51
|
He Q, Wang S, Feng K, Michaletz ST, Hou W, Zhang W, Li F, Zhang Y, Wang D, Peng X, Yang X, Deng Y. High speciation rate of niche specialists in hot springs. THE ISME JOURNAL 2023:10.1038/s41396-023-01447-4. [PMID: 37286739 DOI: 10.1038/s41396-023-01447-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Ecological and evolutionary processes simultaneously regulate microbial diversity, but the evolutionary processes and their driving forces remain largely unexplored. Here we investigated the ecological and evolutionary characteristics of microbiota in hot springs spanning a broad temperature range (54.8-80 °C) by sequencing the 16S rRNA genes. Our results demonstrated that niche specialists and niche generalists are embedded in a complex interaction of ecological and evolutionary dynamics. On the thermal tolerance niche axis, thermal (T) sensitive (at a specific temperature) versus T-resistant (at least in five temperatures) species were characterized by different niche breadth, community abundance and dispersal potential, consequently differing in potential evolutionary trajectory. The niche-specialized T-sensitive species experienced strong temperature barriers, leading to completely species shift and high fitness but low abundant communities at each temperature ("home niche"), and such trade-offs thus reinforced peak performance, as evidenced by high speciation across temperatures and increasing diversification potential with temperature. In contrast, T-resistant species are advantageous of niche expansion but with poor local performance, as shown by wide niche breadth with high extinction, indicating these niche generalists are "jack-of-all-trades, master-of-none". Despite of such differences, the T-sensitive and T-resistant species are evolutionarily interacted. Specifically, the continuous transition from T-sensitive to T-resistant species insured the exclusion probability of T-resistant species at a relatively constant level across temperatures. The co-evolution and co-adaptation of T-sensitive and T-resistant species were in line with the red queen theory. Collectively, our findings demonstrate that high speciation of niche specialists could alleviate the environmental-filtering-induced negative effect on diversity.
Collapse
Affiliation(s)
- Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shang Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China.
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Wenhui Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Fangru Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Yidi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Danrui Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xingsheng Yang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
52
|
Yang Q, Zhang P, Li X, Yang S, Chao X, Liu H, Ba S. Distribution patterns and community assembly processes of eukaryotic microorganisms along an altitudinal gradient in the middle reaches of the Yarlung Zangbo River. WATER RESEARCH 2023; 239:120047. [PMID: 37167854 DOI: 10.1016/j.watres.2023.120047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Eukaryotic microorganisms play an important role in the biogeochemical cycles of rivers. Dynamic hydrological processes in rivers are thought to influence the assembly processes of eukaryotic microbes, as well as affecting local geomorphology. These processes have not been extensively studied for eukaryotic river microbes in extreme environments on the Tibetan Plateau. This study used 18S rDNA gene amplification sequencing, a neutral community model, and a null model to analyze the spatial and temporal dynamics and assembly processes of eukaryotic microbial communities in the middle reaches of the Yarlung Zangbo River. We conducted analyses across wet and dry seasons, as well as varying altitudinal gradients. Our results showed that the diversity, structure, and taxonomic composition of eukaryotic microbial communities varied more with altitude than season, and the diversity of the communities first increased, then decreased, with increasing elevation. Distance-decay analysis showed that the correlation between eukaryotic microbial communities and environmental distance was stronger than the correlation between the microbial communities and geographical distance. Deterministic processes (homogeneous selection) dominated the construction of eukaryotic microbial communities, and water temperature, pH, and total phosphorus were the primary environmental factors that influenced the construction of eukaryotic microbial communities. These results expand our understanding of the characteristics of eukaryotic microbial communities in rivers on the Tibetan Plateau and provide clues to understanding the mechanisms that maintain eukaryotic microbial diversity in extreme environments.
Collapse
Affiliation(s)
- Qing Yang
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Peng Zhang
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Xiaodong Li
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Shengxian Yang
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Xin Chao
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Huiqiu Liu
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Sang Ba
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China.
| |
Collapse
|
53
|
Zhao Z, Wu H, Jin T, Liu H, Men J, Cai G, Cernava T, Duan G, Jin D. Biodegradable mulch films significantly affected rhizosphere microbial communities and increased peanut yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162034. [PMID: 36754316 DOI: 10.1016/j.scitotenv.2023.162034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable mulch films are widely used to replace conventional plastic films in agricultural fields. However, their ecological effects on different microbial communities that naturally inhabit agricultural fields are scarcely explored. Herein, differences in bacterial communities recovered from biofilms, bulk soil, and rhizosphere soil were comparatively assessed for polyethylene film (PE) and biodegradable mulch film (BDM) application in peanut planted fields. The results showed that the plastic film type significantly influenced the bacterial community in different ecological niches of agricultural fields (P < 0.001). Specifically, BDMs significantly increased the diversity and abundance of bacteria in the rhizosphere soil. The bacterial communities in each ecological niche were distinguishable from each other; bacterial communities in the rhizosphere soil showed the most pronounced response among different treatments. Acidobacteria and Pseudomonas were significantly enriched in the rhizosphere soil when BDMs were used. BDMs also increased the rhizosphere soil bacterial network complexity and stability. The enrichment of beneficial bacteria in the rhizosphere soil under BDMs may also have implications for the observed increase in peanut yield. Deepening analyses indicated that Pseudoxanthomonas and Glutamicibacter are biomarkers in biofilms of PE and BDMs respectively. Our study provides new insights into the consequences of the application of different types of plastic films on microbial communities in different ecological niches of agricultural fields.
Collapse
Affiliation(s)
- Zhirui Zhao
- Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China
| | - Haimiao Wu
- Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tuo Jin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Jianan Men
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangxing Cai
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Guilan Duan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
54
|
Li F, Hou W, Wang S, Zhang Y, He Q, Zhang W, Dong H. Effects of Mineral on Taxonomic and Functional Structures of Microbial Community in Tengchong Hot Springs via in-situ cultivation. ENVIRONMENTAL MICROBIOME 2023; 18:22. [PMID: 36949539 PMCID: PMC10035157 DOI: 10.1186/s40793-023-00481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Diverse mineralogical compositions occur in hot spring sediments, but the impact of minerals on the diversity and structure of microbial communities remains poorly elucidated. In this study, different mineral particles with various chemistries (i.e., hematite, biotite, K-feldspar, quartz, muscovite, aragonite, serpentine, olivine, barite, apatite, and pyrite) were incubated for ten days in two Tengchong hot springs, one alkaline (pH ~ 8.34) with a high temperature (~ 82.8 °C) (Gumingquan, short as GMQ) and one acidic (pH ~ 3.63) with a relatively low temperature (~ 43.3 °C) (Wenguangting, short as WGT), to determine the impacts of minerals on the microbial communities taxonomic and functional diversities. Results showed that the mineral-associated bacterial taxa differed from those of the bulk sediment samples in the two hot springs. The relative abundance of Proteobacteria, Euryarchaeota, and Acidobacteria increased in all minerals, indicating that these microorganisms are apt to colonize on solid surfaces. The α-diversity indices of the microbial communities on the mineral surfaces in the WGT were higher than those from the bulk sediment samples (p < 0.05), which may be caused by the stochastically adhering process on the mineral surface during 10-day incubation, different from the microbial community in sediment which has experienced long-term environmental and ecological screening. Chemoheterotrophy increased with minerals incubation, which was high in most cultured minerals (the relative contents were 5.8 - 21.4%). Most notably, the sulfate respiration bacteria (mainly related to Desulfobulbaceae and Syntrophaceae) associated with aragonite in the acidic hot spring significantly differed from other minerals, possibly due to the pH buffering effect of aragonite providing more favorable conditions for their survival and proliferation. By comparison, aragonite cultured in the alkaline hot spring highly enriched denitrifying bacteria and may have promoted the nitrogen cycle within the system. Collectively, we speculated that diverse microbes stochastically adhered on the surface of minerals in the water flows, and the physicochemical properties of minerals drove the enrichment of certain microbial communities and functional groups during the short-term incubation. Taken together, these findings thereby provide novel insights into mechanisms of community assembly and element cycling in the terrestrial hydrothermal system associated with hot springs.
Collapse
Affiliation(s)
- Fangru Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Weiguo Hou
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Yidi Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Wenhui Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
55
|
Wang X, Yin Y, Yu Z, Shen G, Cheng H, Tao S. Distinct distribution patterns of the abundant and rare bacteria in high plateau hot spring sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160832. [PMID: 36521602 DOI: 10.1016/j.scitotenv.2022.160832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The diversity and distribution patterns of the abundant and rare microbial sub-communities in hot spring ecosystems and their assembly mechanisms are poorly understood. The present study investigated the diversity and distribution patterns of the total, abundant, conditionally rare, and always rare taxa in the low- and moderate-temperature hot spring sediments on the Tibetan Plateau based on high-throughput 16S rRNA gene sequencing, and explored their major environmental drivers. The diversity of these four bacterial taxa showed no significant change between the low-temperature and moderate-temperature hot spring sediments, whereas the bacterial compositions were obviously different. Stochasticity dominated the bacterial sub-community assemblages, while heterogeneous selection also played an important role in shaping the abundant and conditionally rare taxa between the low-temperature and moderate-temperature hot spring sediments. No significant difference in the topological properties of co-occurrence networks was found between the conditionally rare and abundant taxa, and the connections between the paired operational taxonomic units (OTUs) were almost positive. The diversity of the total, abundant, and conditionally rare taxa was governed by the salinity of hot spring sediments, while that of the always rare taxa was determined by the content of S element. In contrast, temperature had significant direct effect on the composition of the total, abundant, and conditionally rare taxa, but relatively weak influence on that of the always rare taxa. Besides, salinity was another major environmental factor driving the composition of the abundant and rare sub-communities in the hot spring sediments. These results reveal the assembly processes and major environmental drivers that shaped different bacterial sub-communities in the hot spring sediments on the Tibetan Plateau, and indicate the importance of conditionally rare taxa in constructing bacterial communities. These findings enhance the current understanding of the ecological mechanisms maintaining the ecosystem stability and services in extreme environment.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
56
|
Pu H, Yuan Y, Qin L, Liu X. pH Drives Differences in Bacterial Community β-Diversity in Hydrologically Connected Lake Sediments. Microorganisms 2023; 11:microorganisms11030676. [PMID: 36985249 PMCID: PMC10056738 DOI: 10.3390/microorganisms11030676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
As microorganisms are very sensitive to changes in the lake environment, a comprehensive and systematic understanding of the structure and diversity of lake sediment microbial communities can provide feedback on sediment status and lake ecosystem protection. Xiao Xingkai Lake (XXL) and Xingkai Lake (XL) are two neighboring lakes hydrologically connected by a gate and dam, with extensive agricultural practices and other human activities existing in the surrounding area. In view of this, we selected XXL and XL as the study area and divided the area into three regions (XXLR, XXLD, and XLD) according to different hydrological conditions. We investigated the physicochemical properties of surface sediments in different regions and the structure and diversity of bacterial communities using high-throughput sequencing. The results showed that various nutrients (nitrogen, phosphorus) and carbon (DOC, LOC, TC) were significantly enriched in the XXLD region. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant bacterial phyla in the sediments, accounting for more than 60% of the entire community in all regions. Non-metric multidimensional scaling analysis and analysis of similarities confirmed that β-diversity varied among different regions. In addition, the assembly of bacterial communities was dominated by a heterogeneous selection in different regions, indicating the important influence of sediment environmental factors on the community. Among these sediment properties, the partial least squares path analysis revealed that pH was the best predictor variable driving differences in bacterial communities in different regions, with higher pH reducing beta diversity among communities. Overall, our study focused on the structure and diversity of bacterial communities in lake sediments of the Xingkai Lake basin and revealed that high pH causes the β-diversity of bacterial communities in the sediment to decrease. This provides a reference for further studies on sediment microorganisms in the Xingkai Lake basin in the future.
Collapse
Affiliation(s)
- Haiguang Pu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuxiang Yuan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Qin
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiaohui Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Correspondence:
| |
Collapse
|
57
|
Zhang P, Xiong J, Qiao N, Luo S, Yang Q, Li X, An R, Jiang C, Miao W, Ba S. High Variation in Protist Diversity and Community Composition in Surface Sediment of Hot Springs in Himalayan Geothermal Belt, China. Microorganisms 2023; 11:microorganisms11030674. [PMID: 36985247 PMCID: PMC10053680 DOI: 10.3390/microorganisms11030674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Hot springs are some of the most special environments on Earth. Many prokaryotic and eukaryotic microbes have been found to live in this environment. The Himalayan geothermal belt (HGB) has numerous hot springs spread across the area. Comprehensive research using molecular techniques to investigate eukaryotic microorganisms is still lacking; investigating the composition and diversity of eukaryotic microorganisms such as protists in the hot spring ecosystems will not only provide critical information on the adaptations of protists to extreme conditions, but could also give valuable contributions to the global knowledge of biogeographic diversity. In this study, we used high-throughput sequencing to illuminate the diversity and composition pattern of protist communities in 41 geothermal springs across the HGB on the Tibetan Plateau. A total of 1238 amplicon sequence variants (ASVs) of protists were identified in the hot springs of the HGB. In general, Cercozoa was the phylum with the highest richness, and Bacillariophyta was the phylum with the highest relative abundance in protists. Based on the occurrence of protist ASVs, most of them are rare. A high variation in protist diversity was found in the hot springs of the HGB. The high variation in protist diversity may be due to the different in environmental conditions of these hot springs. Temperature, salinity, and pH are the most important environmental factors that affect the protist communities in the surface sediments of the hot springs in the HGB. In summary, this study provides the first comprehensive study of the composition and diversity of protists in the hot springs of the HGB and facilitates our understanding of the adaptation of protists in these extreme habitats.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nanqian Qiao
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Shuai Luo
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Yang
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaodong Li
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Ruizhi An
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (W.M.); (S.B.)
| | - Sang Ba
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
- Correspondence: (W.M.); (S.B.)
| |
Collapse
|
58
|
Zhao J, Shakir Y, Deng Y, Zhang Y. Use of modified ichip for the cultivation of thermo-tolerant microorganisms from the hot spring. BMC Microbiol 2023; 23:56. [PMID: 36869305 PMCID: PMC9983152 DOI: 10.1186/s12866-023-02803-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Thermostable microorganisms are extremophiles. They have a special genetic background and metabolic pathway and can produce a variety of enzymes and other active substances with special functions. Most thermo-tolerant microorganisms from environmental samples have resisted cultivation on artificial growth media. Therefore, it is of great significance to isolate more thermo-tolerant microorganisms and study their characteristics to explore the origin of life and exploit more thermo-tolerant enzymes. Tengchong hot spring in Yunnan contains a lot of thermo-tolerant microbial resources because of its perennial high temperature. The ichip method was developed by D. Nichols in 2010 and can be used to isolate so-called "uncultivable" microorganisms from different environments. Here, we describe the first application of modified ichip to isolate thermo-tolerant bacteria from hot springs. RESULTS In this study, 133 strains of bacteria belonging to 19 genera were obtained. 107 strains of bacteria in 17 genera were isolated by modified ichip, and 26 strains of bacteria in 6 genera were isolated by direct plating methods. 25 strains are previously uncultured, 20 of which can only be cultivated after being domesticated by ichip. Two strains of previously unculturable Lysobacter sp., which can withstand 85 °C, were isolated for the first time. Alkalihalobacillus, Lysobacter and Agromyces genera were first found to have 85 °C tolerance. CONCLUSION Our results indicate that the modified ichip approach can be successfully applied in a hot spring environment.
Collapse
Affiliation(s)
- Juntian Zhao
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
59
|
Yan K, Zhou J, Feng C, Wang S, Haegeman B, Zhang W, Chen J, Zhao S, Zhou J, Xu J, Wang H. Abundant fungi dominate the complexity of microbial networks in soil of contaminated site: High-precision community analysis by full-length sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160563. [PMID: 36455747 DOI: 10.1016/j.scitotenv.2022.160563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
During the past decade, the characterization of microbial community in soil of contaminated sites was primarily done by high-throughput short-read amplicon sequencing. However, due to the similarity of 16S rRNA and ITS genes amplicon sequences, the short-read approach often limits the microbial composition analysis at the species level. Here, we simultaneously performed full-length and short-read amplicon sequencing to clarify the community composition and ecological status of different microbial taxa in contaminated soil from a high-resolution perspective. We found that (1) full-length 16S rRNA gene sequencing gave better resolution for bacterial identification at all levels, while there were no significant differences between the two sequencing platforms for fungal identification in some samples. (2) Abundant taxa were vital for microbial co-occurrences network constructed by both full-length and short-read sequencing data, and abundant fungal species such as Mortierella alpine, Fusarium solani, Mrakia frigida, and Chaetomium homopilatum served as the keystone species. (3) Heavy metal correlated with the microbial community significantly, and bacterial community and its abundant taxa were assembled by deterministic process, while the other taxa were dominated by stochastic process. These findings contribute to the understanding of the ecological mechanisms and microbial interactions in site soil ecosystems and demonstrate that full-length sequencing has the potential to provide more details of microbial community.
Collapse
Affiliation(s)
- Kang Yan
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahang Zhou
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suyuan Wang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bart Haegeman
- Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls-sur-Mer, Centre National de Recherche Scientifique, France
| | - Weirong Zhang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Chen
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, Zhejiang Province, China
| | - Shouqing Zhao
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, Zhejiang Province, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
60
|
Yu Q, Han Q, Shi S, Sun X, Wang X, Wang S, Yang J, Su W, Nan Z, Li H. Metagenomics reveals the response of antibiotic resistance genes to elevated temperature in the Yellow River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160324. [PMID: 36410491 DOI: 10.1016/j.scitotenv.2022.160324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Climate warming may aggravate the threat of antibiotic resistance genes (ARGs) to environmental and human health. However, whether temperature can predict ARGs and influence their assembly processes remains unknown. Here, we used metagenomic sequencing to explore how gradually elevated water temperature (23 °C, 26 °C, 29 °C, 32 °C, 35 °C) influences ARG and mobile genetic element (MGE) profiles in the Yellow River. In total, 30 ARG types including 679 subtypes were detected in our water samples. Gradually increased temperature remarkably reduced ARG diversity but increased ARG abundance. Approximately 37 % of ARGs and 42 % of MGEs were predicted by temperature, while most others were not sensitive to temperature. For each 1 °C increase in temperature, the ARG abundance rose by 2133 TPM (Transcripts Per kilobase of exon model per Million mapped reads) abundance, and multidrug, tetracycline and peptide resistance genes had the fastest increases. Proteobacteria and Actinobacteria were the primary ARG hosts, with 558 and 226 ARG subtypes, respectively. Although ARG profiles were mainly governed by stochastic process, elevated temperature increased the deterministic process of ARGs in the Yellow River. The abundance of five high-risk ARGs (tetM, mecA, bacA, vatE and tetW) significantly increased with elevated water temperature, and these ARGs co-occurred with several opportunistic pathogens (Delftia, Legionella and Pseudomonas), implying that antibiotic resistance risk may increase under climate warming. Our study explored the possibility of predicting resistomes and their health risks through temperature, providing a novel approach to predict and control ARGs in water environments under climate warming.
Collapse
Affiliation(s)
- Qiaoling Yu
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microiome, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shunqin Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaofang Sun
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhibiao Nan
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microiome, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microiome, Lanzhou University, Lanzhou 730000, China; School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
61
|
Lv B, Zhu G, Tian W, Guo C, Lu X, Han Y, An T, Cui Y, Jiang T. The prevalence of potential pathogens in ballast water and sediments of oceangoing vessels and implications for management. ENVIRONMENTAL RESEARCH 2023; 218:114990. [PMID: 36463990 DOI: 10.1016/j.envres.2022.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Ballast water and sediments can serve as prominent vectors for the widespread dispersal of pathogens between geographically distant areas. However, information regarding the diversity and distribution of the bacterial pathogens in ballast water and sediments is highly limited. In this study, using high-throughput sequencing and quantitative PCR, we investigated the composition and abundance of potential pathogens, and their associations with indicator microorganisms. We accordingly detected 48 potential bacterial pathogens in the assessed ballast water and sediments, among which there were significant differences in the compositions and abundances of pathogenic bacterial communities characterizing ballast water and sediments. Rhodococcus erythropolis, Bacteroides vulgatus, and Vibrio campbellii were identified as predominant pathogens in ballast water, whereas Pseudomonas stutzeri, Mycobacterium paragordonae, and Bacillus anthracis predominated in ballast sediments. Bacteroidetes, Vibrio alginolyticus, Vibrio parahaemolyticus, and Escherichia coli were generally detected with median values of 8.54 × 103-1.22 × 107 gene copies (GC)/100 mL and 1.16 × 107-3.97 × 109 GC/100 g in ballast water and sediments, respectively. Notably, the concentrations of Shigella sp., Staphylococcus aureus, and V. alginolyticus were significantly higher in ballast sediments than in the water. In addition, our findings tend to confirm that the indicator species specified by the International Maritime Organization (IMO) might underestimate the pathogen risk in the ballast water and sediments, as these bacteria were unable to predict some potential pathogens assessed in this study. In summary, this study provides a comprehensive insight into the spectrum of the potential pathogens that transferred by ship ballast tanks and emphasizes the need for the implementation of IMO convention on ballast sediment management.
Collapse
Affiliation(s)
- Baoyi Lv
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China.
| | - Guorong Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Wen Tian
- Jiangyin Customs, Jiangyin, 214400, China
| | - Chong Guo
- Maritime Safety Bureau of Yangshan Port, Shanghai, 201306, China
| | - Xiaolan Lu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Yangchun Han
- Maritime Safety Bureau of Yangshan Port, Shanghai, 201306, China
| | - Tingxuan An
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Yuxue Cui
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ting Jiang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| |
Collapse
|
62
|
Yang L, Fan W, Xu Y. Chameleon-like microbes promote microecological differentiation of Daqu. Food Microbiol 2023; 109:104144. [DOI: 10.1016/j.fm.2022.104144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
|
63
|
Zhang HS, Feng QD, Zhang DY, Zhu GL, Yang L. Bacterial community structure in geothermal springs on the northern edge of Qinghai-Tibet plateau. Front Microbiol 2023; 13:994179. [PMID: 37180363 PMCID: PMC10172933 DOI: 10.3389/fmicb.2022.994179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/13/2022] [Indexed: 03/19/2023] Open
Abstract
Introduction:In order to reveal the composition of the subsurface hydrothermal bacterial community in the zones of magmatic tectonics and their response to heat storage environments.Methods:In this study, we performed hydrochemical analysis and regional sequencing of the 16S rRNA microbial V4-V5 region in 7 Pleistocene and Lower Neogene hot water samples from the Gonghe basin.Results:Two geothermal hot spring reservoirs in the study area were found to be alkaline reducing environments with a mean temperature of 24.83°C and 69.28°C, respectively, and the major type of hydrochemistry was SO4-Cl·Na. The composition and structure of microorganisms in both types of geologic thermal storage were primarily controlled by temperature, reducing environment intensity, and hydrogeochemical processes. Only 195 ASVs were shared across different temperature environments, and the dominant bacterial genera in recent samples from temperate hot springs were Thermus and Hydrogenobacter, with both genera being typical of thermophiles. The correlation analysis showed that the overall level of relative abundance of the subsurface hot spring relied on a high temperature and a slightly alkaline reducing environment. Nearly all of the top 4 species in the abundance level (53.99% of total abundance) were positively correlated with temperature and pH, whereas they were negatively correlated with ORP (oxidation–reduction potential), nitrate, and bromine ions.Discussion:In general, the composition of bacteria in the groundwater in the study area was sensitive to the response of the thermal storage environment and also showed a relationship with geochemical processes, such as gypsum dissolution, mineral oxidation, etc.
Collapse
|
64
|
Tagele SB, Kim RH, Jeong M, Lim K, Jung DR, Lee D, Kim W, Shin JH. Soil amendment with cow dung modifies the soil nutrition and microbiota to reduce the ginseng replanting problem. FRONTIERS IN PLANT SCIENCE 2023; 14:1072216. [PMID: 36760641 PMCID: PMC9902886 DOI: 10.3389/fpls.2023.1072216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Ginseng is a profitable crop worldwide; however, the ginseng replanting problem (GRP) is a major threat to its production. Soil amendment is a non-chemical method that is gaining popularity for alleviating continuous cropping obstacles, such as GRP. However, the impact of soil amendment with either cow dung or canola on GRP reduction and the associated soil microbiota remains unclear. In the present study, we evaluated the effect of soil amendment with cow dung, canola seed powder, and without amendment (control), on the survival of ginseng seedling transplants, the soil bacterial and fungal communities, and their associated metabolic functions. The results showed that cow dung increased ginseng seedling survival rate by 100 percent and had a remarkable positive effect on ginseng plant growth compared to control, whereas canola did not. Cow dung improved soil nutritional status in terms of pH, electrical conductivity, NO 3 - , total carbon, total phosphorus, and available phosphorus. The amplicon sequencing results using Illumina MiSeq showed that canola had the strongest negative effect in reducing soil bacterial and fungal diversity. On the other hand, cow dung stimulated beneficial soil microbes, including Bacillus, Rhodanobacter, Streptomyces, and Chaetomium, while suppressing Acidobacteriota. Community-level physiological profiling analysis using Biolog Ecoplates containing 31 different carbon sources showed that cow dung soil had a different metabolic activity with higher utilization rates of carbohydrates and polymer carbon sources, mainly Tween 40 and beta-methyl-d-glucoside. These carbon sources were most highly associated with Bacillota. Furthermore, predicted ecological function analyses of bacterial and fungal communities showed that cow dung had a higher predicted function of fermentation and fewer functions related to plant pathogens and fungal parasites, signifying its potential to enhance soil suppressiveness. Co-occurrence network analysis based on random matrix theory (RMT) revealed that cow dung transformed the soil microbial network into a highly connected and complex network. This study is the first to report the alleviation of GRP using cow dung as a soil amendment, and the study contributes significantly to our understanding of how the soil microbiota and metabolic alterations via cow dung can aid in GRP alleviation.
Collapse
Affiliation(s)
- Setu Bazie Tagele
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- NGS core facility, Kyungpook National University, Daegu, Republic of Korea
| | - Ryeong-Hui Kim
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyeongmo Lim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dokyung Lee
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Wanro Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- NGS core facility, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
65
|
Li S, Li G, Huang X, Chen Y, Lv C, Bai L, Zhang K, He H, Dai J. Cultivar-specific response of rhizosphere bacterial community to uptake of cadmium and mineral elements in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114403. [PMID: 36508785 DOI: 10.1016/j.ecoenv.2022.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Toxic metal-contaminated farmland from Cadmium (Cd) can enhance the accumulation of Cd and impair the absorption of mineral elements in brown rice. Although several studies have been conducted on Cd exposure on rice, little has been reported on the relationship between Cd and mineral elements in brown rice and the regulatory mechanism of rhizosphere microorganisms during element uptake. Thus, a field study was undertaken to screen japonica rice cultivars with low Cd and high mineral elements levels, analyze the quantitative relationship between Cd and seven mineral elements, and investigate the cultivar-specific response of rice rhizosphere bacterial communities to differences in Cd and mineral uptake in japonica rice. Results showed that Huaidao-9 and Xudao-7 had low Cd absorption and high amounts of mineral nutrient elements (Fe, Zn, Mg, and Ca, LCHM group), whereas Zhongdao-1 and Xinkedao-31 showed opposite accumulation characteristics (HCLM group). Stepwise regression analysis showed that zinc, iron, and potassium are the key minerals that affect Cd accumulation in japonica rice and zinc was the most important factor, accounting for 68.99 %. The accumulation of Cd and mineral elements is potentially associated with rhizosphere soil bacteria. Taxa enriched in the LCHM rhizosphere (phyla Acidobacteriota and MBNT15) indicated the high nutrient characteristics of the soil and reduced activity of Cd in soil. The HCLM rhizosphere was highly colonized by metal-activating bacteria (Actinobacteria), lignin-degrading bacteria (Actinobacteria and Chlorofexi), and bacteria scavenging nutrients and trace elements (Anaerolinea and Ketobacter). Moreover, the differences in the uptake of Cd and mineral elements affected predicted functions of microbial communities, including sulfur oxidation and sulfur derivative formation, human or plant pathogen, and functions related to the iron oxidation and nitrate reduction. The results indicate a potential association of Cd and mineral elements uptake and accumulation with rhizosphere bacteria in rice, thus providing theoretical basis and a new perspective on the maintenance of rice security and high quality simultaneously.
Collapse
Affiliation(s)
- Shuangshuang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Guangxian Li
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianmin Huang
- Shandong General Station of Agricultural Environmental Protection and Rural Energy, Jinan 250100, China
| | - Yihui Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Cheng Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Liyong Bai
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ke Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huan He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
66
|
Gao W, Liu P, Ye Z, Zhou J, Wang X, Huang X, Deng X, Ma L. Divergent prokaryotic microbial assembly, co-existence patterns and functions in surrounding river sediments of a Cu-polymetallic deposit in Tibet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158192. [PMID: 35988602 DOI: 10.1016/j.scitotenv.2022.158192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The exploitation of polymetallic deposits produces large amounts of mine drainage, which poses great challenges to the surrounding aquatic ecosystem. However, the prokaryotic microbial community assembly and co-existence patterns in the polluted area are poorly understood, especially in high-altitude localities. Herein, we investigated the prokaryotic microbial assembly, co-existence patterns and their potential functional responses in surrounding river sediments of a Cu-polymetallic deposit in Tibet. The sediments from mine drainage and surrounding tributaries exhibited distinct geochemical gradients, especially the changes in Cu content. The microbial community structure changed significantly, accompanied by decreased richness and diversity with increased Cu content. Interestingly, the relative abundances of some potential functional bacteria (e.g., Planctomycetota) actually increased as the Cu levels raised. In low contaminated area, ecological drift was the most important assembly process, whereas deterministic processes gained importance with pollution levels. Meanwhile, negative interactions in co-occurrence networks were more frequent with higher modularity and reduced keystone taxa in high contaminated area. Notably, the functions related to ABC transporters and quorum sensing (QS) were more abundant with high Cu content, which helped bacteria work together to cope with the stressful environment. Taken together, the physicochemical gradients dominated by Cu content drove the distribution, assembly and co-existence patterns of microbial communities in surrounding river sediments of a Cu-polymetallic deposit. These findings provide new insights into the maintenance mechanisms of prokaryotic microbial communities in response to heavy metal stress at high altitudes.
Collapse
Affiliation(s)
- Weikang Gao
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zhihang Ye
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Jianwei Zhou
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xingjie Wang
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xinping Huang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xiaoyu Deng
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Liyuan Ma
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China.
| |
Collapse
|
67
|
Wu Z, Liu G, Ji Y, Li P, Yu X, Qiao W, Wang B, Shi K, Liu W, Liang B, Wang D, Yanuka-Golub K, Freilich S, Jiang J. Electron acceptors determine the BTEX degradation capacity of anaerobic microbiota via regulating the microbial community. ENVIRONMENTAL RESEARCH 2022; 215:114420. [PMID: 36167116 DOI: 10.1016/j.envres.2022.114420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil. It was found that the BTEX degradation capacities of the anaerobic microbiota gradually increased along with the increasing redox potentials of the exogenous electron acceptors supplemented (WE: Without exogenous electron acceptors < SS: Sulfate supplement < FS: Ferric iron supplement < NS: Nitrate supplement), while the complexity of the co-occurring networks (e.g., avgK and links) of the microbiota gradually decreased, showing that microbiota supplemented with higher redox potential electron acceptors were less dependent on the formation of complex microbial interactions to perform BTEX degradation. Microbiota NS showed the highest degrading capacity and the broadest substrate-spectrum for BTEX, and it could metabolize BTEX through multiple modules which not only contained fewer species but also different key microbial taxa (eg. Petrimonas, Achromobacter and Comamonas). Microbiota WE and FS, with the highest methanogenic capacities, shared common core species such as Sedimentibacter, Acetobacterium, Methanobacterium and Smithella/Syntrophus, which cooperated with Geobacter (microbiota WE) or Desulfoprunum (microbiota FS) to perform BTEX degradation and methane production. This study demonstrates that electron acceptors may alter microbial function by reshaping microbial community structure and regulating microbial interactions and provides guidelines for electron acceptor selection for bioremediation of aromatic pollutant-contaminated anaerobic sites.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Guiping Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Xin Yu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Wenjing Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wenzhong Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Dong Wang
- Jiangsu Academy of Environmental Science and Technology Co., Ltd, Nanjing, 210095, China
| | - Keren Yanuka-Golub
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
68
|
Yin Z, Ye L, Jing C. Genome-Resolved Metagenomics and Metatranscriptomics Reveal that Aquificae Dominates Arsenate Reduction in Tengchong Geothermal Springs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16473-16482. [PMID: 36227700 DOI: 10.1021/acs.est.2c05764] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elevated arsenic (As) is common in geothermal springs, shaping the evolution of As metabolism genes and As transforming microbes. Herein, genome-level microbial metabolisms and As cycling strategies in Tengchong geothermal springs were demonstrated for the first time based on metagenomic and metatranscriptomic analyses. Sulfur cycling was dominated by Aquificae oxidizing thiosulfate via the sox system, fueling the respiration and carbon dioxide fixation processes. Arsenate reduction via arsC [488.63 ± 271.60 transcripts per million (TPM)] and arsenite efflux via arsB (442.98 ± 284.81 TPM) were the primary detoxification pathway, with most genes and transcripts contributed by the members in phylum Aquificae. A complete arsenotrophic cycle was also transcriptionally active as evidenced by the detection of aioA transcripts and arrA transcript reads mapped onto metagenome-assembled genomes (MAGs) affiliated with Crenarchaeota. MAGs affiliated with Aquificae had great potential of reducing arsenate via arsC and fixing nitrogen and carbon dioxide via nifDHK and reductive tricarboxylic acid (rTCA) cycle, respectively. Aquificae's arsenate reduction potential via arsC was observed for the first time at the transcriptional level. This study expands the diversity of the arsC-based arsenate-reducing community and highlights the importance of Aquificae to As biogeochemistry.
Collapse
Affiliation(s)
- Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ye
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
69
|
Zhang S, Hu W, Xu Y, Zhong H, Kong Z, Wu L. Linking bacterial and fungal assemblages to soil nutrient cycling within different aggregate sizes in agroecosystem. Front Microbiol 2022; 13:1038536. [PMID: 36452934 PMCID: PMC9701741 DOI: 10.3389/fmicb.2022.1038536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 09/30/2024] Open
Abstract
Soil aggregates provide spatially heterogeneous microhabitats that support the coexistence of soil microbes. However, there remains a lack of detailed assessment of the mechanism underlying aggregate-microbiome formation and impact on soil function. Here, the microbial assemblages within four different aggregate sizes and their correlation with microbial activities related to nutrient cycling were studied in rice fields in Southern China. The results show that deterministic and stochastic processes govern bacterial and fungal assemblages in agricultural soil, respectively. The contribution of determinism to bacterial assemblage improved as aggregate size decreased. In contrast, the importance of stochasticity to fungal assemblage was higher in macroaggregates (>0.25 mm in diameter) than in microaggregates (<0.25 mm). The association between microbial assemblages and nutrient cycling was aggregate-specific. Compared with microaggregates, the impacts of bacterial and fungal assemblages on carbon, nitrogen, and phosphorus cycling within macroaggregates were more easily regulated by soil properties (i.e., soil organic carbon and total phosphorus). Additionally, soil nutrient cycling was positively correlated with deterministic bacterial assemblage but negatively correlated with stochastic fungal assemblage in microaggregates, implying that bacterial community may accelerate soil functions when deterministic selection increases. Overall, our study illustrates the ecological mechanisms underlying the association between microbial assemblages and soil functions in aggregates and highlights that the assembly of aggregate microbes should be explicitly considered for revealing the ecological interactions between agricultural soil and microbial communities.
Collapse
Affiliation(s)
| | | | | | | | - Zhaoyu Kong
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Lan Wu
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| |
Collapse
|
70
|
Liu B, Yao J, Ma B, Li S, Duran R. Disentangling biogeographic and underlying assembly patterns of fungal communities in metalliferous mining and smelting soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157151. [PMID: 35798111 DOI: 10.1016/j.scitotenv.2022.157151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Elucidating community assembly and their relevance to environmental variables are fundamental for understanding microbial diversity and functioning in terrestrial ecosystems, yet the geographical diversity and assembly patterns of the fungal community in metalliferous ecospheres associated with mining and smelting activities have received penurious understandings. Here, the fungal communities collected from three groups of soils around the mining and smelting sites were profiled by Internal Transcribed Spacer (ITS) sequencing, in order to understand the geographical distributions of fungal community diversities, structures, compositions, assembly processes and the occurrence patterns. The results suggested obvious biogeographic distribution patterns of fungal compositions among the three groups of soils. Among them, 15 fungal phyla including Ascomycota, Basidiomycota and Mortierellomycota were recognized across the samples. 12 abundant classes showing significantly different in relative abundances among the three groups of soils. Total metal(loid)s and level significantly decreased the fungal abundances and diversities. The community similarity demonstrated distance-decay pattern among the three sites. Metal(loid)s explained relatively higher fungal community variations (4.16 %) relative to other factors (1.89 %) and geography (1.21 %), though 83.32 % of the variations could not be explained. Stochastic dispersal limitation and undominated fraction were dominated relative to deterministic heterogeneous selection in total and individual site, respectively. These results highlighted the stochastic processes in governing the biogeography of fungal communities in mining and smelting ecospheres.
Collapse
Affiliation(s)
- Bang Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China.
| | - Bo Ma
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China; Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
71
|
Shang Y, Wu X, Wang X, Dou H, Wei Q, Ma S, Sun G, Wang L, Sha W, Zhang H. Environmental factors and stochasticity affect the fungal community structures in the water and sediments of Hulun Lake, China. Ecol Evol 2022; 12:e9510. [PMID: 36415879 PMCID: PMC9674472 DOI: 10.1002/ece3.9510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 08/26/2023] Open
Abstract
Aquatic fungi form both morphologically and ecologically diverse communities. However, lake ecosystems are frequently overlooked as fungal habitats, despite the potentially important role of fungi in matter cycling and energy flow. Hulun Lake is a typical example of a seasonal glacial lake; however, previous studies have only focused on bacteria in this ecosystem. Therefore, in the current study, internal transcribed spacer ribosomal RNA (ITS rRNA) gene high-throughput sequencing was used to investigate the fungal communities in paired water and sediment samples from the Hulun Lake Basin in China. A significant difference was found between the fungal communities of the two sample types. Across all samples, we identified nine phyla, 30 classes, 78 orders, 177 families, and 307 genera. The dominant phyla in the lake were Ascomycota, Basidiomycota and Chytridiomycota. Our results show that both water and sediments have very high connectivity, are dominated by positive interactions, and have similar interaction patterns. The fungal community structures were found to be significantly affected by environmental factors (temperature, chemical oxygen demand, electrical conductivity, total phosphorus, and pH). In addition, the dispersal limitations of the fungi affected the structure of the fungal communities, and it was revealed that stochasticity is more important than deterministic mechanisms in influencing the structure and function of fungal communities. This study provides unique theoretical support for the study of seasonally frozen lake fungal communities and a scientific basis for the future management and protection of Hulun Lake.
Collapse
Affiliation(s)
| | - Xiaoyang Wu
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Xibao Wang
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid AreasHulunbuirChina
| | - Qinguo Wei
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Shengchao Ma
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Guolei Sun
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Lidong Wang
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Weilai Sha
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Honghai Zhang
- College of Life SciencesQufu Normal UniversityQufuChina
| |
Collapse
|
72
|
Liu J, Wang X, Liu J, Liu X, Zhang XH, Liu J. Comparison of assembly process and co-occurrence pattern between planktonic and benthic microbial communities in the Bohai Sea. Front Microbiol 2022; 13:1003623. [PMID: 36386657 PMCID: PMC9641972 DOI: 10.3389/fmicb.2022.1003623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/05/2022] [Indexed: 10/10/2023] Open
Abstract
Unraveling the mechanisms structuring microbial community is a central goal in microbial ecology, but a detailed understanding of how community assembly processes relate to living habitats is still lacking. Here, via 16S rRNA gene amplicon sequencing, we investigated the assembly process of microbial communities in different habitats [water verse sediment, free-living (FL) verse particle-associated (PA)] and their impacts on the inter-taxa association patterns in the coastal Bohai Sea, China. The results showed clear differences in the composition and diversity of microbial communities among habitats, with greater dissimilarities between water column and sediment than between FL and PA communities. The microbial community assembly was dominated by dispersal limitation, ecological drift, and homogeneous selection, but their relative importance varied in different habitats. The planktonic communities were mainly shaped by dispersal limitation and ecological drift, whereas homogeneous selection played a more important role in structuring the benthic communities. Furthermore, the assembly mechanisms differed between FL and PA communities, especially in the bottom water with a greater effect of ecological drift and dispersal limitation on the FL and PA fractions, respectively. Linking assembly process to co-occurrence pattern showed that the relative contribution of deterministic processes (mainly homogeneous selection) increased under closer co-occurrence relationships. By contrast, stochastic processes exerted a higher effect when there were less inter-taxa connections. Overall, our findings demonstrate contrasting ecological processes underpinning microbial community distribution in different habitats including different lifestyles, which indicate complex microbial dynamic patterns in coastal systems with high anthropogenic perturbations.
Collapse
Affiliation(s)
- Jinmei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jiao Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoyue Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
73
|
Yang X, Zhang Z, Li S, He Q, Peng X, Du X, Feng K, Wang S, Deng Y. Fungal dynamics and potential functions during anaerobic digestion of food waste. ENVIRONMENTAL RESEARCH 2022; 212:113298. [PMID: 35430281 DOI: 10.1016/j.envres.2022.113298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Fungi could play an important role during anaerobic digestion (AD), but have received less attention than prokaryotes. Here, AD bioreactors of food waste were performed to explore fungal succession and their potential ecological and engineering value. We found that similar patterns in fungal biomass and diversity, decreasing from the initial time point (Day 0) to the lowest value within 3-6 days and then started to rise and stabilized between 9 and 42 days. Throughout the entire AD process, variations in fungal community composition were observed and dominant fungal taxa have the potential ability to degrade complex organic matter and alleviate fatty acid and ammonia accumulation. Furthermore, we found that deterministic processes gradually dominated fungal assembly succession (up to 84.85% at the final stage), suggesting changing environmental status responsible for fungal community dynamics and specifically, fungal community structure, diversity and biomass were regulated by different environmental variables or the same variables with opposite effects. AD bioreactors could directionally select specific fungal taxa over time, but some highly abundant fungi could not be mapped to any fungal species with defined function in the reference database, so function prediction relying on PICRUSt2 may underestimate fungal function in AD systems. Collectively, our study confirmed fungi have important ecological and engineering values in AD systems.
Collapse
Affiliation(s)
- Xingsheng Yang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaojing Zhang
- Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Shuzhen Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Peng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiongfeng Du
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China.
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
74
|
Geng S, Xu G, You Y, Xia M, Zhu Y, Ding A, Fan F, Dou J. Occurrence of polycyclic aromatic compounds and interdomain microbial communities in oilfield soils. ENVIRONMENTAL RESEARCH 2022; 212:113191. [PMID: 35351456 DOI: 10.1016/j.envres.2022.113191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Soil polycyclic aromatic compound (PAC) pollution as a result of petroleum exploitation has caused serious environmental problems. The unclear assembly and functional patterns of microorganisms in oilfield soils limits the understanding of microbial mechanisms for PAC elimination and health risk reduction. This study investigated the polycyclic aromatic hydrocarbons (PAHs) and substituted PAHs (SPAHs) occurrence, and their impact on the bacteria-archaea-fungi community diversity, co-occurrence network and functionality in the soil of an abandoned oilfield. The results showed that the PAC content in the oilfield ranged from 3429.03 μg kg-1 to 6070.89 μg kg-1, and risk assessment results suggested a potential cancer risk to children and adults. High molecular weight PAHs (98.9%) and SPAHs (1.0%) contributed to 99.9% of the toxic equivalent concentration. For microbial analysis, the abundantly detected degraders and unigenes indicated the microbial potential to mitigate pollutants and reduce health risks. Microbial abundance and diversity were found to be negatively correlated with health risk. The co-occurrence network analysis revealed nonrandom assembly patterns of the interdomain microbial communities, and species in the network exhibited strong positive connections (59%). The network demonstrated strong ecological linkages and was divided into five smaller coherent modules, in which the functional microbes were mainly involved in organic substance and mineral component degradation, biological electron transfer and nutrient cycle processes. The keystone species for maintaining microbial ecological functions included Marinobacter of bacteria and Neocosmospora of fungi. Additionally, benzo [g,h,i]pyrene, dibenz [a,h]anthracene, indeno [1,2,3-cd]perylene and total phosphorus were the key environmental factors driving the assembly and functional patterns of microbial communities under pollution stress. This work improves the knowledge of the functional pattern and environmental adaptation mechanisms of interdomain microbes, and provides valuable guidance for the further bioremediation of PAC-contaminated soils in oilfields.
Collapse
Affiliation(s)
- Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Guangming Xu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yue You
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Meng Xia
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yi Zhu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
75
|
Geng S, Xu G, Cao W, You Y, Zhu Y, Ding A, Fan F, Dou J. Occurrence of polycyclic aromatic compounds and potentially toxic elements contamination and corresponding interdomain microbial community assembly in soil of an abandoned gas station. ENVIRONMENTAL RESEARCH 2022; 212:113618. [PMID: 35671800 DOI: 10.1016/j.envres.2022.113618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/07/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Bacteria, archaea and fungi usually coexist in various soil habitats and play important roles in biogeochemical cycle and remediation of contamination. Despite their significance, their combined bioassembly pattern, ecological interactions and driving factors in contaminated soils still remain obscure. To fill the gap, a systemic investigation on the characteristics of microbial community including bacteria, archaea and fungi, assembly patterns and environmental driving factors was conducted in an abandoned gas station soils which were contaminated by polycyclic aromatic compounds and potentially toxic elements for decades. The results showed that the soils were contaminated excessively by benzo[a]pyrene (0.46-2.00 mg/kg) and Dibenz[a,h]anthracene (0.37-1.30 mg/kg). Multitudinous contaminant-degrading/resistant microorganisms and unigenes were detected, indicating potential of the soils to mitigate the pollution. Compared with fungi and archaea, the bacteria had higher community diversity and were more responsive to seasonal shifts. Functional genes (nidB, nahAb, nahAa, adhP, adh, adhC, etc.) involved in biodegradation were highly enriched in summer (1.96% vs 1.80%). The co-occurrence network analysis showed summer communities exhibit a more robust network structure and positive interactions than winter communities. The fungi Neocucurbitaria, Penicillium, Fusarium, Chrysosporium, Knufia, Filobasidium, Wallemia and Rhodotorula were identified as the keystone taxa, indicating that fungi also had important positions in the interdomain molecular ecological networks of both seasons. The network topological properties and |βNTI| (66.7%-93.3% greater than 2) results indicated the deterministic assembly processes of the microbial communities in the contaminated soil. Acenaphthylene, benzo[b]fluoranthene, indeno[1,2,3-cd]perylene, benzo[g,h,i]pyrene and 9-fluorenone were the key environmental factors driving the deterministic assembly processes of the interdomain microbial community in the contaminated soil. These findings extended our knowledge of interdomain microbial community assembly mechanisms and ecological patterns in natural attenuation and provide valuable guidance in associated bioremediation strategies.
Collapse
Affiliation(s)
- Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Guangming Xu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Wei Cao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, PR China
| | - Yue You
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yi Zhu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
76
|
Chen H, Chen Z, Chu X, Deng Y, Qing S, Sun C, Wang Q, Zhou H, Cheng H, Zhan W, Wang Y. Temperature mediated the balance between stochastic and deterministic processes and reoccurrence of microbial community during treating aniline wastewater. WATER RESEARCH 2022; 221:118741. [PMID: 35752094 DOI: 10.1016/j.watres.2022.118741] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Seasonal temperature changes significantly affect microbial community diversity, composition, and performance in wastewater treatment plants. However, the community assembly mechanisms under seasonal temperature variations remain unclear. Here, we carried out temperature cycling experiments (30 °C, 35 °C, 37 °C, 40 °C, 42 °C, 45 °C, 40 °C, and 30 °C) to investigate how temperature impacts microbial performance and co-occurrence network and how assembly processes determine the structure and function of microbial communities during treating aniline wastewater. During the 195-day operation, the system achieved an efficient and stable aniline removal of 99%. Interestingly, α-diversity and network complexity were negatively correlated with temperature but could be recovered when the temperature was returned to 30 °C. The results showed that functional redundancy was probably responsible for the excellent microbial performance during the whole process. Null model analyses presented that deterministic process dominated the community when the temperature was 30 °C, and stochasticity dominated the assembly process when the temperature was over 30 °C. Overall, the balance between stochastic and deterministic processes in the treatment of aniline wastewater mediated the reoccurrence of microbial community and co-occurrence network at different temperatures. This study provides new insights into microbial community reoccurrence under seasonal temperature changes and a theoretical basis for regulating microbial communities in wastewater treatment plants.
Collapse
Affiliation(s)
- Hui Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueyan Chu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Shengqiang Qing
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Chongran Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qi Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
77
|
Zhang H, Yan Y, Lin T, Xie W, Hu J, Hou F, Han Q, Zhu X, Zhang D. Disentangling the Mechanisms Shaping the Prokaryotic Communities in a Eutrophic Bay. Microbiol Spectr 2022; 10:e0148122. [PMID: 35638815 PMCID: PMC9241920 DOI: 10.1128/spectrum.01481-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/24/2022] Open
Abstract
Eutrophication occurring in coastal bays is prominent in impacting local ecosystem structure and functioning. To understand how coastal bay ecosystem function responds to eutrophication, comprehending the ecological processes associated with microbial community assembly is critical. However, quantifying the contribution of ecological processes to the assembly of prokaryotic communities is still limited in eutrophic waters. Moreover, the influence of these ecological processes on microbial interactions is poorly understood. Here, we examined the assembly processes and co-occurrence patterns of prokaryotic communities in a eutrophic bay using 156 surface seawater samples collected over 12 months. The variation of prokaryotic community compositions (PCCs) could be mainly explained by environmental factors, of which temperature was the most important. Under high environmental heterogeneity conditions in low-temperature seasons, heterogeneous selection was the major assembly process, resulting in high β-diversity and more tightly connected co-occurrence networks. When environmental heterogeneity decreased in high-temperature seasons, drift took over, leading to decline in β-diversity and network associations. Microeukaryotes were found to be important biological factors affecting PCCs. Our results first disentangled the contribution of drift and microbial interactions to the large unexplained variation of prokaryotic communities in eutrophic waters. Furthermore, a new conceptual model linking microbial interactions to ecological processes was proposed under different environmental heterogeneity. Overall, our study sheds new light on the relationship between assembly processes and co-occurrence of prokaryotic communities in eutrophic waters. IMPORTANCE A growing number of studies have examined roles of microbial community assembly in modulating community composition. However, the relationships between community assembly and microbial interactions are not fully understood and rarely tested, especially in eutrophic waters. In this study, we built a conceptual model that links seasonal microbial interactions to ecological processes, which has not been reported before. The model showed that heterogeneous selection plays an important role in driving community assembly during low-temperature seasons, resulting in higher β-diversity and more tightly connected networks. In contrast, drift became a dominant force during high-temperature seasons, leading to declines in the β-diversity and network associations. This model could function as a new framework to predict how prokaryotic communities respond to intensified eutrophication induced by climate change in coastal environment.
Collapse
Affiliation(s)
- Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Yi Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Tenghui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Weijuan Xie
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Jian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Fanrong Hou
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Qingxi Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Xiangyu Zhu
- Environmental Monitoring Center of Ningbo, Ningbo, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| |
Collapse
|
78
|
Wang Y, Li X, Chi Y, Song W, Yan Q, Huang J. Changes of the Freshwater Microbial Community Structure and Assembly Processes during Different Sample Storage Conditions. Microorganisms 2022; 10:1176. [PMID: 35744694 PMCID: PMC9229623 DOI: 10.3390/microorganisms10061176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
A long-standing dilemma for microbial analyses is how to handle and store samples, as it is widely assumed that the microbial diversity and community patterns would be affected by sample storage conditions. However, it is quite challenging to maintain consistency in field sampling, especially for water sample collection and storage. To obtain a comprehensive understanding of how sample storage conditions impact microbial community analyses and the magnitude of the potential storage effects, freshwater samples were collected and stored in bottles with lid closed and without lid at room temperature for up to 6 days. We revealed the dynamics of prokaryotic and eukaryotic microbial communities under different storage conditions over time. The eukaryotic microbial communities changed at a faster rate than the prokaryotic microbial communities during storage. The alpha diversity of the eukaryotic microbial communities was not substantially influenced by container status or storage time for up to 12 h, but the beta diversity differed significantly between the control and all treatment samples. By contrast, no significant changes of either the alpha or beta diversity of the prokaryotic microbial communities were observed within 12 h of room-temperature storage, regardless of the container status. The potential interactions between microbial taxa were more complex when samples were stored in sealed bottles, and the deterministic processes played an increasingly important role in shaping the freshwater microbial communities with storage time. Our results suggest that water samples collected and stored without refrigeration for no more than 12 h may still be useful for downstream analyses of prokaryotic microbial communities. If the eukaryotic microbial communities are desired, storage of water samples should be limited to 3 h at room temperature.
Collapse
Affiliation(s)
- Yunfeng Wang
- Institute of Evolution & Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao 266003, China; (Y.W.); (Y.C.); (W.S.)
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xinghao Li
- Key Laboratory of Regional Development and Environmental Response, Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan 430062, China;
| | - Yong Chi
- Institute of Evolution & Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao 266003, China; (Y.W.); (Y.C.); (W.S.)
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao 266003, China; (Y.W.); (Y.C.); (W.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China;
| | - Jie Huang
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
79
|
Wang D, Wang S, Du X, He Q, Liu Y, Wang Z, Feng K, Li Y, Deng Y. ddPCR surpasses classical qPCR technology in quantitating bacteria and fungi in the environment. Mol Ecol Resour 2022; 22:2587-2598. [PMID: 35587727 DOI: 10.1111/1755-0998.13644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/24/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
Quantitative real-time PCR (qPCR) has been widely used in quantifying bacterial and fungal populations in various ecosystems, as well as the fungi to bacteria ratio (F:B ratio). Recently, researchers have begun to apply droplet digital PCR (ddPCR) to this area, however, no study has systematically compared qPCR and ddPCR for quantitating both bacteria and fungi in environmental samples at the same time. Here, we designed probe-primer pair combinations targeting the 16S rRNA gene and Internal Transcribed Spacer (ITS) for the detection of bacteria and fungi respectively, and tested both SYBR Green and TaqMan approaches in qPCR and ddPCR methods for mock communities and in real environmental samples. In mock communities, the quantification results of ddPCR were significantly closer to expected values (P < 0.05), and had smaller coefficients of variations (P < 0.05) than qPCR, suggesting ddPCR was more accurate and repeatable. In environmental samples, ddPCR consistently quantified ITS and 16S rRNA gene concentrations in all four habitats without abnormal overestimation or underestimation, and the F:B ratio obtained by ddPCR was consistent with phospholipid fatty acid analysis. Our results indicated that ddPCR had better precision, repeatability, sensitivity, and stability in bacterial and fungal quantitation than qPCR. Although ddPCR has high cost, complicated processes and restricted detection range, it shows insensitivity to PCR inhibitors and the potential of quantifying long target fragments. We expect that ddPCR, which is complementary to qPCR, will contribute to microbial quantification in environmental monitoring and evaluation.
Collapse
Affiliation(s)
- Danrui Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiongfeng Du
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhujun Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
80
|
Lv B, Shi J, Li T, Ren L, Tian W, Lu X, Han Y, Cui Y, Jiang T. Deciphering the characterization, ecological function and assembly processes of bacterial communities in ship ballast water and sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:152721. [PMID: 34974026 DOI: 10.1016/j.scitotenv.2021.152721] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Various microorganisms are transported worldwide via the water and sediments inside ship ballast tanks. Nevertheless, the ecological functions and assembly processes of bacterial communities in ballast water and sediments remain poorly understood. Here, we investigated the bacterial composition, community assembly processes, and putative functions through analyses of 70 ballast water and sediment samples obtained from various ships. The results showed that the ballast sediments contained a higher diversity of bacterial communities, whereas the ballast water was characterized by the dominance of Proteobacteria. Both the composition and potential function structures of bacterial communities were clearly different between the ballast water and sediment samples. The ballast water exhibited an abundance of microorganisms that involved in sulfur oxidation, whereas the bacterial species associated with nitrogen metabolism were abundant in the sediments. Co-occurrence network analysis revealed that the communities in ballast sediment samples possessed more complex network structures with higher modularity and positive associations among bacterial populations. Stochastic processes, especially the dispersal limitation process played the most important influence in the assembly of the communities in ballast water. Meanwhile, the bacterial communities in the ballast sediments were primarily governed by the homogeneous selection of determinacy. The results from this study will help us understand the ecological processes related to the bacterial communities in the ballast tanks and provide a foundation for the management of ballast water and sediments.
Collapse
Affiliation(s)
- Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Tao Li
- China Waterborne Transport Research Institute, Beijing 100088, China
| | - Lili Ren
- China Waterborne Transport Research Institute, Beijing 100088, China
| | - Wen Tian
- Jiangyin Customs, Jiangyin 214400, China
| | - Xiaolan Lu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | | | - Yuxue Cui
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ting Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
81
|
Environmental Factors Drive Periphytic Algal Community Assembly in the Largest Long-Distance Water Diversion Channel. WATER 2022. [DOI: 10.3390/w14060914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Periphytic algae exist widely in different waters. However, little is known about periphytic algae in long-distance water diversion channels across watersheds. We investigated the periphytic algae and the environmental factors at twenty sampling sites in the middle route of the South-to-North Water Diversion Project (MRP). The dominant species were Desmodesmus intermedius (Hegewald), Calothrix thermalis (Bornet & Flahault), Calothrix parietina (Bornet & Flahault) and Leptolyngbya benthonica (Anagnostidis) (dominance > 0.02) as measured in a whole year. Habitat heterogeneity in the MRP led to lower spatial heterogeneity and higher temporal heterogeneity of the periphytic algal community. Stochastic processes are the major process in periphytic community assembly. In deterministic processes, homogeneous selection had the major role in structuring the periphytic community, whereas the role of heterogeneous selection was less significant. In stochastic processes, dispersal limitations had the major role in structuring the periphytic community, whereas the role of homogenizing dispersal and drift were less significant. The variation in total nitrogen and total phosphorus promoted more stochastic processes (−1.96 < βNTI < 1.96). The variations in water temperature and water velocity promoted more heterogeneous selection (βNTI > 1.96). In integrating all of this empirical evidence, we explore the role of environmental factors in the action of ecological processes shaping thecommunity assembly of the periphytic algal community.
Collapse
|
82
|
He J, Zhang N, Muhammad A, Shen X, Sun C, Li Q, Hu Y, Shao Y. From surviving to thriving, the assembly processes of microbial communities in stone biodeterioration: A case study of the West Lake UNESCO World Heritage area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150395. [PMID: 34818768 DOI: 10.1016/j.scitotenv.2021.150395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 05/11/2023]
Abstract
Serious concerns regarding stone biodeterioration have been raised due to the loss of aesthetic value and hidden dangers in stone cultural heritages and buildings. Stone biodeterioration involves a complex ecological interplay among organisms, however, the ecological mechanisms (deterministic or stochastic processes) that determine the microbial community on stone remain poorly understood. Here, using both amplicon and shotgun metagenomic sequencing approaches, we comprehensively investigated the biodiversity, assembly, and function of communities (including prokaryotes, fungi, microfauna, and plants) on various types of deteriorating limestone across different habitats in Feilaifeng. By generalizing classic ecological models to stone habitats, we further uncovered and quantified the mechanisms underlying microbial community assembly processes and microbial interactions within the biodeteriorated limestone. Community profiling revealed stable ecosystem functional potential despite high taxonomic variation across different biodeterioration types, suggesting non-random community assembly. Increased niche differentiation occurred in prokaryotes and fungi but not in microfauna and plant during biodeterioration. Certain microbial groups such as nitrifying archaea and bacteria showed wider niche breadth and likely contributing to the initiation, succession and expansion of stone biodeterioration. Consistently, prokaryotes were more strongly structured by selection-based deterministic processes, while micro-eukaryotes were more influenced by dispersal and drift-based stochastic processes. Importantly, microbial coexistence maintains network robustness within stone microbiotas, highlighting mutual cooperation among functional microorganisms. These results provide new insights into microbial community assembly mechanisms in stone ecosystems and may aid in the sustainable conservation of stone materials of interest.
Collapse
Affiliation(s)
- Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Qiang Li
- Laboratory of Cultural Relics Conservation Materials, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yulan Hu
- School of Art and Archaeology, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China.
| |
Collapse
|
83
|
Ma L, Huang S, Wu P, Xiong J, Wang H, Liao H, Liu X. The interaction of acidophiles driving community functional responses to the re-inoculated chalcopyrite bioleaching process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149186. [PMID: 34375243 DOI: 10.1016/j.scitotenv.2021.149186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Re-inoculation was an effective way to improve bioleaching efficiency by enhancing the synergetic effects of biogenic Fe3+ coupling with S0 oxidation. However, the complex microbial interactions after re-inoculation have received far less attention, which was crucial to the bioleaching performances. Herein, the enriched ferrous oxidizers (FeO) or sulfur oxidizers (SO) were inoculated to chalcopyrite microcosm, then they were crossly re-inoculated again to characterize the interspecific interaction patterns. The results showed that the dominant species in Fe groups were Acidithiobacillus ferrooxidans, while A. thiooxidans predominated in S groups. Introducing FeO resulted in a great disturbance by shifting the community diversity and evenness significantly (p < 0.05). In comparison, the communities intensified by SO maintained the original composition and structures. Microbial networks were constructed positively and modularly. The networks intensified by FeO were less connected and complex with less nodes and edges, but showed faster responses to the re-inoculation disturbance reflected by shorter average path length. Interestingly, the genus Leptospirillum were identified as keystones in S groups, playing critical roles in iron-oxidizing with lots of sulfur oxidizers. The introduced sulfur oxidizers enhanced microbial cooperation, formed robust community with strong bio-dissolution capability, and harbored the highest bioleaching efficiency. These findings improved our understanding about the acidophiles interactions, which drive community functional responses to the re-inoculated bioleaching process.
Collapse
Affiliation(s)
- Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Shanshan Huang
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Peiyi Wu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Junming Xiong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hehuan Liao
- Springboard, San Francisco, CA 94063, United States
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
84
|
Ecological Dichotomies Arise in Microbial Communities Due to Mixing of Deep Hydrothermal Waters and Atmospheric Gas in a Circumneutral Hot Spring. Appl Environ Microbiol 2021; 87:e0159821. [PMID: 34586901 PMCID: PMC8579995 DOI: 10.1128/aem.01598-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known of how the confluence of subsurface and surface processes influences the assembly and habitability of hydrothermal ecosystems. To address this knowledge gap, the geochemical and microbial composition of a high-temperature, circumneutral hot spring in Yellowstone National Park was examined to identify the sources of solutes and their effect on the ecology of microbial inhabitants. Metagenomic analysis showed that populations comprising planktonic and sediment communities are archaeal dominated, are dependent on chemical energy (chemosynthetic), share little overlap in their taxonomic composition, and are differentiated by their inferred use of/tolerance to oxygen and mode of carbon metabolism. The planktonic community is dominated by putative aerobic/aerotolerant autotrophs, while the taxonomic composition of the sediment community is more evenly distributed and comprised of anaerobic heterotrophs. These observations are interpreted to reflect sourcing of the spring by anoxic, organic carbon-limited subsurface hydrothermal fluids and ingassing of atmospheric oxygen that selects for aerobic/aerotolerant organisms that have autotrophic capabilities in the water column. Autotrophy and consumption of oxygen by the planktonic community may influence the assembly of the anaerobic and heterotrophic sediment community. Support for this inference comes from higher estimated rates of genome replication in planktonic populations than sediment populations, indicating faster growth in planktonic populations. Collectively, these observations provide new insight into how mixing of subsurface waters and atmospheric oxygen create dichotomy in the ecology of hot spring communities and suggest that planktonic and sediment communities may have been less differentiated taxonomically and functionally prior to the rise of oxygen at ∼2.4 billion years ago (Gya). IMPORTANCE Understanding the source and availability of energy capable of supporting life in hydrothermal environments is central to predicting the ecology of microbial life on early Earth when volcanic activity was more widespread. Little is known of the substrates supporting microbial life in circumneutral to alkaline springs, despite their relevance to early Earth habitats. Using metagenomic and informatics approaches, water column and sediment habitats in a representative circumneutral hot spring in Yellowstone were shown to be dichotomous, with the former largely hosting aerobic/aerotolerant autotrophs and the latter primarily hosting anaerobic heterotrophs. This dichotomy is attributed to influx of atmospheric oxygen into anoxic deep hydrothermal spring waters. These results indicate that the ecology of microorganisms in circumneutral alkaline springs sourced by deep hydrothermal fluids was different prior to the rise of atmospheric oxygen ∼2.4 Gya, with planktonic and sediment communities likely to be less differentiated than contemporary circumneutral hot springs.
Collapse
|
85
|
She Z, Pan X, Wang J, Shao R, Wang G, Wang S, Yue Z. Vertical environmental gradient drives prokaryotic microbial community assembly and species coexistence in a stratified acid mine drainage lake. WATER RESEARCH 2021; 206:117739. [PMID: 34653798 DOI: 10.1016/j.watres.2021.117739] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Acid mine drainage (AMD) lakes are typical hydrologic features caused by open pit mining and represent extreme ecosystems and environmental challenges. Little is known about microbial distribution and community assembly in AMD lakes, especially in deep layers. Here, we investigated prokaryotic microbial diversity and community assembly along a depth profile in a stratified AMD lake using 16S rRNA gene sequencing combined with multivariate ecological and statistical methods. The water column in the AMD lake exhibited tight geochemical gradients, with more acidic surface water. Coupled with vertical hydrochemical variations, prokaryotic microbial community structure changed significantly, and was accompanied by increased diversity with depth. In the surface water, heterogeneous selection was the most important assembly process, whereas stochastic processes gained importance with depth. Meanwhile, microbial co-occurrences, especially positive interactions, were more frequent in the stressful surface water with reduced network modularity and keystone taxa. The pH was identified as the key driver of microbial diversity and community assembly along the vertical profile based on random forest analysis. Taken together, environmental effects dominated by acid stress drove the community assembly and species coexistence that underpinned the spatial scaling patterns of AMD microbiota in the lake. These findings demonstrate the distinct heterogeneity of local prokaryotic microbial community in AMD lake, and provide new insights into the mechanism to maintain microbial diversity in extreme acidic environments.
Collapse
Affiliation(s)
- Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Rui Shao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Guangcheng Wang
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan, Anhui, 243000, China
| | - Shaoping Wang
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan, Anhui, 243000, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
86
|
He J, Jiao S, Tan X, Wei H, Ma X, Nie Y, Liu J, Lu X, Mo J, Shen W. Adaptation of Soil Fungal Community Structure and Assembly to Long- Versus Short-Term Nitrogen Addition in a Tropical Forest. Front Microbiol 2021; 12:689674. [PMID: 34512567 PMCID: PMC8424203 DOI: 10.3389/fmicb.2021.689674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/30/2021] [Indexed: 01/28/2023] Open
Abstract
Soil fungi play critical roles in ecosystem processes and are sensitive to global changes. Elevated atmospheric nitrogen (N) deposition has been well documented to impact on fungal diversity and community composition, but how the fungal community assembly responds to the duration effects of experimental N addition remains poorly understood. Here, we aimed to investigate the soil fungal community variations and assembly processes under short- (2 years) versus long-term (13 years) exogenous N addition (∼100 kg N ha–1 yr–1) in a N-rich tropical forest of China. We observed that short-term N addition significantly increased fungal taxonomic and phylogenetic α-diversity and shifted fungal community composition with significant increases in the relative abundance of Ascomycota and decreases in that of Basidiomycota. Short-term N addition also significantly increased the relative abundance of saprotrophic fungi and decreased that of ectomycorrhizal fungi. However, unremarkable effects on these indices were found under long-term N addition. The variations of fungal α-diversity, community composition, and the relative abundance of major phyla, genera, and functional guilds were mainly correlated with soil pH and NO3––N concentration, and these correlations were much stronger under short-term than long-term N addition. The results of null, neutral community models and the normalized stochasticity ratio (NST) index consistently revealed that stochastic processes played predominant roles in the assembly of soil fungal community in the tropical forest, and the relative contribution of stochastic processes was significantly increased by short-term N addition. These findings highlighted that the responses of fungal community to N addition were duration-dependent, i.e., fungal community structure and assembly would be sensitive to short-term N addition but become adaptive to long-term N enrichment.
Collapse
Affiliation(s)
- Jinhong He
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiangping Tan
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xiaomin Ma
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yanxia Nie
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Juxiu Liu
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiankai Lu
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jiangming Mo
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Weijun Shen
- College of Forestry, Guangxi University, Nanning, China
| |
Collapse
|
87
|
Li L, Pujari L, Wu C, Huang D, Wei Y, Guo C, Zhang G, Xu W, Liu H, Wang X, Wang M, Sun J. Assembly Processes and Co-occurrence Patterns of Abundant and Rare Bacterial Community in the Eastern Indian Ocean. Front Microbiol 2021; 12:616956. [PMID: 34456881 PMCID: PMC8385211 DOI: 10.3389/fmicb.2021.616956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microbial communities are composed of many rare species and a few abundant species. Considering the disproportionate importance of rare species for ecosystem functioning, it is important to understand the mechanisms structuring the rare and abundant components of a diverse community in response to environmental changes. Here, we used a 16S ribosomal RNA gene sequencing approach to investigate the bacterial community diversity in the Eastern Indian Ocean (EIO) during the monsoon and intermonsoon. We employed a phylogenetic null model and network analysis to evaluate the assembly processes and co-occurrence pattern of the microbial community. We found that higher bacterial diversity was detected in the intermonsoon with high temperature and low Chlorophyll a concentrations and N/P ratios. The balance between ecological deterministic processes and stochastic processes varied with seasons in the EIO. Meanwhile, conditionally rare taxa (CRT) were more likely modulated by variable selection processes than always rare taxa (ART) and abundant taxa (AT) (CRT > ART > AT). By linking assembly process and species co-occurrence, we demonstrated that the microbial co-occurrence associations tended to be higher when deterministic processes (mainly variable selection) were weaker. This negative trend was observed in rare species rather than abundant species. The linkage could enhance our understanding of the underlying mechanisms underpinning the generation and maintenance of microbial community diversity.
Collapse
Affiliation(s)
- Liuyang Li
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Laxman Pujari
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Chao Wu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Danyue Huang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiu Wei
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Congcong Guo
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Guicheng Zhang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Wenzhe Xu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Xingzhou Wang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jun Sun
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| |
Collapse
|
88
|
Burman E, Bengtsson-Palme J. Microbial Community Interactions Are Sensitive to Small Changes in Temperature. Front Microbiol 2021; 12:672910. [PMID: 34093493 PMCID: PMC8175644 DOI: 10.3389/fmicb.2021.672910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities are essential for human and environmental health, often forming complex interaction networks responsible for driving ecosystem processes affecting their local environment and their hosts. Disturbances of these communities can lead to loss of interactions and thereby important ecosystem functionality. The research on what drives interactions in microbial communities is still in its infancy, and much information has been gained from the study of model communities. One purpose of using these model microbial communities is that they can be cultured under controlled conditions. Yet, it is not well known how fluctuations of abiotic factors such as temperature affect their interaction networks. In this work, we have studied the effect of temperature on interactions between the members of the model community THOR, which consists of three bacterial species: Pseudomonas koreensis, Flavobacterium johnsoniae, and Bacillus cereus. Our results show that the community-intrinsic properties resulting from their interspecies interactions are highly dependent on incubation temperature. We also found that THOR biofilms had remarkably different abundances of their members when grown at 11, 18, and 25°C. The results suggest that the sensitivity of community interactions to changes in temperature is influenced, but not completely dictated, by different growth rates of the individual members at different temperatures. Our findings likely extend to other microbial communities and environmental parameters. Thus, temperature could affect community stability and may influence diverse processes including soil productivity, bioprocessing, and disease suppression. Moreover, to establish reproducibility between laboratories working with microbial model communities, it is crucial to ensure experimental stability, including carefully managed temperature conditions.
Collapse
Affiliation(s)
- Emil Burman
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
89
|
Minerals Determined a Special Ecological Niche and Selectively Enriched Microbial Species from Bulk Water Communities in Hot Springs. Microorganisms 2021; 9:microorganisms9051020. [PMID: 34068582 PMCID: PMC8151621 DOI: 10.3390/microorganisms9051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Minerals provide physical niches and supply nutrients or serve as electron donors/acceptors for microorganism survival and growth, and thus minerals and microbes co-evolved. Yet, little is known about how sediment minerals impact microbial community assembly in hot springs and to what extent mineralogical composition influences microbial community composition and diversity. Here the influences of minerals on thermophiles in Tengchong hot springs were revealed by network analysis of field samples, as well as in-situ microcosm experiments with minerals. A molecular ecological network was constructed based on high throughput sequencing data of 16S rRNA gene, with a combination of water geochemistry and sedimentary mineralogical compositions. Six modules were identified and this highly modular network structure represents the microbial preference to different abiotic factors, consequently resulting in niche partitioning in sedimentary communities in hot springs. Diverse mineralogical compositions generated special niches for microbial species. Subsequently, the in-situ microcosm experiments with four minerals (aragonite, albite, K-feldspar, and quartz) and spring water were conducted in a silicate-hosted alkaline spring (i.e., Gmq) and a carbonate-hosted neutral hot spring (i.e., Gxs) for 70 days. Different microbial preferences were observed among different mineral types (carbonate versus silicate). Aragonite microcosms in Gmq spring enriched archaeal genera Sulfophobococcus and Aeropyrum within the order Desulfurococcales by comparison with both in-situ water and silicate microcosms. Sulfophobococcus was also accumulated in Gxs aragonite microcosms, but the contribution to overall dissimilarity is much lower than that in Gmq spring. Besides, Caldimicrobium was a bacterial genus enriched in Gxs aragonite microcosms, in contrast to in-situ water and silicate microcosms, whereas Candidatus Kryptobacter and Thermus were more abundant in silicate microcosms. The differences in microbial accumulations among different mineral types in the same spring implied that mineral chemistry may exert extra deterministic selective pressure in drawing certain species from the bulk water communities, in addition to stochastic absorption on mineral surface. Taken together, our results highlight the special niche partitioning determined by mineralogical compositions and further confirm that minerals could be used as “fishing bait” to enrich certain rare microbial species.
Collapse
|