CoV-2 cases. EDEM results in an R2 score of 90.96% and 79.16% on training and testing datasets, respectively. EDEM confirmed the negative association between particulates and SARS-CoV-2 cases; whereas, the O3 depicts a positive association; however, the positive association observed through GAM is not statistically significant. In addition, the county-level analysis of pollutant concentration interactions suggests that increased emissions from other counties positively affect SARS-CoV-2 cases in adjoining counties as well. The results reiterate the significance of uniformly adhering to air pollution mitigation strategies, especially related to ground-level ozone.
Collapse
Affiliation(s)
- Harshit Gujral
- Department of Computer Science Engineering and IT, Jaypee Institute of Information Technology, Noida, India.
| | - Adwitiya Sinha
- Department of Computer Science Engineering and IT, Jaypee Institute of Information Technology, Noida, India.
| |
Collapse
|
70
|
Karimi B, Shokrinezhad B. Air pollution and the number of daily deaths due to respiratory causes in Tehran. ATMOSPHERIC ENVIRONMENT 2021; 246:118161. [DOI: 10.1016/j.atmosenv.2020.118161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
71
|
Yee J, Cho YA, Yoo HJ, Yun H, Gwak HS. Short-term exposure to air pollution and hospital admission for pneumonia: a systematic review and meta-analysis. Environ Health 2021; 20:6. [PMID: 33413431 PMCID: PMC7792212 DOI: 10.1186/s12940-020-00687-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/14/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Air pollution is a major issue that poses a health threat worldwide. Although several studies investigated the adverse effects of air pollution on various diseases, few have directly demonstrated the effects on pneumonia. Therefore, we performed a systematic review and meta-analysis on the associations between short-term exposure of air pollutants and hospital admission or emergency room (ER) visit for pneumonia. METHODS A literature search was performed using PubMed, Embase, and Web of Science up to April 10, 2020. Pooled estimates were calculated as % increase with 95% confidence intervals using a random-effects model. A sensitivity analysis using the leave-one-out method and subgroup analysis by region were performed. RESULTS A total of 21 studies were included in the analysis. Every 10 μg/m3 increment in PM2.5 and PM10 resulted in a 1.0% (95% CI: 0.5-1.5) and 0.4% (95% CI: 0.2-0.6) increase in hospital admission or ER visit for pneumonia, respectively. Every 1 ppm increase of CO and 10 ppb increase of NO2, SO2, and O3 was associated with 4.2% (95% CI: 0.6-7.9), 3.2% (95% CI: 1.3-5.1), 2.4% (95% CI: - 2.0-7.1), and 0.4% (95% CI: 0-0.8) increase in pneumonia-specific hospital admission or ER visit, respectively. Except for CO, the sensitivity analyses yielded similar results, demonstrating the robustness of the results. In a subgroup analysis by region, PM2.5 increased hospital admission or ER visit for pneumonia in East Asia but not in North America. CONCLUSION By combining the inconsistent findings of several studies, this study revealed the associations between short-term exposure of air pollutants and pneumonia-specific hospital admission or ER visit, especially for PM and NO2. Based on the results, stricter intervention policies regarding air pollution and programs for protecting human respiratory health should be implemented.
Collapse
Affiliation(s)
- Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Young Ah Cho
- College of Pharmacy, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
- Mokhwa Convalescent Hospital, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Hee Jeong Yoo
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
- Department of Pharmacy, National Medical Center, Seoul, 04564, Republic of Korea
| | - Hyunseo Yun
- Graduate School of Clinical Biohealth, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
72
|
Khan W, Hussain A, Khan SA, Al-Jumailey M, Nawaz R, Liatsis P. Analysing the impact of global demographic characteristics over the COVID-19 spread using class rule mining and pattern matching. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201823. [PMID: 33614100 PMCID: PMC7890495 DOI: 10.1098/rsos.201823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/21/2021] [Indexed: 05/15/2023]
Abstract
Since the coronavirus disease (COVID-19) outbreak in December 2019, studies have been addressing diverse aspects in relation to COVID-19 and Variant of Concern 202012/01 (VOC 202012/01) such as potential symptoms and predictive tools. However, limited work has been performed towards the modelling of complex associations between the combined demographic attributes and varying nature of the COVID-19 infections across the globe. This study presents an intelligent approach to investigate the multi-dimensional associations between demographic attributes and COVID-19 global variations. We gather multiple demographic attributes and COVID-19 infection data (by 8 January 2021) from reliable sources, which are then processed by intelligent algorithms to identify the significant associations and patterns within the data. Statistical results and experts' reports indicate strong associations between COVID-19 severity levels across the globe and certain demographic attributes, e.g. female smokers, when combined together with other attributes. The outcomes will aid the understanding of the dynamics of disease spread and its progression, which in turn may support policy makers, medical specialists and society, in better understanding and effective management of the disease.
Collapse
Affiliation(s)
- Wasiq Khan
- Department of Computing and Mathematics, Liverpool John Moores University, Liverpool L33AF, UK
| | - Abir Hussain
- Department of Computing and Mathematics, Liverpool John Moores University, Liverpool L33AF, UK
| | - Sohail Ahmed Khan
- Department of Computer Science, DeepCamera Research Lab, Interactive Media, Smart System, and Emerging Technologies Center, Nicosia, Cyprus
| | - Mohammed Al-Jumailey
- The Regenerative Clinic, Queen Anne Medical Centre, Harley Street Medical Area, London
| | - Raheel Nawaz
- Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M156BH, UK
| | - Panos Liatsis
- Department of Electrical Engineering and Computer Science, Khalifa University, PO Box 127788, Abu Dhabi, UAE
| |
Collapse
|
73
|
Bonyadi Z, Arfaeinia H, Fouladvand M, Farjadfard S, Omidvar M, Ramavandi B. Impact of exposure to ambient air pollutants on the admission rate of hospitals for asthma disease in Shiraz, southern Iran. CHEMOSPHERE 2021; 262:128091. [PMID: 33182159 DOI: 10.1016/j.chemosphere.2020.128091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Asthma is a common chronic respiratory disease in the world. Short-term exposure to ambient air pollutants is closely related to acute respiratory diseases and asthmatic symptoms. The purpose of this research was to estimate the correlation between exposure to three air pollutants (O3, NO2, and SO2) and hospital admission because of asthmatic disease (HAAD) in the city of Shiraz, southern Iran. The data were collected from the two real-time monitoring stations located in this city. The acquired information was used for developing predictive models by the AirQ software. The findings of this study were reported for two age groups (<15 and 15-64 years old). The highest levels of O3, NO2, and SO2 were obtained 187.33 μg/m3, 34.1 μg/m3, and 491.2 μg/m3 in 2016, respectively, and 227.75 μg/m3, 92.26 μg/m3, and 190.21 μg/m3, respectively, in 2017. Among the mentioned pollutants, the yearly average concentration of SO2 was 8.62 times more than the WHO guideline, during the studied times. The number of extra cases of HAAD for <15 years and 15-64 years caused by the air pollutants in Shiraz were estimated to be 273 and 36, respectively, in 2016, and 243 and 30 for 2017, respectively. The results of this work displayed that air pollutants have caused respiratory problems in Shiraz city. The AirQ model is a facile and potential tool for the prediction of asthma disease to reduce the health risk of atmospheric pollutants in the worldwide.
Collapse
Affiliation(s)
- Ziaeddin Bonyadi
- Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Moradali Fouladvand
- The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sima Farjadfard
- Department of Environmental Engineering, Graduate School of the Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Omidvar
- Department of Occupational Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
74
|
Paoin K, Ueda K, Ingviya T, Buya S, Phosri A, Seposo XT, Seubsman SA, Kelly M, Sleigh A, Honda A, Takano H. Long-term air pollution exposure and self-reported morbidity: A longitudinal analysis from the Thai cohort study (TCS). ENVIRONMENTAL RESEARCH 2021; 192:110330. [PMID: 33068582 PMCID: PMC7768181 DOI: 10.1016/j.envres.2020.110330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Several studies have shown the health effects of air pollutants, especially in China, North American and Western European countries. But longitudinal cohort studies focused on health effects of long-term air pollution exposure are still limited in Southeast Asian countries where sources of air pollution, weather conditions, and demographic characteristics are different. The present study examined the association between long-term exposure to air pollution and self-reported morbidities in participants of the Thai cohort study (TCS) in Bangkok metropolitan region (BMR), Thailand. METHODS This longitudinal cohort study was conducted for 9 years from 2005 to 2013. Self-reported morbidities in this study included high blood pressure, high blood cholesterol, and diabetes. Air pollution data were obtained from the Thai government Pollution Control Department (PCD). Particles with diameters ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) exposures were estimated with ordinary kriging method using 22 background and 7 traffic monitoring stations in BMR during 2005-2013. Long-term exposure periods to air pollution for each subject was averaged as the same period of person-time. Cox proportional hazards models were used to examine the association between long-term air pollution exposure with self-reported high blood pressure, high blood cholesterol, diabetes. Results of self-reported morbidity were presented as hazard ratios (HRs) per interquartile range (IQR) increase in PM10, O3, NO2, SO2, and CO. RESULTS After controlling for potential confounders, we found that an IQR increase in PM10 was significantly associated with self-reported high blood pressure (HR = 1.13, 95% CI: 1.04, 1.23) and high blood cholesterol (HR = 1.07, 95%CI: 1.02, 1.12), but not with diabetes (HR = 1.05, 95%CI: 0.91, 1.21). SO2 was also positively associated with self-reported high blood pressure (HR = 1.22, 95%CI: 1.08, 1.38), high blood cholesterol (HR = 1.20, 95%CI: 1.11, 1.30), and diabetes (HR = 1.21, 95%CI: 0.92, 1.60). Moreover, we observed a positive association between CO and self-reported high blood pressure (HR = 1.07, 95%CI: 1.00, 1.15), but not for other diseases. However, self-reported morbidities were not associated with O3 and NO2. CONCLUSIONS Long-term exposure to air pollution, especially for PM10 and SO2 was associated with self-reported high blood pressure, high blood cholesterol, and diabetes in subjects of TCS. Our study supports that exposure to air pollution increases cardiovascular disease risk factors for younger population.
Collapse
Affiliation(s)
- Kanawat Paoin
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kayo Ueda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Graduate School of Global Environmental Sciences, Kyoto University, Kyoto, Japan.
| | - Thammasin Ingviya
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Suhaimee Buya
- Medical Data Center for Research and Innovation, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Arthit Phosri
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Xerxes Tesoro Seposo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Sam-Ang Seubsman
- School of Human Ecology, Sukhothai Thammathirat Open University, Nonthaburi, Thailand
| | - Matthew Kelly
- Department of Global Health, Research School of Population Health, Australian National University, Canberra, Australia
| | - Adrian Sleigh
- Department of Global Health, Research School of Population Health, Australian National University, Canberra, Australia
| | - Akiko Honda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Graduate School of Global Environmental Sciences, Kyoto University, Kyoto, Japan
| | - Hirohisa Takano
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Graduate School of Global Environmental Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
75
|
Bigdeli M, Taheri M, Mohammadian A. Spatial sensitivity analysis of COVID-19 infections concerning the satellite-based four air pollutants levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2021; 18:751-760. [PMID: 33456479 PMCID: PMC7794616 DOI: 10.1007/s13762-020-03112-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 05/09/2023]
Abstract
The novel coronavirus (COVID-19), first reported in late December 2019, has affected the lives of many people throughout the world. Significant studies have been conducted on this pandemic, some of which have addressed understanding the relationship between different air pollutants and confirmed cases. In this study, the effects of four air pollutants (carbon monoxide, nitrogen dioxide, ozone, and sulfur dioxide) were assessed from February 19 to March 22, 2020 to explore how they can affect COVID-19 contagion in Iran. The mean concentrations of air pollutants were extracted from Sentinel 5P data. The COVID-19 confirmed case densities of two provinces, Semnan and Qom, were more than all other provinces. The effect of pollutants on the confirmed case densities was analyzed using multiple linear regression in order to estimate the impact coefficients for individual provinces. The impact coefficients determine the level of each pollutant's contribution to the density of total confirmed cases. Carbon monoxide, nitrogen dioxide, sulfur dioxide, and ozone had both considerable negative and positive correlations with the density of confirmed COVID-19 cases, although sulfur dioxide was correlated more negatively than positively. In Semnan, a high hot spot province, nitrogen dioxide had the most significant effect on the density of confirmed cases among all pollutants, while the effect of carbon monoxide was greater in Qom. The results indicated that even short-term exposure to higher concentrations of the pollutants could lead to an increased risk of COVID-19 outbreaks, which should be considered in adopting adequate and appropriate control policies to manage the disease.
Collapse
Affiliation(s)
- M. Bigdeli
- Department of Environmental Engineering, School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - M. Taheri
- School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - A. Mohammadian
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N6N5 Canada
| |
Collapse
|
76
|
Air Pollution and Emergency Hospital Admissions—Evidences from Lisbon Metropolitan Area, Portugal. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10227997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The relevance of air pollution in the public health agenda has recently been reinforced—it is known that exposure to it has negative effects in the health of individuals, especially in big cities and metropolitan areas. In this article we observed the evolution of air pollutants (CO, NO, NO2, O3, PM10) emissions and we confront them with health vulnerabilities related to respiratory and circulatory diseases (all circulatory diseases, cardiac diseases, cerebrovascular disease, ischemic heart disease, all respiratory diseases, chronic lower respiratory diseases, acute upper respiratory infections). The study is supported in two databases, one of air pollutants and the other of emergency hospital admissions, in the 2005–2015 period, applied to the Lisbon Metropolitan Area. The analysis was conducted through Ordinary Least Squares (OLS) regression, while also using semi-elasticity to quantify associations. Results showed positive associations between air pollutants and admissions, tendentially higher in respiratory diseases, with CO and O3 having the highest number of associations, and the senior age group being the most impacted. We concluded that O3 is a good predictor for the under-15 age group and PM10 for the over-64 age group; also, there seems to exist a distinction between the urban city core and its suburban areas in air pollution and its relation to emergency hospital admissions.
Collapse
|
77
|
Phosri A, Sihabut T, Jaikanlaya C. Temporal variations of short-term effects of particulate matter on hospital admissions in the most densely populated city in Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140651. [PMID: 32640396 DOI: 10.1016/j.scitotenv.2020.140651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Short-term effects of ambient particulate matter (PM) on daily hospital admissions have been comprehensively elucidated, but very few studies evaluated the temporal variations of ambient PM associated with hospital admissions, especially in developing countries. This study aimed to explore the temporal changes of the short-term effects of PM10 on hospital admissions in Bangkok, Thailand from 2006 to 2014. The overdispersed Poisson regression model was applied to related daily PM10 concentrations to daily cardiovascular and respiratory hospital admissions by adjusting for temperature, humidity, long-term trend and seasonality, day of the week, public holiday, and population dynamics. The temporal variations of the effects of PM10 on hospital admissions were assessed by adding an interaction term between PM10 concentration and predefined time periods into the model. The relative risks per 10 μg/m3 increase in PM10 were 1.0092 (95% CI: 1.0046, 1.0138) for cardiovascular admissions at lag 0-3 day and 1.0209 (95% CI: 1.0145, 1.0273) for respiratory admissions at lag 0-7 day over the entire study period. Despite non-homogenous decreasing trends in annual PM10 concentrations during the study period, the effects of PM10 on cardiovascular and respiratory admissions remained significant and even showed an increasing trend for cardiovascular admissions. Specifically, the relative risks of cardiovascular admission per 10 μg/m3 increase in PM10 were 1.0050 (95% CI: 0.9965, 1.0135), 1.0086 (95% CI: 1.0000, 1.0174), and 1.0103 (95% CI: 1.0041, 1.0165) for the period of 2006-2008, 2009-2011, and 2012-2014, respectively (p-value for interaction <0.01). This finding indicated that estimated effects of PM10 on cardiovascular admissions significantly changed over time, speculating that the composition of PM10 might have changed and introduced the alterations of overall toxicity of PM10. Therefore, the efforts on air pollution control need to be continued to reduce health effects of PM10 in the future.
Collapse
Affiliation(s)
- Arthit Phosri
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand.
| | - Tanasri Sihabut
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand
| | - Chate Jaikanlaya
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand
| |
Collapse
|
78
|
Revalue associations of short-term exposure to air pollution with respiratory hospital admissions in Lanzhou, China after the control and treatment of current pollution. Int J Hyg Environ Health 2020; 231:113658. [PMID: 33166757 DOI: 10.1016/j.ijheh.2020.113658] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/01/2023]
Abstract
Significant progress has been made in air pollution control Lanzhou, China recently, however, there was only one study so far on the assessment on health gains from air quality improvement after adopting strict air pollution control measures. The present study aimed to estimate the short-term effects of six criteria air pollutants including PM2.5, PM10, NO2, SO2, CO and O3 on respiratory admissions in Lanzhou, China, then compare the results of our study with those earlier studies conducted in Lanzhou before the implementation of air pollution control measures. Data on daily hospital admissions from the three largest hospitals in Lanzhou and daily air pollution concentration and meteorological variable were collected during a 4-year period (2014-2017). A generalized additive model; adjusted for long-term trend, seasonality, and other potential confounders was done to quantitatively assess the influences of air pollutants on daily respiratory admissions and analyze the influences of different seasons, sexes, and age groups. The most apparent effects for PM2.5, PM10, SO2, CO and O3 on respiratory hospitalizations were observed at lag6, and lag7, respectively, and a 10μg/m3 increase in PM2.5, PM10, SO2, CO and O3 concentration were associated with 0.885% (95%CI: 0.414%~1.358%), 0.328% (95%CI: 0.145%~0.511%), 3.005% (95%CI: 1.689%~4.339%), 3.199% (95%CI: 0.912%~5.537%) for CO, 0.733% (95%Cl: 0.263%~1.205%) increase in respiratory admission, respectively. No remarkable association was found between NO2 and respiratory disease hospitalisation. Females and younger groups were more susceptible to air pollutant than males and elderly groups. Together, we demonstrated that the positive associations were more pronounced in the cold season than in the warm season. The findings in present study suggest that even in Lanzhou, where air quality has been improved dramatically, positive associations still exist between air pollution and daily number of total respiratory admission.
Collapse
|
79
|
Abed Al Ahad M, Sullivan F, Demšar U, Melhem M, Kulu H. The effect of air-pollution and weather exposure on mortality and hospital admission and implications for further research: A systematic scoping review. PLoS One 2020; 15:e0241415. [PMID: 33119678 PMCID: PMC7595412 DOI: 10.1371/journal.pone.0241415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Air-pollution and weather exposure beyond certain thresholds have serious effects on public health. Yet, there is lack of information on wider aspects including the role of some effect modifiers and the interaction between air-pollution and weather. This article aims at a comprehensive review and narrative summary of literature on the association of air-pollution and weather with mortality and hospital admissions; and to highlight literature gaps that require further research. METHODS We conducted a scoping literature review. The search on two databases (PubMed and Web-of-Science) from 2012 to 2020 using three conceptual categories of "environmental factors", "health outcomes", and "Geographical region" revealed a total of 951 records. The narrative synthesis included all original studies with time-series, cohort, or case cross-over design; with ambient air-pollution and/or weather exposure; and mortality and/or hospital admission outcomes. RESULTS The final review included 112 articles from which 70 involved mortality, 30 hospital admission, and 12 studies included both outcomes. Air-pollution was shown to act consistently as risk factor for all-causes, cardiovascular, respiratory, cerebrovascular and cancer mortality and hospital admissions. Hot and cold temperature was a risk factor for wide range of cardiovascular, respiratory, and psychiatric illness; yet, in few studies, the increase in temperature reduced the risk of hospital admissions for pulmonary embolism, angina pectoris, chest, and ischemic heart diseases. The role of effect modification in the included studies was investigated in terms of gender, age, and season but not in terms of ethnicity. CONCLUSION Air-pollution and weather exposure beyond certain thresholds affect human health negatively. Effect modification of important socio-demographics such as ethnicity and the interaction between air-pollution and weather is often missed in the literature. Our findings highlight the need of further research in the area of health behaviour and mortality in relation to air-pollution and weather, to guide effective environmental health precautionary measures planning.
Collapse
Affiliation(s)
- Mary Abed Al Ahad
- School of Geography and Sustainable Development, University of St Andrews, Scotland, United Kingdom
| | - Frank Sullivan
- School of Medicine, University of St Andrews, Scotland, United Kingdom
| | - Urška Demšar
- School of Geography and Sustainable Development, University of St Andrews, Scotland, United Kingdom
| | - Maya Melhem
- Department of Landscape Design and Ecosystem Management, American University of Beirut, Beirut, Lebanon
| | - Hill Kulu
- School of Geography and Sustainable Development, University of St Andrews, Scotland, United Kingdom
| |
Collapse
|
80
|
Gorini F, Chatzianagnostou K, Mazzone A, Bustaffa E, Esposito A, Berti S, Bianchi F, Vassalle C. "Acute Myocardial Infarction in the Time of COVID-19": A Review of Biological, Environmental, and Psychosocial Contributors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7371. [PMID: 33050220 PMCID: PMC7600622 DOI: 10.3390/ijerph17207371] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has quickly become a worldwide health crisis.Although respiratory disease remains the main cause of morbidity and mortality in COVID patients,myocardial damage is a common finding. Many possible biological pathways may explain therelationship between COVID-19 and acute myocardial infarction (AMI). Increased immune andinflammatory responses, and procoagulant profile have characterized COVID patients. All theseresponses may induce endothelial dysfunction, myocardial injury, plaque instability, and AMI.Disease severity and mortality are increased by cardiovascular comorbidities. Moreover, COVID-19has been associated with air pollution, which may also represent an AMI risk factor. Nonetheless,a significant reduction in patient admissions following containment initiatives has been observed,including for AMI. The reasons for this phenomenon are largely unknown, although a real decreasein the incidence of cardiac events seems highly improbable. Instead, patients likely may presentdelayed time from symptoms onset and subsequent referral to emergency departments because offear of possible in-hospital infection, and as such, may present more complications. Here, we aim todiscuss available evidence about all these factors in the complex relationship between COVID-19and AMI, with particular focus on psychological distress and the need to increase awareness ofischemic symptoms.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (E.B.); (F.B.)
| | - Kyriazoula Chatzianagnostou
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Annamaria Mazzone
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Elisa Bustaffa
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (E.B.); (F.B.)
| | - Augusto Esposito
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Sergio Berti
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Fabrizio Bianchi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (E.B.); (F.B.)
| | - Cristina Vassalle
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| |
Collapse
|
81
|
Bui LT, Nguyen PH, Nguyen DCM. Model for assessing health damage from air pollution in quarrying area - Case study at Tan Uyen quarry, Ho Chi Minh megapolis, Vietnam. Heliyon 2020; 6:e05045. [PMID: 33005813 PMCID: PMC7519364 DOI: 10.1016/j.heliyon.2020.e05045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/21/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Vietnam has a great demand for stone exploitation for the development of the country's infrastructure, reaching 181 million m3 in 2020. Mining activities are always accompanied by environmental pollution, negatively affecting public health. To accurately assess the level of pollution, as well as quantify the effect of air pollution on human health, a number of structures, methods, and models provide tools to assess the benefits of this control for public health and related economic values. However, there has been no research in Vietnam applied specifically to this type of stone exploitation. This study offers a model to evaluate the economic damage caused by dust exposure from activities related to quarrying, overcoming the lack of continuous monitoring data. The area selected for research is Binh Duong province, in the Ho Chi Minh megapolis, Vietnam, which has two construction quarries, Thuong Tan and Tan My, with a current annual production of approximately 4–5 million m3. The calculation results show that the damage to human health is estimated at approximately 9,643 billion dong a year, equivalent to 15.03 million USD. In addition, if the standard criteria are tightened, damage will continue to increase. This study also analyses some of the difficulties and limitations in the modelling process.
Collapse
Affiliation(s)
- Long Ta Bui
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
- Corresponding author.
| | - Phong Hoang Nguyen
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Duyen Chau My Nguyen
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| |
Collapse
|
82
|
Bonyadi Z, Arfaeinia H, Ramavandi B, Omidvar M, Asadi R. Quantification of mortality and morbidity attributed to the ambient air criteria pollutants in Shiraz city, Iran. CHEMOSPHERE 2020; 257:127233. [PMID: 32505953 DOI: 10.1016/j.chemosphere.2020.127233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 05/28/2023]
Abstract
According to the epidemiological surveys, ambient air pollution has directly related to mortality and different diseases such as cardiovascular and respiratory defects. Among the atmospheric contaminants, criteria air ones (NO2, O3, PM2.5/10, SO2) demonstrated that have particular importance in the community disease. The overall goal of this paper was to study the impact of criteria air contaminants on the health of the inhabitants of Shiraz city, Iran. To accomplish this, the AirQ2.2.3 software was applied. The results of the study revealed that the annual average NO2, SO2, PM2.5, PM10, and O3 concentrations are 39.98, 27.6, 14.35, 46.16, and 120.03 μg/m3 in 2016 and 30.27, 23.97, 16.45, 51.65, and 52.58 μg/m3 in 2017. The total International Classification of Diseases (ICD), cardiovascular, and respiratory mortalities caused by air contaminants in Shiraz was predicted as 911, 628, and 182 cases in 2016, and 346, 370, and 82 cases in 2017, respectively. Sulfur dioxide (SO2) had the greatest rate of total mortality with the attributable equivalent of 4.3% in 2016, but this value has been decreased to 0.42% in 2017. The findings of this research revealed that air contamination has caused problems in Shiraz city according to the predicted results. The findings of this work provide useful data for regional and national health policymakers, who should take decisions to develop strategies for control air contaminants and estimate the cost-effectiveness of interventions.
Collapse
Affiliation(s)
- Ziaeddin Bonyadi
- Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mohsen Omidvar
- Department of Occupational Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Reza Asadi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
83
|
Mercan Y, Babaoglu UT, Erturk A. Short-term effect of particular matter and sulfur dioxide exposure on asthma and/or chronic obstructive pulmonary disease hospital admissions in Center of Anatolia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:646. [PMID: 32939661 DOI: 10.1007/s10661-020-08605-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
We investigated the associations between the daily variations of coarse particulate matter (PM10) and/or sulfur dioxide (SO2) and hospital admissions for asthma and/or chronic obstructive pulmonary disease (COPD) diseases in Kirsehir, Center of Anatolia of Turkey. We analyzed the poison generalized linear model (GLM) to analyze the association between ambient air pollutants such as PM10 and SO2 and asthma and/or COPD admissions. We investigated single-lag days and multi-lag days for the risk increase in asthma, COPD, asthma, and/or COPD hospital admissions PM10, SO2, and PM10 with SO2 per 10 μg/m3. In single-lag day model a 10 μg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.027 (95% CI:1.022-1.033) and 1.069 (95% CI:1.062, 1.077) for asthma. A 10 μg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.029 (95% CI:1.022-1.035) and 1.065 (95% CI:1.056, 1.075) for COPD. A 10 μg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.028 (95% CI:1.024-1.032) and 1.068 (95% CI:1.062, 1.074) for asthma and/or COPD. It was found that some lag structures were related with PM10 and SO2. Significant lags were detected in some lag structures from the previous first day until the previous eighth day (lag 1 to lag 7) in the asthma, COPD, and asthma and/or COPD hospital admissions in the model created with PM10 with SO2 both in the single-lag day model and in the multi-lag day model. Our study that used GLM in time series analysis showed that PM10 and/or SO2 short-term exposure in single-lag day and multi-lag day models was related with increased asthma, COPD, and asthma and/or COPD hospital admissions in the city between 2016 and 2019 until the previous-eighth day.
Collapse
Affiliation(s)
- Yeliz Mercan
- Kirklareli University Health Sciences Institute Department of Public Health, 39000, Kirklareli, Turkey.
- Kirklareli University School of Health Department of Health Management, 39000, Kirklareli, Turkey.
| | - Ulken Tunga Babaoglu
- Kirsehir Ahi Evran University Faculty of Medicine Department of Public Health, 40100, Kirsehir, Turkey
| | - Arzu Erturk
- Kirsehir Ahi Evran University Faculty of Medicine Department of Chest Diseases, Kirsehir, 40100, Turkey
| |
Collapse
|
84
|
Cao Z, Wang M, Shi S, Zhao Y, Chen X, Li C, Li Y, Wang H, Bao L, Cui X. Size-distribution-based assessment of human inhalation and dermal exposure to airborne parent, oxygenated and chlorinated PAHs during a regional heavy haze episode. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114661. [PMID: 33618469 DOI: 10.1016/j.envpol.2020.114661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 06/12/2023]
Abstract
The adverse health effects of haze and particle-bound contaminants in China have recently caused increasing concern, and particle size plays a significant role in affecting human exposure to haze-correlated pollutants. To this background, size-segregated particulate samples (nine size fractions (<0.4, 0.4-0.7, 0.7-1.1, 1.1-2.1, 2.1-3.3, 3.3-4.7, 4.7-5.8, 5.8-9.0 and > 9.0 μm) were collected in three scale-gradient cities in northern China and analysed for a series of parent, oxygenated and chlorinated polycyclic aromatic hydrocarbons (PAHs, O-PAHs and Cl-PAHs). The total geometric mean concentrations of PAHs and O-PAHs for Beijing, Zhengzhou and Xinxiang were 98.1 and 27.2, 77.9 and 77.5, 41.0 and 30.7 ng m-3, respectively, which were 50-200 times higher than those for Cl-PAHs (0.5, 0.7 and 0.4 ng m-3). Though unimodal size-distribution patterns were found for all these contaminants for these three cities, PAHs represented distinctly higher concentration levels around the peak fraction (0.7-2.1 μm) than O-PAHs and Cl-PAHs. With 4-6 ring PAHs as dominant components in all samples, the percentage proportion of 2-3 ring PAHs (ranging from 1% to 26%) generally increased with particle size increasing, implying the sources of these compounds varied little among the 9 size fractions in all three cities. The International Commission on Radiological Protection (ICRP) model and permeability coefficient method were synchronously applied to the size-segregated data for inhalation and dermal exposure assessment to intensively estimate the human exposure doses to airborne PAHs. Further, the incremental lifetime cancer risk (ILCR) was calculated and it's found that ILCR from inhalation was higher than that from dermal uptake for children and adults in Beijing and Zhengzhou, while the ILCR for Xinxiang presented a contrary pattern, revealing dermal uptake to be an equally significant exposure pathway to airborne PAHs compared to inhalation.
Collapse
Affiliation(s)
- Zhiguo Cao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Mengmeng Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Shiyu Shi
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Youhua Zhao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Xi Chen
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yunzi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Haizhu Wang
- State Key Lab of High Power Semiconductor Laser of Changchun University Science and Technology, Changchun University Science and Technology, Changchun, 130022, PR China
| | - Linlin Bao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
85
|
Zhu Y, Xie J, Huang F, Cao L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138704. [PMID: 32315904 PMCID: PMC7159846 DOI: 10.1016/j.scitotenv.2020.138704] [Citation(s) in RCA: 638] [Impact Index Per Article: 127.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 04/13/2023]
Abstract
The novel coronavirus pneumonia, namely COVID-19, has become a global public health problem. Previous studies have found that air pollution is a risk factor for respiratory infection by carrying microorganisms and affecting body's immunity. This study aimed to explore the relationship between ambient air pollutants and the infection caused by the novel coronavirus. Daily confirmed cases, air pollution concentration and meteorological variables in 120 cities were obtained from January 23, 2020 to February 29, 2020 in China. We applied a generalized additive model to investigate the associations of six air pollutants (PM2.5, PM10, SO2, CO, NO2 and O3) with COVID-19 confirmed cases. We observed significantly positive associations of PM2.5, PM10, NO2 and O3 in the last two weeks with newly COVID-19 confirmed cases. A 10-μg/m3 increase (lag0-14) in PM2.5, PM10, NO2, and O3 was associated with a 2.24% (95% CI: 1.02 to 3.46), 1.76% (95% CI: 0.89 to 2.63), 6.94% (95% CI: 2.38 to 11.51), and 4.76% (95% CI: 1.99 to 7.52) increase in the daily counts of confirmed cases, respectively. However, a 10-μg/m3 increase (lag0-14) in SO2 was associated with a 7.79% decrease (95% CI: -14.57 to -1.01) in COVID-19 confirmed cases. Our results indicate that there is a significant relationship between air pollution and COVID-19 infection, which could partially explain the effect of national lockdown and provide implications for the control and prevention of this novel disease.
Collapse
Affiliation(s)
- Yongjian Zhu
- School of Management, University of Science and Technology of China, Hefei, China.
| | - Jingui Xie
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Brunel Business School, Brunel University London, Uxbridge, United Kingdom.
| | - Fengming Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Liqing Cao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
86
|
Mueller W, Loh M, Vardoulakis S, Johnston HJ, Steinle S, Precha N, Kliengchuay W, Tantrakarnapa K, Cherrie JW. Ambient particulate matter and biomass burning: an ecological time series study of respiratory and cardiovascular hospital visits in northern Thailand. Environ Health 2020; 19:77. [PMID: 32620124 PMCID: PMC7333306 DOI: 10.1186/s12940-020-00629-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/23/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Exposure to particulate matter (PM) emitted from biomass burning is an increasing concern, particularly in Southeast Asia. It is not yet clear how the source of PM influences the risk of an adverse health outcome. The objective of this study was to quantify and compare health risks of PM from biomass burning and non-biomass burning sources in northern Thailand. METHODS We collected ambient air pollutant data (PM with a diameter of < 10 μm [PM10], PM2.5, Carbon Monoxide [CO], Ozone [O3], and Nitrogen Dioxide [NO2]) from ground-based monitors and daily outpatient hospital visits in Thailand during 2014-2017. Outpatient data included chronic lower respiratory disease (CLRD), ischaemic heart disease (IHD), and cerebrovascular disease (CBVD). We performed an ecological time series analysis to evaluate the association between daily air pollutants and outpatient visits. We used the 90th and 95th percentiles of PM10 concentrations to determine days of exposure to PM predominantly from biomass burning. RESULTS There was significant intra annual variation in PM10 levels, with the highest concentrations occurring during March, coinciding with peak biomass burning. Incidence Rate Ratios (IRRs) between daily PM10 and outpatient visits were elevated most on the same day as exposure for CLRD = 1.020 (95% CI: 1.012 to 1.028) and CBVD = 1.020 (95% CI: 1.004 to 1.035), with no association with IHD = 0.994 (95% CI: 0.974 to 1.014). Adjusting for CO tended to increase effect estimates. We did not find evidence of an exposure response relationship with levels of PM10 on days of biomass burning. CONCLUSIONS We found same-day exposures of PM10 to be associated with certain respiratory and cardiovascular outpatient visits. We advise implementing measures to reduce population exposures to PM wherever possible, and to improve understanding of health effects associated with burning specific types of biomass in areas where such large-scale activities occur.
Collapse
Affiliation(s)
- W. Mueller
- Institute of Occupational Medicine, Edinburgh, EH14 4AP UK
| | - M. Loh
- Institute of Occupational Medicine, Edinburgh, EH14 4AP UK
| | - S. Vardoulakis
- Institute of Occupational Medicine, Edinburgh, EH14 4AP UK
- Australian National University, Canberra, Australia
| | - H. J. Johnston
- Heriot Watt University, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton, Edinburgh, EH14 4AS UK
| | - S. Steinle
- Institute of Occupational Medicine, Edinburgh, EH14 4AP UK
| | - N. Precha
- Mahidol University, Bangkok, Thailand
- Walailak University, Nakhon Si Thammarat, Thailand
| | | | | | - J. W. Cherrie
- Institute of Occupational Medicine, Edinburgh, EH14 4AP UK
- Heriot Watt University, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton, Edinburgh, EH14 4AS UK
| |
Collapse
|
87
|
Ari PE, Ari A, Dumanoğlu Y, Odabasi M, Gaga EO. Organic chemical characterization of size segregated particulate matter samples collected from a thermal power plant area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114360. [PMID: 32443206 DOI: 10.1016/j.envpol.2020.114360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Kütahya city, a thermal power plant (TPPs) affected region of Turkey, has serious air quality problems like similar industrial regions of the world due to the emissions from three closely-located coal-fired TPPs, residential coal combustion along with the contribution of several industrial stacks. The organic chemical speciation of ambient size-segregated particulate matter (PM) was investigated during two seasons at two sites with different pollution characteristics (urban and rural). The ambient PM was collected using a high volume cascade impactor, with 6 stages: PM>10.2, PM10.2-4.2, PM4.2-2.1, PM2.1-1.3, PM1.3-0.69 and PM<0.69. Collected PM samples were extracted with organic solvents and the organic composition (Polycyclic aromatic hydrocarbons (PAHs), n-alkanes and carboxylic acids) was determined by GC-MS. Sources of the organic species were assessed using molecular PAH diagnostic ratios, carbon preference index and wax percentages. More than 70% of the PM-bound PAHs were quantified in submicron particles. Similarly, 34-42% of n-alkanes and approximately 30% of the carboxylic acids were found on the smallest particles. The main sources of the PM-bound organic species were considered as the anthropogenic emissions such as coal and biomass combustion and also vehicular emissions rather than the biogenic sources. Considerably high cancer risk levels were obtained through inhalation of PAHs. Seasonal variations and size distributions of the carboxylic acids and levoglucosan were also evaluated. Polar organic compound concentrations were higher in the summer period at both locations probably due to the higher sunlight intensity and temperature favoring their photochemical formation.
Collapse
Affiliation(s)
- Pelin Ertürk Ari
- Engineering Faculty, Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey; Engineering Faculty, Department of Environmental Engineering, Eskişehir Technical University, Eskişehir, Turkey
| | - Akif Ari
- Engineering Faculty, Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey; Engineering Faculty, Department of Environmental Engineering, Eskişehir Technical University, Eskişehir, Turkey
| | - Yetkin Dumanoğlu
- Engineering Faculty, Department of Environmental Engineering, Dokuz Eylül University, İzmir, Turkey
| | - Mustafa Odabasi
- Engineering Faculty, Department of Environmental Engineering, Dokuz Eylül University, İzmir, Turkey
| | - Eftade O Gaga
- Engineering Faculty, Department of Environmental Engineering, Eskişehir Technical University, Eskişehir, Turkey.
| |
Collapse
|
88
|
Fu X, Li L, Lei Y, Wu S, Yan D, Luo X, Luo H. The economic loss of health effect damages from PM 2.5 pollution in the Central Plains Urban Agglomeration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25434-25449. [PMID: 32350830 DOI: 10.1007/s11356-020-08560-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The Central Plains Urban Agglomeration is an important growth pole of China's economy, but the rapid economic growth is accompanied by serious air pollution problems. In this paper, the latest available PM2.5 monitoring data in 2015-2017 and exposure-response relationship model are used to quantitatively analyze the health effect damages due to PM2.5 pollution. The way of disease cost, adjusted human capital, and willingness to pay were adopted to estimate the economic loss of health effect damages. The results show that health effect damages of PM2.5 pollution in 2015-2017 were 11.9251 million, 11.4292 million, and 11.1012 million, respectively, accounting for 7.41%, 7.05%, and 6.94% of the total population of this area. The health effect economic loss was 97.398 billion RMB, 93.516 billion RMB, and 94.485 billion RMB, accounting for 1.73%, 1.53%, and 1.41% of the GDP. Chronic bronchitis and premature death due to PM2.5 are the main sources of health effect economic loss. Elderly people and infants are vulnerable groups of PM2.5 pollution. Affected by economic growth level, population density, and economic structure, Heze, Zhengzhou, Handan, and Liaocheng were greatly affected by PM2.5 pollution, and their health effect damages was larger. The health effect damages and health effect economic loss due to PM2.5 pollution in this area show a downward trend, indicating that air pollution reduction measures have played a positive role. However, the whole effect is still large. According to the results, this paper puts forward the policies.
Collapse
Affiliation(s)
- Xiangshan Fu
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, 100083, China
| | - Li Li
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China.
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, 100083, China.
- State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing, 100011, China.
| | - Yalin Lei
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, 100083, China
| | - Sanmang Wu
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, 100083, China
| | - Dan Yan
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Ximing Luo
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, 100083, China
| | - Hui Luo
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, 100083, China
| |
Collapse
|
89
|
Almetwally AA, Bin-Jumah M, Allam AA. Ambient air pollution and its influence on human health and welfare: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24815-24830. [PMID: 32363462 DOI: 10.1007/s11356-020-09042-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/23/2020] [Indexed: 05/22/2023]
Abstract
Human health is closely related to his environment. The influence of exposure to air pollutants on human health and well-being has been an interesting subject and gained much volume of research over the last 50 years. In general, polluted air is considered one of the major factors leading to many diseases such as cardiovascular and respiratory disease and lung cancer for the people. Besides, air pollution adversely affects the animals and deteriorates the plant environment. The overarching objective of this review is to explore the previous researches regarding the causes and sources of air pollution, how to control it and its detrimental effects on human health. The definition of air pollution and its sources were introduced extensively. Major air pollutants and their noxious effects were detailed. Detrimental impacts of air pollution on human health and well-being were also presented.
Collapse
Affiliation(s)
- Alsaid Ahmed Almetwally
- Textile Engineering Department, Textile Research Division, National Research Centre, Dokki, Cairo, Egypt.
| | - May Bin-Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
| |
Collapse
|
90
|
Xu C, Fan YN, Liang Z, Xiao SH, Huang L, Kan HD, Chen RJ, Liu XL, Yao CY, Luo G, Zhang Y, Li YF, Ji AL, Cai TJ. Unexpected association between increased levels of ambient carbon monoxide and reduced daily outpatient visits for vaginitis: A hospital-based study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137923. [PMID: 32220730 DOI: 10.1016/j.scitotenv.2020.137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/16/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Carbon monoxide (CO) is a well-known "toxic gas". It represents a toxic inhalation hazard at high concentration and is commonly found in polluted air. However, a series of recent studies have suggested that low concentration of CO can also produce protective functions. This study was performed to investigate the association between ambient CO exposure and vaginitis outpatient visits. Daily baseline outpatient data of vaginitis from January 1, 2013 to December 31, 2015 were obtained from Xi'an, a heavily-polluted metropolis in China. The over-dispersed Poisson generalized additive model was applied to discover the relations between short-term ambient CO exposure and the number of vaginitis outpatient visits by adjusting day of the week and weather conditions. A total of 16,825 outpatient hospital visits for vaginitis were recorded. The mean daily concentration of carbon monoxide (CO) was well below Chinese and WHO guidelines. During the study period, increased levels of ambient CO was associated with reduced outpatient-visits through concurrent to lag 5 days, and the most significant association was evidenced at lag 05. A 0.1 mg/m3 increase in daily average CO at lag 05 corresponded to -1.25% (95%CI: -1.85%, -0.65%) change in outpatient-visits for vaginitis. Moreover, the association was more significant in those women aged 20-29 years. After adjustment for PM10, PM2.5, SO2, and NO2, and O3, the negative associations of CO with vaginitis kept significant, suggesting relative stability of effect estimates. In summary, this is the first evidence that increased ambient CO exposure can be related to reduced daily outpatient visits for vaginitis. The results of our study may not only help to establish more comprehensive understanding of the health effects of ambient air on vaginitis and other gynecological diseases, but also provide a clue to new potential interventions.
Collapse
Affiliation(s)
- Chen Xu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Troop 94498 of PLA, Nanyang, China
| | - Yan-Ni Fan
- Medical Record Room of Information Department, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Zhen Liang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | | | | | - Hai-Dong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Ren-Jie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Xiao-Ling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chun-Yan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gan Luo
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ai-Ling Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Tong-Jian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
91
|
Stieb DM, Zheng C, Salama D, BerjawI R, Emode M, Hocking R, Lyrette N, Matz C, Lavigne E, Shin HH. Systematic review and meta-analysis of case-crossover and time-series studies of short term outdoor nitrogen dioxide exposure and ischemic heart disease morbidity. Environ Health 2020; 19:47. [PMID: 32357902 PMCID: PMC7195719 DOI: 10.1186/s12940-020-00601-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/20/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Nitrogen dioxide (NO2) is a pervasive urban pollutant originating primarily from vehicle emissions. Ischemic heart disease (IHD) is associated with a considerable public health burden worldwide, but whether NO2 exposure is causally related to IHD morbidity remains in question. Our objective was to determine whether short term exposure to outdoor NO2 is causally associated with IHD-related morbidity based on a synthesis of findings from case-crossover and time-series studies. METHODS MEDLINE, Embase, CENTRAL, Global Health and Toxline databases were searched using terms developed by a librarian. Screening, data extraction and risk of bias assessment were completed independently by two reviewers. Conflicts between reviewers were resolved through consensus and/or involvement of a third reviewer. Pooling of results across studies was conducted using random effects models, heterogeneity among included studies was assessed using Cochran's Q and I2 measures, and sources of heterogeneity were evaluated using meta-regression. Sensitivity of pooled estimates to individual studies was examined using Leave One Out analysis and publication bias was evaluated using Funnel plots, Begg's and Egger's tests, and trim and fill. RESULTS Thirty-eight case-crossover studies and 48 time-series studies were included in our analysis. NO2 was significantly associated with IHD morbidity (pooled odds ratio from case-crossover studies: 1.074 95% CI 1.052-1.097; pooled relative risk from time-series studies: 1.022 95% CI 1.016-1.029 per 10 ppb). Pooled estimates for case-crossover studies from Europe and North America were significantly lower than for studies conducted elsewhere. The high degree of heterogeneity among studies was only partially accounted for in meta-regression. There was evidence of publication bias, particularly for case-crossover studies. For both case-crossover and time-series studies, pooled estimates based on multi-pollutant models were smaller than those from single pollutant models, and those based on older populations were larger than those based on younger populations, but these differences were not statistically significant. CONCLUSIONS We concluded that there is a likely causal relationship between short term NO2 exposure and IHD-related morbidity, but important uncertainties remain, particularly related to the contribution of co-pollutants or other concomitant exposures, and the lack of supporting evidence from toxicological and controlled human studies.
Collapse
Affiliation(s)
- David M. Stieb
- Environmental Health Science and Research Bureau, Health Canada, 420-757 West Hastings St. - Federal Tower, Vancouver, BC V6C 1A1 Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Carine Zheng
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Dina Salama
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Rania BerjawI
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Monica Emode
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Robyn Hocking
- Learning, Knowledge and Library Services, Health Canada, Ottawa, Canada
| | - Ninon Lyrette
- Water and Air Quality Bureau, Health, Canada, Ottawa, Canada
| | - Carlyn Matz
- Water and Air Quality Bureau, Health, Canada, Ottawa, Canada
| | - Eric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- Water and Air Quality Bureau, Health, Canada, Ottawa, Canada
| | - Hwashin H. Shin
- Environmental Health Science and Research Bureau, Health Canada, 420-757 West Hastings St. - Federal Tower, Vancouver, BC V6C 1A1 Canada
- Department of Mathematics and Statistics, Queen’s University, Kingston, Canada
| |
Collapse
|
92
|
Shi J, Chi C, Gong X, Chen C, Yu W, Huang J, Zhou L, Chen N, Yang Y, Liu Q, Wang Z. Examining health disparities and characteristics in general practice utilization: based on outpatient data from 2014 - 2018 in Shanghai. BMC FAMILY PRACTICE 2020; 21:74. [PMID: 32349689 PMCID: PMC7190008 DOI: 10.1186/s12875-020-01146-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/20/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Since 2000, China has been developing primary care institutions to serve as the gateway to the healthcare system. However, the investment of resources in primary care institutions is not based on the actual medical demands of the public. This study analysed primary care utilization to provide targeted guidance for the improvement of primary healthcare delivery in China. METHODS We extracted outpatient visit data from all community healthcare centres in Shanghai from 2014 to 2018. Diseases were then classified according to ICD-10 codes. The disease spectrum (frequency, proportion, rank) was stratified by sex, age, and region. RESULTS Most primary care outpatients were female (58.20%), 60-79 years old (57.91%), and in suburban regions (62.18%). Chronic diseases accounted for the majority (91.41%). Hypertension, chronic ischaemic heart disease, diabetes, and acute upper respiratory tract infections were the top four disorders for primary care visits regardless of sex. In the group aged 0-18 years, symptoms, signs and abnormal clinical and laboratory findings not elsewhere classified accounted for 37.96% of the top 20 reasons. Acute upper respiratory tract infections were the most common diseases in the groups aged 0-18 (11.20%) and 19-39 (11.14%) years. However, hypertension was the most common disease in the group aged > 39 years old (> 20%). There were more outpatients with respiratory and digestive diseases in suburban areas than in urban areas. In addition, problems associated with medical equipment and other healthcare deficiencies were relatively more common in suburban areas (suburban: 4.13%, rank 5; urban: 2.29%, rank 10). CONCLUSIONS To meet the patients' needs and to develop the primary care system, the Shanghai government should focus on diseases with regionally high proportions. Disease diagnosis and treatment should be improved in the younger and suburban populations.
Collapse
Affiliation(s)
- Jianwei Shi
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 South Chongqing Rd, Shanghai, 200025 China
- Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090 China
| | - Chunhua Chi
- General Practice Department, Peking University First Hospital, Beijing, 100034 China
| | - Xin Gong
- School of Medicine, Tongji University, Shanghai, 200092 China
| | - Chen Chen
- Pengpuxincun Community Health Service Center, Jingan District, Shanghai, 200080 China
| | - Wenya Yu
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 South Chongqing Rd, Shanghai, 200025 China
| | - Jiaoling Huang
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 South Chongqing Rd, Shanghai, 200025 China
| | - Liang Zhou
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 South Chongqing Rd, Shanghai, 200025 China
| | - Ning Chen
- School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yan Yang
- School of Economics & Management, Tongji University, Shanghai, 200092 China
| | - Qian Liu
- School of Economics & Management, Tongji University, Shanghai, 200092 China
| | - Zhaoxin Wang
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 South Chongqing Rd, Shanghai, 200025 China
- General Practice Center, Nanhai Hospital, Southern Medical University, Foshan, 528244 China
| |
Collapse
|
93
|
Raji H, Riahi A, Borsi SH, Masoumi K, Khanjani N, AhmadiAngali K, Goudarzi G, Dastoorpoor M. Acute Effects of Air Pollution on Hospital Admissions for Asthma, COPD, and Bronchiectasis in Ahvaz, Iran. Int J Chron Obstruct Pulmon Dis 2020; 15:501-514. [PMID: 32184587 PMCID: PMC7061718 DOI: 10.2147/copd.s231317] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background and Aim Although air pollution is a serious problem in Ahvaz, the association between air pollution and respiratory diseases has not been studied enough in this area. The aim of this study was to determine the relation between short-term exposure to air pollutants and the risk of hospital admissions due to asthma, COPD, and bronchiectasis in Ahvaz. Methods Hospital admissions data and air pollutants including O3, NO, NO2, SO2, CO, PM10, and PM2.5 were obtained from 2008 to 2018. Adjusted Quasi-Poisson regression with a distributed lag model, controlled for trend, seasonality, weather, weekdays, and holidays was used for data analysis. Results The results showed a significant increase in hospital admissions for asthma (RR=1.004, 95% CI: 1.002-1.007) and COPD (RR=1.003, 95% CI: 1.001-1.005) associated with PM2.5. PM10 was associated with increased hospital admissions due to bronchiectasis in both genders (Men: RR=1.003, 95% CI: 1.001-1.006) (Female: RR=1.003, 95% CI: 1.000-1.006). NO2 was also associated with an increased risk of hospital admissions for asthma (RR=1.040, 95% CI: 1.008-1.074) and COPD (RR=1.049, 95% CI: 1.010-1.090). SO2 was associated with the risk of hospital admissions of asthma (RR=1.069, 95% CI: 1.017-1.124) and bronchiectasis (RR=1.030, 95% CI: 1.005-1.056). Finally, CO was associated with COPD (RR=1.643, 95% CI: 1.233-2.191) and bronchiectasis (RR=1.542, 95% CI: 1.035-2.298) hospital admissions. Conclusion Short-term exposure to air pollutants significantly increases the risk of hospital admissions for asthma, COPD, and bronchiectasis in the adult and elderly population.
Collapse
Affiliation(s)
- Hanieh Raji
- Department of Internal Medicine, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Riahi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Hamid Borsi
- Department of Internal Medicine, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Masoumi
- Department of Emergency Medicine, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Kambiz AhmadiAngali
- Department of Biostatistics and Epidemiology, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dastoorpoor
- Department of Biostatistics and Epidemiology, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
94
|
Liu J, Wang Y, Liu S, Cao S, Xu C, Zhang M, Liu S. Protocol for a prospective multicenter cross-sectional observational study to investigate the role of air pollution on allergic rhinitis prevalence. Medicine (Baltimore) 2020; 99:e19497. [PMID: 32176091 PMCID: PMC7440339 DOI: 10.1097/md.0000000000019497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Allergic rhinitis (AR) is a major chronic inflammatory disease of the respiratory tract. A large number of epidemiological investigations have shown that the prevalence of AR is increasing, resulting in a large social burden. Importantly, the impact of air pollution on health is a widespread concern. We aim to evaluate association of air pollution and AR risk. METHODS AND ANALYSIS This prospective study includes patients undergoing AR. The exclusion criteria will be as follows: Patients with nasal infection, nasal polyps, nasal tumors, mental disorders, and immunodeficiency will be excluded. Air pollution levels of ambient air pollutants including PM2.5, PM10, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon dioxide (CO), and O3, and patient data will be collected. The correlation analysis will be performed in air pollutants and AR risk. DISCUSSION This study will provide correlation of NO2, SO2, PM10, and PM2.5 for AR in several aspects, including symptom score, drug score, quality of life score, asthma control score, side effects, and laboratory examination such as nasal function test, serum total immunoglobulin E, and nasal secretion smear.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital of De Yang City, De Yang
| | - Yongkuan Wang
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital of De Yang City, De Yang
| | - Sisi Liu
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital of De Yang City, De Yang
| | - Shuwei Cao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital of De Yang City, De Yang
| | - Chunyan Xu
- Jane Lab, Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Meng Zhang
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital of De Yang City, De Yang
| | - Shixi Liu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan
| |
Collapse
|
95
|
Pawankar R, Wang JY, Wang IJ, Thien F, Chang YS, Latiff AHA, Fujisawa T, Zhang L, Thong BYH, Chatchatee P, Leung TF, Kamchaisatian W, Rengganis I, Yoon HJ, Munkhbayarlakh S, Recto MT, Neo AGE, Le Pham D, Lan LTT, Davies JM, Oh JW. Asia Pacific Association of Allergy Asthma and Clinical Immunology White Paper 2020 on climate change, air pollution, and biodiversity in Asia-Pacific and impact on allergic diseases. Asia Pac Allergy 2020; 10:e11. [PMID: 32099833 PMCID: PMC7016319 DOI: 10.5415/apallergy.2020.10.e11] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Air pollution, climate change, and reduced biodiversity are major threats to human health with detrimental effects on a variety of chronic noncommunicable diseases in particular respiratory and cardiovascular diseases. The extent of air pollution both outdoor and indoor air pollution and climate change including global warming is increasing-to alarming proportions particularly in the developing world especially rapidly industrializing countries worldwide. In recent years, Asia has experienced rapid economic growth and a deteriorating environment and increase in allergic diseases to epidemic proportions. Air pollutant levels in many Asian countries especially in China and India are substantially higher than are those in developed countries. Moreover, industrial, traffic-related, and household biomass combustion, indoor pollutants from chemicals and tobacco are major sources of air pollutants, with increasing burden on respiratory allergies. Here we highlight the major components of outdoor and indoor air pollutants and their impacts on respiratory allergies associated with asthma and allergic rhinitis in the Asia-Pacific region. With Asia-Pacific comprising more than half of the world's population there is an urgent need to increase public awareness, highlight targets for interventions, public advocacy and a call to action to policy makers to implement policy changes towards reducing air pollution with interventions at a population-based level. 1. Epidemiological studies show that indoor and outdoor pollutions affect respiratory health, including an increased prevalence of asthma and allergic diseases. Global warming will increase the effects of outdoor air pollution on health. 2. The Asia-Pacific is the most populated region in the world, with a huge burden of both outdoor and indoor pollutants, including PM2.5, PM10, SPM, CO, O3, NO2, SO2, NO and household pollutants including biomass and tobacco. 3. The risk factors for the epidemic rise of allergic diseases in the Asia-Pacific are due to the increasing urbanization, environmental factors of air pollution and climate changes in recent decades than in the other parts of the world. 4. In light of the different environmental exposures in different countries of the Asia-Pacific region, strategies to combat allergic disease in this region should be focused on active government policies to fight air pollution based on the local conditions. 5. Substantial efforts need to be implemented with a concerted strategy at legislative, administrative, and community levels to improve air quality. 6. Abatement of the main risk factors for respiratory diseases, in particular, environmental tobacco smoke, indoor biomass fuels, and outdoor air pollution, as well as better control of asthma and rhinitis will achieve huge health benefits.
Collapse
Affiliation(s)
- Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Jiu-Yao Wang
- Division of Allergy and Clinical Immunology, Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare; School of Medicine, National Yang-Ming University, Taipei; College of Public Health, China Medical University, Taichung, Taiwan
| | - Francis Thien
- Eastern Health, Monash University, Melbourne, Australia
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | - Takao Fujisawa
- Institute for Clinical Research, Mie National Hospital, Tsu, Japan
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital, Medical University, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Bernard Yu-Hor Thong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore
| | - Pantipa Chatchatee
- Pediatric Allergy & Clinical Immunology Research Unit, Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wasu Kamchaisatian
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Iris Rengganis
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Ho Joo Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sonomjamts Munkhbayarlakh
- Department of Pulmonology and Allergology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Marysia T Recto
- Division of Adult and Pediatric Allergy and Immunology, University of the Philippines College of Medicine, Philippine General Hospital, Manila, the Philippines
| | - Anne Goh Eng Neo
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Duy Le Pham
- Medicine Faculty, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Le Thi Tuyet Lan
- Hochiminh city Asthma, Allergy and Clinical Immunology Society, UMC, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Janet Mary Davies
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD; AustraliaOffice of Research, Metro North Hospital and Health Service, Herston, QLD, Australia
| | - Jae Won Oh
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
96
|
Characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) and Common Air Pollutants at Wajima, a Remote Background Site in Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030957. [PMID: 32033127 PMCID: PMC7036938 DOI: 10.3390/ijerph17030957] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/30/2022]
Abstract
Background: Background sites are mainly affected by long-range-transported air pollutants, resulting in potential adverse effects on local atmospheric environments. A 4–5 year observational study was conducted to illustrate the air pollution profile at the Kanazawa University Wajima air monitoring station (KUWAMS), an ideal remote background site in Japan. Methods: Nine polycyclic aromatic hydrocarbons (PAHs) in the particulate phase and various air pollutants were continuously monitored for 4–5 years. Diagnostic ratios of PAHs and back-trajectory analysis were applied to trace the possible sources of the air pollutants collected at the sampling site. Results: The atmospheric concentration of PAHs in the atmosphere at the site decreased from 2014 to 2019, benefit from the predominant air pollution control policy in China and Japan. Common air pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx), ozone, methane (CH4), and non-methane hydrocarbon (NMHC) were detected in low concentrations from 2016 to 2019, while ozone (O3) and particulate matter (PM2.5, PM with a diameter less than 2.5 μm) were present in high levels that exceeded the Japanese standards. Most air pollutants peaked in spring and showed evident diurnal variations in spring and summer. Conclusions: This is the first study to clarify the atmospheric behaviors of multiple air pollutants at a background site in Japan. Significant external air pollutant impact and unneglectable air pollution were demonstrated at KUWAMS, indicating the importance of studying atmospheric pollution at remote sites.
Collapse
|
97
|
Shakoor A, Chen X, Farooq TH, Shahzad U, Ashraf F, Rehman A, Sahar NE, Yan W. Fluctuations in environmental pollutants and air quality during the lockdown in the USA and China: two sides of COVID-19 pandemic. AIR QUALITY, ATMOSPHERE, & HEALTH 2020; 13:1335-1342. [PMID: 32837622 PMCID: PMC7415015 DOI: 10.1007/s11869-020-00888-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/22/2020] [Indexed: 05/19/2023]
Abstract
The World Health Organization declared the outbreak of the novel coronavirus (COVID-19) as a pandemic on March 11, 2020. Due to the global threat, many countries impose immediate lockdown. The impact of lockdown on the environmental pollutants and climate indicators gained considerable attention in the literature. This study aims to describe the variations in the environmental pollutants (CO, NO2, SO2, PM2.5 and PM10) with and without the lockdown period in the majorly hit states and provinces of the USA and China, respectively. Data during the first quarter year of 2019 and 2020 (lockdown period) was used in this study. Moreover, the effect of these pollutants on the pandemic spread was also studied. The results illustrated that the overall concentrations of CO, NO2 and PM2.5 were decreased by 19.28%, 36.7% and 1.10%, respectively, while PM10 and SO2 were increased by 27.81% and 3.81% respectively in five selected states of the USA during the lockdown period. However, in the case of chosen provinces of China, overall, the concentrations of all selected pollutants, i.e., CO, NO2, SO2, PM2.5 and PM10, were reduced by 26.53%, 38.98%, 18.36%, 17.78% and 37.85%, respectively. The COVID-19 reported cases and deaths were significantly correlated with NO2, PM2.5 and PM10 in both China and the USA. The findings of this study concluded that the limited anthropogenic activities in the lockdown situation due to this novel pandemic disease result in a significant improvement of air quality by reducing the concentrations of environmental pollutants. As the trend goes on, the reduction of most pollutant concentrations is expected as long as partial or complete lockdown goes on.Graphical abstract.
Collapse
Affiliation(s)
- Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Xiaoyong Chen
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, 410004 Hunan Province People’s Republic of China
| | - Taimoor Hassan Farooq
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004 Hunan Province People’s Republic of China
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, 410004 Hunan Province People’s Republic of China
| | - Umer Shahzad
- School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233030 People’s Republic of China
| | - Fatima Ashraf
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 People’s Republic of China
| | - Najam e Sahar
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Wende Yan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004 Hunan Province People’s Republic of China
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, 410004 Hunan Province People’s Republic of China
| |
Collapse
|
98
|
Chen C, Liu X, Wang X, Li W, Qu W, Dong L, Li X, Rui Z, Yang X. Risk of temperature, humidity and concentrations of air pollutants on the hospitalization of AECOPD. PLoS One 2019; 14:e0225307. [PMID: 31770406 PMCID: PMC6879126 DOI: 10.1371/journal.pone.0225307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022] Open
Abstract
AIM To investigate the effect of temperature, humidity and the concentration of ambient air pollution on the hospitalization of AECOPD. METHOD Hospitalization record was obtained from Shenyang Medical Insurance Bureau, concluding patient's age, gender, income hospital time, outcome hospital; Generalized additive model was used to analyze the relationship between temperature, humidity, the concentration of ambient air pollution and the hospitalization of AECOPD. RESULT The effect of ozone on admission rate in male group was higher than that in female group. Ambient air pollution had a weak influence on age≤50 group. It was found that the optimal lag day for daily relative 40 humidity to age≤50 group, 50<age≤60, 60<age≤70 group and age>70 group was on lag5, lag4, lag4 and lag5, respectively. CONCLUSION Air pollution, relative humidity and temperature can increase the risk of admission for acute exacerbation of COPD, and in this process there was a lag effect.
Collapse
Affiliation(s)
- Cai Chen
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Xuejian Liu
- The First General Internal Medicine, Shengjing Hospital, China Medical University, Shenbei New District, Shenyang, Liaoning Province, China
| | - Xianfeng Wang
- Department of Ecology and Environment of the People’s Republic of Shandong, Jinan, China
| | - Wei Li
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
- * E-mail: (Wei Li); (Wenxiu Qu)
| | - Wenxiu Qu
- The First General Internal Medicine, Shengjing Hospital, China Medical University, Shenbei New District, Shenyang, Liaoning Province, China
- * E-mail: (Wei Li); (Wenxiu Qu)
| | - Leilei Dong
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Xiyuan Li
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Zhiqing Rui
- Institute of Software, Chinese Academy of Sciences, Zhong Guan Cun, Beijing, P. R. China
| | - Xueqing Yang
- Helmholz Centre for Environmental Research (UFZ), Department of Bioenergy, Leipzig, Germany
| |
Collapse
|
99
|
Yang X, Feng K, Su B, Zhang W, Huang S. Environmental efficiency and equality embodied in China's inter-regional trade. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:150-161. [PMID: 30954813 DOI: 10.1016/j.scitotenv.2019.03.450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Embodied emissions in trade have been widely studied; however, there is still a lack of studies that explore whether a country is benefitting from its inter-regional trade in terms of pollutant emissions. This study took sulfur dioxide (SO2) emissions as an example and employed modified input-output (MIO) model and traditional input-output (IO) model to quantify emissions under no-trade and trade conditions, and further investigated environmental efficiency and equality of inter-regional trade in China in 2010. The results show that inter-regional trade had increased emissions by 28% compared to no-trade emissions, which confirms the environmental inefficiency of inter-regional trade in China. This was largely because regions with better technology and low emission intensities tended to outsource the production of pollution-intensive but low value-added goods to regions with high emission intensities through inter-regional trade. The exchanges of pollution-intensive products in inter-regional trade have led to notable environmental inequities. Eastern regions usually gained the greatest environmental benefits from trade, while central regions (especially Shanxi, Henan, and Hebei) suffered the largest environmental loss induced by trade. Specifically, Guangdong plundered other regions the most (796 G gram (Gg)), while Shanxi was plundered the most by other regions (790 Gg). Polices to differentiate reduction criteria for emission intensity in different regions and adjust trade patterns within China could be recommended in order to achieve trade-related environmental efficiency as well as environmental equality.
Collapse
Affiliation(s)
- Xue Yang
- Centre for Maritime Studies, National University of Singapore, Singapore; Energy Studies Institute, National University of Singapore, Singapore; Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kuishuang Feng
- Department of Geographical Sciences, University of Maryland College Park, College Park, MD 20742, USA
| | - Bin Su
- Energy Studies Institute, National University of Singapore, Singapore
| | - Wenzhong Zhang
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stella Huang
- Energy Studies Institute, National University of Singapore, Singapore
| |
Collapse
|
100
|
Li Z, Ma J, Bi J, Guo H, Chan MTV, Wu WKK, Wu Z, Shen J. MicroRNA signature of air pollution exposure‐induced congenital defects. J Cell Physiol 2019; 234:17896-17904. [PMID: 30883755 DOI: 10.1002/jcp.28422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jianqing Ma
- Department of Orthopedic Surgery The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai Hebei China
| | - Jiaqi Bi
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Haiwei Guo
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive Care The Chinese University of Hong Kong Hong Kong China
| | - William K. K. Wu
- Department of Anaesthesia and Intensive Care The Chinese University of Hong Kong Hong Kong China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong Hong Kong China
| | - Zhanyong Wu
- Department of Orthopedic Surgery The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai Hebei China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|