51
|
Yang X, Lv T, Qiu J. High Mass-Loading Biomass-Based Porous Carbon Electrodes for Supercapacitors: Review and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300336. [PMID: 36840663 DOI: 10.1002/smll.202300336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Indexed: 06/02/2023]
Abstract
Biomass-based porous carbon (BPC) with renewability and flexible nano/microstructure tunability has attracted increasing attention as efficient and cheap electrode materials for supercapacitors. To meet commercial needs, high mass-loading electrodes with high areal capacitance are preferred when designing supercapacitors. The increased mass percentage of active materials can effectively improve the energy density of supercapacitors. However, as the thickness of the electrode increases, it will face the following challenges including severely blocked ion transport channels, poor charging dynamics, poor electrode structural stability, and complex preparation processes. A bridge between theoretical research and practical applications of BPC electrodes for supercapacitors needs to be established. In this review, the advances of high mass-loading BPC electrodes for supercapacitors are summarized based on different biomass precursors. The key performance evaluation parameters of the high mass-loading electrodes are analyzed, and the performance influencing factors are systematically discussed, including specific surface area, pore structure, electrical conductivity, and surface functional groups. Subsequently, the promising optimization strategies for high mass-loading electrodes are summarized, including the structure regulation of electrode materials and the optimization of other supercapacitor components. Finally, the major challenges and opportunities of high mass-loading BPC electrodes in the future are discussed and outlined.
Collapse
Affiliation(s)
- Xiaomin Yang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ting Lv
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
52
|
Mergbi M, Galloni MG, Aboagye D, Elimian E, Su P, Ikram BM, Nabgan W, Bedia J, Amor HB, Contreras S, Medina F, Djellabi R. Valorization of lignocellulosic biomass into sustainable materials for adsorption and photocatalytic applications in water and air remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27484-2. [PMID: 37227629 DOI: 10.1007/s11356-023-27484-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
An exponential rise in global pollution and industrialization has led to significant economic and environmental problems due to the insufficient application of green technology for the chemical industry and energy production. Nowadays, the scientific and environmental/industrial communities push to apply new sustainable ways and/or materials for energy/environmental applications through the so-called circular (bio)economy. One of today's hottest topics is primarily valorizing available lignocellulosic biomass wastes into valuable materials for energy or environmentally related applications. This review aims to discuss, from both the chemistry and mechanistic points of view, the recent finding reported on the valorization of biomass wastes into valuable carbon materials. The sorption mechanisms using carbon materials prepared from biomass wastes by emphasizing the relationship between the synthesis route or/and surface modification and the retention performance were discussed towards the removal of organic and heavy metal pollutants from water or air (NOx, CO2, VOCs, SO2, and Hg0). Photocatalytic nanoparticle-coated biomass-based carbon materials have proved to be successful composites for water remediation. The review discusses and simplifies the most raised interfacial, photonic, and physical mechanisms that might take place on the surface of these composites under light irradiation. Finally, the review examines the economic benefits and circular bioeconomy and the challenges of transferring this technology to more comprehensive applications.
Collapse
Affiliation(s)
- Meriem Mergbi
- Faculty of Sciences of Gabes, RL Processes, Energetic, Environment and Electric Systems (PEESE), University of Gabes, 6072, Gabes, Tunisia
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Melissa Greta Galloni
- Dipartimento di Chimica, Università Degli Studi Di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Dominic Aboagye
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Ehiaghe Elimian
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria
| | - Peidong Su
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Belhadj M Ikram
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Walid Nabgan
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Chemical and Environmental Engineering, Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Jorge Bedia
- Chemical Engineering Department, Autonomous University of Madrid, Madrid, Spain
| | - Hedi Ben Amor
- Faculty of Sciences of Gabes, RL Processes, Energetic, Environment and Electric Systems (PEESE), University of Gabes, 6072, Gabes, Tunisia
| | - Sandra Contreras
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Francisco Medina
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| |
Collapse
|
53
|
Zeng T, Liu Y, Jiang Y, Zhang L, Zhang Y, Zhao L, Jiang X, Zhang Q. Advanced Materials Design for Adsorption of Toxic Substances in Cigarette Smoke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301834. [PMID: 37211707 PMCID: PMC10401148 DOI: 10.1002/advs.202301834] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Cigarettes, despite being economically important legal consumer products, are highly addictive and harmful, particularly to the respiratory system. Tobacco smoke is a complex mixture containing over 7000 chemical compounds, 86 of which are identified to have "sufficient evidence of carcinogenicity" in either animal or human tests. Thus, tobacco smoke poses a significant health risk to humans. This article focuses on materials that help reduce the levels of major carcinogens in cigarette smoke; these include nicotine, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, hydrogen cyanide, carbon monoxide, and formaldehyde. Specifically, the research progress on adsorption effects and mechanisms of advanced materials such as cellulose, zeolite, activated carbon, graphene, and molecularly imprinted polymers are highlighted. The future trends and prospects in this field are also discussed. Notably, with advancements in supramolecular chemistry and materials engineering, the design of functionally oriented materials has become increasingly multidisciplinary. Certainly, several advanced materials can play a critical role in reducing the harmful effects of cigarette smoke. This review aims to serve as an insightful reference for the design of hybrid and functionally oriented advanced materials.
Collapse
Affiliation(s)
- Ting Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Research Center, Chengdu Medical College, Chengdu, 610500, China
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yingfang Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lan Zhang
- Univ Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, F-69621, France
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
54
|
Dong R, Seliem MK, Mobarak M, Xue H, Wang X, Li Q, Li Z. Dual-functional marine algal carbon-based materials with highly efficient dye removal and disinfection control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60399-60417. [PMID: 37022550 DOI: 10.1007/s11356-023-26800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The design and simple, green preparation of dual-functional materials for the decontamination of both hazardous dyes and pathogenic microorganisms from wastewater remain challenging currently. Herein, a promising marine algal carbon-based material (named C-SA/SP) with both highly efficient dye adsorptive and antibacterial properties was fabricated based on the incorporation of sodium alginate and a low dose of silver phosphate via a facile and eco-friendly approach. The structure, removal of malachite green (MG) and congo red (CR), and their antibacterial performance were studied, and the adsorption mechanism was further interpreted by the statistical physics models, besides the classic models. The results show that the maximum simulated adsorption capacity for MG reached 2798.27 mg/g, and its minimal inhibit concentration for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was 0.4 mg/mL and 0.2 mg/mL, respectively. The mechanistic study suggests that silver phosphate exerted the effects of catalytic carbon formation and pore formation, while reducing the electronegativity of the material as well, thus improving its dye adsorptive performance. Moreover, the MG adsorption onto C-SA/SP showed vertical orientation and a multi-molecular way, and its adsorption sites were involved in the adsorption process with the increase of temperature. Overall, the study indicates that the as-made dual-functional materials have good applied prospects for water remediation.
Collapse
Affiliation(s)
- Ruitao Dong
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Moaaz K Seliem
- Faculty of Earth Science, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Hanjing Xue
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xuemei Wang
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Qun Li
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Zichao Li
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
55
|
Kalderis D, Seifi A, Kieu Trang T, Tsubota T, Anastopoulos I, Manariotis I, Pashalidis I, Khataee A. Bamboo-derived adsorbents for environmental remediation: A review of recent progress. ENVIRONMENTAL RESEARCH 2023; 224:115533. [PMID: 36828248 DOI: 10.1016/j.envres.2023.115533] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The bamboo family of plants is one of the fastest-growing species in the world. As such, there is an abundance of bamboo residues available for exploitation, especially in southeast Asian, central African and south American regions. The preparation of efficient adsorbents from bamboo residues is an emerging exploitation pathway. Biochars, activated carbons or raw bamboo fibers embedded with nanoparticles, each class of materials has been shown to be highly efficient in adsorption processes. This review aims to summarize recent findings in the application of bamboo-based adsorbents in the removal of organic, inorganic, or gaseous pollutants. Therefore, this review first discusses the preparation methods and surface modification methodologies and their effects on the adsorbent elemental content and other basic properties. The following sections assess the recent progress in the adsorption of heavy metals, organics, and gaseous substances by bamboo-based adsorbents, focusing on the optimum adsorption capacities, adsorption mechanisms and the optimum-fitting kinetic models and isotherms. Finally, research gaps were identified and directions for future research are proposed.
Collapse
Affiliation(s)
- Dimitrios Kalderis
- Laboratory of Environmental Technologies and Applications, Department of Electronic Engineering, Hellenic Mediterranean University, Chania 73100, Greece
| | - Azam Seifi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Chemistry, Gebze Technical University, 41400 Gebze, Turkey
| | - Trinh Kieu Trang
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata-ku, 804-8550 Kitakyushu, Japan
| | - Toshiki Tsubota
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata-ku, 804-8550 Kitakyushu, Japan
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47040 Arta, Greece
| | - Ioannis Manariotis
- Department of Civil Engineering, Environmental Engineering Laboratory, University of Patras, 26504 Patras, Greece
| | | | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey; Saveetha School of Engineering , Saveetha Institute of Medical and Technical Sciences, 602105 Chennai, India.
| |
Collapse
|
56
|
Byatarayappa G, G RM, R S, V T, Venkatesh K, N N, Nagaraju K. A comparative study on electrochemical performance of KOH activated carbons derived from different biomass sources - Musa acuminata stem, Pongamia pinnata seed oil extract cake, cajanus cajan stem and Asclepias syriaca floss. Heliyon 2023; 9:e15399. [PMID: 37128347 PMCID: PMC10147987 DOI: 10.1016/j.heliyon.2023.e15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
In the present scenario of research, the recycling of inexpensive widely available agricultural waste/biowaste to activate carbon (AC) and procurement of value-added product has significant impact on energy storage systems, particularly in Electrochemical double layer capacitors (EDLCs). Herein, we report the production of KOH activated carbons from different biomass sources such as Musa Acuminata stem (MAC), Pongamia pinnata seed oil extract cake (PPC), Cajanus Cajan stem (CCC) and Asclepias syriaca floss (ASC) for the said purpose. Initially, the biomass materials were pyrolyzed at 550 °C and then activated with KOH at 800 °C. All the carbon materials were characterized for their physico-chemical properties by various analytical techniques and compared. Further, these materials were studied for their electrochemical performance using suitable electro-analytical techniques in 1 M KOH solution. ACs (Activated carbons) derived from MAC, PPC, CCC & ASC were estimated in three electrode system and were found to exhibit a specific capacitance (Cs) of 358, 343, 355 & 540 F/g at a scan rate of 2 mV/s and 102, 188, 253 & 256 F/g at a current density of 2.5 A/g respectively. The main novel objective of this work is to correlate the morphological and surface properties of these ACs obtained from different biomass sources with electrochemical performance. A symmetric coin cell constructed with ASC material exhibited Cs of 67 F/g at a current density of 2.5 A/g with maximum energy & power densities (ED & PD) of 37.2 W h/kg and 19.9 kW/kg respectively. Further the cell showed 25,000 cycles stability with 86% Cs retention and 100% coulombic efficiency.
Collapse
Affiliation(s)
- Gopalakrishna Byatarayappa
- Centre for Incubation Innovation Research and Consultancy (CIIRC), Jyothy Institute of Technology, Tataguni, off Kanakapura Road, Bengaluru, 560082, Karnataka, India
| | - Radhika M. G
- Department of Physics, R.V. College of Engineering, Bengaluru, 560059, Karnataka, India
| | - Srilakshmi R
- Department of Electronics and Communications, Jyothy Institute of Technology, Tataguni, off Kanakapura Road, Bengaluru, 560082, Karnataka, India
| | - Tejashree V
- Centre for Incubation Innovation Research and Consultancy (CIIRC), Jyothy Institute of Technology, Tataguni, off Kanakapura Road, Bengaluru, 560082, Karnataka, India
| | - Krishna Venkatesh
- Centre for Incubation Innovation Research and Consultancy (CIIRC), Jyothy Institute of Technology, Tataguni, off Kanakapura Road, Bengaluru, 560082, Karnataka, India
| | - Nagaraju N
- Department of Chemistry, St. Joseph's College P.G. Centre, 36, Langford Road, Shanthinagar, Bengaluru, 560027, Karnataka, India
| | - Kathyayini Nagaraju
- Centre for Incubation Innovation Research and Consultancy (CIIRC), Jyothy Institute of Technology, Tataguni, off Kanakapura Road, Bengaluru, 560082, Karnataka, India
- Corresponding author.
| |
Collapse
|
57
|
Xie J, Liu M, He M, Liu Y, Li J, Yu F, Lv Y, Lin C, Ye X. Ultra-efficient adsorption of diclofenac sodium on fish-scale biochar functionalized with H 3PO 4 via synergistic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121226. [PMID: 36754196 DOI: 10.1016/j.envpol.2023.121226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Developing safe and efficient diclofenac sodium (DS) removal technology has become a critical issue. This study synthesized the fish-scale biochar by co-pyrolysis of fish scale and phosphoric acid (H3PO4). In addition to increasing the specific surface area and pore volume of fish-scale biochar, H3PO4 assisted in the formation of Graphitic N and sp2 C, as well as reacting with C═O groups to form a significant number of phosphorus-containing groups. All these functional groups could act as major active sites for DS adsorption. Adsorption data could well fit pseudo-second-order and Langmuir models. The maximum adsorption capacity of FSB600-15 for DS was 967.1 mg g-1, which was much better than that reported in the literature. Under the synergistic effect of various mechanisms (pore-filling effect, electrostatic attraction, H-bonding, π-π, and n-π electron donor-acceptor interactions), the DS ultra-efficient adsorption on FSB600-15 was realized. Meanwhile, the DS adsorption by FSB600-15 was an endothermic, spontaneous, and entropy-increasing process. Furthermore, the DS adsorption capacity was more than 426.5 mg g-1 in the actual water, which was sufficient for practical applications.
Collapse
Affiliation(s)
- Jia Xie
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
| | - Minghua Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China; College of Environmental and Biological Engineering, Putian University, Putian, 351100, Fujian, China.
| | - Miao He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yifan Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jian Li
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
| | - Fangxia Yu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
| | - Yuancai Lv
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Chunxiang Lin
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoxia Ye
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
58
|
Stracke Pfingsten Franco D, Georgin Vizualization J, Gindri Ramos C, S. Netto M, Lobo B, Jimenez G, Lima EC, Sher F. Production of adsorbent for removal of propranolol hydrochloride: use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
59
|
Agarwal S, Singh AP, Mathur S. Removal of COD and color from textile industrial wastewater using wheat straw activated carbon: an application of response surface and artificial neural network modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41073-41094. [PMID: 36630034 DOI: 10.1007/s11356-022-25066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
A novel approach has been undertaken wherein chemically modified wheat straw activated carbon (WSAC) as adsorbent is developed, characterized, and examined for the removal of COD and color from the cotton dyeing industry effluent. Thirty experimental runs are designed for batch reactor study using the central composite method (CCM) for optimizing process parameters, namely biochar dose, time of contact, pH, and temperature, for examining the effect on COD and color-removing efficiency of WSAC. The experimental data have been modeled using the machine learning approaches such as polynomial quadratic regression and artificial neural networks (ANN). The determined optimum conditions are pH: 7.18, time of contact: 85.229 min, adsorbent dose: 2.045 g/l, and temperature: 40.885 °C, at which the COD and color removal efficiency is 90.92 and 94.48%, respectively. The nonlinear pseudo-second order (PSO) kinetic model shows good coefficient of determination (R2 ~ 1) values. The maximum adsorption capacity for COD and color by WSAC is at the pH of 7, the temperature of 40 °C, adsorbent dose of 2 g/l is obtained at the contact time of 80 min is 434.78 mg/g and 331.55 PCU/g, respectively. The COD removal and decolorization is more than 70% in the first 20 min of the experiment. The primary adsorption mechanism involves hydrogen bonding, electrostatic attraction, n-π interactions, and cation exchange. Finally, the adsorbent is environmentally benign and cost-effective, costing 16.66% less than commercially available carbon. The result of the study indicates that WSAC is a prominent solution for treating textile effluent. The study is beneficial in reducing the pollutants from textile effluents and increasing the reuse of treated effluent in the textile industries.
Collapse
Affiliation(s)
- Somya Agarwal
- Civil Engineering Department, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Ajit Pratap Singh
- Civil Engineering Department, Birla Institute of Technology and Science, Pilani, 333031, India.
| | - Sudheer Mathur
- Civil Engineering Department, Birla Institute of Technology and Science, Pilani, 333031, India
| |
Collapse
|
60
|
Lee JH, Lee SY, Park SJ. Highly Porous Carbon Aerogels for High-Performance Supercapacitor Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:817. [PMID: 36903696 PMCID: PMC10005637 DOI: 10.3390/nano13050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In recent years, porous carbon materials with high specific surface area and porosity have been developed to meet the commercial demands of supercapacitor applications. Carbon aerogels (CAs) with three-dimensional porous networks are promising materials for electrochemical energy storage applications. Physical activation using gaseous reagents provides controllable and eco-friendly processes due to homogeneous gas phase reaction and removal of unnecessary residue, whereas chemical activation produced wastes. In this work, we have prepared porous CAs activated by gaseous carbon dioxide, with efficient collisions between the carbon surface and the activating agent. Prepared CAs display botryoidal shapes resulting from aggregation of spherical carbon particles, whereas activated CAs (ACAs) display hollow space and irregular particles from activation reactions. ACAs have high specific surface areas (2503 m2 g-1) and large total pore volumes (1.604 cm3 g-1), which are key factors for achieving a high electrical double-layer capacitance. The present ACAs achieved a specific gravimetric capacitance of up to 89.1 F g-1 at a current density of 1 A g-1, along with a high capacitance retention of 93.2% after 3000 cycles.
Collapse
Affiliation(s)
| | - Seul-Yi Lee
- Correspondence: (S.-Y.L.); (S.-J.P.); Tel.: +82-32-876-7234 (S.-Y.L. & S.-J.P.)
| | - Soo-Jin Park
- Correspondence: (S.-Y.L.); (S.-J.P.); Tel.: +82-32-876-7234 (S.-Y.L. & S.-J.P.)
| |
Collapse
|
61
|
Li H, Ai Z, Yang L, Zhang W, Yang Z, Peng H, Leng L. Machine learning assisted predicting and engineering specific surface area and total pore volume of biochar. BIORESOURCE TECHNOLOGY 2023; 369:128417. [PMID: 36462763 DOI: 10.1016/j.biortech.2022.128417] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Biochar produced from pyrolysis of biomass is a platform porous carbon material that have been widely used in many areas. Specific surface area (SSA) and total pore volume (TPV) are decisive to biochar application in hydrogen uptake, CO2 adsorption, and organic pollutant removal, etc. Engineering biochar by traditional experimental methods is time-consuming and laborious. Machine learning (ML) was used to effectively aid the prediction and engineering of biochar properties. The prediction of biochar yield, SSA, and TPV was achieved via random forest (RF) and gradient boosting regression (GBR) with test R2 of 0.89-0.94. ML model interpretation indicates pyrolysis temperature, biomass ash, and volatile matter were the most important features to the three targets. Pyrolysis parameters and biomass mixing ratios for biochar production were optimized via three-target GBR model, and the optimum schemes to obtain high SSA and TPV were experimentally verified, indicating the great potential of ML for biochar engineering.
Collapse
Affiliation(s)
- Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Zejian Ai
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Lihong Yang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Weijin Zhang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Zequn Yang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Haoyi Peng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China.
| |
Collapse
|
62
|
Wang B, Lan J, Bo C, Gong B, Ou J. Adsorption of heavy metal onto biomass-derived activated carbon: review. RSC Adv 2023; 13:4275-4302. [PMID: 36760304 PMCID: PMC9891085 DOI: 10.1039/d2ra07911a] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Due to the rapid development of the social economy and the massive increase in population, human beings continue to undertake processing, and commercial manufacturing activities of heavy metals, which has caused serious damage to the environment and human health. Heavy metals lead to serious environmental problems such as soil contamination and water pollution. Human health and the living environment are closely affected by the handling of heavy metals. Researchers must find several simple, economical and practical methods to adsorb heavy metals. Adsorption technology has been recognized as an efficient and economic strategy, exhibiting the advantages of recovering and reusing adsorbents. Biomass-derived activated carbon adsorbents offer large adjustable specific surface area, hierarchically porous structure, strong adsorption capacity, and excellent high economic applicability. This paper focuses on reviewing the preparation methods of biomass-derived activated carbon in the past five years. The application of representative biomass-derived activated carbon in the adsorption of heavy metals preferentially was described to optimize the critical parameters of the activation type of samples and process conditions. The key factors of the adsorbent, the physicochemical properties of the heavy metals, and the adsorption conditions affecting the adsorption of heavy metals are highlighted. In addition, the challenges faced by biomass-derived activated carbon are also discussed.
Collapse
Affiliation(s)
- Baoying Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Jingming Lan
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
63
|
Controllable Preparation of Eucommia Wood-Derived Mesoporous Activated Carbon as Electrode Materials for Supercapacitors. Polymers (Basel) 2023; 15:polym15030663. [PMID: 36771963 PMCID: PMC9920536 DOI: 10.3390/polym15030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
Activated carbons (ACs) for supercapacitors were synthesized from Eucommia ulmoides Oliver (EUO) wood by H3PO4 with systemic activation processes. The target structure of ACs could be prepared by adjusting the technological parameters. As the H3PO4 concentration was 25%, the mass ratio of feedstocks to activator was 1:4, the activation time was 6 h, and the activation temperature was 400 °C, the obtained AC revealed a high specific surface area (2033.87 m2·g-1) and well-developed mesoporous (the rate of mesoporous was 96.4%) with the best economic feasibility. Besides, it possessed excellent electrochemical performance: the maximum specific capacitance reached up to 252 F·g-1, the charging and discharging period was 3098.2 s at 0.2 A·g-1, and the retention rate of specific capacitance reached 92.3% after 10,000 cycles. This low temperature and convenience technology provide a valuable reference for synthesizing the EUO-based ACs, making high-value utilization on the EUO branches, and owning a broad application prospect in supercapacitors.
Collapse
|
64
|
Ajien A, Idris J, Md Sofwan N, Husen R, Seli H. Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:37-51. [PMID: 36346183 PMCID: PMC9925910 DOI: 10.1177/0734242x221127167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/10/2022] [Indexed: 06/16/2023]
Abstract
The coconut industry generates a relatively large amount of coconut shell and husk biomass, which can be utilized for industrial and environmental purposes. Immense potential for added value when coconut shell and husk biomass are turned into biochar and limited studies are available, making this review paper significant. This paper specifically presents the production and activation technology, economic and financial aspect and application of biochar from coconut shell and husk biomass. Pyrolysis, gasification and self-sustained carbonization are among the production technology discussed to convert this biomass into carbon-rich materials with distinctive characteristics. The surface characteristics of coconut-based biochar, that is, Brunauer-Emmett-Teller (BET) surface area (SBET), pore volume (Vp), pore diameter (dp) and surface functional group can be enhanced by physical and chemical activation and metal impregnation. Due to their favourable characteristics, coconut shell and husk-activated biochar exhibit their potential as valuable adsorption materials for industrial and environmental application including biodiesel production, capacitive deionization, soil amendment, water treatment and carbon sequestration. With the knowledge of the potential, the coconut industry can contribute to both the local and global biocircular economy by producing coconut shell and husk biochar for economic development and environmental remediation. The capital and operating cost for production and activation processes must be taken into account to ensure bioeconomy sustainability, hence coconut shell and husk biomass have a great potential for income generation.
Collapse
Affiliation(s)
- Azrine Ajien
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| | - Juferi Idris
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| | - Nurzawani Md Sofwan
- Faculty of Health Sciences, Universiti
Teknologi MARA (UiTM) Sarawak Branch, Samarahan Campus, Kota Samarahan, Sarawak,
Malaysia
| | - Rafidah Husen
- Faculty of Applied Sciences, Universiti
Teknologi MARA (UiTM) Sarawak Branch, Samarahan 2 Campus, Kota Samarahan, Sarawak,
Malaysia
| | - Hazman Seli
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| |
Collapse
|
65
|
Melo ALFC, Carneiro MT, Nascimento AMSS, Morais AIS, Bezerra RDS, Viana BC, Osajima JA, Silva-Filho EC. Biochar Obtained from Caryocar brasiliense Endocarp for Removal of Dyes from the Aqueous Medium. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9076. [PMID: 36556882 PMCID: PMC9787617 DOI: 10.3390/ma15249076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Given the increase in environmental pollution, especially of water, the emergence of studies that seek to develop strategies to mitigate/treat such effects have gained prominence in the world scientific community. Among the numerous adsorption processes, those made from biochar production stand out. This study analyzed the adsorption properties of the blue methylene model dye in the aqueous solution of biochar and activated biochar developed from pequi (Caryocar brasiliense) endocarp. The biochar was characterized, before and after adsorption, by infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis (TG). The surface load of the materials was performed by the point of zero charge (pHPZC) method. The study also included analyses of contact time parameters and adsorbed concentration in the adsorption process. Morphological analysis showed that a more significant and profound number of fissures and pores appeared in the activated biochar compared to the biochar. Residual mass analysis evidenced that biochar lost about 15% more mass than the activated biochar, indicating that activation occurred satisfactorily. The adsorption process was well adjusted by pseudo-second-order kinetics and Langmuir's isothermal model. The activated biochar achieved an excellent adsorption capacity of 476.19 mg.g-1, thus demonstrating to be a sound system for removing dyes from an aqueous medium.
Collapse
Affiliation(s)
| | | | | | - Alan I. S. Morais
- Interdisciplinary Laboratory for Advanced Materials, Teresina 64049-550, PI, Brazil
| | | | - Bartolomeu C. Viana
- Interdisciplinary Laboratory for Advanced Materials, Teresina 64049-550, PI, Brazil
| | - Josy A. Osajima
- Interdisciplinary Laboratory for Advanced Materials, Teresina 64049-550, PI, Brazil
| | - Edson C. Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials, Teresina 64049-550, PI, Brazil
| |
Collapse
|
66
|
Chai YD, Pang YL, Lim S, Chong WC, Lai CW, Abdullah AZ. Recent Progress on Tailoring the Biomass-Derived Cellulose Hybrid Composite Photocatalysts. Polymers (Basel) 2022; 14:5244. [PMID: 36501638 PMCID: PMC9736154 DOI: 10.3390/polym14235244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Biomass-derived cellulose hybrid composite materials are promising for application in the field of photocatalysis due to their excellent properties. The excellent properties between biomass-derived cellulose and photocatalyst materials was induced by biocompatibility and high hydrophilicity of the cellulose components. Biomass-derived cellulose exhibited huge amount of electron-rich hydroxyl group which could promote superior interaction with the photocatalyst. Hence, the original sources and types of cellulose, synthesizing methods, and fabrication cellulose composites together with applications are reviewed in this paper. Different types of biomasses such as biochar, activated carbon (AC), cellulose, chitosan, and chitin were discussed. Cellulose is categorized as plant cellulose, bacterial cellulose, algae cellulose, and tunicate cellulose. The extraction and purification steps of cellulose were explained in detail. Next, the common photocatalyst nanomaterials including titanium dioxide (TiO2), zinc oxide (ZnO), graphitic carbon nitride (g-C3N4), and graphene, were introduced based on their distinct structures, advantages, and limitations in water treatment applications. The synthesizing method of TiO2-based photocatalyst includes hydrothermal synthesis, sol-gel synthesis, and chemical vapor deposition synthesis. Different synthesizing methods contribute toward different TiO2 forms in terms of structural phases and surface morphology. The fabrication and performance of cellulose composite catalysts give readers a better understanding of the incorporation of cellulose in the development of sustainable and robust photocatalysts. The modifications including metal doping, non-metal doping, and metal-organic frameworks (MOFs) showed improvements on the degradation performance of cellulose composite catalysts. The information and evidence on the fabrication techniques of biomass-derived cellulose hybrid photocatalyst and its recent application in the field of water treatment were reviewed thoroughly in this review paper.
Collapse
Affiliation(s)
- Yi Ding Chai
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Woon Chan Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
67
|
Gámez S, de la Torre E, Gaigneaux EM. Carbon supports for the oxidative cleavage of oleic acid: Influence of textural properties. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
68
|
Bazan-Wozniak A, Paluch D, Wolski R, Cielecka-Piontek J, Nosal-Wiercińska A, Pietrzak R. Biocarbons Obtained from Fennel and Caraway Fruits as Adsorbents of Methyl Red Sodium Salt from Water System. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8177. [PMID: 36431663 PMCID: PMC9695654 DOI: 10.3390/ma15228177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 05/12/2023]
Abstract
The aim of this study was to prepare biocarbons by biomass activation with carbon(IV) oxide. Fennel and caraway fruits were used as the precursors of bioadsorbents. The impact of the precursor type and temperature of activation on the physicochemical properties of the obtained biocarbons and their interaction with methyl red sodium salt upon adsorption process have been checked. The obtained bioadsorbents were characterized by determination of-low temperature nitrogen adsorption/desorption, elemental analysis, ash content, Boehm titration, and pH of water extracts. The biocarbons have surface area varying from 233-371 m2/g and basic in nature with acidic/basic oxygen-containing functional groups (3.23-5.08 mmol/g). The adsorption capacity varied from 63 to 141 mg/g. The influence of different parameters, such as the effectiveness of methyl red sodium salt adsorption, was evaluated. The adsorption kinetics was well fitted using a pseudo-second-order model. The Freundlich model best represented the equilibrium data. The amount of adsorbed dye was also found to increase with the increasing temperature of the process.
Collapse
Affiliation(s)
- Aleksandra Bazan-Wozniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Dorota Paluch
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Robert Wolski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland
| | - Agnieszka Nosal-Wiercińska
- Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska 3, 20-031 Lublin, Poland
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
69
|
Kumar DP, Ramesh D, Vikraman VK, Subramanian P. Synthesis of carbon molecular sieves from agricultural residues: Status, challenges and prospects. ENVIRONMENTAL RESEARCH 2022; 214:114022. [PMID: 35977589 DOI: 10.1016/j.envres.2022.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Adsorption is the most promising technology used in the gas separation and purification process. The key success of this technology relies on the selection of an adsorbent. Activated carbon and zeolites are the most commonly used adsorbents in the separation of particular gas from gaseous mixtures. Activated carbon deriving from fossil and biomass-based resources has wide pore size distribution and thereby results in lower selectivity. Whereas, zeolites synthesized from natural minerals are expensive which increases the cost of the purification process. Taking this into concern, the quest for synthesizing low-cost and effective adsorbents has gained greater attention in recent years. Carbon Molecular Sieves (CMSs), are considered as an attractive alternative to replace the conventional adsorbents. Furthermore, CMSs exhibit higher selectivity and adsorption capacity, due to their narrow micropore size distribution (0.3-0.5 nm). CMSs are synthesized from any organic carbonaceous precursor with low inorganic content. Since most of the agricultural residues fall under this category, they can be used as a feedstock for CMSs production. The synthesis of CMSs involves three stages: carbonization, activation, and pore modification. In this review, physicochemical characteristics of various agricultural residues, the effects of carbonization process parameters, activation methods, and pore modification techniques adopted for producing CMSs are comprehensively discussed. The effect of deposition temperature, time, and flow rate of depositing agent on pore characteristics of CMSs is briefed. The prospects and challenges in CMSs production are also studied. The insights in this review provide guidelines for synthesizing CMSs from agro-residues.
Collapse
Affiliation(s)
- D Praveen Kumar
- Department of Renewable Energy Engineering, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - D Ramesh
- Department of Renewable Energy Engineering, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - V Karuppasamy Vikraman
- Department of Renewable Energy Engineering, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - P Subramanian
- Department of Renewable Energy Engineering, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| |
Collapse
|
70
|
From pollutant to high-performance supercapacitor: semi-coking wastewater derived N-O-S self-doped porous carbon. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
Singh S, Lundborg CS, Diwan V. Factors influencing the adsorption of antibiotics onto activated carbon in aqueous media. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2260-2269. [PMID: 36378179 DOI: 10.2166/wst.2022.334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Widespread use of antibiotics for treating human and animal ailments has increased their discharge in the environment through excreta. Moreover, unscientific disposal of unused antibiotics has further increased their presence in the environmental matrices. Thus, occurrence of used and/or discarded antibiotics in water resources is becoming a growing concern across the globe. Antibiotics and their residues in the aquatic environment are emerging contaminants which pose a serious threat to the aquatic biota as well as human beings by enhancing antibiotic resistance. Various methods are being adopted for the removal of these contaminants. Adsorption over activated carbon is one such promising method which is environmentally friendly, cost-effective, and efficient. However, there are various factors which affect the overall process efficiency, such as, properties of activated carbon/antibiotics/reaction medium etc. In this article, emphasis has been laid down on evaluating these factors, so that the experimental procedures may be optimized to obtain the highest possible removal efficiency for antibiotics in the aqueous media.
Collapse
Affiliation(s)
- Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR - National Institute for Research in Environmental Health, Bhopal 462 030, India E-mail:
| | | | - Vishal Diwan
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR - National Institute for Research in Environmental Health, Bhopal 462 030, India E-mail: ; Department of Global Public Health, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
72
|
Effect of Absorption Time for the Preparation of Activated Carbon from Wasted Tree Leaves of Quercus alba and Investigating Life Cycle Assessment. Mol Vis 2022. [DOI: 10.3390/c8040057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this article, the effect of absorption time on the surface chemistry and pore structure of activated carbon (AC) from waste leaves of Quercus alba with the H3PO4 chemical activation method. XRD, SEM, EDX, BET, TGA, and FT-IR analyses of prepared AC were used to figure out the properties of the activated carbon. The results demonstrated that the 48 h absorption time of H3PO4 contributed to the highest surface area, 943.2 m2/g, among all the prepared activated carbon samples. As the absorption time of the phosphoric acid activating agent was increased, the surface area initially increased and then started to decrease. The further surface chemical characterization of activated carbon was determined by FT-IR spectroscopic method. Life cycle assessment methodology was employed in order to investigate the environmental impacts associated with the laboratory steps for activated carbon (AC) production. The LCA approach was implemented using OpenLCA 1.10.3 software, while ReCiPe Midpoint (H) was used for environmental impact assessment. The results of the LCA study showed that the impact categories related to toxicity were particularly affected by the utilization of electrical energy (≈90%). The power utilized during laboratory procedures was the main cause of environmental impacts, contributing an average of nearly 70% across all impact categories, with the maximum contribution to the impact category of freshwater ecotoxicity potential (≈97%) and the minimum contribution to land use potential (≈10%).
Collapse
|
73
|
The Conversion of Waste Biomass into Carbon-Supported Iron Catalyst for Syngas to Clean Liquid Fuel Production. Catalysts 2022. [DOI: 10.3390/catal12101234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Syngas has been utilized in the production of chemicals and fuels, as well as in the creation of electricity. Feedstock impurities, such as nitrogen, sulfur, chlorine, and ash, in syngas have a negative impact on downstream processes. Fischer–Tropsch synthesis is a process that relies heavily on temperature to increase the production of liquid fuels (FTS). In this study, waste biomass converted into activated carbon and then a carbon-supported iron-based catalyst was prepared. The catalyst at 200 °C and 350 °C was used to investigate the influence of temperature on the subsequent application of syngas to liquid fuels. Potassium (K) was used as a structural promoter in the Fe-C catalyst to boost catalyst activity and structural stability (Fe-C-K). Low temperatures (200 °C) cause 60% and 80% of diesel generation, respectively, without and with potassium promoter. At high temperatures (350 °C), the amount of gasoline produced is 36% without potassium promoter, and 72% with promoter. Iron carbon-supported catalysts with potassium promoter increase gasoline conversion from 36.4% (Fe-C) to 72.5% (Fe-C-K), and diesel conversion from 60.8% (Fe-C) to 80.0% (Fe-C-K). As seen by SEM pictures, iron particles with potassium promoter were found to be equally distributed on the surface of activated carbon.
Collapse
|
74
|
Ma H, Zhao Y, Li X, Liao Q, Li Y, Xu D, Pan YX. Efficient Removal of Pb 2+ from Water by Bamboo-Derived Thin-Walled Hollow Ellipsoidal Carbon-Based Adsorbent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12179-12188. [PMID: 36170049 DOI: 10.1021/acs.langmuir.2c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lead ion (Pb2+) is one of the most common water pollutants. Herein, with bamboo as the raw material, we fabricate a thin-walled hollow ellipsoidal carbon-based adsorbent (CPCs900) containing abundant O-containing groups and carbon defects and having a specific surface area as large as 730.87 m2 g-1. CPCs900 shows a capacity of 37.26 mg g-1 for adsorbing Pb2+ in water and an efficiency of 98.13% for removing Pb2+ from water. This is much better than the activated carbon commonly used for removing Pb2+ from water (12.19 mg g-1, 30.48%). The bond interaction of Pb2+ with the O-containing groups on CPCs900 and the electrostatic interaction of Pb2+ with the electron-rich carbon defects on CPCs900 could be the main forces to drive Pb2+ adsorption on CPCs900. The outstanding adsorption performance of CPCs900 could be due to the abundant O-containing groups and carbon defects as well as the large specific surface area of CPCs900. Bamboo has a large reserve and a low price. The present work successfully converts bamboo into adsorbents with outstanding performances in removing Pb2+ from water. This is of great significance for meeting the huge industrial demand on highly efficient adsorbents for removing toxic metal ions from water.
Collapse
Affiliation(s)
- Hongmin Ma
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Yiyi Zhao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xingxing Li
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Qiang Liao
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Yibao Li
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Dingfeng Xu
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Yun-Xiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
75
|
Yan L, Wang X, Wang Y, Li J, Liu Q, Zhong X, Chang Y, Li Q, Verma SK. Self-doped N, S porous carbon from semi-coking wastewater-based phenolic resin for supercapacitor electrodes. Front Chem 2022; 10:1021394. [PMID: 36277343 PMCID: PMC9583164 DOI: 10.3389/fchem.2022.1021394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023] Open
Abstract
Contamination of phenolic compounds has devastating effects on the environment. Therefore, its harmless treatment and recycling have received extensive attention. Herein, a novel method for preparing N-S doped phenolic resin (NSPR) from phenols, N and S groups in semi-coking wastewater, and formaldehyde are developed. The KOH is consequently incorporated into the NSPR through simultaneous carbonization and activation in a single step to produce porous carbon material (NSPC). The as-obtained NSPC exhibits a high specific capacitance of 182 F g-1 at 0.5 A g-1, a high energy density of 9.1 Wh kg-1 at a power density of 0.15 kW kg-1, and remarkable cycling stability in aqueous KOH electrolyte. This outstanding electrochemical performance is attributed to its ultrahigh specific surface area (SSA, 2,523 m2 g-1), enormous total pore volume (Vt, 1.30 cm3 g-1), rational pore structure, and N-S heteroatom self-doping (0.76 at% N and 0.914 at% S), which ensures adequate charge storage, rapid electrolyte ion diffusion, and contributed pseudo-capacitance. This work not only provides a facile method for transforming phenolic wastewater into high-value products but also offers a cost-effective and high-performance porous carbon material for supercapacitors.
Collapse
Affiliation(s)
- Long Yan
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Xianjie Wang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Yufei Wang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, China
| | - Jian Li
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, China
| | - Qianqian Liu
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Xiang Zhong
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Yuan Chang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Qingchao Li
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Santosh Kumar Verma
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| |
Collapse
|
76
|
Advances of Biowaste-Derived Porous Carbon and Carbon–Manganese Dioxide Composite in Supercapacitors: A Review. INORGANICS 2022. [DOI: 10.3390/inorganics10100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
One of the global problems is environmental pollution by different biowaste. To solve the problem, biowaste must be recycled. Waste-free technology is also a way of saving exhaustible raw materials. Research on electrochemical energy sources is currently the most dynamically developing area of off-grid energy. Electrochemical capacitors can operate for a long time without changing performance, they have smaller dimensions, high mechanical strength, and a wide operating temperature range. These properties are effective energy-saving devices. Therefore, supercapacitors are widely used in various industries. This review discussed the methods of obtaining and the characteristics of biowaste-derived activated carbon and carbon–manganese oxide (AC-MnO2)-based supercapacitor electrodes.
Collapse
|
77
|
Value-Added Products from Catalytic Pyrolysis of Lignocellulosic Biomass and Waste Plastics over Biochar-Based Catalyst: A State-of-the-Art Review. Catalysts 2022. [DOI: 10.3390/catal12091067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As the only renewable carbon resource on Earth, lignocellulosic biomass is abundant in reserves and has the advantages of environmental friendliness, low price, and easy availability. The pyrolysis of lignocellulosic biomass can generate solid biochar with a large specific surface area, well-developed pores, and plentiful surface functional groups. Therefore, it can be considered as a catalyst for upgrading the other two products, syngas and liquid bio-oil, from lignocellulosic biomass pyrolysis, which has the potential to be an alternative to some non-renewable and expensive conventional catalysts. In addition, as another carbon resource, waste plastics can also use biochar-based catalysts for catalytic pyrolysis to solve the problem of accumulation and produce fuels simultaneously. This review systematically introduces the formation mechanism of biochar from lignocellulosic biomass pyrolysis. Subsequently, the activation and modification methods of biochar catalysts, including physical activation, chemical activation, metal modification, and nonmetallic modification, are summarized. Finally, the application of biochar-based catalysts for lignocellulosic biomass and waste plastics pyrolysis is discussed in detail and the catalytic mechanism of biochar-based catalysts is also investigated.
Collapse
|
78
|
Development of Adsorptive Materials for Selective Removal of Toxic Metals in Wastewater: A Review. Catalysts 2022. [DOI: 10.3390/catal12091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Removal of toxic metals is essential to achieving sustainability in wastewater purification. The achievement of efficient treatment at a low cost can be seriously challenging. Adsorption methods have been successfully demonstrated for possession of capability in the achievement of the desirable sustainable wastewater treatment. This review provides insights into important conventional and unconventional materials for toxic metal removal from wastewater through the adsorption process. The importance of the role due to the application of nanomaterials such as metal oxides nanoparticle, carbon nanomaterials, and associated nanocomposite were presented. Besides, the principles of adsorption, classes of the adsorbent materials, as well as the mechanisms involved in the adsorption phenomena were discussed.
Collapse
|
79
|
Wang Z, Tang Z, Xie X, Xi M, Zhao J. Salt template synthesis of hierarchical porous carbon adsorbents for Congo red removal. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
80
|
Hartoyo APP, Octaviani EA, Syamani FA, Mulsanti IW, Solikhin A. Potential of chitosan/carbon nanoparticles and chitosan/lignocellulose nanofiber composite as growth media for peatland paddy seeds. ENVIRONMENTAL RESEARCH 2022; 212:113235. [PMID: 35500851 DOI: 10.1016/j.envres.2022.113235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Indonesia has committed to restoring degraded peatlands by revegetating them with paddy plants using paludiculture systems. Nanofertilizers derived from chitosan and oil palm biomass can be used to enhance paddy growth. This study analyzed the potential growth media of chitosan nanocomposite films for paddy seeds grown in tropical peatland. Chitosan nanocomposites were synthesized by reinforcing chitosan with activated carbon nanoparticles (ACNPs), nonactivated carbon nanoparticles (n-ACNPs), and lignocellulose nanofibers (LCNFs). All carbon nanoparticles were reversibly aggregated, whereas LCNFs did not have a tendency to aggregate but were entangled. The highest specific surface area and pore volume are on EFB ACNPs, followed by OPT LCNFs and EFB n-ACNPs. Both nanocomposites' tensile strength and elastic modulus value were reduced with an average of 45.77% and 34.00%, respectively, because of the lack of nano- and micro-aggregates formation, good dispersion, and incompatibility. In a germination test, chitosan nanocomposites provided the best growth patterns for the Dendang paddy variety, whereas, in a greenhouse test, the nanocomposites had the best growth patterns for the Indragiri paddy variety. Chitosan/empty fruit bunch ACNP nanocomposites grown in a germinator had the highest growth normality (100.00%), highest maximum growth potential (100.00%), and highest height average (11.27 cm). In the greenhouse test, chitosan/oil palm trunk n-ACNPs achieved the highest growth natality (16.44%) and growth rate (65.74%). All chitosan nanocomposites had a synergetic biofertilizing effect on fungi and mycorrhiza. Chitosan nanocomposites can be used as a growth regulator for peatland paddy varieties and can accelerate peatland restoration in tropical areas.
Collapse
Affiliation(s)
- Adisti Permatasari Putri Hartoyo
- Department of Silviculture, Faculty of Forestry and Environment, IPB University (Bogor Agricultural University), Indonesia; Environmental Research Center, IPB University (Bogor Agricultural University), Indonesia
| | - Eti Artiningsih Octaviani
- Department of Silviculture, Faculty of Forestry and Environment, IPB University (Bogor Agricultural University), Indonesia; Southeast Asia Regional Center for Tropical Biology (SEAMEO BIOTROP), Indonesia; Forest Engineering, Institut Teknologi Sumatera (ITERA), Indonesia
| | - Firda Aulya Syamani
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Indonesia
| | | | - Achmad Solikhin
- Southeast Asia Regional Center for Tropical Biology (SEAMEO BIOTROP), Indonesia; Indonesian Green Action Forum (IGAF), Indonesia; Sekolah Tinggi Pariwisata Bogor, Indonesia.
| |
Collapse
|
81
|
Hoang AT, Kumar S, Lichtfouse E, Cheng CK, Varma RS, Senthilkumar N, Phong Nguyen PQ, Nguyen XP. Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. CHEMOSPHERE 2022; 302:134825. [PMID: 35526681 DOI: 10.1016/j.chemosphere.2022.134825] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The use of a cheap and effective adsorption approach based on biomass-activated carbon (AC) to remediate heavy metal contamination is clearly desirable for developing countries that are economically disadvantaged yet have abundant biomass. Therefore, this review provides an update of recent works utilizing biomass waste-AC to adsorb commonly-encountered adsorbates like Cr, Pb, Cu, Cd, Hg, and As. Various biomass wastes were employed in synthesizing AC via two-steps processing; oxygen-free carbonization followed by activation. In recent works related to the activation step, the microwave technique is growing in popularity compared to the more conventional physical/chemical activation method because the microwave technique can ensure a more uniform energy distribution in the solid adsorbent, resulting in enhanced surface area. Nonetheless, chemical activation is still generally preferred for its ease of operation, lower cost, and shorter preparation time. Several mechanisms related to heavy metal adsorption on biomass wastes-AC were also discussed in detail, such as (i) - physical adsorption/deposition of metals, (ii) - ion-exchange between protonated oxygen-containing functional groups (-OH, -COOH) and divalent metal cations (M2+), (iii) - electrostatic interaction between oppositely-charged ions, (iv) - surface complexation between functional groups (-OH, O2-, -CO-NH-, and -COOH) and heavy metal ions/complexes, and (v) - precipitation/co-precipitation technique. Additionally, key parameters affecting the adsorption performance were scrutinized. In general, this review offers a comprehensive insight into the production of AC from lignocellulosic biomass and its application in treating heavy metals-polluted water, showing that biomass-originated AC could bring great benefits to the environment, economy, and sustainability.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - Sunil Kumar
- CSIR-NEERI, Nehru Marg, Nagpur, 440 020, India
| | - Eric Lichtfouse
- Aix-Marseille University, CNRS, IRD, INRA, CEREGE, Aix-en-Provence, 13100, France.
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rajender S Varma
- Sustainable Technology Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West M.L.K. Drive, MS 443, Cincinnati, OH, 45268, United States
| | - N Senthilkumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Phuoc Quy Phong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
82
|
Liu Z, Zhen F, Zhang Q, Qian X, Li W, Sun Y, Zhang L, Qu B. Nanoporous biochar with high specific surface area based on rice straw digestion residue for efficient adsorption of mercury ion from water. BIORESOURCE TECHNOLOGY 2022; 359:127471. [PMID: 35710052 DOI: 10.1016/j.biortech.2022.127471] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The unreasonable disposal of residue after anaerobic digestion seriously affects the stability of the ecosystem, and the preparation of adsorbent is an effective way to value-added utilization of the residue. In this study, a high adsorption capacity (209.65 mg/g) biochar-based adsorbent was prepared by hydrothermal carbonization and alkali modification using rice straw biogas residue. The lignocellulosic structure was destroyed after anaerobic digestion, forming porous biochar with larger specific surface area (2372.51 m2/g) and richer pore structure. Besides, the mercury ion complexed on the adsorbent surface in monovalent and divalent forms and possessed favorable selectivity in the presence of other examples of interference. The adsorption process is consistent with pseudo second-order kinetics and the Langmuir isotherm, indicating a predominance of chemisorption. This study provides a methodology for use of rice straw biogas residue and treatment of mercury containing wastewater, which offers a fresh direction for resource utilization of biogas residue.
Collapse
Affiliation(s)
- Zhiyuan Liu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Quanguo Zhang
- Institute of Agricultural Engineering, Huanghe Science and Technology University, Zhengzhou 450006, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin Qian
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Wenzhe Li
- Institute of Agricultural Engineering, Huanghe Science and Technology University, Zhengzhou 450006, China
| | - Yong Sun
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Lingling Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bin Qu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
83
|
Li P, Yang C, Wu C, Wei Y, Jiang B, Jin Y, Wu W. Bio-Based Carbon Materials for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2931. [PMID: 36079969 PMCID: PMC9457592 DOI: 10.3390/nano12172931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 05/20/2023]
Abstract
Lignin, one of the components of natural plant biomass, is a rich source of carbon and has excellent potential as a valuable, sustainable source of carbon material. Low-cost lignosulfonate (LS) doped with polyaniline (PANI) has been used as a precursor to produce porous carbon. LS has a highly dispersed and sparse microstructure and can be accidentally doped with S atoms. N and S double-doped carbon can be directly synthesized with abundant mesopores and high surface area in a lamellar network using PANI as another doping source. This study explored the optimal conditions of LS/PANI material with different amounts of lignosulfonate and different carbonization temperatures. When the amount of lignosulfonate was 4 g and the carbonization temperature was 700 °C, graded porous carbon was obtained, and the electrochemical performance was the best. At 0.5 A/g, the specific capacitance reached 333.50 F/g (three-electrode system) and 242.20 F/g (two-electrode system). After 5000 charge/discharge cycles at 5 A/g, the material maintained good cycling stability and achieved a capacitance retention rate of 95.14% (three-electrode system) and 97.04% (two-electrode system). The energy and power densities of the SNC700 samples were 8.33 Wh/kg and 62.5 W/kg at 0.25 A/g, respectively, values that meet the requirements of today's commercially available supercapacitor electrode materials, further demonstrating their good practicality. This paper provides an efficient double-doping method to prepare layered structures. Porous carbon is used for electrochemical energy storage devices.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caiwen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yumeng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
84
|
Licona-Aguilar ÁI, Torres-Huerta AM, Domínguez-Crespo MA, Palma-Ramírez D, Conde-Barajas E, Negrete-Rodríguez MXL, Rodríguez-Salazar AE, García-Zaleta DS. Reutilization of waste biomass from sugarcane bagasse and orange peel to obtain carbon foams: Applications in the metal ions removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154883. [PMID: 35358521 DOI: 10.1016/j.scitotenv.2022.154883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The high levels of heavy metals contained in residual water and the pollution generated by a large amount of unexploited agro-industrial waste are a serious problem for the environment and mankind. Therefore, in the present work, with the aim of treating and reducing the pollution caused by heavy metal ions (Pb, Cd, Zn and Cu), activated carbons (ACs) were synthesized from sugarcane bagasse (SCB) and orange peel (OP) by means of physical - chemical activation method in an acid medium (H3PO4, 85 wt%) followed by an activation at high temperature (500 and 700 °C). Thereafter, these materials were used to produce carbon foams (CF) by the replica method and to evaluate their adsorbent capacity for the removal of heavy metals from synthetic water. XRD, FTIR, DLS, BET, Zeta Potential (ζ), SEM-EDS and AAS were used to investigate their structures, surface area, pore size, morphology, and adsorption capacity. The results show that as-prepared CF have a second level mesoporous structure and AC present a micro-mesoporous structure with a pore diameter between 3 and 4 nm. The experimental adsorption capacities of heavy metals showed that the CF from OP present a better elimination of heavy metals compared to the AC; exhibiting a removal capacity of 95.2 ± 3.96% (Pb) and 94.7 ± 4.88% (Cu) at pH = 5. The adsorption values showed that the optimal parameters to reach a high metal removal are pH values above 5. In the best of cases, the minimum remaining concentration of lead and copper were 2.4 and 2.6 mg L-1, respectively. The experimental data for carbon adsorbents are in accordance with the Langmuir and BET isotherms, with R2 = 0.99 and the maximum homogenous biosorption capacity for lead and copper was Qmax = 968.72 and 754.14 mg g-1, respectively. This study showed that agro-industrial wastes can be effectively retrieved to produce adsorbents materials for wastewater treatment applications.
Collapse
Affiliation(s)
- Á I Licona-Aguilar
- Instituto Politécnico Nacional, CICATA-Altamira, CIAMS. km 14.5 carretera Tampico-Puerto Industrial Altamira, Mexico
| | - A M Torres-Huerta
- Instituto Politécnico Nacional, UPIIH, Ciudad del conocimiento y la cultura, Carretera Pachuca-Actopan km. 1+500 San Agustin Tlaxiaca, C.P. 42162, Hidalgo, Mexico.
| | - M A Domínguez-Crespo
- Instituto Politécnico Nacional, UPIIH, Ciudad del conocimiento y la cultura, Carretera Pachuca-Actopan km. 1+500 San Agustin Tlaxiaca, C.P. 42162, Hidalgo, Mexico.
| | - D Palma-Ramírez
- Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia (CMPL), Av. Acueducto s/n, la Laguna Ticomán, C.P. 07340 México City, Mexico
| | - E Conde-Barajas
- Laboratory of Environmental Biotechnology, Department Environmental Engineering, TNM/IT de Celaya, Av. Tecnológico y A. García Cubas 600, Celaya 38010 Celaya, Guanajuato, Mexico
| | - M X L Negrete-Rodríguez
- Laboratory of Environmental Biotechnology, Department Environmental Engineering, TNM/IT de Celaya, Av. Tecnológico y A. García Cubas 600, Celaya 38010 Celaya, Guanajuato, Mexico
| | - A E Rodríguez-Salazar
- Instituto Politécnico Nacional, CICATA Querétaro, Cerro Blanco 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro, Mexico
| | - D S García-Zaleta
- Universidad Juárez Autónoma de Tabasco, Carretera Estatal Libre Villahermosa-Comalcalco, Km. 27 +000 s/n Ranchería Ribera Alta, C.P. 86205, Tabasco, Mexico
| |
Collapse
|
85
|
Zuhara S, Mackey HR, Al-Ansari T, McKay G. A review of prospects and current scenarios of biomass co-pyrolysis for water treatment. BIOMASS CONVERSION AND BIOREFINERY 2022:1-30. [PMID: 35855911 PMCID: PMC9277991 DOI: 10.1007/s13399-022-03011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
With ever-growing population comes an increase in waste and wastewater generated. There is ongoing research to not only reduce the waste but also to increase its value commercially. One method is pyrolysis, a process that converts wastes, at temperatures usually above 300 °C in a pyrolysis unit, to carbon-rich biochars among with other useful products. These chars are known to be beneficial as they can be used for water treatment applications; certain studies also reveal improvements in the biochar quality especially on the surface area and pore volume by imparting thermal and chemical activation methods, which eventually improves the uptake of pollutants during the removal of inorganic and organic contaminants in water. Research based on single waste valorisation into biochar applications for water treatment has been extended and applied to the pyrolysis of two or more feedstocks, termed co-pyrolysis, and its implementation for water treatment. The co-pyrolysis research mainly covers activation, applications, predictive calculations, and modelling studies, including isotherm, kinetic, and thermodynamic adsorption analyses. This paper focuses on the copyrolysis biochar production studies for activated adsorbents, adsorption mechanisms, pollutant removal capacities, regeneration, and real water treatment studies to understand the implementation of these co-pyrolyzed chars in water treatment applications. Finally, some prospects to identify the future progress and opportunities in this area of research are also described. This review provides a way to manage solid waste in a sustainable manner, while developing materials that can be utilized for water treatment, providing a double target approach to pollution management.
Collapse
Affiliation(s)
- Shifa Zuhara
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hamish R. Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Tareq Al-Ansari
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
86
|
Cao YJ, Lu CY, Zhang ZW, Wang Z, Kang YH, Yang TT, Liu GH, Wei XY, Bai HC. N/O Co-doped Porous Carbons Derived from Coal Tar Pitch for Ultra-high Specific Capacitance Supercapacitors. ACS OMEGA 2022; 7:23342-23352. [PMID: 35847265 PMCID: PMC9281300 DOI: 10.1021/acsomega.2c01534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, a series of N/O co-doped porous carbons (PCs) were designed and used to prepare coal tar pitch-based supercapacitors (SCs). The introduction of N/O species under the intervention of urea effectively improves the pseudocapacitance of PCs. The results show that the specific surface area of synthesized N3PC4-700 is 1914 m2 g-1, while the N and O contents are 1.3 and 7.2%, respectively. The unique interconnected pore structure and proper organic N/O co-doping, especially the introduction of pyridine-N and pyrrole-N, are beneficial for improving the electrochemical performance of PCs. In the three-electrode system, the specific capacitance and rate capability of N3PC4-700 are 532.5 F g-1 and 72.5% at the current densities of 0.5 and 20 A g-1, respectively. In addition, the specific capacitance of N3PC4-700 in a coin-type symmetric device is 315.5 F g-1 at 0.5 A g-1. The N3PC4-700 electrode provides an energy density of 43.8 W h kg-1 with a power density of 0.5 kW kg-1 and still maintains a value of 29.7 at 10 kW kg-1. After 10,000 charge/discharge cycles, the retention rate was as high as 96.7%. In order to obtain high-performance carbon-based SCs, the effective identification and regulation of organic N/O species is necessary.
Collapse
Affiliation(s)
- Yuan-Jia Cao
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
| | - Cui-Ying Lu
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
- . Phone: +86 0912 3891144. Fax: +86 0912 3891144
| | - Zhi-Wen Zhang
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
| | - Zhen Wang
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
| | - Yu-Hong Kang
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
| | - Ting-Ting Yang
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
| | - Guang-Hui Liu
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
- Anhui
Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Ma’anshan 243002, Anhui, China
- State
Key Laboratory of High-efficiency Coal Utilization and Green Chemical
Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xian-Yong Wei
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
- State
Key Laboratory of High-efficiency Coal Utilization and Green Chemical
Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
- Key
Laboratory of Coal Processing and Efficient Utilization, Ministry
of Education, China University of Mining
& Technology, Xuzhou 221116, Jiangsu, China
| | - Hong-Cun Bai
- State
Key Laboratory of High-efficiency Coal Utilization and Green Chemical
Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
| |
Collapse
|
87
|
Smart preparation of microporous carbons from spent coffee grounds. Comprehensive characterization and application in explosives removal from water samples. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
88
|
|
89
|
Yang M, Cui C, Liu L, Dai L, Bai W, Zhai J, Jiang S, Wang W, Ren E, Cheng C, Guo R. Porous activated carbons derived from bamboo pulp black liquor for effective adsorption removal of tetracycline hydrochloride and malachite green from water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:244-260. [PMID: 35906906 DOI: 10.2166/wst.2022.205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a kind of wastewater produced by papermaking industry, bamboo pulp black liquor (BPBL) discharged into water causes serious environmental problems. In this work, BPBL was successfully converted into porous carbon after activation with potassium hydroxide (KOH) through one-step carbonization, and adsorption properties of porous carbon derived from bamboo pulp black liquor (BLPC) for tetracycline hydrochloride (TCH) and malachite green (MG) were studied. The adsorption capacities of BLPC for TCH and MG are 1047 and 1277 mg/g, respectively, due to its large specific surface area of 1859.08 m2/g. Kinetics and isotherm data are well fitted to the pseudo-second-order rate model and Langmuir model, respectively. Adsorption experiments and characterizations reveal that the adsorption mechanism involved in TCH and MG adsorption on BLPC mainly depends on the synergistic effect of pore filling, H-bonding, π-π interactions and weak electrostatic interactions. In addition, BLPC shows excellent photothermal properties, and the adsorption capacity of TCH and MG on BLPC can reach 584 and 847 mg/g under the irradiation of near infrared lamp for 50 min, respectively. The synthesized BLPC with high adsorption efficiency, good recovery ability, improved adsorption under near-infrared irradiation can be a promising and effective adsorbent for TCH or MG or other pollutes.
Collapse
Affiliation(s)
- Mengyuan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Ce Cui
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Li Liu
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Lanling Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Wenhao Bai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Jianyu Zhai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Shan Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Weijie Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Cheng Cheng
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| |
Collapse
|
90
|
Topcu N, Duman G, Olgun H, Yanik J. Evaluation of Poultry Manure: Combination of Phosphorus Recovery and Activated Carbon Production. ACS OMEGA 2022; 7:20710-20718. [PMID: 35755332 PMCID: PMC9219055 DOI: 10.1021/acsomega.2c00975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Intensive growth of poultry production leads to generation of a large-scale accumulation of wastes, which is a critical concern for poultry farming. An environmentally friendly and effective solution is still being sought for sustainable management of poultry manure. In this study, evaluation of poultry manure both as a carbon source for production of solid fuels and activated carbon and as a phosphorus source has been investigated. The study focuses on the following: (1) biochar and hydrochar production under different process conditions for production of carbon-rich fuel from poultry manure; (2) phosphorus recovery by acid leaching-alkali precipitation from manure ash, biochar, and hydrochar; and (3) activated carbon production from acid-leached hydrochar and biochar. The results reveal that production of biochar and hydrochar is not a promising method for upgrading laying hen manure into an energy-dense solid fuel. Phosphorus in ash and chars was recovered as amorphous calcium phosphate with yields of 57.3-48.5% by acid leaching-alkali precipitation. Untreated and acid-leached chars were subjected to a chemical activation process with KOH and ZnCl2 to produce activated carbon. Due to the catalytic effect of inorganics in chars, the KOH activation resulted in a very low yield of activated carbon. The surface areas of activated carbons prepared using ZnCl2 were comparable to activated carbons derived from typical biomass using ZnCl2.
Collapse
Affiliation(s)
| | - Gozde Duman
- Chemistry
Department, Ege University, 35100, Bornova, İzmir, Turkey
| | - Hayati Olgun
- Solar
Energy Institute, Ege University, 35100, Bornova, İzmir, Turkey
| | - Jale Yanik
- Chemistry
Department, Ege University, 35100, Bornova, İzmir, Turkey
| |
Collapse
|
91
|
Rodríguez-Sánchez S, Díaz P, Ruiz B, González S, Díaz-Somoano M, Fuente E. Food industrial biowaste-based magnetic activated carbons as sustainable adsorbents for anthropogenic mercury emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114897. [PMID: 35334399 DOI: 10.1016/j.jenvman.2022.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Bio-derived magnetic activated carbons from industrial chestnut shell waste have been obtained through a novel, optimized and sustainable methodology where impregnation, pyrolysis, acid washing or other intermediate steps commonly used in the activation process were eliminated saving time, energy and costs. The resulting materials (MACs) were obtained at 220-800 °C showed interesting properties: textural (SBET up to 568 m2 g-1) and magnetic (different iron species developed), depending on the activation temperature employed. Data showed outstanding results when MACs were tested for Hg removal in pollution emissions at 150 °C in lab-scale device. In MACs obtained at 500-600 °C, where the highest concentration of magnetite was found, the best Hg adsorption capacity was achieved, while it decreased when metallic iron or iron carbides were present (MACs obtained at 800 °C). Moreover, the difference of Hg0 removal/adsorption in N2+O2 and Simulated Flue Gas atmosphere between MACs obtained at 500 and 600 °C pointed out the influence on Hg removal of additional parameters, as surface chemistry and the existence of sulfur or chloride. The determination of Hg species in post-retention solids confirmed the mercury oxidation by high-valence iron ions (Fe3+) and the involvement of physisorption and chemisorption processes for the gas-solid interaction mechanism.
Collapse
Affiliation(s)
- S Rodríguez-Sánchez
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - P Díaz
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - B Ruiz
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain.
| | - S González
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - M Díaz-Somoano
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - E Fuente
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| |
Collapse
|
92
|
Conversion of Waste Biomass into Activated Carbon and Evaluation of Environmental Consequences Using Life Cycle Assessment. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this article, activated carbon was produced from Lantana camara and olive trees by H3PO4 chemical activation. The prepared activated carbons were analyzed by characterizations such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy. H3PO4 is used as an activator agent to create an abundant pore structure. According to EDX analysis, the crystalline structure destroys and increases the carbon content of the olive tree and Lantana camara by 77.51 and 76.16%, respectively. SEM images reveal a porous structure formed as a result of H3PO4 activation. The Brunauer–Emmett–Teller (BET) surface area of the olive tree and Lantana camara activated carbon was 611.21 m2/g and 167.47 m2/g, respectively. The TGA analysis of both activated carbons shows their thermal degradation starts at 230 °C but fully degrades at temperatures above 450 °C. To quantify the potential environmental implications related to the production process of the activated carbon (AC) from olive trees, the life cycle assessment (LCA) environmental methodology was employed. For most of the tested indicators, chemical activation using H3PO4 showed the greatest ecological impacts: the ozone layer depletion potential (42.27%), the acidification potential (55.31%), human toxicity (57.00%), freshwater aquatic ecotoxicity (85.01%), terrestrial ecotoxicity (86.17%), and eutrophication (92.20%). The global warming potential (5.210 kg CO2 eq), which was evenly weighted between the phases, was shown to be one of the most significant impacts. The total energy demand of the olive tree’s AC producing process was 70.521 MJ per Kg.
Collapse
|
93
|
Wyss KM, Chen W, Beckham JL, Savas PE, Tour JM. Holey and Wrinkled Flash Graphene from Mixed Plastic Waste. ACS NANO 2022; 16:7804-7815. [PMID: 35471012 DOI: 10.1021/acsnano.2c00379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High surface area varieties of graphene have captured significant attention, allowing for improved performance in a variety of applications. However, there are challenges facing the use of graphene in these applications since it is expensive and difficult to synthesize in bulk. Here, we leverage the capabilities of flash Joule heating to synthesize holey and wrinkled flash graphene (HWFG) in seconds from mixed plastic waste feedstocks, using in situ salt decomposition to produce and stabilize pore formation during the reaction. Surface areas as high as 874 m2 g-1 are obtained, with characteristics of micro-, meso-, and macroporosities. Raman spectroscopy confirms the wrinkled and turbostratic nature of the HWFG. We demonstrate HWFG applications in its use as a metal-free hydrogen evolution reaction electrocatalyst, with excellent stability, competitive overpotential, and Tafel slope; in a Li-metal battery anode allowing for stable and high discharge rates; and in a material with high gas adsorption. This represents an upcycle of mixed plastic waste, thereby affording a valuable route to address this pressing environmental pollutant concern.
Collapse
Affiliation(s)
- Kevin M Wyss
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Weiyin Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jacob L Beckham
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Paul E Savas
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, NanoCarbon Center, Welch Institute for Advanced Materials, Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
94
|
Carbon-Based Nanocatalysts (CnCs) for Biomass Valorization and Hazardous Organics Remediation. NANOMATERIALS 2022; 12:nano12101679. [PMID: 35630900 PMCID: PMC9147642 DOI: 10.3390/nano12101679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
Abstract
The continuous increase of the demand in merchandise and fuels augments the need of modern approaches for the mass-production of renewable chemicals derived from abundant feedstocks, like biomass, as well as for the water and soil remediation pollution resulting from the anthropogenic discharge of organic compounds. Towards these directions and within the concept of circular (bio)economy, the development of efficient and sustainable catalytic processes is of paramount importance. Within this context, the design of novel catalysts play a key role, with carbon-based nanocatalysts (CnCs) representing one of the most promising class of materials. In this review, a wide range of CnCs utilized for biomass valorization towards valuable chemicals production, and for environmental remediation applications are summarized and discussed. Emphasis is given in particular on the catalytic production of 5-hydroxymethylfurfural (5-HMF) from cellulose or starch-rich food waste, the hydrogenolysis of lignin towards high bio-oil yields enriched predominately in alkyl and oxygenated phenolic monomers, the photocatalytic, sonocatalytic or sonophotocatalytic selective partial oxidation of 5-HMF to 2,5-diformylfuran (DFF) and the decomposition of organic pollutants in aqueous matrixes. The carbonaceous materials were utilized as stand-alone catalysts or as supports of (nano)metals are various types of activated micro/mesoporous carbons, graphene/graphite and the chemically modified counterparts like graphite oxide and reduced graphite oxide, carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and fullerenes.
Collapse
|
95
|
Jin B, Li J, Wang Y, Yang Z, Yao X, Sun W, Lu Y, Zhu X, Zhang T. Nitrogen doping and porous tuning carbon derived from waste biomass boosting for toluene capture: Experimental study and density functional theory simulation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
96
|
Gayathiri M, Pulingam T, Lee KT, Sudesh K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. CHEMOSPHERE 2022; 294:133764. [PMID: 35093418 DOI: 10.1016/j.chemosphere.2022.133764] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The use of activated carbon is evidenced by the increased scope of carbon-based applications in various industrial applications including pharmaceutical antidotes, wastewater remediation, aquaculture and toxin removal. Activated carbon produced from biomass waste by various processing methods and conditions is emerging as a promising adsorbent for remediation of the ecosystem due to extensive discharge of pollutants. Methods of producing activated carbon, nature of lignocellulosic biomass waste, and interaction of adsorbent-adsorbate are some of the crucial factors that need to be scrutinized to produce an effective adsorbent. However, these factors have not been thoroughly discussed in the literature. Activated carbon needs to go through continuous and rigorous research and development through optimization of key parameters such as type of activation (physical/chemical) and processing conditions, especially for large-scale production. It is imperative to have a detailed understanding of the preeminent characteristics of the activated carbon such as pore size distribution, total pore volume, surface area, and yield of activated carbon that control the extents of adsorptions and production of activated carbon. To further clarify the involved mechanism, studies should focus on all the possible variables that influence the system. Therefore, this review provides a better understanding of factors that affect the production of an efficient activated carbon, important properties to be used as an adsorbent, and the involved mechanisms during the adsorption process followed by increasing demand for activated carbon in various fields.
Collapse
Affiliation(s)
- Muniandy Gayathiri
- School of Biological Sciences, Universiti Sains Malaysia, 11900, Penang, Malaysia
| | - Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, 11900, Penang, Malaysia
| | - K T Lee
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11900, Penang, Malaysia.
| |
Collapse
|
97
|
Alenezi GT, Rajendran N, Abdel Nazeer A, Makhseed S. Development of Uniform Porous Carbons From Polycarbazole Phthalonitriles as Durable CO 2 Adsorbent and Supercapacitor Electrodes. Front Chem 2022; 10:879815. [PMID: 35548674 PMCID: PMC9081769 DOI: 10.3389/fchem.2022.879815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in new porous materials have recognized great consideration in CO2 capture and electrochemical energy storage (EES) applications. In this study, we reported a synthesis of two nitrogen-enriched KOH-activated porous carbons prepared from polycarbazole phthalonitrile networks through direct pyrolysis protocol. The highest specific surface area of the carbon material prepared by pyrolysis of p-4CzPN polymer reaches 1,279 m2 g-1. Due to the highly rigid and reticular structure of the precursor, the obtained c-4CzPN-KOH carbon material exhibits high surface area, uniform porosity, and shows excellent CO2 capture performance of 19.5 wt% at 0°C. Moreover, the attained porous carbon c-4CzPN-KOH showed high energy storage capacities of up to 451 F g-1 in aqueous electrolytes containing 6.0 M KOH at a current density of 1 A g-1. The prepared carbon material also exhibits excellent charge/discharge cycle stability and retains 95.9% capacity after 2000 cycles, indicating promising electrode materials for supercapacitors.
Collapse
Affiliation(s)
| | - Narendran Rajendran
- Department of Chemistry, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Abdel Nazeer
- Petroleum Refining and Petrochemicals Research Center, College of Engineering and Petroleum, Kuwait University, Kuwait City, Kuwait
| | - Saad Makhseed
- Department of Chemistry, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
98
|
Use of a Hybrid Porous Carbon Material Derived from Expired Polysaccharides Snack/Iron Salt Exhibiting Magnetic Properties, for Hexavalent Chromium Removal. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nowadays, the scientific interest is focused more and more on the development of new strategies in recycling of waste products as well as on the development of clean technologies due to the increased environmental pollution. In this work we studied the valorization of an expired cheese-tomato flavor corn snack, which is polysaccharide food product, by producing advanced hybrid magnetic materials for environmental remediation purposes. The carbonization-chemical activation of this snack using potassium hydroxide leads to a microporous activated carbon with high surface area (SgBET ~800 m2/g). The magnetic hybrid material was synthesized via an in-situ technique using iron acetate complex as the precursor to produce iron based magnetic nanoparticles. The resulting material retains a fraction of the microporous structure with surface area SgBET ~500 m2/g. Such material consists, of homogenously dispersed magnetic isolated zero valent iron nanoparticles and of iron carbides (Fe3C), into the carbon matrix. The magnetic carbon exhibited high adsorption capacity in Cr(VI) removal applications following a pseudosecond order kinetic model. The maximum adsorption capacity was 88.382 mgCr(VI)/gAC at pH = 3. Finally, oxidation experiments, in combination with FT-IR, Mössbauer, and VSM measurements indicated that the possible Cr6+ removal mechanism involves oxidation of iron phases and reduction of Cr6+ to Cr3+.
Collapse
|
99
|
Zago S, Bartoli M, Muhyuddin M, Vanacore GM, Jagdale P, Tagliaferro A, Santoro C, Specchia S. Engineered biochar derived from pyrolyzed waste tea as a carbon support for Fe-N-C electrocatalysts for the oxygen reduction reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
100
|
Synthesis of Mesoporous Carbon from Merbau Sawdust as a Nickel Metal Catalyst Support for Castor Oil Hydrocracking. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.1.12940.216-224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis of mesoporous carbon from merbau sawdust with H2O2 as activator using reflux method followed by carbonization at 800 °C (RC800) had been carried out. This research is aiming to produce effective pathway to synthesize effective nickel-mesoporous carbon catalyst. The nickel metal was impregnated on the mesoporous carbon by wet impregnation using the salt precursor of Ni(NO3)2∙6H2O. The results showed that carbon RC800 and C800 had a specific surface area of 135.18 and 182.48 m2/g. Specific surface area of Ni/RC800 and Ni/C800 catalyst were 41.31 and 7.15 m2/g, respectively. The metal content in Ni/RC800 and Ni/C800 catalyst were 0.83 and 0.92 wt%, respectively. Ni/RC800 catalyst had the highest acidity (7.64 mmol/g) compared to Ni/C800 catalyst (6.99 mmol/g), RC800 (97.43 mmol/g), and C800 (6.17 mmol/g). The Ni/RC800 catalyst has the highest activity with the liquid product conversion of 66.01 wt%. Its selectivity towards gasoline fraction, diesel fraction, alcohol, and organic was 8.06, 1.17, 2.61, and 54.13%, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|