51
|
Bustamante DE, Calderon MS, Leiva S, Mendoza JE, Arce M, Oliva M. Three new species of Trichoderma in the Harzianum and Longibrachiatum lineages from Peruvian cacao crop soils based on an integrative approach. Mycologia 2021; 113:1056-1072. [PMID: 34128770 DOI: 10.1080/00275514.2021.1917243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The hyperdiverse genus Trichoderma is one of most useful groups of microbes for a number of human activities, and their accurate identification is crucial. The structural simplicity and lack of distinctive phenotypic variation in this group enable the use of DNA-based species delimitation methods in combination with phylogenies (and morphology when feasible) to establish well-supported boundaries among species. Our study employed a multilocus phylogeny and four DNA-based methods (automated barcode gap discovery [ABGD], statistical parsimony [SPN], generalized mixed Yule coalescent [GMYC], and Bayesian phylogenetics and phylogeography [BPP]) for four molecular markers (acl1, act, rpb2, and tef1) to delimit species of two lineages of Trichoderma. Although incongruence among these methods was observed in our analyses, the genetic distance (ABGD) and coalescence (BPP) methods and the multilocus phylogeny strongly supported and confirmed recognition of 108 and 39 different species in the Harzianum and Longibrachiatum lineages, including three new species associated with cacao farms in northern Peru, namely, T.awajun, sp. nov., T. jaklitschii, sp. nov., and T. peruvianum, sp. nov. Morphological distinctions between the new species and their close relatives are primarily related to growth rates, colony appearance, and size of phialides and conidia. This study confirmed that an integrative approach (DNA-based methods, multilocus phylogeny, and phenotype) is more likely to reliably verify supported species boundaries in Trichoderma.
Collapse
Affiliation(s)
- Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.,Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Martha S Calderon
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.,Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Santos Leiva
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Jani E Mendoza
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Marielita Arce
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Manuel Oliva
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| |
Collapse
|
52
|
Zheng H, Qiao M, Lv Y, Du X, Zhang KQ, Yu Z. New Species of Trichoderma Isolated as Endophytes and Saprobes from Southwest China. J Fungi (Basel) 2021; 7:jof7060467. [PMID: 34207925 PMCID: PMC8230185 DOI: 10.3390/jof7060467] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/27/2023] Open
Abstract
During the investigation of endophytic fungi diversity in aquatic plants and the fungal diversity in soil in southwest China, we obtained 208 isolates belonging to Trichoderma, including 28 isolates as endophytes from aquatic plants and 180 isolates as saprobes from soil, respectively. Finally, 23 new species of Trichoderma are recognized by further studies. Their phylogenetic positions are determined by sequence analyses of the combined partial sequences of translation elongation factor 1-alpha (tef1) and gene encoding of the second largest nuclear RNA polymerase subunit (rpb2). The results revealed that the 23 new species are distributed in nine known clades. The morphology and culture characteristics are observed, described and illustrated in detail. Distinctions between the new species and their close relatives were compared and discussed. These include: Trichoderma achlamydosporum, T. amoenum, T. anaharzianum, T. anisohamatum, T. aquatica, T. asiaticum, T. asymmetricum, T. inaequilaterale, T. inconspicuum, T. insigne, T. obovatum, T. paraviride, T. pluripenicillatum, T. propepolypori, T. pseudoasiaticum, T. pseudoasperelloides, T. scorpioideum, T. simile, T. subazureum, T. subuliforme, T. supraverticillatum, T. tibetica, and T. uncinatum.
Collapse
Affiliation(s)
- Hua Zheng
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Min Qiao
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
| | - Yifan Lv
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Xing Du
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- Correspondence:
| |
Collapse
|
53
|
Yang Y, Fang B, Feng S, Wang Z, Luo Z, Yao Z, Zou H, Huang L. Isolation and Identification of Trichoderma asperellum, the Novel Causal Agent of Green Mold Disease in Sweetpotato. PLANT DISEASE 2021; 105:1711-1718. [PMID: 33373292 DOI: 10.1094/pdis-07-20-1484-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Postharvest disease is an important limiting factor for sweetpotato production. Recently, a new green mold disease was found in sweetpotato storage roots. To investigate the mechanism underlying the pathogenesis of the disease, the pathogen was isolated and identified based on morphological and molecular features, and its characteristics were further analyzed by pathogenic and antagonistic evaluations. The results showed that the isolated pathogen (CRI-Ta1) was identified as Trichoderma asperellum based on the similar growth and morphological features with Trichoderma spp., 99% homology of internal transcribed spacer (ITS) sequence, and membership to the same phylogenetic group with the model strain of T. asperellum (CBS 433.97). The pathogenic analysis revealed that CRI-Ta1 could cause green mold disease through wound infection on the storage roots and the strains reisolated from infected storage roots could cause disease in different sweetpotato varieties, which was fulfilled in Koch's postulate. Moreover, CRI-Ta1 could also infect other common crop species, including chestnut, carrot, apple, pear, and others. It indicated that CRI-Ta1 was the pathogen to the storage roots of sweetpotato and had a wide host range. Additionally, in vitro antagonistic evaluation showed that CRI-Ta1 effectively inhibited the growth of common sweetpotato pathogens, including Fusarium solani and Rhizopus nigricans. However, further research is needed on the potential of CRI-Ta1 to control sweetpotato diseases in vivo. Collectively, our findings provided valuable insights into the characteristics of the T. asperellum CRI-Ta1 in sweetpotato and would be helpful to the prevention and control of sweetpotato green mold disease.
Collapse
Affiliation(s)
- Yiling Yang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Boping Fang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shujie Feng
- College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Zhangying Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhongxia Luo
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhufang Yao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hongda Zou
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lifei Huang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
54
|
Asis A, Shahriar SA, Naher L, Saallah S, Fatihah HNN, Kumar V, Siddiquee S. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Mol Biol Rep 2021; 48:3285-3301. [PMID: 33880673 DOI: 10.1007/s11033-021-06321-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Trichoderma is a genus of soil-borne fungus with an abundance of reports of its economic importance in the agriculture industry. Thus, the correct identification of Trichoderma species is necessary for its commercial purposes. Globally, Trichoderma species are routinely identified from micro-morphological descriptions which can be tedious and prone to errors. Thus, we emphasize that the accurate identification of Trichoderma strains requires a three-pronged approach i.e. based on its morphological characteristics, multilocus gene sequences of the rDNA [internal transcribed spacer (ITS) 1 and 2 regions], translation elongation factor 1-α (TEF-1α), Calmodulin (CAL) and its lignocellulolytic activities. We used this approach to identify a total of 53 Trichoderma strains which were isolated from a wet paddy field located at Tuaran, Sabah, Malaysia. The 53 strains were positively identified as belonging to three Trichoderma species, namely T. asperellum (43 strains), T. harzianum (9 strains), and T. reesei (one strain) on the basis of its morphological characteristics and multilocus gene sequences. Phylogenetic trees constructed based on the UPGMA method of the ITS 1 and 2 regions of the rDNA, TEF-1α and CAL revealed three distinct groups with the T. asperellum, T. harzianum and T. reesei strains placed under the section of Trichoderma, Pachybasium and Longibrachiatum, respectively. In addition, the lignocellulolytic activities of the isolates were measured based on the diameters of the halo zones produced when degrading cellulose, lignin, and starch, respectively. This diagnostic assay can be used to identify Trichoderma as it produces polyphenol oxidase when Tannic Acid Media is used for the lignin test, endoglucanases when Jensen media is used for cellulose, and it hydrolyzes starch to glucose when the modified Melin-Nokrans media is used for the starch test. Accurate identification of Trichoderma species is needed as these strains can potentially be used as a biocontrol agent to prevent diseases and to increase yield in agriculture crops.
Collapse
Affiliation(s)
- Azriah Asis
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Saleh Ahmed Shahriar
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Laila Naher
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600 Pengkalan Chepa, Jeli Campus, Kelantan Darul Naim, Malaysia
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Hasan Nudin Nur Fatihah
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Kampus Besut, 22200, Besut, Terengganu, Malaysia
| | - Vijay Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
55
|
Del Carmen H Rodríguez M, Evans HC, de Abreu LM, de Macedo DM, Ndacnou MK, Bekele KB, Barreto RW. New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Sci Rep 2021; 11:5671. [PMID: 33707461 PMCID: PMC7952591 DOI: 10.1038/s41598-021-84111-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/04/2021] [Indexed: 01/23/2023] Open
Abstract
A survey for species of the genus Trichoderma occurring as endophytes of Coffea, and as mycoparasites of coffee rusts (Hemileia), was undertaken in Africa; concentrating on Cameroon and Ethiopia. Ninety-four isolates of Trichoderma were obtained during this study: 76 as endophytes of healthy leaves, stems and berries and, 18 directly from colonized rust pustules. A phylogenetic analysis of all isolates used a combination of three genes: translation elongation factor-1α (tef1), rpb2 and cal for selected isolates. GCPSR criteria were used for the recognition of species; supported by morphological and cultural characters. The results reveal a previously unrecorded diversity of Trichoderma species endophytic in both wild and cultivated Coffea, and mycoparasitic on Hemileia rusts. Sixteen species were delimited, including four novel taxa which are described herein: T. botryosum, T. caeruloviride, T. lentissimum and T. pseudopyramidale. Two of these new species, T. botryosum and T. pseudopyramidale, constituted over 60% of the total isolations, predominantly from wild C. arabica in Ethiopian cloud forest. In sharp contrast, not a single isolate of Trichoderma was obtained using the same isolation protocol during a survey of coffee in four Brazilian states, suggesting the existence of a 'Trichoderma void' in the endophyte mycobiota of coffee outside of Africa. The potential use of these African Trichoderma isolates in classical biological control, either as endophytic bodyguards-to protect coffee plants from Hemileia vastatrix, the fungus causing coffee leaf rust (CLR)-or to reduce its impact through mycoparasitism, is discussed, with reference to the on-going CLR crisis in Central America.
Collapse
Affiliation(s)
| | - Harry C Evans
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
- CAB International, Bakeham Lane, Egham, Surrey, TW20 9TY, UK.
| | - Lucas M de Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Davi M de Macedo
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Miraine K Ndacnou
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- IRAD-Institut de Recheche Agricole pour le Developpement, BP 2067, Yaoundé, Cameroon
| | - Kifle B Bekele
- Department of Horticulture and Plant Science, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 397, Jimma, Ethiopia
- Ethiopian Institute of Agriculture Research, P.O. Box 192, Jimma, Ethiopia
| | - Robert W Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
56
|
Nuangmek W, Aiduang W, Kumla J, Lumyong S, Suwannarach N. Evaluation of a Newly Identified Endophytic Fungus, Trichoderma phayaoense for Plant Growth Promotion and Biological Control of Gummy Stem Blight and Wilt of Muskmelon. Front Microbiol 2021; 12:634772. [PMID: 33746927 PMCID: PMC7973005 DOI: 10.3389/fmicb.2021.634772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/10/2021] [Indexed: 11/29/2022] Open
Abstract
Gummy stem blight and wilt are known to cause enormous losses to the global production of muskmelon (Cucumis melo). In this study, the potential of endophytic fungi isolated from leaves of Siam weed (Chromolaena odorata) was investigated for the inhibition of mycelial growth of Stagonosporopsis cucurbitacearum and Fusarium equiseti. Twenty-one fungal isolates were obtained. The results indicated that a fungal isolate UP-L1I3 displayed the highest percentage in terms of inhibition of the mycelial growth of F. equiseti and S. cucurbitacearum at 90.80 and 81.60%, respectively. Consequently, this isolate was selected for its potential ability to promote plant growth and control gummy stem blight and wilt in muskmelon seedlings. Morphological and multilocus phylogenetic analyses revealed that the isolate UP-L1I3 was a new species that has been described herein as Trichoderma phayaoense. Pathogenicity test confirmed that F. equiseti and S. cucurbitacearum were the cause of gummy stem blight and wilt disease in muskmelon seedlings, respectively. However, no disease symptoms were observed in seedlings inoculated with T. phayaoense. It was found that T. phayaoense could be used preventively in muskmelon seedlings that were inoculated with F. equiseti and S. cucurbitacearum, which could then reduce the impact on the disease severity index. T. phayaoense was also effective in improving plant development by increasing plant height, as well as shoot and root dry weight values. Moreover, T. phayaoense could effectively increase weight, diameter, and the circumference and total soluble solid of fruit without having a negative effect on fruit quality parameters. Additionally, T. phayaoense was able to tolerate a commonly applied fungicide (metalaxyl) in recommended dosages for field applications.
Collapse
Affiliation(s)
- Wipornpan Nuangmek
- Faculty of Agriculture and Natural Resources, University of Phayao, Muang Phayao, Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand.,Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
57
|
Cai F, Druzhinina IS. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00464-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractModern taxonomy has developed towards the establishment of global authoritative lists of species that assume the standardized principles of species recognition, at least in a given taxonomic group. However, in fungi, species delimitation is frequently subjective because it depends on the choice of a species concept and the criteria selected by a taxonomist. Contrary to it, identification of fungal species is expected to be accurate and precise because it should predict the properties that are required for applications or that are relevant in pathology. The industrial and plant-beneficial fungi from the genus Trichoderma (Hypocreales) offer a suitable model to address this collision between species delimitation and species identification. A few decades ago, Trichoderma diversity was limited to a few dozen species. The introduction of molecular evolutionary methods resulted in the exponential expansion of Trichoderma taxonomy, with up to 50 new species recognized per year. Here, we have reviewed the genus-wide taxonomy of Trichoderma and compiled a complete inventory of all Trichoderma species and DNA barcoding material deposited in public databases (the inventory is available at the website of the International Subcommission on Taxonomy of Trichodermawww.trichoderma.info). Among the 375 species with valid names as of July 2020, 361 (96%) have been cultivated in vitro and DNA barcoded. Thus, we have developed a protocol for molecular identification of Trichoderma that requires analysis of the three DNA barcodes (ITS, tef1, and rpb2), and it is supported by online tools that are available on www.trichokey.info. We then used all the whole-genome sequenced (WGS) Trichoderma strains that are available in public databases to provide versatile practical examples of molecular identification, reveal shortcomings, and discuss possible ambiguities. Based on the Trichoderma example, this study shows why the identification of a fungal species is an intricate and laborious task that requires a background in mycology, molecular biological skills, training in molecular evolutionary analysis, and knowledge of taxonomic literature. We provide an in-depth discussion of species concepts that are applied in Trichoderma taxonomy, and conclude that these fungi are particularly suitable for the implementation of a polyphasic approach that was first introduced in Trichoderma taxonomy by John Bissett (1948–2020), whose work inspired the current study. We also propose a regulatory and unifying role of international commissions on the taxonomy of particular fungal groups. An important outcome of this work is the demonstration of an urgent need for cooperation between Trichoderma researchers to get prepared to the efficient use of the upcoming wave of Trichoderma genomic data.
Collapse
|
58
|
Hinterdobler W, Li G, Spiegel K, Basyouni-Khamis S, Gorfer M, Schmoll M. Trichoderma reesei Isolated From Austrian Soil With High Potential for Biotechnological Application. Front Microbiol 2021; 12:552301. [PMID: 33584603 PMCID: PMC7876326 DOI: 10.3389/fmicb.2021.552301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
Fungi of the genus Trichoderma are of high importance for biotechnological applications, in biocontrol and for production of homologous and heterologous proteins. However, sexual crossing under laboratory conditions has so far only been achieved with the species Trichoderma reesei, which was so far only isolated from tropical regions. Our isolation efforts aimed at the collection of Trichoderma strains from Austrian soils surprisingly also yielded 12 strains of the species T. reesei, which was previously not known to occur in Europe. Their identity was confirmed with tef1- and rpb2-sequencing and phylogenetic analysis. They could clearly be distinguished from tropical strains including the common laboratory wildtypes by UP-PCR and genetic variations adjacent to the mating type locus. The strains readily mated with reference strains derived from CBS999.97. Secreted cellulase and xylanase levels of these isolates were up to six-fold higher than those of QM6a indicating a high potential for strain improvement. The strains showed different responses to injury in terms of induction of sporulation, but a correlation to alterations in the nox1-gene sequence was not detected. Several synonymous SNPs were found in the sequence of the regulator gene noxR of the soil isolates compared to QM6a. Only in one strain, non-synonymous SNPs were found which impact a PEST sequence of NoxR, suggesting altered protein stability. The availability of sexually fertile strains from middle Europe naturally producing decent amounts of plant cell wall degrading enzymes opens up novel perspectives for non-GMO strain improvement and biological pretreatment of plant biomass for bioethanol production. Moreover, the varied response of these strains to injury in terms of sporulation, which is independent of Nox1 and NoxR suggests that additional regulators impact this phenomenon in T. reesei.
Collapse
Affiliation(s)
- Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Guofen Li
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Katharina Spiegel
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Samira Basyouni-Khamis
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
- Department of Sustainable Agricultural Systems, Institute of Agricultural Engineering, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Markus Gorfer
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
59
|
Madbouly AK. Biodiversity of Genus Trichoderma and Their Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
60
|
Gu X, Wang R, Sun Q, Wu B, Sun JZ. Four new species of Trichoderma in the Harzianum clade from northern China. MycoKeys 2020; 73:109-132. [PMID: 33117081 PMCID: PMC7561617 DOI: 10.3897/mycokeys.73.51424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/08/2020] [Indexed: 11/12/2022] Open
Abstract
The Harzianum clade of Trichoderma comprises many species, which are associated with a wide variety of substrates. In this study, four new species of Trichoderma, namely T. lentinulae, T. vermifimicola, T. xixiacum, and T. zelobreve, were encountered from a fruiting body and compost of Lentinula, soil, and vermicompost. Their colony and mycelial morphology, including features of asexual states, were described. For each species, their DNA sequences were obtained from three loci, the internal transcribed spacer (ITS) regions of the ribosomal DNA, the gene encoding the second largest nuclear RNA polymerase subunit (RPB2), the translation elongation factor 1-α encoding gene (TEF1-α). The analysis combining sequences of the three gene regions distinguished four new species in the Harzianum clade of Trichoderma. Among them, T. lentinulae and T. xixiacum clustered with T. lixii, from which these new species differ in having shorter phialides and smaller conidia. Additionally, T. lentinulae differs from T. xixiacum in forming phialides with inequilateral to a strongly-curved apex, cultural characteristics, and slow growth on PDA. Trichoderma vermifimicola is closely related to T. simmonsii, but it differs from the latter by producing phialides in verticillate whorls and smaller conidia. Trichoderma zelobreve is the sister species of T. breve but is distinguished from T. breve by producing shorter and narrower phialides, smaller conidia, and by forming concentric zones on agar plates. This study updates our knowledge of species diversity of Trichoderma.
Collapse
Affiliation(s)
- Xin Gu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China Ningxia University Yinchuan China
| | - Rui Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China Ningxia University Yinchuan China
| | - Quan Sun
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China Ningxia University Yinchuan China
| | - Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China Chinese Academy of Sciences Beijing China
| | - Jing-Zu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China Chinese Academy of Sciences Beijing China
| |
Collapse
|
61
|
Haouhach S, Karkachi N, Oguiba B, Sidaoui A, Chamorro I, Kihal M, Monte E. Three New Reports of Trichoderma in Algeria: T. atrobrunneum, (South) T. longibrachiatum (South), and T. afroharzianum (Northwest). Microorganisms 2020; 8:E1455. [PMID: 32977378 PMCID: PMC7597948 DOI: 10.3390/microorganisms8101455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022] Open
Abstract
The genus Trichoderma (Hypocreaceae, Ascomycota) consists of globally distributed fungi. In Algeria, few studies have explored the diversity of this genus, and in the majority of works identification is based on phenotypic characters. Here, nine Trichoderma strains were collected from Algeria in different locations, namely: seven in the south and two in the northwest. Also, we used 17 reference strains that were taken from the NCBI database for the phylogeny analysis. Our study is based on an integrated approach using micro and macro phenotypic characters and multiple DNA analysis (internal transcribed spacer (ITS): ITS1-4 region; translation elongation factor 1: tef1 gene). Our study reports, for the first time, three species of Trichoderma in Algeria, namely: T. atrobrunneum (south), T. longibrachiatum (south), and T. afroharzianum (northwest). It is noteworthy that T. atrobrunneum is a species previously described in European Mediterranean countries, and its presence in the soil of southern Algeria indicates that the diversity of the geographic environments and different climates of Algeria offers the possibility for the survival of diverse Trichoderma species. Knowledge on the diversity of these fungi may contribute to their future exploitation in biotechnological applications and to the biological control of plant diseases.
Collapse
Affiliation(s)
- Sadika Haouhach
- Applied Microbiology Lab, University Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria; (N.K.); (B.O.); (M.K.)
- Department of Biotechnology, University of Science and Technology of Oran Mohamed Boudiaf, 31000 Oran, Algeria
| | - Noureddine Karkachi
- Applied Microbiology Lab, University Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria; (N.K.); (B.O.); (M.K.)
| | - Bouchra Oguiba
- Applied Microbiology Lab, University Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria; (N.K.); (B.O.); (M.K.)
| | - Abouamama Sidaoui
- Department of Biology, University Center of Tamanrasset, 11000 Tamanrasset, Algeria;
| | - Isabel Chamorro
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, 37185 Salamanca, Spain; (I.C.); (E.M.)
| | - Mebrouk Kihal
- Applied Microbiology Lab, University Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria; (N.K.); (B.O.); (M.K.)
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, 37185 Salamanca, Spain; (I.C.); (E.M.)
| |
Collapse
|
62
|
Zeng ZQ, Zheng HD, Wang XC, Wei SL, Zhuang WY. Ascomycetes from the Qilian Mountains, China - Hypocreales. MycoKeys 2020; 71:119-137. [PMID: 32874117 PMCID: PMC7438379 DOI: 10.3897/mycokeys.71.55009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/05/2020] [Indexed: 11/12/2022] Open
Abstract
To investigate fungi from the Qilian Mountains in Gansu Province, ascomycetous specimens were collected and hypocrealean fungi were examined. Eighteen species belonging to six genera in the families Hypocreaceae and Nectriaceae were identified, including 11 species of Hypomyces and Trichoderma in Hypocreaceae and seven species of Nectria, Stylonectria, Thelonectria, and Thyronectria in Nectriaceae. Among them, Stylonectria qilianshanensis and Trichoderma gansuanum are new to science. DNA sequence analyses of combined ACL1, ITS, RPB2, and TEF1 regions confirmed their taxonomic placements. Morphological distinctions between the new species and their close relatives are discussed. Hypomyces tremellicola is reported for the first time in China.
Collapse
Affiliation(s)
- Zhao-Qing Zeng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China Chinese Academy of Sciences Beijing China
| | - Huan-Di Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China Chinese Academy of Sciences Beijing China
| | - Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China Chinese Academy of Sciences Beijing China
| | - Sheng-Long Wei
- Gansu Engineering Laboratory of Application Mycology, Hexi University, Zhangye 734000, China Hexi University Zhangye China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China Chinese Academy of Sciences Beijing China.,Gansu Engineering Laboratory of Application Mycology, Hexi University, Zhangye 734000, China Hexi University Zhangye China
| |
Collapse
|
63
|
MIST: a Multilocus Identification System for Trichoderma. Appl Environ Microbiol 2020; 86:AEM.01532-20. [PMID: 32680870 DOI: 10.1128/aem.01532-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Due to the rapid expansion in microbial taxonomy, precise identification of common industrially and agriculturally relevant fungi such as Trichoderma species is challenging. In this study, we introduce the online multilocus identification system (MIST) for automated detection of 349 Trichoderma species based on a set of three DNA barcodes. MIST is based on the reference databases of validated sequences of three commonly used phylogenetic markers collected from public databases. The databases consist of 414 complete sequences of the nuclear rRNA internal transcribed spacers (ITS) 1 and 2, 583 sequence fragments of the gene encoding translation elongation factor 1-alpha (tef1), and 534 sequence fragments of the gene encoding RNA polymerase subunit 2 (rpb2). Through MIST, information from different DNA barcodes can be combined and the identification of Trichoderma species can be achieved based on the integrated parametric sequence similarity search (blastn) performed in the manner of a decision tree classifier. In the verification process, MIST provided correct identification for 44 Trichoderma species based on DNA barcodes consisting of tef1 and rpb2 markers. Thus, MIST can be used to obtain an automated species identification as well as to retrieve sequences required for manual identification by means of phylogenetic analysis.IMPORTANCE The genus Trichoderma is important to humankind, with a wide range of applications in industry, agriculture, and bioremediation. Thus, quick and accurate identification of Trichoderma species is paramount, since it is usually the first step in Trichoderma-based research. However, it frequently becomes a limitation, especially for researchers who lack taxonomic knowledge of fungi. Moreover, as the number of Trichoderma-based studies has increased, a growing number of unidentified sequences have been stored in public databases, which has made the species identification more ambiguous. In this study, we provide an easy-to-use tool, MIST, for automated species identification, a list of Trichoderma species, and corresponding sequences of reference DNA barcodes. Therefore, this study will facilitate the research on the biodiversity and applications of the genus Trichoderma.
Collapse
|
64
|
Carro-Huerga G, Compant S, Gorfer M, Cardoza RE, Schmoll M, Gutiérrez S, Casquero PA. Colonization of Vitis vinifera L. by the Endophyte Trichoderma sp. Strain T154: Biocontrol Activity Against Phaeoacremonium minimum. FRONTIERS IN PLANT SCIENCE 2020; 11:1170. [PMID: 32849725 PMCID: PMC7417607 DOI: 10.3389/fpls.2020.01170] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/20/2020] [Indexed: 05/26/2023]
Abstract
Trichoderma strains used in biological control products usually exhibit high efficiency in the control of plant diseases. However, their behavior under field conditions is difficult to predict. In addition, the potential of indigenous strains has been poorly assayed as well as their possible behavior as endophytes. Hence, niche colonization is a key feature for an effective protection. In this study, we aimed to: (i) explore the possibility of using a new Trichoderma strain isolated from vine to control pathogens, (ii) study the in planta interaction with the pathogen Phaeoacremonium minimum W. Gams, Crous, M.J. Wingf. & L. Mugnai (formerly Phaeoacremonium aleophilum), a pioneer fungus involved in Grapevine Trunk Diseases (GTDs) such as esca. For this purpose, fluorescently tagged Trichoderma sp. T154 and a P. minimum strain were used for scanning electron microscopy and confocal scanning laser microscopy analyses. Data showed that the Trichoderma strain is able to colonize plants up to 12 weeks post inoculation and is located in xylem, fibers, as well as in parenchymatic tissues inside the wood. The beneficial fungus reduced colonization of the esca-related pathogen colonizing the same niches. The main observed mechanism involved in biocontrol of Trichoderma against the esca pathogen was spore adhesion, niche exclusion and only few typical hypha coiling was found between Trichoderma and the pathogen. These results suggest that the Trichoderma strain has potential for reducing the colonization of Phaeoacremonium minimum and thus, an inoculation of this biological control agent can protect the plant by limiting the development of GTD, and the strain can behave as an endophyte.
Collapse
Affiliation(s)
- Guzmán Carro-Huerga
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| | - Stéphane Compant
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Markus Gorfer
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Rosa E. Cardoza
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
- Area of Microbiology, University School of Agricultural Engineers, Universidad de León, Ponferrada, Spain
| | - Monika Schmoll
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Santiago Gutiérrez
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
- Area of Microbiology, University School of Agricultural Engineers, Universidad de León, Ponferrada, Spain
| | - Pedro A. Casquero
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| |
Collapse
|
65
|
Biodiversity of Trichoderma from grassland and forest ecosystems in Northern Xinjiang, China. 3 Biotech 2020; 10:362. [PMID: 32821644 PMCID: PMC7392985 DOI: 10.1007/s13205-020-02301-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Trichoderma spp., a cosmopolitan fungal genus, has remarkable economic value in industry and agriculture. The resources of Trichoderma spp. in the grassland and forest ecosystems of northern Xinjiang were explored in this study. A total of 634 soil samples was collected, and 312 strains assigned to 23 species of Trichoderma spp. were identified. T. harzianum was the dominant species with 28.2% from all isolates. The principal components analysis indicated that ecosystem was the most dominant impact factor among longitude, latitude, altitude and ecosystems for the species diversities of Trichoderma spp. with the decreasing trend from the north to the south of northern Xinjiang (e.g., from Altay, followed by Yili, Changji, Bayingolin and finally Urumqi). Overall, Trichoderma spp. were more frequently encountered in forest ecosystems (coniferous forest and coniferous and broadleaf mixed forest) than in grassland ecosystems (desert steppe and temperate steppe). Frequency of Trichoderma spp. was significantly decreased along with increased altitude and only a few strains were isolated from altitudes above 3000 m. The results provided essential information on Trichoderma occurrence and distribution, which should benefit the application of Trichoderma in agriculture.
Collapse
|
66
|
Benttoumi N, Colagiero M, Sellami S, Boureghda H, Keddad A, Ciancio A. Diversity of Nematode Microbial Antagonists from Algeria Shows Occurrence of Nematotoxic Trichoderma spp. PLANTS 2020; 9:plants9080941. [PMID: 32722274 PMCID: PMC7465808 DOI: 10.3390/plants9080941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022]
Abstract
Fungi and bacteria associated to phytoparasitic nematodes Globodera rostochiensis and Meloidogyne spp. in Algeria were identified and characterized. Trichoderma spp. showed the highest prevalence in the cysts of G. rostochiensis. A number of isolates were identified through PCR amplification and the sequencing of the internal transcribed spacer (ITS)1-2 and Rpb2 gene regions. The most represented species were T. harzianum and T. afroharzianum. The latter and T. hirsutum were reported for the first time in Algeria. Fusarium spp., including F. oxysporum and F. solani, comprised a second group of fungi found in cysts. Taxa associated to females of Meloidogyne spp. included T. harzianum, Fusarium spp. and other hyphomycetes. To assess the efficacy of Trichoderma spp., two assays were carried out in vitro with the culture filtrates of two T. afroharzianum and T. harzianum isolates, to check their toxicity versus the second stage juveniles of M. incognita. After 24–48 h exposure, a mortality significantly higher than the control was observed for both filtrates at 1% dilutions. The TRI genes involved in the production of trichothecenes were also amplified with the PCR from some Trichoderma spp. isolates and sequenced, supporting a putative role in nematode toxicity. Bacteria isolated from the cysts of G. rostochiensis included Brucella,Rhizobium, Stenotrophomonas and Bacillus spp., identified through 16S rRNA gene sequencing. The potential of the microbial isolates identified and their mechanisms of action are discussed, as part of a sustainable nematode management strategy.
Collapse
Affiliation(s)
- Nawal Benttoumi
- Laboratory of Phytopathology and Molecular Biology, Department of Botany, Higher National School of Agronomy (ENSA), El-Harrach 16004, Algeria; (N.B.); (S.S.); (H.B.); (A.K.)
| | - Mariantonietta Colagiero
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Via G. Amendola 122/D, 70126 Bari, Italy;
- Correspondence:
| | - Samira Sellami
- Laboratory of Phytopathology and Molecular Biology, Department of Botany, Higher National School of Agronomy (ENSA), El-Harrach 16004, Algeria; (N.B.); (S.S.); (H.B.); (A.K.)
| | - Houda Boureghda
- Laboratory of Phytopathology and Molecular Biology, Department of Botany, Higher National School of Agronomy (ENSA), El-Harrach 16004, Algeria; (N.B.); (S.S.); (H.B.); (A.K.)
| | - Abdelaziz Keddad
- Laboratory of Phytopathology and Molecular Biology, Department of Botany, Higher National School of Agronomy (ENSA), El-Harrach 16004, Algeria; (N.B.); (S.S.); (H.B.); (A.K.)
| | - Aurelio Ciancio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Via G. Amendola 122/D, 70126 Bari, Italy;
| |
Collapse
|
67
|
Baturo-Cieśniewska A, Pusz W, Patejuk K. Problems, Limitations, and Challenges in Species Identification of Ascomycota Members on the Basis of ITS Regions. ACTA MYCOLOGICA 2020. [DOI: 10.5586/am.5512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The internal transcribed spacer (ITS) region is regarded as a formal fungal primary barcode with a high probability of the correct identification for a broad group of fungi. ITS sequences have been widely used to determine many fungal species and analysis of rDNA ITS is still one of the most popular tools used in mycology. However, this region is not equally variable in all groups of fungi; therefore, identification may be problematic and result in ambiguous data, especially in some species-rich genera of Ascomycota. For these reasons, identification based on rDNA ITS is usually complemented by morphological observations and analysis of additional genes. Reliable species identification of Ascomycota members is essential in diagnosing plant diseases, verifying air quality and the effectiveness of agronomic practices, or analyzing relationships between microorganisms. Therefore, the present study aimed to verify, using specific examples, the extent to which ITS sequence analysis is useful in species identification of pathogens and saprobionts from Ascomycota and demonstrate problems related to such identification in practice. We analyzed 105 ITS sequences of isolates originating from air and plant material. Basic local alignment search tool (BLASTn) significantly contributed to the reliable species identification of nearly 80% of isolates such as <em>Arthrinium arundinis</em>, <em>Beauveria bassiana</em>, <em>Boeremia exigua</em>, <em>Cladosporium cladosporioides</em>, <em>Epicoccum nigrum</em>, <em>Nigrospora oryzae</em>, <em>Sclerotinia sclerotiorum</em>, or <em>Sordaria fimicola </em>and members of the genera <em>Alternaria </em>and <em>Trichoderma</em>. However, for most isolates, additional morphological observations, information regarding the isolate origin and, where possible, a PCR with species-specific primers were helpful and complementary. Using our practical approach, we determined that ITS-based species identification and comparative analysis with GenBank sequences significantly helps identifying Ascomycota members. However, in many cases, this should be regarded as suggestive of a taxon because the data usually require the use of additional tools to verify the results of such analysis.
Collapse
|
68
|
Rashad YM, Abdel-Azeem AM. Recent Progress on Trichoderma Secondary Metabolites. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
69
|
Towards the Biological Control of Devastating Forest Pathogens from the Genus Armillaria. FORESTS 2019. [DOI: 10.3390/f10111013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research Highlights: A large scale effort to screen, characterize, and select Trichoderma strains with the potential to antagonize Armillaria species revealed promising candidates for field applications. Background and Objectives: Armillaria species are among the economically most relevant soilborne tree pathogens causing devastating root diseases worldwide. Biocontrol agents are environment-friendly alternatives to chemicals in restraining the spread of Armillaria in forest soils. Trichoderma species may efficiently employ diverse antagonistic mechanisms against fungal plant pathogens. The aim of this paper is to isolate indigenous Trichoderma strains from healthy and Armillaria-damaged forests, characterize them, screen their biocontrol properties, and test selected strains under field conditions. Materials and Methods: Armillaria and Trichoderma isolates were collected from soil samples of a damaged Hungarian oak and healthy Austrian spruce forests and identified to the species level. In vitro antagonism experiments were performed to determine the potential of the Trichoderma isolates to control Armillaria species. Selected biocontrol candidates were screened for extracellular enzyme production and plant growth-promoting traits. A field experiment was carried out by applying two selected Trichoderma strains on two-year-old European Turkey oak seedlings planted in a forest area heavily overtaken by the rhizomorphs of numerous Armillaria colonies. Results: Although A. cepistipes and A. ostoyae were found in the Austrian spruce forests, A. mellea and A. gallica clones dominated the Hungarian oak stand. A total of 64 Trichoderma isolates belonging to 14 species were recovered. Several Trichoderma strains exhibited in vitro antagonistic abilities towards Armillaria species and produced siderophores and indole-3-acetic acid. Oak seedlings treated with T. virens and T. atrobrunneum displayed better survival under harsh soil conditions than the untreated controls. Conclusions: Selected native Trichoderma strains, associated with Armillaria rhizomorphs, which may also have plant growth promoting properties, are potential antagonists of Armillaria spp., and such abilities can be exploited in the biological control of Armillaria root rot.
Collapse
|
70
|
Hu J, Zhou Y, Chen K, Li J, Wei Y, Wang Y, Wu Y, Ryder MH, Yang H, Denton MD. Large‐scale
Trichoderma
diversity was associated with ecosystem, climate and geographic location. Environ Microbiol 2019; 22:1011-1024. [DOI: 10.1111/1462-2920.14798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jindong Hu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- China‐Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- Waite campus The University of Adelaide SA Australia
| | - Yi Zhou
- China‐Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- Waite campus The University of Adelaide SA Australia
- School of Agriculture, Food and Wine The University of Adelaide SA Australia
| | - Kai Chen
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- China‐Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- Waite campus The University of Adelaide SA Australia
| | - Jishun Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- China‐Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- Waite campus The University of Adelaide SA Australia
| | - Yanli Wei
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- China‐Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- Waite campus The University of Adelaide SA Australia
| | - Yilian Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- China‐Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- Waite campus The University of Adelaide SA Australia
| | - Yuanzheng Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- China‐Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- Waite campus The University of Adelaide SA Australia
| | - Maarten H. Ryder
- China‐Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- Waite campus The University of Adelaide SA Australia
- School of Agriculture, Food and Wine The University of Adelaide SA Australia
| | - Hetong Yang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- China‐Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- Waite campus The University of Adelaide SA Australia
| | - Matthew D. Denton
- China‐Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Shandong China
- Waite campus The University of Adelaide SA Australia
- School of Agriculture, Food and Wine The University of Adelaide SA Australia
| |
Collapse
|
71
|
Zeng ZQ, Zhuang WY. Two New Species and a New Chinese Record of Hypocreaceae as Evidenced by Morphological and Molecular Data. MYCOBIOLOGY 2019; 47:280-291. [PMID: 31565464 PMCID: PMC6758621 DOI: 10.1080/12298093.2019.1641062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
To explore species diversity of Hypocreaceae, collections from Guangdong, Hubei, and Tibet of China were examined and two new species and a new Chinese record were discovered. Morphological characteristics and DNA sequence analyses of the ITS, LSU, EF-1α, and RPB2 regions support their placements in Hypocreaceae and the establishments of the new species. Hypomyces hubeiensis sp. nov. is characterized by occurrence on fruitbody of Agaricus sp., concentric rings formed on MEA medium, verticillium-like conidiophores, subulate phialides, rod-shaped to narrowly ellipsoidal conidia, and absence of chlamydospores. Trichoderma subiculoides sp. nov. is distinguished by effuse to confluent rudimentary stromata lacking of a well-developed flank and not changing color in KOH, subcylindrical asci containing eight ascospores that disarticulate into 16 dimorphic part-ascospores, verticillium-like conidiophores, subcylindrical phialides, and subellipsoidal to rod-shaped conidia. Morphological distinctions between the new species and their close relatives are discussed. Hypomyces orthosporus is found for the first time from China.
Collapse
Affiliation(s)
- Zhao Qing Zeng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Wen Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
72
|
Kubicek CP, Steindorff AS, Chenthamara K, Manganiello G, Henrissat B, Zhang J, Cai F, Kopchinskiy AG, Kubicek EM, Kuo A, Baroncelli R, Sarrocco S, Noronha EF, Vannacci G, Shen Q, Grigoriev IV, Druzhinina IS. Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 2019; 20:485. [PMID: 31189469 PMCID: PMC6560777 DOI: 10.1186/s12864-019-5680-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The growing importance of the ubiquitous fungal genus Trichoderma (Hypocreales, Ascomycota) requires understanding of its biology and evolution. Many Trichoderma species are used as biofertilizers and biofungicides and T. reesei is the model organism for industrial production of cellulolytic enzymes. In addition, some highly opportunistic species devastate mushroom farms and can become pathogens of humans. A comparative analysis of the first three whole genomes revealed mycoparasitism as the innate feature of Trichoderma. However, the evolution of these traits is not yet understood. RESULTS We selected 12 most commonly occurring Trichoderma species and studied the evolution of their genome sequences. Trichoderma evolved in the time of the Cretaceous-Palaeogene extinction event 66 (±15) mya, but the formation of extant sections (Longibrachiatum, Trichoderma) or clades (Harzianum/Virens) happened in Oligocene. The evolution of the Harzianum clade and section Trichoderma was accompanied by significant gene gain, but the ancestor of section Longibrachiatum experienced rapid gene loss. The highest number of genes gained encoded ankyrins, HET domain proteins and transcription factors. We also identified the Trichoderma core genome, completely curated its annotation, investigated several gene families in detail and compared the results to those of other fungi. Eighty percent of those genes for which a function could be predicted were also found in other fungi, but only 67% of those without a predictable function. CONCLUSIONS Our study presents a time scaled pattern of genome evolution in 12 Trichoderma species from three phylogenetically distant clades/sections and a comprehensive analysis of their genes. The data offer insights in the evolution of a mycoparasite towards a generalist.
Collapse
Affiliation(s)
- Christian P Kubicek
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- , Vienna, Austria
| | - Andrei S Steindorff
- Departamento de Biologia Celular, Universidade de Brasília, Brasíla, DF, Brazil
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Komal Chenthamara
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Gelsomina Manganiello
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", Naples, Portici, Italy
| | - Bernard Henrissat
- CNRS, Aix-Marseille Université, Marseille, France
- INRA, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jian Zhang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Feng Cai
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Alexey G Kopchinskiy
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | | | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Riccardo Baroncelli
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Campus de Villamayor, Calle Del Duero, Villamayor, España
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Giovanni Vannacci
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Campus de Villamayor, Calle Del Duero, Villamayor, España
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
| | - Irina S Druzhinina
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria.
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
73
|
Dou K, Gao J, Zhang C, Yang H, Jiang X, Li J, Li Y, Wang W, Xian H, Li S, Liu Y, Hu J, Chen J. Trichoderma biodiversity in major ecological systems of China. J Microbiol 2019; 57:668-675. [DOI: 10.1007/s12275-019-8357-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 10/26/2022]
|
74
|
|
75
|
Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang Z, Chen HYH, Lu GD. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog 2019; 129:7-18. [PMID: 30710672 DOI: 10.1016/j.micpath.2019.01.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Fungal diseases cause considerable damage to the economically important crops worldwide thus posing continuous threat to global food security. Management of these diseases is normally done via utilization of chemicals that have severe negative impact upon human health and surrounding ecosystems. Finding eco-friendly alternatives has led the researchers to focus towards biological control of fungal diseases through biocontrol agents such as antagonistic fungi (AF) and other microorganisms. AF include various genera of fungi that cure the fungal diseases on plants effectively. Furthermore, they play a regulatory role in various plant physiological pathways and interactions. AF are highly host specific having negligible effects on non-target organisms and have fast mass production capability. However, understanding the mechanisms of the effects of AF on plant diseases is a prerequisite for their effective utilization as biocontrol agent. Trichoderma is one of the most important fungal genera known for its antagonistic activity against disease causing fungal pathogens. Therefore, in this review, we have focused upon Trichoderma-mediated fungal diseases management via illustrating its taxonomy, important strains, biodiversity and mode of action. Furthermore, we have assessed the criteria to be followed for selection of AF and the factors influencing their efficiency. Finally, we evaluated the advantages and limitations of Trichoderma as AF. We conclude that effective AF utilization against fungal pathogens can serve as a safe strategy for our Planet.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan
| | - Asad Shabbir
- The University of Sydney, School of Life and Environmental Sciences, Narrabri, 2390, Australia; University of the Punjab, Department of Botany, Lahore, 54590, Pakistan
| | - Khalid Ali Khan
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China; Faculty of Forestry and the Forest Environment, Lakehead University, 955 Oliver Rd., Thunder Bay, Ontario, P7B 5E1, Canada.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
76
|
Lindo L, McCormick SP, Cardoza RE, Kim HS, Brown DW, Alexander NJ, Proctor RH, Gutiérrez S. Role of Trichoderma arundinaceum tri10 in regulation of terpene biosynthetic genes and in control of metabolic flux. Fungal Genet Biol 2019; 122:31-46. [DOI: 10.1016/j.fgb.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/03/2023]
|
77
|
Qiao M, Du X, Zhang Z, Xu J, Yu Z. Three new species of soil-inhabiting Trichoderma from southwest China. MycoKeys 2018:63-80. [PMID: 30595658 PMCID: PMC6303281 DOI: 10.3897/mycokeys.44.30295] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/24/2018] [Indexed: 01/20/2023] Open
Abstract
Fungi in the genus Trichoderma are widely distributed in China, including in Yunnan province. In this study, we report three new soil-inhabiting species in Trichoderma, named as T.kunmingense, T.speciosum and T.zeloharzianum. Their colony and mycelial morphology, including features of asexual states, were described. For each species, their DNA sequences were obtained from three loci, the internal transcribed spacer (ITS) regions of the ribosomal DNA, the translation elongation factor 1-α encoding gene (tef1) and the gene encoding the second largest nuclear RNA polymerase subunit (rpb2). Our analyses indicated that the three new species showed consistent divergence amongst each other and from other known and closely related species. Amongst the three, T.speciosum and T.kunmingense belong to the Viride Clade. Specifically, T.speciosum is related to three species – T.hispanicum, T.samuelsii and T.junci and is characterised by tree-like conidiophores, generally paired branches, curved terminal branches, spindly to fusiform phialides and subglobose to globose conidia. In contrast, T.kunmingense morphologically resembles T.asperellum and T.yunnanense and is distinguished by its pyramidal conidiophores, ampulliform to tapered phialides, discrete branches and ovoidal, occasionally ellipsoid, smooth-walled conidia. The third new species, T.zeloharzianum, is a new member of the Harzianum Clade and is closely associated with T.harzianum, T.lixii and T.simmonsii but distinguished from them by having smaller, subglobose to globose, thin-walled conidia.
Collapse
Affiliation(s)
- Min Qiao
- School of Life Sciences, Yunnan University, No. 2 North, Kunming, Yunnan, 650091, P. R. China
| | - Xing Du
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, P. R. China
| | - Zhe Zhang
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, P. R. China
| | - JianPing Xu
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, P. R. China.,Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - ZeFen Yu
- School of Life Sciences, Yunnan University, No. 2 North, Kunming, Yunnan, 650091, P. R. China.,Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, P. R. China
| |
Collapse
|
78
|
Li J, Wu Y, Chen K, Wang Y, Hu J, Wei Y, Yang H. Trichoderma cyanodichotomus sp. nov., a new soil-inhabiting species with a potential for biological control. Can J Microbiol 2018; 64:1020-1029. [PMID: 30199653 DOI: 10.1139/cjm-2018-0224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During a biodiversity survey of Trichoderma (Ascomycota, Hypocreales, Hypocreaceae) in coastal and lake wetlands of China, a new species, Trichoderma cyanodichotomus, was isolated from Dongting Lake wetland of Hunan province. The strain TW21990-1 was characterized as having two types of conidia and producing a distinct blue–green pigment on potato dextrose agar and cornmeal dextrose agar. The taxonomic position was analyzed using three molecular markers, internal transcribed spacer rDNA, translation elongation factor 1-alpha, and RNA polymerase II subunit B, revealing less than 95.0% homology with all known Trichoderma species. The combined phylogenetic tree further identified T. cyanodichotomus as an independent subgroup belonging to Section Pachybasium, with no close relatives. In vitro antagonistic activity by dual-culture assay exhibited broad inhibition against various plant pathogens, including Botryosphaeria dothidea, Pythium aphanidermatum, Rhizoctonia solani, and Verticillium dahliae. In addition, TW21990-1 demonstrated moderate hydrolase activity of cellulase, chitinase, β-1,3-glucanase, and protease, which might be involved in mycoparasitism. Greenhouse experiments showed strong biocontrol effects against tomato damping-off incited by P. aphanidermatum, together with increased seedling height and weight gain. The identification of T. cyanodichotomus will provide useful information for sufficient utilization of fungal resources.
Collapse
Affiliation(s)
- Jishun Li
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Yuanzheng Wu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Kai Chen
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Yilian Wang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Jindong Hu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Yanli Wei
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Hetong Yang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| |
Collapse
|
79
|
Castagnoli E, Marik T, Mikkola R, Kredics L, Andersson M, Salonen H, Kurnitski J. IndoorTrichodermastrains emitting peptaibols in guttation droplets. J Appl Microbiol 2018; 125:1408-1422. [DOI: 10.1111/jam.13920] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 01/25/2023]
Affiliation(s)
- E. Castagnoli
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - T. Marik
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged Hungary
| | - R. Mikkola
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - L. Kredics
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged Hungary
| | - M.A. Andersson
- Department of Civil Engineering; Aalto University; Espoo Finland
- Department of Food and Environmental Science; Helsinki University; Helsinki Finland
| | - H. Salonen
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - J. Kurnitski
- Department of Civil Engineering; Aalto University; Espoo Finland
- Department of Civil Engineering and Architecture; Tallinn University of Technology; Tallinn Estonia
| |
Collapse
|
80
|
Brandt SC, Ellinger B, van Nguyen T, Thi QD, van Nguyen G, Baschien C, Yurkov A, Hahnke RL, Schäfer W, Gand M. A unique fungal strain collection from Vietnam characterized for high performance degraders of bioecological important biopolymers and lipids. PLoS One 2018; 13:e0202695. [PMID: 30161149 PMCID: PMC6117010 DOI: 10.1371/journal.pone.0202695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022] Open
Abstract
Fungal strains are abundantly used throughout all areas of biotechnology and many of them are adapted to degrade complex biopolymers like chitin or lignocellulose. We therefore assembled a collection of 295 fungi from nine different habitats in Vietnam, known for its rich biodiversity, and investigated their cellulase, chitinase, xylanase and lipase activity. The collection consists of 70 isolates from wood, 55 from soil, 44 from rice straw, 3 found on fruits, 24 from oil environments (butchery), 12 from hot springs, 47 from insects as well as 27 from shrimp shells and 13 strains from crab shells. These strains were cultivated and selected by growth differences to enrich phenotypes, resulting in 211 visually different fungi. DNA isolation of 183 isolates and phylogenetic analysis was performed and 164 species were identified. All were subjected to enzyme activity assays, yielding high activities for every investigated enzyme set. In general, enzyme activity corresponded with the environment of which the strain was isolated from. Therefore, highest cellulase activity strains were isolated from wood substrates, rice straw and soil and similar substrate effects were observed for chitinase and lipase activity. Xylanase activity was similarly distributed as cellulase activity, but substantial activity was also found from fungi isolated from insects and shrimp shells. Seven strains displayed significant activities against three of the four tested substrates, while three degraded all four investigated carbon sources. The collection will be an important source for further studies. Therefore representative strains were made available to the scientific community and deposited in the public collection of the Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig.
Collapse
Affiliation(s)
- Sophie C. Brandt
- Department of Molecular Phytopathology, University Hamburg, Hamburg, Germany
| | - Bernhard Ellinger
- Department ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Hamburg, Germany
| | - Thuat van Nguyen
- Department of Molecular Phytopathology, University Hamburg, Hamburg, Germany
| | - Quyen Dinh Thi
- Institue of Biotechnology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Giang van Nguyen
- Faculty of Biotechnology, Vietnam National University of Agriculture, Trâu Quỳ, Gia Lâm, Hanoi, Vietnam
| | - Christiane Baschien
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Andrey Yurkov
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Richard L. Hahnke
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, University Hamburg, Hamburg, Germany
| | - Martin Gand
- Department of Molecular Phytopathology, University Hamburg, Hamburg, Germany
- * E-mail:
| |
Collapse
|
81
|
Druzhinina IS, Chenthamara K, Zhang J, Atanasova L, Yang D, Miao Y, Rahimi MJ, Grujic M, Cai F, Pourmehdi S, Salim KA, Pretzer C, Kopchinskiy AG, Henrissat B, Kuo A, Hundley H, Wang M, Aerts A, Salamov A, Lipzen A, LaButti K, Barry K, Grigoriev IV, Shen Q, Kubicek CP. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet 2018; 14:e1007322. [PMID: 29630596 PMCID: PMC5908196 DOI: 10.1371/journal.pgen.1007322] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/19/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023] Open
Abstract
Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shifts are common among hypocrealean fungi, there are no examples of such broad substrate versatility as that observed in Trichoderma. A phylogenomic analysis of 23 hypocrealean fungi (including nine Trichoderma spp. and the related Escovopsis weberi) revealed that the genus Trichoderma has evolved from an ancestor with limited cellulolytic capability that fed on either fungi or arthropods. The evolutionary analysis of Trichoderma genes encoding plant cell wall-degrading carbohydrate-active enzymes and auxiliary proteins (pcwdCAZome, 122 gene families) based on a gene tree / species tree reconciliation demonstrated that the formation of the genus was accompanied by an unprecedented extent of lateral gene transfer (LGT). Nearly one-half of the genes in Trichoderma pcwdCAZome (41%) were obtained via LGT from plant-associated filamentous fungi belonging to different classes of Ascomycota, while no LGT was observed from other potential donors. In addition to the ability to feed on unrelated fungi (such as Basidiomycota), we also showed that Trichoderma is capable of endoparasitism on a broad range of Ascomycota, including extant LGT donors. This phenomenon was not observed in E. weberi and rarely in other mycoparasitic hypocrealean fungi. Thus, our study suggests that LGT is linked to the ability of Trichoderma to parasitize taxonomically related fungi (up to adelphoparasitism in strict sense). This may have allowed primarily mycotrophic Trichoderma fungi to evolve into decomposers of plant biomass. Individual fungi rely on particular host organisms or substrates for their nutrition. Therefore, the genomes of fungi feeding on plant biomass necessarily contain genes encoding plant cell wall-degrading enzymes, while animal parasites may depend on proteolytic activity. Molds in the genus Trichoderma (Ascomycota) display a unique nutritional versatility. They can feed on other fungi, attack animals, and degrade plant debris. The later property is so efficient that one species (T. reesei) is commercially used for the production of cellulolytic enzymes required for making biofuels and other industry. In this work, we have investigated the evolution of proteins required for plant cell wall degradation in nine Trichoderma genomes and found an unprecedented number of lateral gene transfer (LGT) events for genes encoding these enzymes. Interestingly, the transfers specifically occurred from Ascomycota molds that feed on plants. We detected no cases of LGT from other fungi (e.g., mushrooms or wood-rotting fungi from Basidiomycota) that are frequent hosts of Trichoderma. Therefore, we propose that LGT may be linked to the ability of Trichoderma to parasitize on related organisms. This is a characteristic ecological trait that distinguishes Trichoderma from other mycoparasitic fungi. In this report, we demonstrate that the lateral transfer of genes may result in a profound nutritional expansion and contribute to the emergence of a generalist capable of feeding on organic matter of any origin.
Collapse
Affiliation(s)
- Irina S. Druzhinina
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
- * E-mail: (ISD); (QS)
| | - Komal Chenthamara
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Jian Zhang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Lea Atanasova
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Dongqing Yang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Mohammad J. Rahimi
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Marica Grujic
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Feng Cai
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shadi Pourmehdi
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Kamariah Abu Salim
- Environmental and Life Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Carina Pretzer
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Alexey G. Kopchinskiy
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Hope Hundley
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Andrea Aerts
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, United States of America
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
- * E-mail: (ISD); (QS)
| | - Christian P. Kubicek
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
82
|
Characterization of fungi from different ecosystems of tropical peat in Sarawak, Malaysia. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0685-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
83
|
Norphanphoun C, Jeewon R, Mckenzie EHC, Wen TC, Camporesi E, Hyde KD. Taxonomic Position ofMelomastia italica sp. nov.and Phylogenetic Reappraisal of Dyfrolomycetales. CRYPTOGAMIE MYCOL 2017. [DOI: 10.7872/crym/v38.iss4.2017.507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chada Norphanphoun
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit 80837, Mauritius
| | | | - Ting-Chi Wen
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Erio Camporesi
- A.M.B. Gruppo Micologico Forlivese Antonio Cicognani, Via Roma 18, Forlì, Italy
- A.M.B. Circolo Micologico Giovanni Carini, C.P. 314 Brescia, Italy
- Società per gli Studi Naturalistici della Romagna, C.P. 144 Bagnacavallo, RA, Italy
| | - Kevin D. Hyde
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People's Republic of China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| |
Collapse
|
84
|
|
85
|
Chen K, Zhuang WY. Discovery from a large-scaled survey of Trichoderma in soil of China. Sci Rep 2017; 7:9090. [PMID: 28831112 PMCID: PMC5567330 DOI: 10.1038/s41598-017-07807-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/30/2017] [Indexed: 01/29/2023] Open
Abstract
The first large-scaled survey of soil-inhabiting Trichoderma is conducted in 23 provinces of China. Twenty-three new species belonging to the green-ascospored clades are discovered. Their phylogenetic positions are determined by sequence analyses of the combined partial sequences of translation elongation factor 1-alpha and the second largest RNA polymerase subunit encoding genes. Morphology and culture characteristics are observed, described and illustrated in detail. Distinctions between the new species and their close relatives are compared and discussed. They are named as: T. aggregatum, T. alpinum, T. bannaense, T. breve, T. brevicrassum, T. byssinum, T. chlamydosporicum, T. concentricum, T. ganodermatis, T. hainanense, T. hengshanicum, T. hirsutum, T. hunanense, T. ingratum, T. liberatum, T. linzhiense, T. longisporum, T. polypori, T. pseudodensum, T. simplex, T. solum, T. undatipile and T. zayuense.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
86
|
|
87
|
Chen K, Zhuang WY. Three New Soil-inhabiting Species of Trichoderma in the Stromaticum Clade with Test of Their Antagonism to Pathogens. Curr Microbiol 2017. [PMID: 28631173 DOI: 10.1007/s00284-017-1282-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichoderma is a dominant component of the soil mycoflora. During the field investigations of northern, central, and southwestern China, three new species in the Stromaticum clade were encountered from soil, and named as T. hebeiense, T. sichuanense, and T. verticillatum. Their phylogenetic positions were determined by analyses of the combined two genes: partial sequences of translation elongation factor 1-alpha and the second largest RNA polymerase subunit-encoding genes. Distinctions between the new species and their close relatives were discussed. Trichoderma hebeiense appeared as a separate terminal branch. The species is distinctive by its oblong conidia and aggregated pustules in culture. Trichoderma sichuanense features in concentric colony and produces numerous clean exudates on aerial mycelium in culture. Trichoderma verticillatum is characterized by its verticillium-like synanamorph and production of abundant chlamydospores. In vitro antagonism towards the new species was tested by dual culture technique.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
88
|
Raja H, Miller AN, Pearce CJ, Oberlies NH. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. JOURNAL OF NATURAL PRODUCTS 2017; 80:756-770. [PMID: 28199101 PMCID: PMC5368684 DOI: 10.1021/acs.jnatprod.6b01085] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 05/17/2023]
Abstract
Fungi are morphologically, ecologically, metabolically, and phylogenetically diverse. They are known to produce numerous bioactive molecules, which makes them very useful for natural products researchers in their pursuit of discovering new chemical diversity with agricultural, industrial, and pharmaceutical applications. Despite their importance in natural products chemistry, identification of fungi remains a daunting task for chemists, especially those who do not work with a trained mycologist. The purpose of this review is to update natural products researchers about the tools available for molecular identification of fungi. In particular, we discuss (1) problems of using morphology alone in the identification of fungi to the species level; (2) the three nuclear ribosomal genes most commonly used in fungal identification and the potential advantages and limitations of the ITS region, which is the official DNA barcoding marker for species-level identification of fungi; (3) how to use NCBI-BLAST search for DNA barcoding, with a cautionary note regarding its limitations; (4) the numerous curated molecular databases containing fungal sequences; (5) the various protein-coding genes used to augment or supplant ITS in species-level identification of certain fungal groups; and (6) methods used in the construction of phylogenetic trees from DNA sequences to facilitate fungal species identification. We recommend that, whenever possible, both morphology and molecular data be used for fungal identification. Our goal is that this review will provide a set of standardized procedures for the molecular identification of fungi that can be utilized by the natural products research community.
Collapse
Affiliation(s)
- Huzefa
A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Andrew N. Miller
- Illinois
Natural History Survey, University of Illinois, Champaign, Illinois 61820, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., 505 Meadowland
Drive, Suite 103, Hillsborough, North Carolina 27278, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
89
|
Jang S, Jang Y, Kim CW, Lee H, Hong JH, Heo YM, Lee YM, Lee DW, Lee HB, Kim JJ. Five New Records of Soil-Derived Trichoderma in Korea: T. albolutescens, T. asperelloides, T. orientale, T. spirale, and T. tomentosum. MYCOBIOLOGY 2017; 45:1-8. [PMID: 28435347 PMCID: PMC5395494 DOI: 10.5941/myco.2017.45.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/16/2016] [Accepted: 01/24/2017] [Indexed: 06/01/2023]
Abstract
Despite the huge worldwide diversity of Trichoderma (Hypocreaceae, Ascomycota), only about 22 species have been reported in Korea. Thus, between 2013 and 2015, soil-derived Trichoderma spp. were isolated to reveal the diversity of Korean Trichoderma. Phylogenetic analysis of translation elongation factor 1 alpha gene was used for identification. Among the soil-derived Trichoderma, Trichoderma albolutescens, T. asperelloides, T. orientale, T. spirale, and T. tomentosum have not been previously reported in Korea. Thus, we report the five Trichoderma species as new in Korea with morphological descriptions and images.
Collapse
Affiliation(s)
- Seokyoon Jang
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Yeongseon Jang
- Division of Wood Chemistry & Microbiology, National Institute of Forest Science, Seoul 02455, Korea
| | - Chul-Whan Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Joo-Hyun Hong
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Young Mok Heo
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Young Min Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Dong Wan Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Hyang Burm Lee
- Division of Food Technology, Biotechnology, and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
90
|
Juglanconis gen. nov. on Juglandaceae, and the new family Juglanconidaceae ( Diaporthales). Persoonia - Molecular Phylogeny and Evolution of Fungi 2017; 38:136-155. [PMID: 29151630 PMCID: PMC5645181 DOI: 10.3767/003158517x694768] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/08/2017] [Indexed: 01/01/2023]
Abstract
Molecular phylogenetic analyses of ITS-LSU rDNA sequence data demonstrate that Melanconis species occurring on Juglandaceae are phylogenetically distinct from Melanconis s.str., and therefore the new genus Juglanconis is described. Morphologically, the genus Juglanconis differs from Melanconis by light to dark brown conidia with irregular verrucae on the inner surface of the conidial wall, while in Melanconis s.str. they are smooth. Juglanconis forms a separate clade not affiliated with a described family of Diaporthales, and the family Juglanconidaceae is introduced to accommodate it. Data of macro- and microscopic morphology and phylogenetic multilocus analyses of partial nuSSU-ITS-LSU rDNA, cal, his, ms204, rpb1, rpb2, tef1 and tub2 sequences revealed four distinct species of Juglanconis. Comparison of the markers revealed that tef1 introns are the best performing markers for species delimitation, followed by cal, ms204 and tub2. The ITS, which is the primary barcoding locus for fungi, is amongst the poorest performing markers analysed, due to the comparatively low number of informative characters. Melanconium juglandinum (= Melanconis carthusiana), M. oblongum (= Melanconis juglandis) and M. pterocaryae are formally combined into Juglanconis, and J. appendiculata is described as a new species. Melanconium juglandinum and Melanconis carthusiana are neotypified and M. oblongum and Diaporthe juglandis are lectotypified. A short description and illustrations of the holotype of Melanconium ershadii from Pterocarya fraxinifolia are given, but based on morphology it is not considered to belong to Juglanconis. A key to all treated species of Juglanconis is provided.
Collapse
|
91
|
Robbertse B, Strope PK, Chaverri P, Gazis R, Ciufo S, Domrachev M, Schoch CL. Improving taxonomic accuracy for fungi in public sequence databases: applying 'one name one species' in well-defined genera with Trichoderma/Hypocrea as a test case. Database (Oxford) 2017; 2017:4553317. [PMID: 29220466 PMCID: PMC5641268 DOI: 10.1093/database/bax072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/18/2023]
Abstract
The ITS (nuclear ribosomal internal transcribed spacer) RefSeq database at the National Center for Biotechnology Information (NCBI) is dedicated to the clear association between name, specimen and sequence data. This database is focused on sequences obtained from type material stored in public collections. While the initial ITS sequence curation effort together with numerous fungal taxonomy experts attempted to cover as many orders as possible, we extended our latest focus to the family and genus ranks. We focused on Trichoderma for several reasons, mainly because the asexual and sexual synonyms were well documented, and a list of proposed names and type material were recently proposed and published. In this case study the recent taxonomic information was applied to do a complete taxonomic audit for the genus Trichoderma in the NCBI Taxonomy database. A name status report is available here: https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi. As a result, the ITS RefSeq Targeted Loci database at NCBI has been augmented with more sequences from type and verified material from Trichoderma species. Additionally, to aid in the cross referencing of data from single loci and genomes we have collected a list of quality records of the RPB2 gene obtained from type material in GenBank that could help validate future submissions. During the process of curation misidentified genomes were discovered, and sequence records from type material were found hidden under previous classifications. Source metadata curation, although more cumbersome, proved to be useful as confirmation of the type material designation. Database URL:http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353
Collapse
Affiliation(s)
- Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pooja K Strope
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Priscila Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Romina Gazis
- Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Stacy Ciufo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Domrachev
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Conrad L Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
92
|
Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J. Biodiversity of Trichoderma Community in the Tidal Flats and Wetland of Southeastern China. PLoS One 2016; 11:e0168020. [PMID: 28002436 PMCID: PMC5176281 DOI: 10.1371/journal.pone.0168020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/24/2016] [Indexed: 11/26/2022] Open
Abstract
To investigate the biodiversity of Trichoderma (Hypocreaceae) and their relation to sediment physical and chemical properties, we collected a total of 491 sediment samples from coastal wetlands (tidal flat and wetland) in Southeast China. Further, we applied two types of molecular approaches such as culture dependent and independent methods for identification of Trichoderma spp. A total of 254 isolates were obtained and identified to 13 species such as T. aureoviride, T. asperellum, T. harzianum, T. atroviride, T. koningiopsis, T. longibrachiatum, T. koningii. T. tawa, T. viridescens, T. virens, T. hamatum, T. viride, and T. velutinum by the culture-dependent (CD) method of these, T. tawa was newly described in China. Subsequently, the culture indepented method of 454 pyrosequencing analysis revealed a total of six species such as T. citrinoviride, T. virens, T. polysporum, T. harzianum/Hypocrea lixii and two unknown species. Notably, T. citrinoviride and T. polysporum were not found by the CD method. Therefore, this work revealed that the combination of these two methods could show the higher biodiversity of Trichoderma spp., than either of this method alone. Among the sampling sites, Hangzhou, Zhejiang Province, exhibited rich biodiversity and low in Fengxian. Correlation and Redundancy discriminant analysis (RDA) revealed that sediment properties of temperature, redox potential (Eh) and pH significantly influenced the biodiversity of Trichoderma spp.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Chuanjin Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Kai Dou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Meng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Yaqian Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| |
Collapse
|
93
|
A new species of Trichoderma hypoxylon harbours abundant secondary metabolites. Sci Rep 2016; 6:37369. [PMID: 27869187 PMCID: PMC5116760 DOI: 10.1038/srep37369] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/27/2016] [Indexed: 02/08/2023] Open
Abstract
Some species of Trichoderma are fungicolous on fungi and have been extensively studied and commercialized as biocontrol agents. Multigene analyses coupled with morphology, resulted in the discovery of T. hypoxylon sp. nov., which was isolated from surface of the stroma of Hypoxylon anthochroum. The new taxon produces Trichoderma- to Verticillium-like conidiophores and hyaline conidia. Phylogenetic analyses based on combined ITS, TEF1-α and RPB2 sequence data indicated that T. hypoxylon is a well-distinguished species with strong bootstrap support in the polysporum group. Chemical assessment of this species reveals a richness of secondary metabolites with trichothecenes and epipolythiodiketopiperazines as the major compounds. The fungicolous life style of T. hypoxylon and the production of abundant metabolites are indicative of the important ecological roles of this species in nature.
Collapse
|
94
|
Trichoderma shennongjianum and Trichoderma tibetense, two new soil-inhabiting species in the Strictipile clade. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2016.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
95
|
Jiang Y, Wang JL, Chen J, Mao LJ, Feng XX, Zhang CL, Lin FC. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species. PLoS One 2016; 11:e0160613. [PMID: 27482910 PMCID: PMC4970770 DOI: 10.1371/journal.pone.0160613] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/21/2016] [Indexed: 02/05/2023] Open
Abstract
We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon–Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the application of Trichoderma biocontrol strains.
Collapse
Affiliation(s)
- Yuan Jiang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Liang Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li-Juan Mao
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Xiao Feng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chu-Long Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (CLZ); (FCL)
| | - Fu-Cheng Lin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (CLZ); (FCL)
| |
Collapse
|
96
|
|
97
|
Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Sci Rep 2016; 6:27074. [PMID: 27245694 PMCID: PMC4888246 DOI: 10.1038/srep27074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
More than 200 recent collections of Trichoderma from China were examined and 16 species belonging to the Viride clade were identified based on integrated studies of phenotypic and molecular data. Among them, seven wood-inhabiting new species, T. albofulvopsis, T. densum, T. laevisporum, T. sinokoningii, T. sparsum, T. sphaerosporum and T. subviride, are found. They form trichoderma- to verticillium-like conidiophores, lageniform to subulate phialides and globose to ellipsoidal conidia, but vary greatly in colony features, growth rates, and sizes of phialides and conidia. To explore their taxonomic positions, the phylogenetic tree including all the known species of the Viride clade is constructed based on sequence analyses of the combined RNA polymerase II subunit b and translation elongation factor 1 alpha exon genes. Our results indicated that the seven new species were well-located in the Koningii, Rogersonii and Neorufum subclades as well as a few independent terminal branches. They are clearly distinguishable from any existing species. Morphological distinctions and sequence divergences between the new species and their close relatives were discussed.
Collapse
|
98
|
Cummings NJ, Ambrose A, Braithwaite M, Bissett J, Roslan HA, Abdullah J, Stewart A, Agbayani FV, Steyaert J, Hill RA. Diversity of root-endophytic Trichoderma from Malaysian Borneo. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1192-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
99
|
Zachow C, Berg C, Müller H, Monk J, Berg G. Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens. J Biotechnol 2016; 235:162-70. [PMID: 27039271 DOI: 10.1016/j.jbiotec.2016.03.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
Trichoderma strains exhibit enormous potential for applications in biotechnology, in particular as biocontrol agents against pathogens. However, little is known about the diversity of plant-associated Trichoderma communities at a global scale and their antagonistic spectrum. In order to gather information about structure and function, we compared Trichoderma biomes of endemic (Aeonium, Diospyros, Hebe, Rhododendron) and cosmopolitan plants (Zea mays) in a global study encompassing the area Northwest Africa to New Zealand via the European Alps and Madagascar. At the quantitative level we found no differences between cosmopolitan and endemic plants. Statistically significant differences were detected at the qualitative level: Trichoderma populations of endemic plants were highly specific and diverse with hot spots appearing in Madagascar and New Zealand. By contrast, maize plants from all sites shared the majority of Trichoderma species (65.5%). Interestingly, the high above ground biodiversity in ecosystems containing endemic plants was confirmed by a high below ground Trichoderma diversity. Despite the differences, we found a global Trichoderma core community shared by all analysed plants, which was dominated by T. koningii and T. koningiopsis. Amplicon-based network analyses revealed a high similarity between maize Trichoderma grown world-wide and distinct populations of endemic plants. Furthermore, Trichoderma strains from endemic plants showed a higher antagonistic activity against fungal pathogens compared to maize-associated strains. Our results showed that endemic plants are associated with a specific Trichoderma microbiome which possesses a high antagonistic activity indicating that it has potential to be used for biocontrol purposes.
Collapse
Affiliation(s)
- Christin Zachow
- Graz University of Technology, Institute of Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010 Graz, Austria.
| | - Christian Berg
- Karl-Franzens-University of Graz, Institute of Plant Sciences, Holteigasse 6, 8010 Graz, Austria
| | - Henry Müller
- Graz University of Technology, Institute of Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria
| | - Jana Monk
- AgResearch Limited, 4749 Private Bag, 8140 Christchurch, New Zealand
| | - Gabriele Berg
- Graz University of Technology, Institute of Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria
| |
Collapse
|
100
|
Qin WT, Zhuang WY. Two new hyaline-ascospored species of Trichoderma and their phylogenetic positions. Mycologia 2015; 108:205-14. [PMID: 26577611 DOI: 10.3852/15-144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/22/2016] [Indexed: 01/15/2023]
Abstract
Collections of hypocrealean fungi found on decaying wood in subtropical regions of China were examined. Two new species, Trichoderma confluens and T. hubeiense, were discovered and are described. Trichoderma confluens is characterized by its widely effuse to rarely pulvinate, yellow stromata with densely disposed yellowish brown ostioles, simple acremonium- to verticillium-like conidiophores, hyaline conidia and multiform chlamydospores. Trichoderma hubeiense has pulvinate, grayish yellow stromata with brownish ostioles, trichoderma- to verticillium-like conidiophores and hyaline conidia. The phylogenetic positions of the two fungi were investigated based on sequence analyses of RNA polymerase II subunit b and translation elongation factor 1-α genes. The results indicate that T. confluens belongs to the Hypocreanum clade and is associated with but clearly separated from T. applanatum and T. decipiens. Trichoderma hubeiense belongs to the Polysporum clade and related to T. bavaricum but obviously differs from other members of the clade in sequence data. Morphological distinctions between the new species and their close relatives are noted and discussed.
Collapse
Affiliation(s)
- W T Qin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - W Y Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|