51
|
Salminen A. Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res Rev 2021; 67:101280. [PMID: 33581314 DOI: 10.1016/j.arr.2021.101280] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Aging is a progressive degenerative process involving a chronic low-grade inflammation and the accumulation of senescent cells. One major issue is to reveal the mechanisms which promote the deposition of pro-inflammatory senescent cells within tissues. The accumulation involves mechanisms which increase cellular senescence as well as those inhibiting the clearance of senescent cells from tissues. It is known that a persistent inflammatory state evokes a compensatory immunosuppression which inhibits pro-inflammatory processes by impairing the functions of effector immune cells, e.g., macrophages, T cells and natural killer (NK) cells. Unfortunately, these cells are indispensable for immune surveillance and the subsequent clearance of senescent cells, i.e., the inflammation-induced counteracting immunosuppression prevents the cleansing of host tissues. Moreover, senescent cells can also repress their own clearance by expressing inhibitors of immune surveillance and releasing the ligands of NKG2D receptors which impair their surveillance by NK and cytotoxic CD8+ T cells. It seems that cellular senescence and immunosuppression establish a feed-forward process which promotes the aging process and age-related diseases. I will examine in detail the immunosuppressive mechanisms which impair the surveillance and clearance of pro-inflammatory senescent cells with aging. In addition, I will discuss several therapeutic strategies to halt the degenerative feed-forward circuit associated with the aging process and age-related diseases.
Collapse
|
52
|
Sacdalan DB, Lucero JA. The Association Between Inflammation and Immunosuppression: Implications for ICI Biomarker Development. Onco Targets Ther 2021; 14:2053-2064. [PMID: 33776452 PMCID: PMC7987319 DOI: 10.2147/ott.s278089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Evasion of immune destruction is considered one of the hallmarks of cancer. Chronic inflammation can enable immune escape by suppressing immune surveillance and permitting the development of tumors and creating a tumor microenvironment that sustains cancer. This includes generating mechanisms that prevent the effectiveness of anti-tumor treatment including immune checkpoint inhibitor therapy. In this review, we explore the interplay of inflammation and immunosuppression, their effects on the tumor microenvironment, and their implications for immune checkpoint inhibitor therapy particularly in the context of predictive biomarkers for their use.
Collapse
Affiliation(s)
- Danielle Benedict Sacdalan
- Department of Pharmacology and Toxicology, University of the Philippines Manila College of Medicine, Manila, Philippines
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Manila, Philippines
| | - Josephine Anne Lucero
- Division of Hematology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
53
|
Kawai H, Oo MW, Tsujigiwa H, Nakano K, Takabatake K, Sukegawa S, Nagatsuka H. Potential role of myeloid-derived suppressor cells in transition from reaction to repair phase of bone healing process. Int J Med Sci 2021; 18:1824-1830. [PMID: 33746599 PMCID: PMC7976590 DOI: 10.7150/ijms.51946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/21/2021] [Indexed: 11/07/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with immunosuppressive functions; these cells play a key role in infection, immunization, chronic inflammation, and cancer. Recent studies have reported that immunosuppression plays an important role in the healing process of tissues and that Treg play an important role in fracture healing. MDSCs suppress active T cell proliferation and reduce the severity of arthritis in mice and humans. Together, these findings suggest that MDSCs play a role in bone biotransformation. In the present study, we examined the role of MDSCs in the bone healing process by creating a bone injury at the tibial epiphysis in mice. MDSCs were identified by CD11b and GR1 immunohistochemistry and their role in new bone formation was observed by detection of Runx2 and osteocalcin expression. Significant numbers of MDSCs were observed in transitional areas from the reactionary to repair stages. Interestingly, MDSCs exhibited Runx2 and osteocalcin expression in the transitional area but not in the reactionary area. And at the same area, cllagene-1 and ALP expression level increased in osteoblast progenitor cells. These data is suggesting that MDSCs emerge to suppress inflammation and support new bone formation. Here, we report, for the first time (to our knowledge), the role of MDSCs in the initiation of bone formation. MDSC appeared at the transition from inflammation to bone making and regulates bone healing by suppressing inflammation.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
54
|
Kitaura A, Nishinaka T, Hamasaki S, Hatipoglu OF, Wake H, Nishibori M, Mori S, Nakao S, Takahashi H. Advanced glycation end-products reduce lipopolysaccharide uptake by macrophages. PLoS One 2021; 16:e0245957. [PMID: 33493233 PMCID: PMC7833212 DOI: 10.1371/journal.pone.0245957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Hyperglycaemia provides a suitable environment for infections and the mechanisms of glucose toxicity include the formation of advanced glycation end-products (AGEs), which comprise non-enzymatically glycosylated proteins, lipids, and nucleic acid amino groups. Among AGE-associated phenotypes, glycolaldehyde-derived toxic AGE (AGE-3) is involved in the pathogenesis of diabetic complications. Internalisation of endotoxin by various cell types contributes to innate immune responses against bacterial infection. An endotoxin derived from Gram-negative bacteria, lipopolysaccharide (LPS), was reported to enhance its own uptake by RAW264.7 mouse macrophage-like cells, and an LPS binding protein, CD14, was involved in the LPS uptake. The LPS uptake induced the activation of RAW264.7 leading to the production of chemokine CXC motif ligand (CXCL) 10, which promotes T helper cell type 1 responses. Previously, we reported that AGE-3 was internalised into RAW264.7 cells through scavenger receptor-1 Class A. We hypothesized that AGEs uptake interrupt LPS uptake and impair innate immune response to LPS in RAW264.7 cells. In the present study, we found that AGE-3 attenuated CD14 expression, LPS uptake, and CXCL10 production, which was concentration-dependent, whereas LPS did not affect AGE uptake. AGEs were reported to stimulate the receptor for AGEs and Toll-like receptor 4, which cause inflammatory reactions. We found that inhibitors for RAGE, but not Toll-like receptor 4, restored the AGE-induced suppression of CD14 expression, LPS uptake, and CXCL10 production. These results indicate that the receptor for the AGE-initiated pathway partially impairs the immune response in diabetes patients.
Collapse
Affiliation(s)
- Atsuhiro Kitaura
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Shinichi Hamasaki
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Hidenori Wake
- Department of Pharmacology, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacy, Shujitsu University, Okayama, Japan
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
- * E-mail:
| |
Collapse
|
55
|
Hahn WH, Shin SY, Song JH, Kang NM. Effect of human breast milk on innate immune response: Up-regulation of bacterial pattern recognition receptors and innate cytokines in THP-1 monocytic cells. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211026107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human breast milk (HBM) contains many bioactive components that protect infants from various microorganisms. Pattern recognition receptors on phagocytic cells recognize microbial pathogens and promote the innate immune system. This study aimed to evaluate the effect of HBM on the expression of pattern recognition receptors and innate cytokines in the monocytic cell line THP-1 and the phagocytic activity of RAW264.7 macrophages. Expression levels of specific mRNAs in THP-1 cells were quantitated using reverse transcription-polymerase chain reaction. Phagocytic activity was measured by fluorescence microscopy to detect the uptake of fluorescent dye-labeled carboxylate-modified polystyrene latex beads in RAW264.7 macrophages. HBM stimulated the phagocytic activity of RAW264.7 macrophages. HBM increased mRNA expression of pattern recognition receptors, including the cluster of differentiation 14 and toll-like receptor 2 and 4, and various innate cytokines, including tumor necrosis factor α, interleukin-1β, C-X-C motif chemokine 8, and C-C motif chemokine ligand 2, in THP-1 monocytic cells. Furthermore, milk oligosaccharides in HBM, such as lacto- N-fucopentaose I, enhanced the expression of pattern recognition receptors and various innate cytokines. HBM is able to modulate the innate immune response by upregulating the expression of pattern recognition receptors and various innate cytokines in monocytes/macrophages.
Collapse
Affiliation(s)
- Won-Ho Hahn
- Department of Pediatrics, School of Medicine, Soon Chun Hyang University, Seoul, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jun Hwan Song
- Department of Pediatrics, School of Medicine, Soon Chun Hyang University, Cheonan Hospital, Cheonan, Republic of Korea
| | - Nam Mi Kang
- Department of Nursing, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
56
|
Salminen A. Hypoperfusion is a potential inducer of immunosuppressive network in Alzheimer's disease. Neurochem Int 2020; 142:104919. [PMID: 33242538 DOI: 10.1016/j.neuint.2020.104919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which causes a non-reversible cognitive impairment and dementia. The primary cause of late-onset AD remains unknown although its pathology was discovered over a century ago. Recently, the vascular hypothesis of AD has received backing from evidence emerging from neuroimaging studies which have revealed the presence of a significant hypoperfusion in the brain regions vulnerable to AD pathology. In fact, hypoxia can explain many of the pathological changes evident in AD pathology, e.g. the deposition of β-amyloid plaques and chronic low-grade inflammation. Hypoxia-inducible factor-1α (HIF-1α) stimulates inflammatory responses and modulates both innate and adaptive immunity. It is known that hypoxia-induced inflammation evokes compensatory anti-inflammatory response involving tissue-resident microglia/macrophages and infiltrated immune cells. Hypoxia/HIF-1α induce immunosuppression by (i) increasing the expression of immunosuppressive genes, (ii) stimulating adenosinergic signaling, (iii) enhancing aerobic glycolysis, i.e. lactate production, and (iv) augmenting the secretion of immunosuppressive exosomes. Interestingly, it seems that these common mechanisms are also involved in the pathogenesis of AD. In AD pathology, an enhanced immunosuppression appears, e.g. as a shift in microglia/macrophage phenotypes towards the anti-inflammatory M2 phenotype and an increase in the numbers of regulatory T cells (Treg). The augmented anti-inflammatory capacity promotes the resolution of acute inflammation but persistent inflammation has crucial effects not only on immune cells but also harmful responses to the homeostasis of AD brain. I will examine in detail the mechanisms of the hypoperfusion/hypoxia-induced immunosuppressive state in general and especially, in its association with AD pathogenesis. These immunological observations support the vascular hypothesis of AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
57
|
Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. J Mol Med (Berl) 2020; 99:1-20. [PMID: 33025106 PMCID: PMC7782450 DOI: 10.1007/s00109-020-01988-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
Abstract Chronic low-grade inflammation is a common hallmark of the aging process and many age-related diseases. There is substantial evidence that persistent inflammation is associated with a compensatory anti-inflammatory response which prevents excessive tissue damage. Interestingly, the inflammatory state encountered with aging, called inflammaging, is associated with the anti-inflammaging process. The age-related activation of immunosuppressive network includes an increase in the numbers of myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and macrophages (Mreg/M2c). Immunosuppressive cells secrete several anti-inflammatory cytokines, e.g., TGF-β and IL-10, as well as reactive oxygen and nitrogen species (ROS/RNS). Moreover, immunosuppressive cells suppress the function of effector immune cells by catabolizing l-arginine and tryptophan through the activation of arginase 1 (ARG1) and indoleamine 2,3-dioxygenase (IDO), respectively. Unfortunately, the immunosuppressive armament also induces harmful bystander effects in neighboring cells by impairing host tissue homeostasis. For instance, TGF-β signaling can trigger many age-related degenerative changes, e.g., cellular senescence, fibrosis, osteoporosis, muscle atrophy, and the degeneration of the extracellular matrix. In addition, changes in the levels of ROS, RNS, and the metabolites of the kynurenine pathway can impair tissue homeostasis. This review will examine in detail the harmful effects of the immunosuppressive cells on host tissues. It seems that this age-related immunosuppression prevents inflammatory damage but promotes the tissue degeneration associated with aging and age-related diseases. Key messages • Low-grade inflammation is associated with the aging process and age-related diseases. • Persistent inflammation activates compensatory immunosuppression with aging. • The numbers of immunosuppressive cells increase with aging and age-related diseases. • Immunosuppressive mechanisms evoke harmful bystander effects in host tissues. • Immunosuppression promotes tissue degeneration with aging and age-related diseases.
Collapse
|
58
|
De Cicco P, Ercolano G, Ianaro A. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. Front Immunol 2020; 11:1680. [PMID: 32849585 PMCID: PMC7406792 DOI: 10.3389/fimmu.2020.01680] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Suppression of antitumor immune responses is one of the main mechanisms by which tumor cells escape from destruction by the immune system. Myeloid-derived suppressor cells (MDSCs) represent the main immunosuppressive cells present in the tumor microenvironment (TME) that sustain cancer progression. MDSCs are a heterogeneous group of immature myeloid cells with a potent activity against T-cell. Studies in mice have demonstrated that MDSCs accumulate in several types of cancer where they promote invasion, angiogenesis, and metastasis formation and inhibit antitumor immunity. In addition, different clinical studies have shown that MDSCs levels in the peripheral blood of cancer patients correlates with tumor burden, stage and with poor prognosis in multiple malignancies. Thus, MDSCs are the major obstacle to many cancer immunotherapies and their targeting may be a beneficial strategy for improvement the efficiency of immunotherapeutic interventions. However, the great heterogeneity of these cells makes their identification in human cancer very challenging. Since both the phenotype and mechanisms of action of MDSCs appear to be tumor-dependent, it is important to accurately characterized the precise MDSC subsets that have clinical relevance in each tumor environment to more efficiently target them. In this review we summarize the phenotype and the suppressive mechanisms of MDSCs populations expanded within different tumor contexts. Further, we discuss about their clinical relevance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
59
|
Khan AS, Hichami A, Khan NA. Obesity and COVID-19: Oro-Naso-Sensory Perception. J Clin Med 2020; 9:E2158. [PMID: 32650509 PMCID: PMC7408951 DOI: 10.3390/jcm9072158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Through a recent upsurge of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, the clinical assessment of most of the coronavirus disease 19 (COVID-19) patients clearly presents a health condition with the loss of oro-naso-sensory (ONS) perception, responsible for the detection of flavor and savor. These changes include anosmia and dysgeusia. In some cases, these clinical manifestations appear even before the general flu-like symptoms, e.g., sore throat, thoracic oppression and fever. There is no direct report available on the loss of these chemical senses in obese COVID-19 patients. Interestingly, obesity has been shown to be associated with low ONS cues. These alterations in obese subjects are due to obesity-induced altered expression of olfacto-taste receptors. Besides, obesity may further aggravate the SARS-CoV-2 infection, as this pathology is associated with a high degree of inflammation/immunosuppression and reduced protection against viral infections. Hence, obesity represents a great risk factor for SARS-CoV-2 infection, as it may hide the viral-associated altered ONS symptoms, thus leading to a high mortality rate in these subjects.
Collapse
|
60
|
Anti-Inflammatory Effects of Essential Oils of Amomum aromaticum Fruits in Lipopolysaccharide-Stimulated RAW264.7 Cells. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8831187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation is a vital physiologic response of cellular injury, infection, or autoimmune activation. Overproduction of proinflammatory mediators may result in the chronic inflammation that leads to many diseases such as rheumatoid arthritis, asthma, multiple sclerosis, and atherosclerosis. In this study, we assessed for the first time the anti-inflammatory effects of the essential oils of Amomum aromaticum fruits (AAE) in RAW264.7 murine macrophage model. As a result, AAE potently inhibited the production of nitric oxide in LPS-induced RAW264.7 cells with the IC50 value of 0.45 ± 0.11 μg/ml. AAE also dose-dependently reduced the expression of two proinflammatory proteins iNOS and COX-2 in the stimulated cells. Phytochemical analysis revealed that major compositions of the volatile oils including 1,8 cineole (48.22%), geranial (9.24%), neral (6.72%), α-pinene (2.43%), and α-terpineol (2.28%) may contribute greatly to the inhibition effects due to their anti-inflammatory properties. The results suggest for the potential uses of AAE in chronic inflammation prevention.
Collapse
|
61
|
Picchianti Diamanti A, Rosado MM, Pioli C, Sesti G, Laganà B. Cytokine Release Syndrome in COVID-19 Patients, A New Scenario for an Old Concern: The Fragile Balance between Infections and Autoimmunity. Int J Mol Sci 2020; 21:E3330. [PMID: 32397174 PMCID: PMC7247555 DOI: 10.3390/ijms21093330] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 02/08/2023] Open
Abstract
On 7 January 2020, researchers isolated and sequenced in China from patients with severe pneumonitis a novel coronavirus, then called SARS-CoV-2, which rapidly spread worldwide, becoming a global health emergency. Typical manifestations consist of flu-like symptoms such as fever, cough, fatigue, and dyspnea. However, in about 20% of patients, the infection progresses to severe interstitial pneumonia and can induce an uncontrolled host-immune response, leading to a life-threatening condition called cytokine release syndrome (CRS). CRS represents an emergency scenario of a frequent challenge, which is the complex and interwoven link between infections and autoimmunity. Indeed, treatment of CRS involves the use of both antivirals to control the underlying infection and immunosuppressive agents to dampen the aberrant pro-inflammatory response of the host. Several trials, evaluating the safety and effectiveness of immunosuppressants commonly used in rheumatic diseases, are ongoing in patients with COVID-19 and CRS, some of which are achieving promising results. However, such a use should follow a multidisciplinary approach, be accompanied by close monitoring, be tailored to patient's clinical and serological features, and be initiated at the right time to reach the best results. Autoimmune patients receiving immunosuppressants could be prone to SARS-CoV-2 infections; however, suspension of the ongoing therapy is contraindicated to avoid disease flares and a consequent increase in the infection risk.
Collapse
Affiliation(s)
- Andrea Picchianti Diamanti
- Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00182 Rome, Italy; (G.S.); (B.L.)
| | | | - Claudio Pioli
- Laboratory of Biomedical Technologies, Division of Health Protection Technologies, Ente per le Nuove Tecnologie, L’energia e l’Ambiente (ENEA), 00196 Rome, Italy;
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00182 Rome, Italy; (G.S.); (B.L.)
| | - Bruno Laganà
- Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00182 Rome, Italy; (G.S.); (B.L.)
| |
Collapse
|
62
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
63
|
Bastin AR, Sadeghi A, Abolhassani M, Doustimotlagh AH, Mohammadi A. Malvidin prevents lipopolysaccharide‐induced oxidative stress and inflammation in human peripheral blood mononuclear cells. IUBMB Life 2020; 72:1504-1514. [DOI: 10.1002/iub.2286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/15/2020] [Accepted: 03/21/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Ali R. Bastin
- Department of Clinical Biochemistry, Afzalipour School of MedicineKerman University of Medical Sciences Kerman Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Afzalipour School of MedicineKerman University of Medical Sciences Kerman Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, Afzalipour School of MedicineKerman University of Medical Sciences Kerman Iran
| | - Amir H. Doustimotlagh
- Medicinal Plants Research CenterYasuj University of Medical Sciences Yasuj Iran
- Department of Clinical Biochemistry, Faculty of MedicineYasuj University of Medical Sciences Yasuj Iran
| | - Abbas Mohammadi
- Department of Clinical Biochemistry, Afzalipour School of MedicineKerman University of Medical Sciences Kerman Iran
| |
Collapse
|
64
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
65
|
Yadav A, Kossenkov AV, Knecht VR, Showe LC, Ratcliffe SJ, Montaner LJ, Tebas P, Collman RG. Evidence for Persistent Monocyte and Immune Dysregulation After Prolonged Viral Suppression Despite Normalization of Monocyte Subsets, sCD14 and sCD163 in HIV-Infected Individuals. Pathog Immun 2019; 4:324-362. [PMID: 31893252 PMCID: PMC6930814 DOI: 10.20411/pai.v4i2.336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND People living with HIV on antiretroviral therapy (HIV/ART) experience excess non-AIDS comorbidities, and also remain at increased risk for certain infections and viral malignancies. Monocytes/macrophages are central to many of these comorbidities, and elevated plasma cytokines and immune activation during untreated infection are often incompletely reversed by ART and are also associated with comorbidities. METHODS We investigated monocyte surface markers, gene expression, and plasma cytokines in 11 HIV-infected older individuals (median 53 years) who started therapy with low CD4 counts (median 129 cells/µl), with elevated hsCRP (≥ 2mg/L) despite long-term ART (median 7.4 years), along with matched controls. RESULTS Frequency of monocyte subsets (based on CD14/CD16/CD163), were not different from controls, but surface expression of CD163 was increased (P = 0.021) while PD1 was decreased (P = 0.013) along with a trend for higher tissue factor (P = 0.096). As a group, HIV/ART participants had elevated plasma CCL2 (MCP-1; P = 0.0001), CXCL9 (MIG; P = 0.04), and sIL2R (P = 0.015), which were correlated, while sCD14 was not elevated. Principal component analysis of soluble markers revealed that 6/11 HIV/ART participants clustered with controls, while 5 formed a distinct group, driven by IL-10, CCL11, CXCL10, CCL2, CXCL9, and sIL2R. These individuals were significantly older than those clustering with controls. Transcriptomic analysis revealed multiple genes linked to immune functions including inflammation, immune cell development, and cell-cell signaling that were downregulated in HIV/ART monocytes and distinct from patterns in untreated subjects. CONCLUSIONS Long-term ART-treated individuals normalize monocyte subsets but exhibit immune dysregulation involving both aberrant inflammation and monocyte dysfunction, as well as inter-individual heterogeneity, suggesting complex mechanisms linking monocytes and HIV/ART comorbidities.
Collapse
Affiliation(s)
- Anjana Yadav
- Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| | | | - Vincent R Knecht
- Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| | | | - Sarah J Ratcliffe
- Department of Biostatistics and Epidemiology; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| | | | - Pablo Tebas
- Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| | - Ronald G Collman
- Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| |
Collapse
|
66
|
Martin-Garcia D, Silva-Vilches C, Will R, Enk AH, Lonsdorf AS. Tumor-derived CCL20 affects B16 melanoma growth in mice. J Dermatol Sci 2019; 97:57-65. [PMID: 31883833 DOI: 10.1016/j.jdermsci.2019.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/08/2019] [Accepted: 12/08/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chemokine ligand-20 (CCL20) expressed in the epidermis is a potent impetus for the recruitment of CC-chemokine receptor 6 (CCR6)-expressing subsets of DCs, B-cells and memory T-cells into the skin. CCL20 and CCR6+ immune cells have been detected in chronic inflammatory skin diseases and several malignancies, including melanoma. Yet, the functional contribution of the CCR6/CCL20 axis for melanoma progression remains controversial. OBJECTIVE The functional contribution of CCR6-expressing immune cell subsets and local CCL20 in the tumor microenvironment for the immune control of melanoma was studied. METHODS Homeostatic and inducible CCL20 secretion of murine (B16, Ret) and human (A375, C32) melanoma cells was analyzed by ELISA. To assess the functional relevance of CCR6/CCL20 interactions on local tumor progression, prestimulated or retrovirally transduced B16/F1 melanoma cells overexpressing CCL20 (B16-CCL20) were injected subcutaneously into C57BL/6 Wt mice and congenic CCR6-deficient (CCR6-/-) mice. Infiltrating leucocytes were examined by flow cytometry in tumors and draining lymph nodes (DLNs). RESULTS Melanoma cell lines up-regulate CCL20 secretion upon stimulation with pro-inflammatory cytokines in vitro. While only moderate changes in phenotype and composition of leucocytes were detected in advanced tumors and DLNs, mice injected with CCR6+ B16-CCL20 cells developed smaller tumors compared to B16-Control injected littermates, with CCR6-/- mice displaying the most pronounced reduction in tumor growth and incidence. CONCLUSION Our results suggest that CCR6/CCL20 interactions and individual independent effects of CCL20 and CCR6 in the microenvironment may be essential for melanoma progression and suggest a decisive role of this chemokine axis for melanoma pathogenesis beyond chemoattraction.
Collapse
Affiliation(s)
- Diego Martin-Garcia
- Department of Dermatology, University Hospital, Ruprecht-Karls-University of Heidelberg, Germany
| | - Cinthia Silva-Vilches
- Department of Dermatology, University Hospital, Ruprecht-Karls-University of Heidelberg, Germany
| | - Rainer Will
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander H Enk
- Department of Dermatology, University Hospital, Ruprecht-Karls-University of Heidelberg, Germany
| | - Anke S Lonsdorf
- Department of Dermatology, University Hospital, Ruprecht-Karls-University of Heidelberg, Germany.
| |
Collapse
|
67
|
Immunomodulatory Effects of the Meretrix Meretrix Oligopeptide (QLNWD) on Immune-Deficient Mice. Molecules 2019; 24:molecules24244452. [PMID: 31817348 PMCID: PMC6943722 DOI: 10.3390/molecules24244452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to explore the immunomodulatory effects of the Meretrix meretrix oligopeptide (MMO, QLNWD) in cyclophosphamide (CTX)-induced immune-deficient mice. Compared to untreated, CTX-induced immune-deficient mice, the spleen and thymus indexes of mice given moderate (100 mg/kg) and high (200 mg/kg) doses of MMO were significantly higher (p < 0.05), and body weight loss was alleviated. Hematoxylin-eosin (H&E) staining revealed that MMO reduced spleen injury, thymus injury, and liver injury induced by CTX in mice. Furthermore, MMO boosted the production of immunoglobulin G (IgG) and hemolysin in the serum and promoted the proliferation and differentiation of spleen T-lymphocytes. Taken together, our findings suggest that MMO plays a vital role in protection against immunosuppression in CTX-induced immune-deficient mice and could be a potential immunomodulatory candidate for use in functional foods or immunologic adjuvants.
Collapse
|
68
|
Salabarria AC, Braun G, Heykants M, Koch M, Reuten R, Mahabir E, Cursiefen C, Bock F. Local VEGF-A blockade modulates the microenvironment of the corneal graft bed. Am J Transplant 2019; 19:2446-2456. [PMID: 30821887 DOI: 10.1111/ajt.15331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/25/2023]
Abstract
The microenvironment plays an important role in several immunological processes. Vascular endothelial growth factor-A (VEGF-A) not only regulates angiogenesis, but is known as a modulator of the immune microenvironment. Modulating the site of transplantation might be beneficial for subsequent transplant survival. In this study, we therefore analyzed the effect that a local blockade of VEGF-A in the inflamed cornea as the graft receiving tissue has on the immune system. We used the murine model of suture-induced neovascularization and subsequent high-risk corneal transplantation, which is an optimal model for local drug application. Mice were treated with VEGFR1/R2 trap prior to transplantation. We analyzed corneal gene expression, as well as protein levels in the cornea and serum on the day of transplantation, 2 and 8 weeks later. Local VEGF depletion prior to transplantation increases the expression of pro-inflammatory as well as immune regulatory cytokines only in the corneal microenvironment, but not in the serum. Furthermore, local VEGFR1/R2 trap treatment significantly inhibits the infiltration of CD11c+ dendritic cells into the cornea. Subsequent increased corneal transplantation success was accompanied by a local upregulation of Foxp3 gene expression. This study demonstrates that locally restricted VEGF depletion increases transplantation success by modulating the receiving corneal microenvironment and inducing tolerogenic mechanisms.
Collapse
Affiliation(s)
| | - Gabriele Braun
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
| | - Malte Heykants
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Raphael Reuten
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Esther Mahabir
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
69
|
Zhang Y, Xu J, Zhang N, Chen M, Wang H, Zhu D. Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett 2019; 458:123-135. [DOI: 10.1016/j.canlet.2019.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
|
70
|
Anderson ME, Rodic N, Subtil A, Queen D, Arcasoy S, Niedt GW, Heald PW, Geskin LJ. Multifocal pleomorphic dermal sarcoma and the role of inflammation and immunosuppression in a lung transplant patient: a case report. J Med Case Rep 2019; 13:169. [PMID: 31142349 PMCID: PMC6542061 DOI: 10.1186/s13256-019-2093-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background Pleomorphic dermal sarcoma is the cutaneous variant of undifferentiated pleomorphic sarcoma. It is a rare malignancy of unclear histogenesis; it is a diagnosis of exclusion that requires extensive use of immunohistochemistry to rule out other malignancies. Pleomorphic dermal sarcoma typically presents as a solitary tumor in sun-exposed areas and may have unpredictable clinical behavior, with some tumors associated with metastasis and death. Case presentation We present an unusual case of multifocal pleomorphic dermal sarcoma arising in the areas of alpha-1-antitrypsin deficiency panniculitis in a lung transplant patient. Our patient was a 58-year-old white woman whose initial presentation was consistent with alpha-1-antitrypsin deficiency panniculitis. She then developed extensive multifocal, bleeding, and ulcerated nodules in the areas of the panniculitis. A skin biopsy was consistent with a diagnosis of pleomorphic dermal sarcoma. Her immunosuppressive regimen was decreased, and she was treated with liposomal doxorubicin 40 mg/m2 every 3 weeks with some initial improvement in the size of her tumors. However, soon after beginning therapy, she developed pneumonia and septic shock and ultimately died from multi-organ failure. Conclusions We hypothesize that chronic, multifocal inflammation in the skin in the setting of immunosuppression led to simultaneous, malignant transformation in numerous skin lesions. We discuss the challenges of diagnosing pleomorphic dermal sarcoma, therapeutic options, and stress the need for multidisciplinary management of these cases.
Collapse
Affiliation(s)
- Mary E Anderson
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nemanja Rodic
- Department of Dermatology, Yale-New Haven Hospital, New Haven, CT, USA
| | - Antonio Subtil
- Department of Dermatology, Yale-New Haven Hospital, New Haven, CT, USA
| | - Dawn Queen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Selim Arcasoy
- Department of Dermatology, Columbia University Irving Medical Center, Herbert Irving Pavilion, 161 Fort Washington Ave, 12th floor, New York, NY, 10032, USA
| | - George W Niedt
- Department of Dermatology, Columbia University Irving Medical Center, Herbert Irving Pavilion, 161 Fort Washington Ave, 12th floor, New York, NY, 10032, USA
| | - Peter W Heald
- Department of Dermatology, Yale-New Haven Hospital, New Haven, CT, USA
| | - Larisa J Geskin
- Department of Dermatology, Columbia University Irving Medical Center, Herbert Irving Pavilion, 161 Fort Washington Ave, 12th floor, New York, NY, 10032, USA.
| |
Collapse
|
71
|
Giannicola R, D'Arrigo G, Botta C, Agostino R, Del Medico P, Falzea AC, Barbieri V, Staropoli N, Del Giudice T, Pastina P, Nardone V, Monoriti M, Calabrese G, Tripepi G, Pirtoli L, Tassone P, Tagliaferri P, Correale P. Early blood rise in auto-antibodies to nuclear and smooth muscle antigens is predictive of prolonged survival and autoimmunity in metastatic-non-small cell lung cancer patients treated with PD-1 immune-check point blockade by nivolumab. Mol Clin Oncol 2019; 11:81-90. [PMID: 31289683 DOI: 10.3892/mco.2019.1859] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Immune-checkpoint blockade by Nivolumab, a human monoclonal antibody to programmed cell death receptor-1, is an emerging treatment for metastatic non-small cell lung cancer (mNSCLC). In order to prolong patient survival, this treatment requires a continuous cross-priming of tumor derived-antigens to supply fresh tumor-specific immune-effectors; a phenomenon that may also trigger auto-immune-related adverse events (irAEs). The present study therefore investigated the prognostic value of multiple autoimmunity-associated parameters in patients with mNSCLC who were undergoing Nivolumab treatment. This retrospective study included 92 mNSCLC patients who received salvage therapy with Nivolumab (3 mg/kg, biweekly) between September 2015 and June 2018. Log-rank test, Mantel-Cox and McPherson analyses were conducted to correlate patient progression-free survival (PFS) and overall survival (OS) with different parameters including blood cell counts, serum inflammatory markers and auto-antibodies (AAbs). A median PFS and OS of 10 [inter-quartile range (IQR): 5.8-14.2] and 16 [IQR: 6.2-25.8] months, respectively, were recorded, which did not correlated with age, histology or the number of previous chemotherapy lines. Male gender, the type of therapeutic regimens received prior to Nivolumab, and the occurrence of irAEs were revealed to be positive predictors of prolonged survival (P<0.05). Early detection (within 30 days) of >1AAbs among anti-nuclear antigens (ANAs), extractable nuclear antigens (ENAs) and anti-smooth cell antigens (ASMAs) correlated with prolonged PFS [hazard ratio (HR)=0.23; 95% confidence interval (CI): 0.08-0.62; P=0.004] and OS [HR=0.28 (95% CI: 0.09-0.88), P=0.03], with the type of treatment received prior to nivolumab (P=0.007) and with the risk of irAEs (P=0.002). In conclusion, increased serum levels of ANA, ENA and/or ASMA are consequential to Nivolumab administration and are predictive of a positive outcome in mNSCLC patients.
Collapse
Affiliation(s)
- Rocco Giannicola
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Graziella D'Arrigo
- Statistical Unit, National Council of Research (CNR), Grand Metropolitan Hospital-IFC, I-89124 Reggio di Calabria, Italy
| | - Cirino Botta
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Rita Agostino
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Pietro Del Medico
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Antonia Consuelo Falzea
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Vito Barbieri
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Nicoletta Staropoli
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Teresa Del Giudice
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Pierpaolo Pastina
- Radiation Oncology Unit, Siena University Hospital, I-53100 Siena, Italy
| | - Valerio Nardone
- Radiation Oncology Unit, Siena University Hospital, I-53100 Siena, Italy
| | - Marika Monoriti
- Autoimmunity Laboratory, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Graziella Calabrese
- Radiology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Giovanni Tripepi
- Statistical Unit, National Council of Research (CNR), Grand Metropolitan Hospital-IFC, I-89124 Reggio di Calabria, Italy
| | - Luigi Pirtoli
- Radiation Oncology Unit, Siena University Hospital, I-53100 Siena, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Pierfrancesco Tassone
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy.,Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy.,Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| |
Collapse
|
72
|
Nam YR, Lee KJ, Lee H, Joo CH. CXCL10 production induced by high levels of IKKε in nasal airway epithelial cells in the setting of chronic inflammation. Biochem Biophys Res Commun 2019; 514:607-612. [PMID: 31072618 DOI: 10.1016/j.bbrc.2019.04.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
Abstract
The airway is the major entry route of pathogens due to continuous gas exchange with the environment. In particular, the nasal epithelial layer is the common site of airborne mucotropic virus infections. The inflammatory response to such infections must be tightly controlled due to its non-specific nature. Unrestrained inflammation breaks down the physiological mucosal defense system and leads to secondary bacterial or fungal infections. Chronic rhinosinusitis (CRS) is a prevalent inflammatory disease that compromises quality of life. In spite of its importance in the initiation of inflammation, the role of interferon signaling in nasal airway epithelial cells is largely unknown. We analyzed the expression of interferon signaling genes using clinical lavage specimens and nasal airway epithelial cells collected from CRS patients and controls. Basal expression of IFNAs, IKBKE, STAT1, and some CXC chemokines was elevated in samples from CRS patients. In subsequent in vitro studies, we found IKKε to be the key molecule and augmented CXCL10 secretion. Based on our findings and review of the literature, we hypothesized that high levels of IKKε might induce intractable inflammation via CXCL10. We tested the hypothesis in an animal model and found not only that IKKε induced severe eosinophilic inflammation with CXCL10 over-production, but also that inhibition of IKKε resolved the inflammation.
Collapse
Affiliation(s)
- Young Ran Nam
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea; Bio-Medical Institute of Technology, Asan Medical Center, Seoul, South Korea
| | - Kyoung Jin Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea; Bio-Medical Institute of Technology, Asan Medical Center, Seoul, South Korea
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea; Bio-Medical Institute of Technology, Asan Medical Center, Seoul, South Korea
| | - Chul Hyun Joo
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea; Bio-Medical Institute of Technology, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
73
|
Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 2019; 76:1901-1918. [PMID: 30788516 PMCID: PMC6478639 DOI: 10.1007/s00018-019-03048-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
The aging process is associated with chronic low-grade inflammation in both humans and rodents, commonly called inflammaging. At the same time, there is a gradual decline in the functional capacity of adaptive and innate immune systems, i.e., immunosenescence, a process not only linked to the aging process, but also encountered in several pathological conditions involving chronic inflammation. The hallmarks of immunosenescence include a decline in the numbers of naïve CD4+ and CD8+ T cells, an imbalance in the T cell subsets, and a decrease in T cell receptor (TCR) repertoire and signaling. Correspondingly, there is a decline in B cell lymphopoiesis and a reduction in antibody production. The age-related changes are not as profound in innate immunity as they are in adaptive immunity. However, there are distinct functional deficiencies in dendritic cells, natural killer cells, and monocytes/macrophages with aging. Interestingly, the immunosuppression induced by myeloid-derived suppressor cells (MDSC) in diverse inflammatory conditions also targets mainly the T and B cell compartments, i.e., inducing very similar alterations to those present in immunosenescence. Here, we will compare the immune profiles induced by immunosenescence and the MDSC-driven immunosuppression. Given that the appearance of MDSCs significantly increases with aging and MDSCs are the enhancers of other immunosuppressive cells, e.g., regulatory T cells (Tregs) and B cells (Bregs), it seems likely that MDSCs might remodel the immune system, thus preventing excessive inflammation with aging. We propose that MDSCs are potent inducers of immunosenescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
74
|
Breheny CR, Boag A, Le Gal A, Hõim SE, Cantatore M, Anderson D, Nuttall T, Chandler ML, Gunn-Moore DA. Esophageal feeding tube placement and the associated complications in 248 cats. J Vet Intern Med 2019; 33:1306-1314. [PMID: 31001901 PMCID: PMC6524112 DOI: 10.1111/jvim.15496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/29/2019] [Indexed: 12/26/2022] Open
Abstract
Background Esophageal feeding tubes are commonly used to provide enteral nutrition to cats, but their use is associated with adverse effects. Objectives To evaluate the complications associated with e‐tube placement in cats and to identify factors predisposing to these complications. Animals Cats that had an esophageal feeding tube placed (n = 248). Methods This was a retrospective case review in which clinical records were interrogated across 2 referral centers to identify records of cats that had esophageal tubes placed. Clinical data were collected for signalment, clinical indication, method of placement, time of removal, and any complications. Logistic regression was then employed to assess the odds of an increase in complications, including infection and death. Results For those cats that survived to discharge, tubes were in place for a median of 11 days, ranging from 1 to 93 days. Complications occurred in 35.8% of the cats, with the most common being tube dislodgement (14.5%), followed by stoma site infections (12.1%). Cats receiving glucocorticoids or oncolytic agents (OR = 3.91; 95% CI, 1.14‐13.44) and with discharge at the stoma site (OR = 159.8; CI, 18.9‐1351) were at an increased odds of developing a stoma site infection, whereas those with a lower weight (OR = 1.33; 95% CI, 1.02‐1.75) or (pancreatic [OR = 4.33; 95% CI, 1.02‐18.47], neoplastic [OR = 15.44; 95% CI, 3.67‐65.07], respiratory [OR = 19.66; 95% CI, 2.81‐137.48], urogenital [OR = 5.78; 95% CI, 1.15‐28.99], and infectious diseases [OR = 11.57; 95% CI, 2.27‐58.94]) had an increased odds of death. The duration of time in place and the cat being discharged with the tube in place were not associated with an increased risk of infection or death. Conclusions and clinical importance Owners should be made aware of the potential risks involved and their predisposing factors.
Collapse
Affiliation(s)
- Craig R Breheny
- Department of Internal Medicine, Royal (Dick) School of Veterinary Studies, Ringgold Standard Institution-Internal Medicine, University of Edinburgh, Easter Bush, United Kingdom
| | - Alisdair Boag
- Department of Internal Medicine, Royal (Dick) School of Veterinary Studies, Ringgold Standard Institution-Internal Medicine, University of Edinburgh, Easter Bush, United Kingdom
| | - Alice Le Gal
- Department of Internal Medicine, Royal (Dick) School of Veterinary Studies, Ringgold Standard Institution-Internal Medicine, University of Edinburgh, Easter Bush, United Kingdom
| | - Sven-Erik Hõim
- Surgery Department, Anderson Moores, Winchester, United Kingdom
| | | | - Davina Anderson
- Surgery Department, Anderson Moores, Winchester, United Kingdom
| | - Tim Nuttall
- Department of Dermatology, Royal (Dick) School of Veterinary Studies, Ringgold Standard Institution-Internal Medicine, University of Edinburgh, Easter Bush, United Kingdom
| | - Marjoie L Chandler
- Nutrition Department, Vets Now-Nutrition, 11 Mavisbank Place, Lasswade, United Kingdom
| | - Danièlle A Gunn-Moore
- Department of Internal Medicine, Royal (Dick) School of Veterinary Studies, Ringgold Standard Institution-Internal Medicine, University of Edinburgh, Easter Bush, United Kingdom
| |
Collapse
|
75
|
Wang T, Feng Y, Zhao Z, Wang H, Zhang Y, Zhang Y, Liu H, Jin T, Liu Q. IL1RN Polymorphisms Are Associated with a Decreased Risk of Esophageal Cancer Susceptibility in a Chinese Population. Chemotherapy 2019; 64:28-35. [PMID: 30995661 DOI: 10.1159/000496400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent evidence suggested that IL1RN (interleukin-1 receptor antagonist) polymorphisms increased the susceptibility to cancers. The present study aimed to evaluate whether IL1RN was related to esophageal cancer susceptibility in a Northwest Han Chinese population. METHODS The case-control study was conducted on 384 esophageal cancer patients and 499 healthy controls. We successfully genotyped four SNPs distributed in IL1RN. The Gene Expression Profiling Interactive Analysis (GEPIA) database was used to observe the expression of IL1RN in esophageal cancer tissues and normal tissues. RegulomeDB and HaploReg v4.1 were used to calculate possible functional effects of the polymorphisms. We also used genetic models to detect any potential association between IL1RN variants and esophageal cancer risk. RESULTS In our study, rs3181052 was associated with a reduced risk of esophageal cancer in the codominant (odds ratio [OR] = 0.70, 95% confidence interval [CI] 0.52-0.93, p = 0.040), the dominant (OR = 0.75, 95% CI 0.57-0.99, p = 0.041), and the overdominant (OR = 0.71, 95% CI 0.54-0.93, p = 0.012) model. The rs452204 was associated with a 0.76-fold (OR = 0.76, 95% CI 0.58-0.99; p = 0.043) decreased esophageal cancer risk under the overdominant model without adjustment. We also found that rs3181052 had a negative effect on esophageal cancer under the overdominant model (OR = 0.72, 95% CI 0.53-0.97, p = 0.033) adjusted for age and gender. In stratified analyses by age >55 years, rs3181052 reduced the risk of esophageal cancer in the dominant and overdominant models. In addition, rs315919 had a remarkable influence on esophageal cancer risk in females, while the association was not significant between rs3181052 and esophageal cancer risk in males. CONCLUSIONS Our study provided the first evidence that IL1RN rs3181052, rs452204, and rs315919 are correlated with a decreased risk of esophageal cancer in a Northwest Han Chinese population. These findings may be useful for the development of early prognostics for esophageal cancer. However, further larger studies on different ethnic populations are warranted to verify these findings.
Collapse
Affiliation(s)
- Tianchang Wang
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital Affiliated to Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yan Feng
- Internal Medicine Department, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, China
| | - Zheng Zhao
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Hao Wang
- Department of Radiotherapy, Henan Provincial Cancer Hospital, Henan, China
| | - Yanbing Zhang
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital Affiliated to Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yongtong Zhang
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital Affiliated to Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Huijuan Liu
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital Affiliated to Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Qiufang Liu
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital Affiliated to Medical College, Xi'an Jiaotong University, Xi'an, China,
| |
Collapse
|
76
|
Zhang M, Jin C, Yang Y, Wang K, Zhou Y, Zhou Y, Wang R, Li T, Hu R. AIM2 promotes non‐small‐cell lung cancer cell growth through inflammasome‐dependent pathway. J Cell Physiol 2019; 234:20161-20173. [DOI: 10.1002/jcp.28617] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Minda Zhang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Chenyu Jin
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yunjia Yang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Keke Wang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yunjiang Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yang Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Tao Li
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| |
Collapse
|
77
|
Leach DG, Young S, Hartgerink JD. Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater 2019; 88:15-31. [PMID: 30771535 PMCID: PMC6632081 DOI: 10.1016/j.actbio.2019.02.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Macroscale biomaterials, such as preformed implantable scaffolds and injectable soft materials, possess powerful synergies with anti-cancer immunotherapies. Immunotherapies on their own typically have poor delivery properties, and often require repeated high-dose injections that result in serious off-tumor effects and/or limited efficacy. Rationally designed biomaterials allow for discrete localization and controlled release of immunotherapeutic agents, and have been shown in a large number of applications to improve outcomes in the treatment of cancers via immunotherapy. Among various strategies, macroscale biomaterial delivery systems can take the form of robust tablet-like scaffolds that are surgically implanted into a tumor resection site, releasing programmed immune cells or immunoregulatory agents. Alternatively they can be developed as soft gel-like materials that are injected into solid tumors or sites of resection to stimulate a potent anti-tumor immune response. Biomaterials synthesized from diverse components such as polymers and peptides can be combined with any immunotherapy in the modern toolbox, from checkpoint inhibitors and stimulatory adjuvants, to cancer antigens and adoptive T cells, resulting in unique synergies and improved therapeutic efficacy. The field is growing rapidly in size as publications continue to appear in the literature, and biomaterial-based immunotherapies are entering clinical trials and human patients. It is unarguably an exciting time for cancer immunotherapy and biomaterial researchers, and further work seeks to understand the most critical design considerations in the development of the next-generation of immunotherapeutic biomaterials. This review will discuss recent advances in the delivery of immunotherapies from localized biomaterials, focusing on macroscale implantable and injectable systems. STATEMENT OF SIGNIFICANCE: Anti-cancer immunotherapies have shown exciting clinical results in the past few decades, yet they suffer from a few distinct limitations, such as poor delivery kinetics, narrow patient response profiles, and systemic side effects. Biomaterial systems are now being developed that can overcome many of these problems, allowing for localized adjuvant delivery, focused dose concentrations, and extended therapy presentation. The field of biocompatible carrier materials is uniquely suited to be combined with immunotherapy, promising to yield significant improvements in treatment outcomes and clinical care. In this review, the first pioneering efforts and most recent advances in biomaterials for immunotherapeutic applications are explored, with a specific focus on implantable and injectable biomaterials such as porous scaffolds, cryogels, and hydrogels.
Collapse
Affiliation(s)
- David G Leach
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
78
|
Umansky V, Adema GJ, Baran J, Brandau S, Van Ginderachter JA, Hu X, Jablonska J, Mojsilovic S, Papadaki HA, Pico de Coaña Y, Santegoets KCM, Santibanez JF, Serre K, Si Y, Sieminska I, Velegraki M, Fridlender ZG. Interactions among myeloid regulatory cells in cancer. Cancer Immunol Immunother 2019; 68:645-660. [PMID: 30003321 PMCID: PMC11028297 DOI: 10.1007/s00262-018-2200-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022]
Abstract
Mounting evidence has accumulated on the critical role of the different myeloid cells in the regulation of the cancerous process, and in particular in the modulation of the immune reaction to cancer. Myeloid cells are a major component of host cells infiltrating tumors, interacting with each other, with tumor cells and other stromal cells, and demonstrating a prominent plasticity. We describe here various myeloid regulatory cells (MRCs) in mice and human as well as their relevant therapeutic targets. We first address the role of the monocytes and macrophages that can contribute to angiogenesis, immunosuppression and metastatic dissemination. Next, we discuss the differential role of neutrophil subsets in tumor development, enhancing the dual and sometimes contradicting role of these cells. A heterogeneous population of immature myeloid cells, MDSCs, was shown to be generated and accumulated during tumor progression as well as to be an important player in cancer-related immune suppression. Lastly, we discuss the role of myeloid DCs, which can either contribute to effective anti-tumor responses or play a more regulatory role. We believe that MRCs play a critical role in cancer-related immune regulation and suggest that future anti-cancer therapies will focus on these abundant cells.
Collapse
Affiliation(s)
- Viktor Umansky
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jaroslaw Baran
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jo A Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Xiaoying Hu
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Slavko Mojsilovic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Helen A Papadaki
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Yago Pico de Coaña
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kim C M Santegoets
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Juan F Santibanez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Karine Serre
- Faculty of Medicine, Institute of Molecular Medicine (IMM)-João Lobo Antunes, University of Lisbon, Lisbon, Portugal
| | - Yu Si
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Isabela Sieminska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Velegraki
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
79
|
Giordano FA, Link B, Glas M, Herrlinger U, Wenz F, Umansky V, Brown JM, Herskind C. Targeting the Post-Irradiation Tumor Microenvironment in Glioblastoma via Inhibition of CXCL12. Cancers (Basel) 2019; 11:cancers11030272. [PMID: 30813533 PMCID: PMC6468743 DOI: 10.3390/cancers11030272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 01/05/2023] Open
Abstract
Radiotherapy is a mainstay in glioblastoma therapy as it not only directly targets tumor cells but also depletes the tumor microvasculature. The resulting intra-tumoral hypoxia initiates a chain of events that ultimately leads to re-vascularization, immunosuppression and, ultimately, tumor-regrowth. The key component of this cascade is overexpression of the CXC-motive chemokine ligand 12 (CXCL12), formerly known as stromal-cell derived factor 1 (SDF-1). We here review the role of CXCL12 in recruitment of pro-vasculogenic and immunosuppressive cells and give an overview on future and current drugs that target this axis.
Collapse
Affiliation(s)
- Frank A Giordano
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Barbara Link
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center (WTZ), University Hospital Essen and German Cancer Consortium, Partner Site University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, 53105 Bonn, Germany.
| | - Frederik Wenz
- CEO, University Medical Center Freiburg, 79110 Freiburg, Germany.
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany.
| | - J Martin Brown
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| |
Collapse
|
80
|
Masheta DQ, Al-Azzawi SK. Antioxidant and Anti-Inflammatory Effects of Delphinidin on Glial Cells and Lack of Effect on Secretase Enzyme. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/454/1/012061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
81
|
Safari E, Ghorghanlu S, Ahmadi‐khiavi H, Mehranfar S, Rezaei R, Motallebnezhad M. Myeloid‐derived suppressor cells and tumor: Current knowledge and future perspectives. J Cell Physiol 2018; 234:9966-9981. [DOI: 10.1002/jcp.27923] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Elahe Safari
- Department of Immunology Faculty of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Sajjad Ghorghanlu
- Ischemic Disorders Research Center, Golestan University of Medical Sciences Gorgan Iran
| | | | - Sahar Mehranfar
- Department of Genetics and Immunology Faculty of Medicine, Urmia University of Medical Sciences Urmia Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences Urmia Iran
| | - Ramazan Rezaei
- Department of Immunology School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Morteza Motallebnezhad
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center, Iran University of Medical Sciences Tehran Iran
- Student Research Committee, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
82
|
Huaux F. Emerging Role of Immunosuppression in Diseases Induced by Micro- and Nano-Particles: Time to Revisit the Exclusive Inflammatory Scenario. Front Immunol 2018; 9:2364. [PMID: 30510551 PMCID: PMC6252316 DOI: 10.3389/fimmu.2018.02364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Fibrosis, cancer, and autoimmunity developing upon particle exposure have been exclusively linked with uncontrolled inflammatory processes. The critical role of inflammation is now challenged by several contradictory observations indicating that the emergence of these chronic disorders may result from non-inflammatory events. A growing number of studies reveals that micro- and nano-particles can cause exaggerated and persistent immunosuppression characterized by the release of potent anti-inflammatory cytokines (IL-10 and TGF-β), and the recruitment of major regulatory immune cells (M2 macrophages, T and B regs, and MDSC). This persistent immunosuppressive environment is initially established to limit early inflammation but contributes later to fibrosis, cancer, and infection. Immunosuppression promotes fibroblast proliferation and matrix element synthesis and subverts innate and adaptive immune surveillance against tumor cells and microorganisms. This review details the contribution of immunosuppressive cells and their derived immunoregulatory mediators and delineates the mutual role of inflammatory vs. immunosuppressive mechanisms in the pathogenesis of chronic diseases induced by particles. The consideration of these new results explains how particle-related diseases can develop independently of chronic inflammation, enriches current bioassays predicting particle toxicity and suggests new clinical strategies for treating patients affected by particle-associated diseases.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Experimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
83
|
Sato T, Shimosato T, Klinman DM. Silicosis and lung cancer: current perspectives. LUNG CANCER-TARGETS AND THERAPY 2018; 9:91-101. [PMID: 30498384 PMCID: PMC6207090 DOI: 10.2147/lctt.s156376] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
"Silica" refers to crystalline particles formed by the combination of silicon with oxygen. Inhalation of silica particles promotes the development of pulmonary fibrosis that over prolonged periods increases the risk of lung cancer. The International Agency for Research on Cancer (IARC) classified crystalline silica as a human carcinogen in 1997. This categorization was questioned due to 1) the absence of dose-response findings, 2) the presence of confounding variables that complicated interpretation of the data and 3) potential selection bias for compensated silicosis. Yet, recent epidemiologic studies strongly support the conclusion that silica exposure increases the risk of lung cancer in humans independent of confounding factors including cigarette smoke. Based on this evidence, the US Occupational Safety and Health Administration (OSHA) lowered the occupational exposure limit for crystalline silica from 0.1 to 0.05 mg/m3 in 2013. Further supporting the human epidemiologic data, murine models show that chronic silicosis is associated with an increased risk of lung cancer. In animals, the initial inflammation induced by silica exposure is followed by the development of an immunosuppressive microenvironment that supports the growth of lung tumors. This work will review our current knowledge of silica-associated lung cancers, highlighting how recent mechanistic insights support the use of cutting-edge approaches to diagnose and treat silica-related lung cancer.
Collapse
Affiliation(s)
- Takashi Sato
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takeshi Shimosato
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Shinshu University, Nagano 399-4598, Japan
| | - Dennis M Klinman
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA,
| |
Collapse
|
84
|
Jakhar R, Sharma C, Paul S, Kang SC. Immunosuppressive potential of astemizole against LPS activated T cell proliferation and cytokine secretion in RAW macrophages, zebrafish larvae and mouse splenocytes by modulating MAPK signaling pathway. Int Immunopharmacol 2018; 65:268-278. [PMID: 30359933 DOI: 10.1016/j.intimp.2018.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
In this study, the immunomodulatory effects of astemizole (AST) against lipopolysaccharide (LPS) mediated T cell proliferation and induction of inflammation in RAW macrophages (in vitro), and zebrafish larvae (in vivo) were determined. AST significantly suppressed the phagocytic activity of macrophages (3.303 ± 0.115) and inhibited lysosomal enzyme secretion (13.27 ± 2.52) induced by LPS (100 ng/ml). Moreover, AST subdued the morphological deformities such as yolk sac edema (YSE) and spinal curvature curving (SC) by inhibiting ROS generation in zebrafish larvae 24 h after microinjection of LPS (0.5 mg/ml). AST was also shown to inhibit the production of the major cytokines TNF-α (150.8 ± 0.6), IL-1β (276.5 ± 1.6), and PGE2 (194.6 ± 0.6) pg/ml in RAW macrophages. It also subdued the ROS induced iNOS and COX-2 generated in response to LPS mediated immune dysfunctions in zebrafish larvae. These results suggested the immunosuppression effect of AST. Furthermore, induction of immune-suppression due to AST resulted in significant down-regulation of innate immunity directed by MAPK (p38, ERK and JNK), which was found to be associated with decreased production of acute inflammatory mediators both in vitro and in vivo. To confirm its activity, splenocytes were prepared using BALB/c mice and a mitogen activated splenocyte proliferation assay was also performed. Our findings suggest that AST has the ability to inhibit T cell proliferation and cytokine secretion both in vitro and in vivo by interfering with MAPK signaling pathway. Taken together, our results showed the potential of AST as a countermeasure to immune dysfunction and suggest its use as immunosuppressant compound in inflammatory disease.
Collapse
Affiliation(s)
- Rekha Jakhar
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Chanchal Sharma
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| | - Souren Paul
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
85
|
Nakayama T, Saito K, Kumagai J, Nakajima Y, Kijima T, Yoshida S, Kihara K, Fujii Y. Higher Serum C-reactive Protein Level Represents the Immunosuppressive Tumor Microenvironment in Patients With Clear Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2018; 16:e1151-e1158. [PMID: 30213543 DOI: 10.1016/j.clgc.2018.07.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION C-reactive protein (CRP), a representative inflammatory marker, could serve as a biomarker in renal cell carcinoma because CRP is an important prognostic factor. However, its detailed mechanism remains unknown. This study showed that higher CRP levels correlated with the tumor immune microenvironment, which leads to a worse prognosis. These findings can help to clarify the underlying mechanisms between the presence of systemic inflammatory reaction and prognosis. The aim of this study is to investigate the association between tumor immune microenvironment and CRP in patients with renal cell carcinoma (RCC) to explore the underlying mechanisms between CRP level and prognosis. PATIENTS AND METHODS Immunohistochemical measurement of CD4, CD8, CD163 (M2 macrophages), and Foxp3 (Regulatory T [Treg] cells) was performed in patients with clear-cell RCC (n = 111) treated with radical or partial nephrectomy at our institution. The association between immunohistochemical status and preoperative serum CRP level and cancer-specific survival (CSS) was analyzed. RESULTS Thirty-three patients (30%) had a high CRP level (≥ 5.0 mg/L), and the CSS rate was significantly worse among these patients than among the remaining patients (P < .001). In patients with strong infiltration of CD8+, Foxp3+, or CD163+ cells, CRP levels were significantly higher (P = .041, P = .001, and P = .035, respectively), and CSS was significantly worse compared with patients with weak infiltration (P = .040, P = .026, and P < .001, respectively). In multivariate analysis, strong CD163+ cells infiltration (P = .001) as well as pathologic T3 (P = .036), lymph-node involvement (P = .007), distant metastasis (P < .001), and Fuhrman nuclear grade 4 (P = .003) were independent prognostic factors for CSS. CONCLUSIONS Infiltration of the immunosuppressive cells known as Tregs and M2 macrophages in the tumor microenvironment is associated with higher CRP and poor prognosis in patients with clear-cell RCC. CRP could reflect an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Takayuki Nakayama
- Department of Urology, Tokyo Medical and Dental Graduate University, Tokyo, Japan
| | - Kazutaka Saito
- Department of Urology, Tokyo Medical and Dental Graduate University, Tokyo, Japan.
| | - Jiro Kumagai
- Department of Pathology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Yutaka Nakajima
- Department of Surgical Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiki Kijima
- Department of Urology, Tokyo Medical and Dental Graduate University, Tokyo, Japan
| | - Soichiro Yoshida
- Department of Urology, Tokyo Medical and Dental Graduate University, Tokyo, Japan
| | - Kazunori Kihara
- Department of Urology, Tokyo Medical and Dental Graduate University, Tokyo, Japan
| | - Yasuhisa Fujii
- Department of Urology, Tokyo Medical and Dental Graduate University, Tokyo, Japan
| |
Collapse
|
86
|
Wu K, Tan MY, Jiang JT, Mu XY, Wang JR, Zhou WJ, Wang X, Li MQ, He YY, Liu ZH. Cisplatin inhibits the progression of bladder cancer by selectively depleting G-MDSCs: A novel chemoimmunomodulating strategy. Clin Immunol 2018; 193:60-69. [DOI: 10.1016/j.clim.2018.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/11/2017] [Accepted: 01/31/2018] [Indexed: 01/04/2023]
|
87
|
Amisaki M, Saito H, Tokuyasu N, Sakamoto T, Honjo S, Fujiwara Y. Prognostic value of postoperative complication for early recurrence after curative resection of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2018; 17:323-329. [PMID: 29631957 DOI: 10.1016/j.hbpd.2018.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Postoperative complications may adversely affect oncological outcomes. The aim of this study was to evaluate the impact of postoperative complications on early-phase recurrence after curative resection for hepatocellular carcinoma (HCC). METHODS We included 145 HCC patients who underwent initial and curative resection between January 2004 and December 2013. Postoperative complications of grade III or higher based on Clavien-Dindo classification were defined as clinically relevant postoperative complications. Recurrence within two years after hepatectomy was defined as early-phase recurrence. RESULTS Thirty-eight patients (26%) developed postoperative complications. The only predictive factor for postoperative complication was longer operative duration (P = 0.037). The disease-specific survival rate of patients with complication was lower than that of patients without complications (P = 0.015). Early-phase recurrence was observed in 20/38 (53%) patients who suffered postoperative complications and 36/107 (34%) patients with no complications, which was statistically significant (P = 0.039). Multivariate analysis identified four factors contributing to early-phase recurrence: high serum AFP level (P = 0.042), multiple tumors (P < 0.001), poor differentiation (P = 0.036) and presence of postoperative complication (P = 0.039). CONCLUSIONS Postoperative complication is an independent prognostic factor for early-phase recurrence after curative resection of HCC. Close observation of patients with postoperative complications may be a necessary treatment strategy for HCC.
Collapse
Affiliation(s)
- Masataka Amisaki
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Hiroaki Saito
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| | - Naruo Tokuyasu
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Teruhisa Sakamoto
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Soichiro Honjo
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8503, Japan
| |
Collapse
|
88
|
Interleukin-1 Beta-A Friend or Foe in Malignancies? Int J Mol Sci 2018; 19:ijms19082155. [PMID: 30042333 PMCID: PMC6121377 DOI: 10.3390/ijms19082155] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1 beta (IL-1β) is induced by inflammatory signals in a broad number of immune cell types. IL-1β (and IL-18) are the only cytokines which are processed by caspase-1 after inflammasome-mediated activation. This review aims to summarize current knowledge about parameters of regulation of IL-1β expression and its multi-facetted role in pathophysiological conditions. IL-1 signaling activates innate immune cells including antigen presenting cells, and drives polarization of CD4+ T cells towards T helper type (Th) 1 and Th17 cells. Therefore, IL-1β has been attributed a largely beneficial role in resolving acute inflammations, and by initiating adaptive anti-tumor responses. However, IL-1β generated in the course of chronic inflammation supports tumor development. Furthermore, IL-1β generated within the tumor microenvironment predominantly by tumor-infiltrating macrophages promotes tumor growth and metastasis via different mechanisms. These include the expression of IL-1 targets which promote neoangiogenesis and of soluble mediators in cancer-associated fibroblasts that evoke antiapoptotic signaling in tumor cells. Moreover, IL-1 promotes the propagation of myeloid-derived suppressor cells. Using genetic mouse models as well as agents for pharmacological inhibition of IL-1 signaling therapeutically applied for treatment of IL-1 associated autoimmune diseases indicate that IL-1β is a driver of tumor induction and development.
Collapse
|
89
|
Abu Bakar FI, Abu Bakar MF, Abdullah N, Endrini S, Rahmat A. A Review of Malaysian Medicinal Plants with Potential Anti-Inflammatory Activity. Adv Pharmacol Sci 2018; 2018:8603602. [PMID: 30123256 PMCID: PMC6079619 DOI: 10.1155/2018/8603602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/25/2018] [Accepted: 05/20/2018] [Indexed: 12/21/2022] Open
Abstract
This article aims to provide detailed information on Malaysian plants used for treating inflammation. An extensive search on electronic databases including PubMed, Google Scholar, Scopus, and ScienceDirect and conference papers was done to find relevant articles on anti-inflammatory activity of Malaysian medicinal plants. The keyword search terms used were "inflammation," "Malaysia," "medicinal plants," "mechanisms," "in vitro," and "in vivo." As a result, 96 articles on anti-inflammatory activity of Malaysian medicinal plants were found and further reviewed. Forty-six (46) plants (in vitro) and 30 plants (in vivo) have been identified to possess anti-inflammatory activity where two plants, Melicope ptelefolia (Tenggek burung) and Portulaca oleracea (Gelang pasir), were reported to have the strongest anti-inflammatory activity of more than 90% at a concentration of 250 µg/ml. It was showed that the activity was mainly due to the occurrence of diverse naturally occurring phytochemicals from diverse groups such as flavonoids, coumarins, alkaloids, steroids, benzophenone, triterpenoids, curcuminoids, and cinnamic acid. Hence, this current review is a detailed discussion on the potential of Malaysian medicinal plants as an anti-inflammatory agent from the previous studies. However, further investigation on the possible underlying mechanisms and isolation of active compounds still remains to be investigated.
Collapse
Affiliation(s)
- Fazleen Izzany Abu Bakar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Hab Pendidikan Tinggi Pagoh, KM 1, Jalan Panchor, 84600 Muar, Johor, Malaysia
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| | - Mohd Fadzelly Abu Bakar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Hab Pendidikan Tinggi Pagoh, KM 1, Jalan Panchor, 84600 Muar, Johor, Malaysia
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| | - Norazlin Abdullah
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Hab Pendidikan Tinggi Pagoh, KM 1, Jalan Panchor, 84600 Muar, Johor, Malaysia
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| | - Susi Endrini
- Faculty of Medicine, YARSI University, 10510 Jakarta, Indonesia
| | - Asmah Rahmat
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Hab Pendidikan Tinggi Pagoh, KM 1, Jalan Panchor, 84600 Muar, Johor, Malaysia
| |
Collapse
|
90
|
Gou HF, Zhou L, Huang J, Chen XC. Intraperitoneal oxaliplatin administration inhibits the tumor immunosuppressive microenvironment in an abdominal implantation model of colon cancer. Mol Med Rep 2018; 18:2335-2341. [PMID: 29956798 DOI: 10.3892/mmr.2018.9219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 06/05/2018] [Indexed: 02/05/2023] Open
Abstract
Recent studies have demonstrated that some chemotherapeutic drugs can enhance antitumor immunity by eliminating and inactivating immunosuppressive cells. Oxaliplatin (OXP) induces immunogenic cell death by increasing the immunogenicity of cancer cells. However, the effects of OXP on the tumor immunosuppressive microenvironment remain unclear. The aim of the present study was to evaluate the antitumor activity of OXP by intraperitoneal (i.p.) administration in an abdominal implantation model of colon cancer and tested the tumor immune microenvironment to observe whether OXP affects the local immune inhibitory cell populations. Abdominal metastasis models were established by inoculation of CT26 cells. The antitumor efficacy of OXP and the tumor immune microenvironment were evaluated. The tumors and spleens of mice were harvested for flow cytometric analysis. Cluster of differentiation (CD)‑8+CD69+ T cells, regulatory T cells (Tregs), CD11b+F4/80high macrophages and myeloid‑derived suppressor cells (MDSCs) were evaluated by flow cytometric analysis. In vivo i.p. administration of OXP inhibited tumor growth in the abdominal metastasis model. Furthermore, OXP was observed to increase tumor‑infiltrating activated CD8+ T cells in tumors, decrease CD11b+F4/80high macrophages in tumors and decrease MDSCs in the spleen. These results suggested that i.p. administration of OXP alone may inhibit tumor cell growth and induce the antitumor immunostimulatory microenvironment by eliminating immunosuppressive cells.
Collapse
Affiliation(s)
- Hong-Feng Gou
- Department of Abdominal Cancer, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lei Zhou
- Department of Abdominal Cancer, Cancer Center, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jia Huang
- Department of Abdominal Cancer, Cancer Center, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Chuan Chen
- Department of Hematology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
91
|
Chen L, Huang CF, Li YC, Deng WW, Mao L, Wu L, Zhang WF, Zhang L, Sun ZJ. Blockage of the NLRP3 inflammasome by MCC950 improves anti-tumor immune responses in head and neck squamous cell carcinoma. Cell Mol Life Sci 2018; 75:2045-2058. [PMID: 29184980 PMCID: PMC11105265 DOI: 10.1007/s00018-017-2720-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 11/12/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022]
Abstract
The NLRP3 inflammasome is a critical innate immune pathway responsible for producing active interleukin (IL)-1β, which is associated with tumor development and immunity. However, the mechanisms regulating the inflammatory microenvironment, tumorigenesis and tumor immunity are unclear. Herein, we show that the NLRP3 inflammasome was over-expressed in human HNSCC tissues and that the IL-1β concentration was increased in the peripheral blood of HNSCC patients. Additionally, elevated NLRP3 inflammasome levels were detected in tumor tissues of Tgfbr1/Pten 2cKO HNSCC mice, and elevated IL-1β levels were detected in the peripheral blood serum, spleen, draining lymph nodes and tumor tissues. Blocking NLRP3 inflammasome activation using MCC950 remarkably reduced IL-1β production in an HNSCC mouse model and reduced the numbers of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated macrophages (TAMs). Moreover, inhibiting NLRP3 inflammasome activation increased the numbers of CD4+ and CD8+ T cells in HNSCC mice. Notably, the numbers of exhausted PD-1+ and Tim3+ T cells were significantly reduced. A human HNSCC tissue microarray showed that NLRP3 inflammasome expression was correlated with the expression of CD8 and CD4, the Treg marker Foxp3, the MDSC markers CD11b and CD33, and the TAM markers CD68 and CD163, PD-1 and Tim3. Overall, our results demonstrate that the NLRP3 inflammasome/IL-1β pathway promotes tumorigenesis in HNSCC and inactivation of this pathway delays tumor growth, accompanied by decreased immunosuppressive cell accumulation and an increased number of effector T cells. Thus, inhibition of the tumor microenvironment through the NLRP3 inflammasome/IL-1β pathway may provide a novel approach for HNSCC therapy.
Collapse
Affiliation(s)
- Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi-Cun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
92
|
Dwarakanath BS, Farooque A, Gupta S. Targeting regulatory T cells for improving cancer therapy: Challenges and prospects. Cancer Rep (Hoboken) 2018; 1:e21105. [PMID: 32729245 DOI: 10.1002/cnr2.1105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 04/07/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Regulatory T cells (Tregs) play a central role in immune responses to infectious agents and tumors. Paradoxically, Tregs protect self-cells from the immune response as a part of peripheral tolerance and prevents autoimmune disorders, whereas during the process of carcinogenesis, they are exploited by tumor cells for protection against antitumor immune responses. Therefore, Tregs are often considered as a major obstacle in anticancer therapy. The objective of this review is to provide a current understanding on Tregs as a potential cellular target for achieving therapeutic gain and discuss various approaches that are implicated at preclinical and clinical scenario. RECENT FINDINGS Several approaches like immunotherapy and adjuvant chemotherapy, which reduce Tregs population, have been found to be useful in improving local tumor control. Our recent observations with the glycolytic inhibitor, 2-deoxy-D-glucose, established as an adjuvant in radiotherapy and chemotherapy of tumors also show that potential of 2-deoxy-D-glucose to improve local tumor control is linked with its ability to reduce the Tregs pool. CONCLUSIONS Several published studies and emerging evidences indicate that suppression of Treg numbers, infiltration into the tumors, and function can improve the cancer therapy by enhancing the antitumor immunity.
Collapse
Affiliation(s)
| | | | - Seema Gupta
- Department of Oncology, Georgetown University, Washington, DC, USA
| |
Collapse
|
93
|
Geng L, Lu K, Li P, Li X, Zhou X, Li Y, Wang X. GLI1 inhibitor GANT61 exhibits antitumor efficacy in T-cell lymphoma cells through down-regulation of p-STAT3 and SOCS3. Oncotarget 2018; 8:48701-48710. [PMID: 27275540 PMCID: PMC5564718 DOI: 10.18632/oncotarget.9792] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/04/2016] [Indexed: 12/03/2022] Open
Abstract
T-cell lymphomas are lymphoid malignancies with aggressive clinical course and poor prognosis. Increasing evidences suggest that deregulation of signal transducer and activator of transcription-3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) is associated with the pathogenesis of T-cell lymphomas. The hedgehog (Hh)/glioma-associated oncogene-1 (GLI1) pathway, aberrantly activated in a number of tumors, has also been extensively studied. We found that protein expressions of GL11, p-STAT3, STAT3, and SOCS3 were up-regulated in T-cell lymphoma tissues and cell lines. Moreover, the protein expressions of p-STAT3 and SOCS3 were positively correlated with GLI1 in T-cell lymphomas. GLI1 inhibitor GANT61 and lentivirus-mediated siGLI1 exhibited inhibitory effects in the three T-cell lines (Jurkat, Karpass299 and Myla3676 cells). The protein expressions of p-STAT3 and SOCS3 were decreased accompanied with the inhibition of GLI1. These findings indicated that GANT61 is a promising agent against T-cell lymphoma and the antitumor activity might be partly mediated by down-regulating p-STAT3 and SOCS3.
Collapse
Affiliation(s)
- Lingyun Geng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Kang Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Peipei Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Xinyu Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| |
Collapse
|
94
|
Cho JH, Lee HJ, Ko HJ, Yoon BI, Choe J, Kim KC, Hahn TW, Han JA, Choi SS, Jung YM, Lee KH, Lee YS, Jung YJ. The TLR7 agonist imiquimod induces anti-cancer effects via autophagic cell death and enhances anti-tumoral and systemic immunity during radiotherapy for melanoma. Oncotarget 2018; 8:24932-24948. [PMID: 28212561 PMCID: PMC5421900 DOI: 10.18632/oncotarget.15326] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor (TLR) ligands are strongly considered immune-adjuvants for cancer immunotherapy and have been shown to exert direct anti-cancer effects. This study was performed to evaluate the synergistic anti-cancer and anti-metastatic effects of the TLR7 agonist imiquimod (IMQ) during radiotherapy for melanoma. The pretreatment of B16F10 or B16F1 cells with IMQ combined with γ-ionizing radiation (IR) led to enhanced cell death via autophagy, as demonstrated by increased expression levels of autophagy-related genes, and an increased number of autophagosomes in both cell lines. The results also confirmed that the autophagy process was accelerated via the reactive oxygen species (ROS)-mediated MAPK and NF-κB signaling pathway in the cells pretreated with IMQ combined with IR. Mice subcutaneously injected with melanoma cells showed a reduced tumor growth rate after treatment with IMQ and IR. Treatment with 3-methyladenine (3-MA), ameliorated the anti-cancer effect of IMQ combined with IR. Additionally, the combination therapy enhanced anti-cancer immunity, as demonstrated by an increased number of CD8+ T cells and decreased numbers of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSCs) in the tumor lesions. Moreover, the combination therapy decreased the number of metastatic nodules in the lungs of mice that were injected with B16F10 cells via the tail vein. In addition, the combination therapy enhanced systemic anti-cancer immunity by increasing the abundances of T cell populations expressing IFN-γ and TNF-α. Therefore, these findings suggest that IMQ could serve as a radiosensitizer and immune booster during radiotherapy for melanoma patients.
Collapse
Affiliation(s)
- Jeong Hyun Cho
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyo-Ji Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Byung-Il Yoon
- Department of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Jongseon Choe
- Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Tae-Wook Hahn
- Department of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeong A Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Sun Shim Choi
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon, Republic of Korea
| | - Kee-Ho Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
95
|
Ramraj SK, Smith KM, Janakiram NB, Toal C, Raman A, Benbrook DM. Correlation of clinical data with fallopian tube specimen immune cells and tissue culture capacity. Tissue Cell 2018; 52:57-64. [PMID: 29857829 DOI: 10.1016/j.tice.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Human fallopian tube fimbria secretory epithelial cells (hFTSECs) are considered an origin of ovarian cancer and methods for their culture from fallopian tube specimens have been reported. Our objective was to determine whether characteristics of the donors or surgeries were associated with the capacities of fimbria specimens to generate hFTSEC cultures or their immune profiles. There were no surgical complications attributable to fallopian tube removal. Attempts to establish primary hFTSEC cultures were successful in 37 of 55 specimens (67%). Success rates did not differ significantly between specimens grouped by patient or surgery characteristics. Established cultures could be revived after cryopreservation and none became contaminated with microorganisms. Two cultures evaluated for long term growth senesced between passages 10 and 15. M1 macrophages were the predominant cell type, while all other immune cells were present at much lower percentages. IL-10 and TGF-β exhibited opposing trends with M1 and M2 macrophages. Plasma IL-10 levels exhibited significant positive correlation with patient age. In conclusion, fallopian tube fimbria specimens exhibit a pro-inflammatory phenotype and can be used to provide a source of hFTSECs that can be cultured for a limited time regardless of the donor patient age or race, or the type of surgery performed.
Collapse
Affiliation(s)
- Satish Kumar Ramraj
- Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC1270, Oklahoma City, OK, 73104, United States
| | - Katie M Smith
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd Suite 2400, Oklahoma City, OK, 73104, United States
| | - Naveena B Janakiram
- Department of Hematologic Oncology, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC, 1205, Oklahoma City, OK, 73104, United States
| | - Coralee Toal
- University of Oklahoma Medical School, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States
| | - Ankita Raman
- Department of OBGYN, University of Nevada, Las Vegas, NV, 89102, United States
| | - Doris Mangiaracina Benbrook
- Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC1270, Oklahoma City, OK, 73104, United States; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd Suite 2400, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
96
|
Moro-García MA, López-Iglesias F, Marcos-Fernández R, Bueno-García E, Díaz-Molina B, Lambert JL, Suárez-García FM, Morís de la Tassa C, Alonso-Arias R. More intensive CMV-infection in chronic heart failure patients contributes to higher T-lymphocyte differentiation degree. Clin Immunol 2018; 192:20-29. [PMID: 29608971 DOI: 10.1016/j.clim.2018.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/08/2018] [Accepted: 03/27/2018] [Indexed: 01/10/2023]
Abstract
Immunosenescence in chronic heart failure (CHF) is characterized by a high frequency of differentiated T-lymphocytes, contributing to an inflammatory status and a deficient ability to generate immunocompetent responses. CMV is the best known inducer of T-lymphocyte differentiation, and is associated with the phenomenon of immunosenescence. In this study, we included 58 elderly chronic heart failure patients (ECHF), 60 healthy elderly controls (HEC), 40 young chronic heart failure patients (YCHF) and 40 healthy young controls (HYC). High differentiation of CD8+ T-lymphocytes was found in CMV-seropositive patients; however, the differentiation of CD4+ T-lymphocytes was increased in CMV-seropositive but also in CHF patients. Anti-CMV antibody titers showed positive correlation with more differentiated CD4+ and CD8+ subsets and inverse correlation with CD4/CD8 ratio. Immunosenescence found in CHF patients is mainly due to the dynamics of CMV-infection, since the differentiation of T-lymphocyte subsets is related not only to CMV-infection, but also to anti-CMV antibody titers.
Collapse
Affiliation(s)
| | - Fernando López-Iglesias
- Sección de Hemodinámica y Cardiología Intervencionista, Servicio de Cardiología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Eva Bueno-García
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Beatriz Díaz-Molina
- Sección de Hemodinámica y Cardiología Intervencionista, Servicio de Cardiología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - José Luis Lambert
- Sección de Hemodinámica y Cardiología Intervencionista, Servicio de Cardiología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Cesar Morís de la Tassa
- Sección de Hemodinámica y Cardiología Intervencionista, Servicio de Cardiología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.
| |
Collapse
|
97
|
Zekri ARN, El Deeb S, Bahnassy AA, Badr AM, Abdellateif MS, Esmat G, Salama H, Mohanad M, El-dien AE, Rabah S, Abd Elkader A. Role of relevant immune-modulators and cytokines in hepatocellular carcinoma and premalignant hepatic lesions. World J Gastroenterol 2018; 24:1228-1238. [PMID: 29568203 PMCID: PMC5859225 DOI: 10.3748/wjg.v24.i11.1228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/24/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the levels of different immune modulators in patients with hepatocellular carcinoma (HCC), in relation to other hepatic diseases.
METHODS Eighty-eight patients were included in the current study and represented patients with HCC (20), liver cirrhosis (28) and chronic hepatitis (CH; 25), and normal controls (NC; 15). Peripheral blood was isolated for immunophenotyping of active myeloid dendritic cells (mDCs; CD1c and CD40), mature inactive myeloid cells (CD1c and HLA), active plasmacytoid cells (pDCs; CD303 and CD40), mature inactive pDCs (CD30 and HLA), active natural killer (NK) cells (CD56 and CD161), active NK cells (CD56 and CD314) and inactive NK cells (CD56 and CD158) was done by flow cytometry. Serum levels of interleukin (IL)-2, IL-10, IL-12, IL-1β, interferon (IFN)-α, IFN-γ and tumor necrosis factor (TNF)-αR2 were assessed by ELISA.
RESULTS Active mDCs (CD1C+/CD40+) and inactive mDCs (CD1c+/HLA+) were significantly decreased in HCC patients in relation to NC (P < 0.001). CD40+ expression on active pDCs was decreased in HCC patients (P < 0.001), and its level was not significantly changed among other groups. Inactive pDCs (CD303+/HLA+), inactive NKs (CD56+/CD158+) and active NKs (CD56+/CD161+) were not statistically changed among the four groups studied; however, the latter was increased in CH (P < 0.05). NKG2D was statistically decreased in HCC, CH and cirrhosis (P < 0.001), and it was not expressed in 63% (12/20) of HCC patients. There was significant decrease of IL-2, IFN-α and IFN-γ (P < 0.001), and a significant increase in IL-10, IL-1β, and TNF-αR2 (P <0.01, P < 0.001 and P < 0.001; respectively) in HCC patients. There was inverted correlation between IL-12 and IL-1β in HCC (r = -0.565, P < 0.01), with a strong correlation between pDCs (CD303+/CD40+) and NKs (CD56+/CD161+; r = 0.512, P < 0.05) as well as inactive mDCs (CD1c+/HLA+) and inactive NK cells (CD56+/CD158+; r = 0.945, P < 0.001).
CONCLUSION NKG2D, CD40, IL-2 and IL-10 are important modulators in the development and progression of HCC.
Collapse
Affiliation(s)
- Abdel-Rahman N Zekri
- Molecular Virology and Immunology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Somaya El Deeb
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abeer A Bahnassy
- Department of Pathology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Abeer M Badr
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Gamal Esmat
- Department of Hepatology and Tropical Medicine, Faculty of Medicine, Cairo University, Cairo 11441, Egypt
| | - Hosny Salama
- Department of Hepatology and Tropical Medicine, Faculty of Medicine, Cairo University, Cairo 11441, Egypt
| | - Marwa Mohanad
- Department of Biochemistry, Misr University for Science and Technology, 6th October 12945, Giza Governorate, Egypt
| | - Ahmed Esam El-dien
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Shimaa Rabah
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Assmaa Abd Elkader
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
98
|
The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment. Contemp Oncol (Pozn) 2018; 22:7-13. [PMID: 29628788 PMCID: PMC5885081 DOI: 10.5114/wo.2018.73874] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hypoxia characterizes growing tumors and contributes significantly to their aggressiveness. Hypoxia-inducible factors (HIFs 1 and 2) are stabilized and act differentially as transcription factors on tumor growth and are responsible for important cancer hallmarks such as pathologic angiogenesis, cellular proliferation, apoptosis, differentiation and genetic instability as well as affecting tumor metabolism, tumor immune responses, invasion and metastasis. Taking into account the tumor tissue as a whole and considering the interplay of the various partners which react with hypoxia in the tumor site lead to reconsideration of the treatment strategies. Key limitations of treatment success result from the adaptation to the hypoxic milieu sustained by tumor anarchic angiogenesis. This raises immune tolerance by influencing the recruitment of immunosuppressive cells as bone marrow derived suppressor cells (MDSC) or by impairing the infiltration and killing of tumor cells by cytotoxic cells at the level of the endothelial cell wall of the hypoxic tumor vessels, as summarized in the schematic abstract.
Collapse
|
99
|
Zhao Q, Wang PP, Huang ZL, Peng L, Lin C, Gao Z, Su S. Tumoral indoleamine 2, 3-dioxygenase 1 is regulated by monocytes and T lymphocytes collaboration in hepatocellular carcinoma. Oncotarget 2018; 7:14781-90. [PMID: 26895379 PMCID: PMC4924751 DOI: 10.18632/oncotarget.7438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/30/2016] [Indexed: 12/12/2022] Open
Abstract
Indoleamine 2, 3-Dioxygenase 1 (IDO1) in cancer cells plays a critical role in tumor immunosuppression. However, the precise mechanisms regulating tumoral IDO1 expression in tumor milieus remain unclear. Here, we reported that IDO1 expression in tumor cells of hepatocelluar carcinomas (HCC), displayed a discrete rather than uniform pattern. In vitro culture, human hepatoma cell lines did not constitutively express IDO1. Interestingly, co-culture with peripheral blood mononuclear cells (PBMC) significantly induced and maintained IDO1 expression in these tumor cells, predominantly through IFN-γ. Mechanistically, we showed that IDO1 expression in tumor cells was only induced when co-cultured with both T lymphocytes and monocytes. Moreover, the cooperation between T lymphocytes and monocytes played an indispensable role on the tumoral IDO1 expression in immunocompromised mice. Taken together, our data supported the notion that IDO1 expression in tumor cells might serve as a counter-regulatory mechanism regulated by immune system, and provided new insights into the collaborative action of different inflammatory cells in tumor immunosuppression.
Collapse
Affiliation(s)
- Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Gene Engineering of The Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Pei-Pei Wang
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhan-Lian Huang
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chaoshuang Lin
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
100
|
Huang WY, Wang XN, Wang J, Sui ZQ. Malvidin and its Glycosides from Vaccinium ashei Improve Endothelial Function by Anti-inflammatory and Angiotensin I-Converting Enzyme Inhibitory Effects. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protective effects of malvidin and the glycosides from Vaccinium ashei on endothelial cells were investigated. The results showed that malvidin, malvidin-3-glucoside, malvidin-3-galactoside, and their mixture could defend endothelial cells from damage caused by TNF-α, and inhibit monocyte chemotactic protein-1, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and angiotensin I-converting enzyme expression. In addition, they could inhibit degradation of IκBα and obstruct the nuclear translocation of p65, suggesting the anti-inflammatory mechanism of NF-κB pathway. The results indicated blueberry anthocyanins could be potential inflammation and ACE inhibitors, and blueberry could be functional foods advantageous to maintain a healthy cardiovascular population.
Collapse
Affiliation(s)
- Wu-Yang Huang
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China 210014
| | - Xing-Na Wang
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China 210014
| | - Jing Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, PR China 210037
| | - Zhong-Quan Sui
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|