51
|
Pestovsky YS, Srichana T. Formation of Aggregate-Free Gold Nanoparticles in the Cyclodextrin-Tetrachloroaurate System Follows Finke-Watzky Kinetics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:583. [PMID: 35214912 PMCID: PMC8875903 DOI: 10.3390/nano12040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/26/2022]
Abstract
Cyclodextrin-capped gold nanoparticles are promising drug-delivery vehicles, but the technique of their preparation without trace amounts of aggregates is still lacking, and the size-manipulation possibility is very limited. In the present study, gold nanoparticles were synthesized by means of 0.1% (w/w) tetrachloroauric acid reduction with cyclodextrins at room temperature, at cyclodextrin concentrations of 0.001 M, 0.002 M and 0.004 M, and pH values of 11, 11.5 and 12. The synthesized nanoparticles were characterized by dynamic light scattering in both back-scattering and forward-scattering modes, spectrophotometry, X-ray photoelectron spectroscopy, transmission electron microscopy and Fourier-transform infrared spectroscopy. These techniques revealed 14.9% Au1+ on their surfaces. The Finke-Watzky kinetics of the reaction was demonstrated, but the actual growth mechanism turned out to be multistage. The synthesis kinetics and the resulting particle-size distribution were pH-dependent. The reaction and centrifugation conditions for the recovery of aggregate-free nanoparticles with different size distributions were determined. The absorbances of the best preparations were 7.6 for α-cyclodextrin, 8.9 for β-cyclodextrin and 7.5 for γ-cyclodextrin. Particle-size distribution by intensity was indicative of the complete absence of aggregates. The resulting preparations were ready to use without the need for concentration, filtration, or further purification. The synthesis meets the requirements of green chemistry.
Collapse
Affiliation(s)
- Yuri Sergeyevich Pestovsky
- Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla 90110, Thailand
- Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato 36824, Mexico
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla 90110, Thailand
- Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
52
|
Vasseghian Y, Almomani F, Le VT, Moradi M, Dragoi EN. Decontamination of toxic Malathion pesticide in aqueous solutions by Fenton-based processes: Degradation pathway, toxicity assessment and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127016. [PMID: 34474364 DOI: 10.1016/j.jhazmat.2021.127016] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
This study evaluates the degradation efficiency of Malathion using Fenton (Fe2+/H2O2: F), photo-Fenton (UV/Fe2+/H2O2: PF), and sono-photo Fenton (US/UV/Fe2+/H2O2: SPF) processes as well as determines the toxicity of the byproducts of degradation. The effect of various operational parameters on the Malathion degradation rate, including pH, Fe2+ concentration, Malathion concentration, and H2O2 were studied. The removal efficiency was determined to be 98.79% for the SPF, > 70.92% for the PF, and > 55.94% for the F processes under the following optimal conditions: pH = 3, [H2O2]0 = 700 mg/L, [Fe2+]0 = 20 mg/L, and [Malathion]0 = 20 mg/L. The operating costs (USD/kgMalathion-removed) were acquired as SPF > PF > F. Moreover, Malaoxon, diethyl maleate, diethyl malate, ethyl 2-hydroxysuccinate, and D-malate were among the detected byproducts from the Malathion degradation in the SPF process. Both the non-carcinogenic risk and the carcinogenic risk were assessed to establish the quality of the effluent from all three processes. The toxicity of the treated effluents, determined by Vibrio fischeri luminescence, indicated that the toxicity depends on the selected treatment process. The high degradation efficiency of the Fenton-based processes is not equivalent to achieving detoxification of the effluents. As such, the SPF process was determined to be the most effective for the Malathion degradation, total organic carbon (TOC) removal, and health risk assessment.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Vietnam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Vietnam
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Bld Mangeron no 73, Iasi 700050, Romania
| |
Collapse
|
53
|
Seid L, Lakhdari D, Berkani M, Belgherbi O, Chouder D, Vasseghian Y, Lakhdari N. High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126986. [PMID: 34461534 DOI: 10.1016/j.jhazmat.2021.126986] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Conductive crystalline polypyrrole (Cryst-PPy), Nickel-polypyrrole (Ni-PPy), and copper- polypyrole (Cu-PPy) hybrid materials were prepared using a chemical polymerization method in an aqueous solution. Part I was focused on the Chemical synthesis of Cryst-PPy powder from an organic medium. Cryst-PPy powder was successfully synthesized by chemical route from an organic medium of acetonitrile with polyethylene oxide as a stabilizing agent and oxidizing agent like potassium peroxydisulfate. The morphological study was showed the presence of spherical nanoparticles and cubic microparticles giving rise to a denser structure of PPy. In the second part, the based electrodes composites were examined in the oxidation of phenol by an electrochemical process in an alkaline medium. To follow the yield of phenol degradation at the alkaline solution, UV-visible analysis was performed at the following operating conditions: current density of 0.58 mA cm-2, phenol initial concentration of 0.150 M and for 3 h processing; the rate of phenol elimination was 56%, 38% and 28% for Cu-PPy, Ni-PPy, and pure PPy electrodes respectively. Thus, can be found that the doped Cu-PPy electrodes electrode is a new material with high electrochemical oxidation ability for phenol degradation in aqueous solutions.
Collapse
Affiliation(s)
- Lamria Seid
- Laboratoire d'Energétique et d'Electrochimie du Solide (LEES), Département de Génie Des Procédés, Faculté de Technologie, Université Sétif-1, Sétif, Alegria
| | - Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria
| | - Dalila Chouder
- Laboratoire d'Energétique et d'Electrochimie du Solide (LEES), Département de Génie Des Procédés, Faculté de Technologie, Université Sétif-1, Sétif, Alegria
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|
54
|
Wang H, Li X, Zhao X, Li C, Song X, Zhang P, Huo P, Li X. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63910-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
55
|
Görmez Ö, Yakar E, Gözmen B, Kayan B, Khataee A. CoFe 2O 4 nanoparticles decorated onto graphene oxide and graphitic carbon nitride layers as a separable catalyst for ultrasound-assisted photocatalytic degradation of Bisphenol-A. CHEMOSPHERE 2022; 288:132663. [PMID: 34710453 DOI: 10.1016/j.chemosphere.2021.132663] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The advanced oxidation process (AOP) through ultrasound-assisted photocatalytic degradation has attracted much attention in removing emerging contaminants. Herein, CoFe2O4-GO and CoFe2O4-g-C3N4 nanocomposites were synthesized using the ultrasound-assisted co-precipitation method. TEM, XRD, XPS, EDS, SEM, and FT-IR techniques characterized the structural, morphological, and chemical properties of the synthesized nanocomposites. The analyses showed that CoFe2O4 structure was nano-sized and distributed more homogeneously in graphene oxide (GO) layers with oxygenated functional groups than graphitic carbon nitride (g-C3N4). While the efficiency of composite catalysts, as photocatalysts, for degradation of bisphenol-A (BPA) was low in the visible region in the presence of persulfate, their catalytic efficacy was higher with sonolytic activation. The addition of persulfate as an oxidant remarkably enhanced the target pollutant degradation and TOC removal of BPA solution. Both composite catalysts showed 100 % BPA removal with the synergistic effect of visible region photocatalytic oxidation and sonocatalytic oxidation in the presence of persulfate at pH 6.8. In ultrasound-assisted photocatalytic oxidation of BPA, the highest mineralization efficiencies were obtained at 2 h treatment time, pH 6.8, 16 mM PS, catalyst dosages of 0.1 g/L CoFe2O4-GO, and 0.4 g/L CoFe2O4-g-C3N4 as 62 % and 55 %, respectively. An effective catalyst was obtained by reducing e-/h+ recombination and charge transfer resistance by decorating the GO layers with CoFe2O4.
Collapse
Affiliation(s)
- Özkan Görmez
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Ezgi Yakar
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Belgin Gözmen
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Berkant Kayan
- Department of Chemistry, Arts and Science Faculty, Aksaray University, 68100, Aksaray, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
56
|
Barrocas BT, Ambrožová N, Kočí K. Photocatalytic Reduction of Carbon Dioxide on TiO 2 Heterojunction Photocatalysts-A Review. MATERIALS 2022; 15:ma15030967. [PMID: 35160913 PMCID: PMC8839688 DOI: 10.3390/ma15030967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/22/2022]
Abstract
The photocatalytic reduction of carbon dioxide to renewable fuel or other valuable chemicals using solar energy is attracting the interest of researchers because of its great potential to offer a clean fuel alternative and solve global warming problems. Unfortunately, the efficiency of CO2 photocatalytic reduction remains not very high due to the fast recombination of photogenerated electron–hole and small light utilization. Consequently, tremendous efforts have been made to solve these problems, and one possible solution is the use of heterojunction photocatalysts. This review begins with the fundamental aspects of CO2 photocatalytic reduction and the fundamental principles of various heterojunction photocatalysts. In the following part, we discuss using TiO2 heterojunction photocatalysts with other semiconductors, such as C3N4, CeO2, CuO, CdS, MoS2, GaP, CaTiO3 and FeTiO3. Finally, a concise summary and presentation of perspectives in the field of heterojunction photocatalysts are provided. The review covers references in the years 2011–2021.
Collapse
|
57
|
Qiang C, Li N, Zuo S, Guo Z, Zhan W, Li Z, Ma J. Microwave-assisted synthesis of RuTe2/black TiO2 photocatalyst for enhanced diclofenac degradation: Performance, mechanistic investigation and intermediates analysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
58
|
Vasseghian Y, Dragoi EN, Almomani F, Le VT. A comprehensive review on MXenes as new nanomaterials for degradation of hazardous pollutants: Deployment as heterogeneous sonocatalysis. CHEMOSPHERE 2022; 287:132387. [PMID: 34600004 DOI: 10.1016/j.chemosphere.2021.132387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
MXene-based nanomaterials (MBNs) are two-dimensional materials that exhibit a series of sought after properties, including rich surface chemistry, adjustable bandgap structures, high electrical conductivity, hydrophobicity, thermal stability, and large specific surface area. MBNs have an exemplar performance when applied for the degradation of hazardous pollutants with various advanced oxidation processes such as heterogeneous sonocatalysis. As such, this work focuses on the sonocatalytic degradation of various hazardous pollutants using MXene-based catalysts. First, the general principles of sonocatalysis are examined, followed by an analysis of the main components of the MXene-based sonocatalysts and their application for pollutant degradation. Lastly, ongoing challenges are highlighted with recommendations to address the issues.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron no 73, 700050, Romania.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam.
| |
Collapse
|
59
|
Lu H, Sha S, Li T, Wen Q, Yang S, Wu J, Wang K, Sheng Z, Ma J. One-step electrodeposition of ZnO/graphene composites with enhanced capability for photocatalytic degradation of organic dyes. Front Chem 2022; 10:1061129. [PMID: 36405313 PMCID: PMC9666895 DOI: 10.3389/fchem.2022.1061129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 03/29/2023] Open
Abstract
Zinc oxide is a popular semiconductor used in catalysts due to its wide bandgap and high exciton binding energy. However, the photocatalytic performance of ZnO was compromised by its insufficient electron-hole separation efficiency and electron transfer rate. Herein, ZnO-reduced graphene oxide (rGO) composite solid catalyst was synthesized by one-step electrodeposition method on FTO substrate using lithium perchlorate (LiClO4) as the supporting electrolyte. Scanning electron microscopy, Raman, Fourier Transform Infrared, and XRD characterizations confirmed the deposition of ZnO and the reduction of graphene oxide Owing to the cooperative effect between rGO and ZnO, the as-prepared ZnO-rGO composites show much enhanced photocatalytic degradation ability compared with pure ZnO nanorods. By optimizing the conditions of electrodeposition of ZnO-rGO composites, the degradation rate of methylene blue can reach 99.1% within 120 min. Thus, the simple preparation and the excellent performance could endow the ZnO-rGO composites with promising application in practical dye-polluted water treatment.
Collapse
Affiliation(s)
- Hui Lu
- School of Materials Science and Engineering, North Minzu University, Yinchuan, China
- Yinchuan Aini Industrial Technology Development Co., Ltd, Yinchuan, China
- *Correspondence: Hui Lu, ; Shaolin Yang,
| | - Simiao Sha
- School of Materials Science and Engineering, North Minzu University, Yinchuan, China
| | - Tong Li
- School of Materials Science and Engineering, North Minzu University, Yinchuan, China
| | - Qian Wen
- School of Materials Science and Engineering, North Minzu University, Yinchuan, China
| | - Shaolin Yang
- School of Materials Science and Engineering, North Minzu University, Yinchuan, China
- *Correspondence: Hui Lu, ; Shaolin Yang,
| | - Jiandong Wu
- School of Materials Science and Engineering, North Minzu University, Yinchuan, China
- Yinchuan Aini Industrial Technology Development Co., Ltd, Yinchuan, China
| | - Kang Wang
- School of Materials Science and Engineering, North Minzu University, Yinchuan, China
| | - Zhilin Sheng
- School of Materials Science and Engineering, North Minzu University, Yinchuan, China
| | - Jinfu Ma
- School of Materials Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
60
|
Berkani M, Smaali A, Almomani F, Vasseghian Y. Recent advances in MXene-based nanomaterials for desalination at water interfaces. ENVIRONMENTAL RESEARCH 2022; 203:111845. [PMID: 34384753 DOI: 10.1016/j.envres.2021.111845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The best exceptional Physico-chemical attributes of MXenes including high conductivity, high surface area, high functionalization, hydroxide site, and other interesting properties have attracted recently the attention of scientists in the applications of MXene (Mn+1XnTx)-based nanomaterials for water treatment. To provide a full and comprehensive vision of the current state of the art, and improve the treatment performance, and motivate new researches in this area, this review focused on the uses of these novel 2D transition metal carbides for desalination of water and the general methods of fabrication of MXenes; thus, MXene-based nanomaterials are very efficient candidates in water desalination processes, in this review, the main properties of previous and current works about MXenes applications in this area were properly investigated. Moreover, a particular overview about the different properties of MXenes in desalination such as etching method, hydrophobicity, structural modification, and chemical modification has been performed; meanwhile, the investigation of MXenes and MXenes-based composites would be an excellent candidate in the future of water purification and environmental remediation fields, since they have several good properties compared to the other 2D materials.
Collapse
Affiliation(s)
- Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Anfel Smaali
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box, 2713, Doha, Qatar.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
61
|
Vasseghian Y, Dragoi EN, Almomani F, Le VT. Graphene-based materials for metronidazole degradation: A comprehensive review. CHEMOSPHERE 2022; 286:131727. [PMID: 34352554 DOI: 10.1016/j.chemosphere.2021.131727] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Due to its cytotoxic effect, metronidazole (MNZ) is a drug commonly used to treat bacterial, protozoal, and microaerophilic bacterial infections. After consumption, it undergoes a series of metamorphic reactions that lead to the degradation of oxidized, acetylated, and hydrolyzed metabolites in the environment. To eliminate such pollutants, due to their high potential, adsorption and photocatalysis extensive processes are used in which graphene can be used to improve efficiency. This review analyses the use of graphene as an absorbent and catalyst with a focus on absorption and photocatalytic degradation of MNZ by graphene-based materials (GBMs). The parameters affecting the adsorption, and photocatalytic degradation of MNZ are investigated and discussed. Besides, the basic mechanisms occurring in these processes are summarized and analyzed. This work provides a theoretical framework that can direct future research in the field of MNZ removal from aqueous solutions.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron No 73, 700050, Romania.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam.
| |
Collapse
|
62
|
Li S, Lai C, Li C, Zhong J, He Z, Peng Q, Liu X, Ke B. Enhanced photocatalytic degradation of dimethyl phthalate by magnetic dual Z-scheme iron oxide/mpg-C3N4/BiOBr/polythiophene heterostructure photocatalyst under visible light. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
63
|
Berkani M, Vasseghian Y, Le VT, Dragoi EN, Mousavi Khaneghah A. The Fenton-like reaction for Arsenic removal from groundwater: Health risk assessment. ENVIRONMENTAL RESEARCH 2021; 202:111698. [PMID: 34273366 DOI: 10.1016/j.envres.2021.111698] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In this paper, the heterogeneous Fenton like-reaction for Arsenic-contaminated groundwater remediation based on the performance of FeSO4 as an efficient and green catalyst and CaO2 as a source of H2O2 was investigated. To intensify the heterogeneous Fenton process, three oxidants were tested: sodium percarbonate (SPC), sodium persulfate (SPS), and calcium peroxide (CP). The results showed that CP and SPC had a synergetic effect on the rate of Arsenic degradation, while SPS had an antagonistic effect. On the other hand, inorganic ions such as Na+, Mg2+ have a very low impact on the Arsenic removal efficiency, while the anions Cl- and NO3- exhibited significant inhibition of Arsenic degradation. This effect may be imputed to the reaction and conversion of hydroxyl (HO•) radicals to less reactive. Thus, HCO3- and humic acid dramatically raised the degradation rate. Also, the response Surface method based on Box-Behnken design was applied to examine the suitable modeling, and optimized condition of the Fenton like-reaction process, the maximum Arsenic removal efficiency of 94.91% is obtained when [Fe3+]0 = 1.97 mM, [CaO2]0 = 1.74 mM and initial pH = 4.67. The obtained results showed that the Fenton-like reaction is an effective and reliable process for arsenic removal from groundwater with low non-carcinogenic risk (HQ) and carcinogenic risk (CR) values.
Collapse
Affiliation(s)
- Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron no 73, 700050, Romania
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
64
|
Doan VD, Huynh BA, Pham HAL, Vasseghian Y, Le VT. Cu 2O/Fe 3O 4/MIL-101(Fe) nanocomposite as a highly efficient and recyclable visible-light-driven catalyst for degradation of ciprofloxacin. ENVIRONMENTAL RESEARCH 2021; 201:111593. [PMID: 34175287 DOI: 10.1016/j.envres.2021.111593] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, the widespread production and use of antibiotics have increased their presence in wastewater systems, posing a potential threat to the environment and human health. The development of advanced materials for treating antibiotics in wastewater has always received special attention. This study aimed to synthesize a novel Cu2O/Fe3O4/MIL-101(Fe) nanocomposite and use it to degrade ciprofloxacin (CIP) antibiotics in an aqueous solution under visible light irradiation. The optical, structural, and morphological attributes of the developed nanocomposite were analyzed by XRD, FTIR, FE-SEM, TGA, DRS, BET, VSM, and UV-Vis techniques. Optimum circumstances for CIP photocatalytic degradation were acquired in 0.5 g L-1 of catalyst dosage, pH of 7, and CIP concentration of 20 mg L-1. The degradation efficiency was achieved 99.2% after 105 min of irradiation in optimum circumstances. The chemical trapping experiments confirmed that hydroxyl and superoxide radicals significantly contributed to the CIP degradation process. The results of this study indicated that Cu2O/Fe3O4/MIL-101(Fe) nanocomposite was a highly stable photocatalyst that could effectively remove antibiotics from aqueous solutions. The CIP degradation efficiency only decreased by 6% after five cycles, indicating the excellent recyclability of Cu2O/Fe3O4/MIL-101(Fe) nanocomposites.
Collapse
Affiliation(s)
- Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, 70000, Viet Nam
| | - Bao-An Huynh
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, 70000, Viet Nam
| | - Hoang Ai Le Pham
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, 70000, Viet Nam
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University, 03 Quang Trung, Danang, 550000, Viet Nam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, 550000, Viet Nam.
| |
Collapse
|
65
|
He J, Song W, Huang X, Gao Z. Preparation, characterization, and catalytic activity of a novel MgO/expanded graphite for ozonation of Cu-EDTA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39513-39523. [PMID: 33755889 DOI: 10.1007/s11356-021-13551-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Magnesium oxide/expanded graphite (MgO/EG) catalyst was synthesized and applied for enhancing the degradation of Cu-ethylenediaminetetraacetic acid (Cu-EDTA) in an aqueous solution. The MgO/EG catalyst was characterized by XRD, SEM, EDS, and FTIR. For assessing the catalytic activity of MgO/EG, essential influencing factors were investigated including catalyst dosage, O3 dosage, initial pH, initial Cu-EDTA concentration, and coexisting ions. The results show that the catalytic material showed high catalytic oxidation capacity for the Cu-EDTA removal in the MgO/EG/O3 system. 100% of Cu(II) and 73.2% of TOC removal efficiency could be achieved in the MgO/EG/O3 system at the reaction times of 90 min. This efficiency was higher than that seen for other systems, including O3 alone (Cu(II) 81.4%/TOC 60.6%), EG/O3 (84.2%/64.1), MgO/EG (< 4%/< 4%), and EG (< 4%/< 4%). A small decrease in the Cu(II) and TOC removal rate was observed after three runs in the stability and reusability experiments of the catalyst. Assays with radical scavenging experiments confirmed that MgO/EG-mediated oxidation was dependent on a hydroxyl radical pathway. The UV-vis spectra confirmed that the absorption peak of Cu-EDTA was gradually decreased and finally disappeared.
Collapse
Affiliation(s)
- Jun He
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Applied Chemistry, Qinhuangdao, 066004, China.
| | - Wenchao Song
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Applied Chemistry, Qinhuangdao, 066004, China
| | - Xiaohan Huang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Applied Chemistry, Qinhuangdao, 066004, China
| | - Zuoyu Gao
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Applied Chemistry, Qinhuangdao, 066004, China
| |
Collapse
|
66
|
Eu3+ doped Bi2MoO6 nanosheets fabricated via hydrothermal-calcination route and their superior performance for aqueous volatile phenols removal. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
67
|
Lakhdari D, Guittoum A, Benbrahim N, Belgherbi O, Berkani M, Vasseghian Y, Lakhdari N. A novel non-enzymatic glucose sensor based on NiFe(NPs)-polyaniline hybrid materials. Food Chem Toxicol 2021; 151:112099. [PMID: 33677039 DOI: 10.1016/j.fct.2021.112099] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
This article was focused on the elaboration of NiFe-Polyaniline glucose sensors via electrochemical technique. Firstly, the PANi (polyaniline) fibers were synthesized by oxidation of the monomer aniline on FTO (fluorine tin oxide) substrate. Secondly, the Nickel-Iron nanoparticles (NiFe (NPs)) were obtained by the Chronoamperometry method on the Polyaniline surface. The NiFe-PANi hybrid electrode was characterized by scanning electron microscopy (SEM), force atomic microscopy (AFM), Fourier-transformed infrared (FTIR), and X-ray diffraction (XRD). The electrochemical glucose sensing performance of the NiFe alloy nanoparticle was studied by cyclic voltammetry and amperometry. The fabricated glucose sensor Ni-Fe hybrid material exhibited many remarkable sensing performances, such as low-response time (4 s), sensitivity (1050 μA mM-1 cm-2), broad linear range (from 10 μM -1 mM), and low limit of detection (LOD) (0.5 μM, S/N = 3). The selectivity, reliability, and stability of the NiFe hybrid material for glucose oxidation were also investigated. All the results demonstrated that the NiFe-PANi/FTO hybrid electrode is very promising for application in electrochemical glucose sensing.
Collapse
Affiliation(s)
- Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria; Laboratoire de Physique et Chimie des Matériaux (LPCM), Université Mouloud Mammeri de Tizi-Ouzou, RP 15000, Algeria.
| | - Abderrahim Guittoum
- Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon, Bp 399, Alger-Gare, Algiers, Algeria
| | - Nassima Benbrahim
- Laboratoire de Physique et Chimie des Matériaux (LPCM), Université Mouloud Mammeri de Tizi-Ouzou, RP 15000, Algeria
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|