51
|
Li Y, Guo W, Cai Y. NEAT1 Promotes LPS-induced Inflammatory Injury in Macrophages by Regulating MiR-17-5p/TLR4. Open Med (Wars) 2020; 15:38-49. [PMID: 32099901 PMCID: PMC7026743 DOI: 10.1515/med-2020-0007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background The inflammatory response of macrophages is responsible for sepsis. Long noncoding RNA nuclear enriched abundant transcript 1 (NEAT1) has been reported to be involved in sepsis development. However, its underlying mechanism remains largely unclear. This study aims to investigate the effect of NEAT1 on inflammatory response of macrophages and explore the regulatory network of NEAT1/microRNA-17-5p (miR-17-5p)/Toll-like receptor 4 (TLR4). Methods The serum samples of 68 sepsis patients and 32 heathy controls were collected. THP-1 macrophages were treated with lipopolysaccharide (LPS) to induce inflammatory injury model of sepsis. The expressions of NEAT1, miR-17-5p and TLR4 were measured by quantitative real-time polymerase chain reaction or western blot. The inflammatory response was investigated by levels of inflammatory cytokines, tumor necrosis factor-alpha (TNF-ɑ), interleukin-1beta (IL-1β) and IL-6 as well as nitric oxide (NO) production. The interaction among NEAT1, miR-17-5p and TLR4 were investigated by bioinformatics analysis, luciferase reporter assay and RNA pull-down. Results NEAT1 expression was enhanced in patient serum and associated with severity of sepsis. Knockdown of NEAT1 inhibited levels of TNF-ɑ, IL-1β, IL-6 and NO release in LPS-treated macrophages. miR-17-5p is bound to NEAT1 and its abrogation reversed NEAT1 knockdown-mediated inhibition of inflammatory response in LPS-treated macrophages. Overexpression of miR-17-5p weakened LPS-induced inflammatory response. TLR4 as a target of miR-17-5p was regulated by NEAT1 and miR-17-5p. TLR4 res-to ration alleviated silencing NEAT1-induced inflammatory suppression. Conclusion Silence of NEAT1 suppressed LPS-induced inflammatory response of macrophages by mediating miR-17-5p and TLR4, indicating that NEAT1 might be a promising target for sepsis treatment.
Collapse
Affiliation(s)
- Yanhui Li
- ChenZhou NO.1 People's Hospital LuoJiaJin, ChenZhou China
| | - Wei Guo
- ICU 1 Zone, ChenZhou NO.1 People's Hospital, ChenZhou, HuNan, 423000, China
| | - Yeping Cai
- ICU 1 Zone, ChenZhou NO.1 People's Hospital, ChenZhou, HuNan, 423000, China
| |
Collapse
|
52
|
Li S, Wu Y, Jiang G, Tian X, Hong J, Chen S, Yan R, Feng G, Cheng Z. Intratendon delivery of leukocyte-rich platelet-rich plasma at early stage promotes tendon repair in a rabbit Achilles tendinopathy model. J Tissue Eng Regen Med 2019; 14:452-463. [PMID: 31840415 DOI: 10.1002/term.3006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/30/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Abstract
Tendinopathy is a great obstacle in clinical practice due to its poor regenerative capacity. The influence of different stages of tendinopathy on effects of leukocyte-rich platelet-rich plasma (Lr-PRP) has not been elucidated. The aim of this study is to investigate the optimal time point for delivery of Lr-PRP on tendinopathy. A tendinopathy model was established by local collagenase injection on the rabbit Achilles tendon. Then after collagenase induction, following treatments were applied randomly on the lesion: (a) 200 μl of Lr-PRP at 1 week (PRP-1 group), (b) 200 μl of saline at 1 week (Saline-1 group), (c) 200 μl of Lr-PRP at 4 weeks (PRP-2 group), and (d) 200 μl of saline at 4 weeks (Saline-2 group). Six weeks after collagenase induction, outcomes were assessed by magnetic resonance imaging, cytokine quantification, gene expression, histology, and transmission electron microscopy. Our results demonstrated that PRP-1 group had the least cross-sectional area and lesion percent of the involved tendon, as well as the lowest signal intensity in magnetic resonance imaging among all groups. However, the PRP-2 group showed larger cross-sectional area than saline groups. Enzyme-linked immunosorbent assay indicated that PRP-1 group had a higher level of interleukin-10 but lower level of interleukin-6 when compared with PRP-2 and saline groups. Meanwhile, the highest expression of collagen (Col) 1 in PRP-1 and Col 3, matrix metalloproteinase (MMP)-1, and MMP-3 in PRP-2 was found. Histologically, the PRP-1 showed better general scores than PRP-2, and no significant difference was found between the PRP-2 and saline groups. For transmission electron microscopy, PRP-1 had the largest mean collagen fibril diameter, and the PRP-2 group showed even smaller mean collagen fibril diameter than saline groups. In conclusion, intratendon delivery of Lr-PRP at early stage showed beneficial effect for repair of tendinopathy but not at late stage. For translation of our results to clinical circumstances, further studies are still needed.
Collapse
Affiliation(s)
- Sihao Li
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yifan Wu
- Department of Surgery, Zhejiang University Hospital, Zhejiang University, Hangzhou, China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xiulian Tian
- Department of Neurology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Shiming Chen
- Department of Surgery, Shaoxing Second Hospital, Shaoxing, China
| | - Ruijian Yan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Gang Feng
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zhiyuan Cheng
- Institute of Microelectronics and Nanoelectronics, Key Lab. of Advanced Micro/Nano Electronics Devices & Smart Systems of Zhejiang, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
53
|
Jagusch H, Werner M, Werz O, Pohnert G. 15‐Hydroperoxy‐PGE 2: Intermediate in Mammalian and Algal Prostaglandin Biosynthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hans Jagusch
- Institute for Inorganic and Analytical Chemistry, Department of Instrumental Analytics/Bioorganic AnalyticsFriedrich Schiller University Jena Lessingstraße 8 07743 Jena Germany
| | - Markus Werner
- Institute of PharmacyDepartment of Pharmaceutical/Medicinal ChemistryFriedrich Schiller University Jena Philosophenweg 14 07743 Jena Germany
| | - Oliver Werz
- Institute of PharmacyDepartment of Pharmaceutical/Medicinal ChemistryFriedrich Schiller University Jena Philosophenweg 14 07743 Jena Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Department of Instrumental Analytics/Bioorganic AnalyticsFriedrich Schiller University Jena Lessingstraße 8 07743 Jena Germany
| |
Collapse
|
54
|
Jagusch H, Werner M, Werz O, Pohnert G. 15-Hydroperoxy-PGE 2 : Intermediate in Mammalian and Algal Prostaglandin Biosynthesis. Angew Chem Int Ed Engl 2019; 58:17641-17645. [PMID: 31529599 PMCID: PMC6899959 DOI: 10.1002/anie.201910461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Indexed: 12/14/2022]
Abstract
Arachidonic‐acid‐derived prostaglandins (PGs), specifically PGE2, play a central role in inflammation and numerous immunological reactions. The enzymes of PGE2 biosynthesis are important pharmacological targets for anti‐inflammatory drugs. Besides mammals, certain edible marine algae possess a comprehensive repertoire of bioactive arachidonic‐acid‐derived oxylipins including PGs that may account for food poisoning. Described here is the analysis of PGE2 biosynthesis in the red macroalga Gracilaria vermiculophylla that led to the identification of 15‐hydroperoxy‐PGE2, a novel precursor of PGE2 and 15‐keto‐PGE2. Interestingly, this novel precursor is also produced in human macrophages where it represents a key metabolite in an alternative biosynthetic PGE2 pathway in addition to the well‐established arachidonic acid‐PGG2‐PGH2‐PGE2 route. This alternative pathway of mammalian PGE2 biosynthesis may open novel opportunities to intervene with inflammation‐related diseases.
Collapse
Affiliation(s)
- Hans Jagusch
- Institute for Inorganic and Analytical Chemistry, Department of Instrumental Analytics/Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Markus Werner
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Department of Instrumental Analytics/Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| |
Collapse
|
55
|
Liening S, Romp E, Werz O, Scriba GK, Garscha U. Liquid chromatography-coupled mass spectrometry analysis of glutathione conjugates of oxygenated polyunsaturated fatty acids. Prostaglandins Other Lipid Mediat 2019; 144:106350. [DOI: 10.1016/j.prostaglandins.2019.106350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/07/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
|
56
|
Hill EM, Esper RM, Sen A, Simon BR, Aslam MN, Jiang Y, Dame MK, McClintock SD, Colacino JA, Djuric Z, Wicha MS, Smith WL, Brenner DE. Dietary polyunsaturated fatty acids modulate adipose secretome and is associated with changes in mammary epithelial stem cell self-renewal. J Nutr Biochem 2019; 71:45-53. [PMID: 31272031 PMCID: PMC6917480 DOI: 10.1016/j.jnutbio.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Chronic low-grade adipose inflammation, characterized by aberrant adipokine production and pro-inflammatory macrophage activation/polarization is associated with increased risk of breast cancer. Adipocyte fatty acid composition is influenced by dietary availability and may regulate adipokine secretion and adipose inflammation. After feeding F344 rats for 20 weeks with a Western diet or a fish oil-supplemented diet, we cultured primary rat adipose tissue in a three-dimensional explant culture and collected the conditioned medium. The rat adipose tissue secretome was assayed using the Proteome Profiler Cytokine XL Array, and adipose tissue macrophage polarization (M1/M2 ratio) was assessed using the iNOS/ARG1 ratio. We then assessed the adipokine's effects upon stem cell self-renewal using primary human mammospheres from normal breast mammoplasty tissue. Adipose from rats fed the fish oil diet had an ω-3:ω-6 fatty acid ratio of 0.28 compared to 0.04 in Western diet rats. The adipokine profile from the fish oil-fed rats was shifted toward adipokines associated with reduced inflammation compared to the rats fed the Western diet. The M1/M2 macrophage ratio decreased by 50% in adipose of fish oil-fed rats compared to that from rats fed the Western diet. Conditioned media from rats fed the high ω-6 Western diet increased stem cell self-renewal by 62%±9% (X¯%±SD) above baseline compared to only an 11%±11% increase with the fish oil rat adipose. Modulating the adipokine secretome with dietary interventions therefore may alter stromal-epithelial signaling that plays a role in controlling mammary stem cell self-renewal.
Collapse
Affiliation(s)
- Evan M Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Raymond M Esper
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ananda Sen
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Becky R Simon
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Muhammad N Aslam
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yan Jiang
- MD Anderson Cancer Center, Houston, TX, USA
| | - Michael K Dame
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shannon D McClintock
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zora Djuric
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dean E Brenner
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
57
|
Crocin inhibits titanium particle-induced inflammation and promotes osteogenesis by regulating macrophage polarization. Int Immunopharmacol 2019; 76:105865. [PMID: 31476694 DOI: 10.1016/j.intimp.2019.105865] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
Abstract
Wear particle-induced periprosthetic inflammatory osteolysis and resultant aseptic loosening are major causes of orthopedic implant failure, for which there are no effective treatments other than revision surgery. Crocin, a carotenoid compound derived from crocus flowers, has anti-inflammatory properties, but its immunomodulatory function and role in particle-induced osteolysis are not well characterized. Here we report the effect of crocin on titanium (Ti) particle-induced macrophage polarization and osteogenic differentiation. We found that crocin induced anti-inflammatory (M2) macrophage polarization and attenuated Ti particle-induced inflammation by promoting the expression of anti-inflammatory cytokines in vitro as well as in vivo in a mouse air-pouch model. Additionally, crocin pre-treated macrophages promoted osteogenic differentiation of co-cultured mouse bone mesenchymal stem cells (BMSCs). These effects were mediated via inhibition of p38 and c-Jun N-terminal kinase signaling. Our results indicate that crocin suppresses Ti particle-induced inflammation and enhances osteogenic differentiation of BMSCs by inducing M2 macrophage polarization, highlighting its therapeutic potential for preventing wear particle-induced osteolysis.
Collapse
|
58
|
Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases. Autoimmun Rev 2019; 18:102369. [PMID: 31404701 DOI: 10.1016/j.autrev.2019.102369] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Macrophages are pivotal cells involved in chronic inflammatory and autoimmune diseases. In fact, during these diseases, activated macrophages may play a critical role, promoting the inflammation as well as mediating the damage resolution. This dichotomy is referred to two end-stage phenotypes of macrophages, conventionally known as M1 and M2, playing a pro-inflammatory and anti-inflammatory role, respectively. The M1 macrophages are the mainly subset involved during inflammatory processes, producing pro-inflammatory mediators. Conversely, the M2 macrophages are proposed to contribute to the resolution phase of inflammation, when cells with pro-resolving property are recruited and activated. In fact, this subset of macrophages may activate regulatory T lymphocytes, which play a critical role in the maintenance of peripheral tolerance and preventing the occurrence of autoimmune diseases. On these bases, the polarization toward the M2 phenotype could play a therapeutic role for autoimmune diseases. In this Review we discussed the characteristic of M1 and M2 macrophages, focusing on the immunoregulatory role of M2 cells and their potential ability to control the inflammation and to promote the immunological tolerance.
Collapse
|
59
|
Gerstmeier J, Seegers J, Witt F, Waltenberger B, Temml V, Rollinger JM, Stuppner H, Koeberle A, Schuster D, Werz O. Ginkgolic Acid is a Multi-Target Inhibitor of Key Enzymes in Pro-Inflammatory Lipid Mediator Biosynthesis. Front Pharmacol 2019; 10:797. [PMID: 31379572 PMCID: PMC6650749 DOI: 10.3389/fphar.2019.00797] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction: Lipid mediators (LMs) comprise bioactive metabolites of polyunsaturated fatty acids, including pro-inflammatory prostaglandins (PGs), thromboxanes (TXs), and leukotrienes (LTs), as well as specialized pro-resolving mediators (SPMs). They are essentially biosynthesized via cyclooxygenase (COX) and lipoxygenase (LO) pathways in complex networks and regulate the progression as well as the resolution of inflammatory disorders including inflammation-triggered cancer. Ginkgolic acid (GA) is a phenolic acid contained in Ginkgo biloba L. with neuroprotective, antimicrobial, and antitumoral properties. Although LMs regulate microbial infections and tumor progression, whether GA affects LM biosynthesis is unknown and was investigated here in detail. Methods: Pharmacophore-based virtual screening was performed along with docking simulations. Activity assays were conducted for isolated human recombinant 5-LO, cytosolic phospholipase (PLA)2α, COX-2, and ovine COX-1. The activity of human mPGES-1 and thromboxane A2 synthase (TXAS) was determined in crude cellular fractions. Cellular LM formation was studied using human monocytes, neutrophils, platelets, and M1- and M2-like macrophages. LMs were identified after (ultra)high-performance liquid chromatography by UV detection or ESI-tandem mass spectrometry. Results: GA was identified as virtual hit in an mPGES-1 pharmacophore-based virtual screening. Cell-free assays revealed potent suppression of mPGES-1 activity (IC50 = 0.7 µM) that is fully reversible and essentially independent of the substrate concentration. Moreover, cell-free assays revealed COX-1 and TXAS as additional targets of GA with lower affinity (IC50 = 8.1 and 5.2 µM). Notably, 5-LO, the key enzyme in LT biosynthesis, was potently inhibited by GA (IC50 = 0.2 µM) in a reversible and substrate-independent manner. Docking simulations support the molecular interaction of GA with mPGES-1 and 5-LO and suggest concrete binding sites. Interestingly, interference of GA with mPGES-1, COX-1, TXAS, and 5-LO was evident also in intact cells with IC50 values of 2.1-3.8 µM; no radical scavenging or cytotoxic properties were obvious. Analysis of LM profiles from bacteria-stimulated human M1- and M2-like macrophages confirmed the multi-target features of GA and revealed LM redirection towards the formation of 12-/15-LO products including SPM. Conclusions: We reveal GA as potent multi-target inhibitor of key enzymes in the biosynthesis of pro-inflammatory LMs that contribute to the complex pharmacological and toxicological properties of GA.
Collapse
Affiliation(s)
- Jana Gerstmeier
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julia Seegers
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Finja Witt
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
60
|
Rao Z, Pace S, Jordan PM, Bilancia R, Troisi F, Börner F, Andreas N, Kamradt T, Menche D, Rossi A, Serhan CN, Gerstmeier J, Werz O. Vacuolar (H +)-ATPase Critically Regulates Specialized Proresolving Mediator Pathways in Human M2-like Monocyte-Derived Macrophages and Has a Crucial Role in Resolution of Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 203:1031-1043. [PMID: 31300512 DOI: 10.4049/jimmunol.1900236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
Abstract
Alternative (M2)-polarized macrophages possess high capacities to produce specialized proresolving mediators (SPM; i.e., resolvins, protectins, and maresins) that play key roles in resolution of inflammation and tissue regeneration. Vacuolar (H+)-ATPase (V-ATPase) is fundamental in inflammatory cytokine trafficking and secretion and was implicated in macrophage polarization toward the M2 phenotype, but its role in SPM production and lipid mediator biosynthesis in general is elusive. In this study, we show that V-ATPase activity is required for the induction of SPM-biosynthetic pathways in human M2-like monocyte-derived macrophages (MDM) and consequently for resolution of inflammation. Blockade of V-ATPase by archazolid during IL-4-induced human M2 polarization abrogated 15-lipoxygenase-1 expression and prevented the related biosynthesis of SPM in response to pathogenic Escherichia coli, assessed by targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics. In classically activated proinflammatory M1-like MDM, however, the biosynthetic machinery for lipid mediator formation was independent of V-ATPase activity. Targeting V-ATPase in M2 influenced neither IL-4-triggered JAK/STAT6 nor the mTOR complex 1 signaling but strongly suppressed the ERK-1/2 pathway. Accordingly, the ERK-1/2 pathway contributes to 15-lipoxygenase-1 expression and SPM formation in M2-like MDM. Targeting V-ATPase in vivo delayed resolution of zymosan-induced murine peritonitis accompanied by decreased SPM levels without affecting proinflammatory leukotrienes or PGs. Together, our data propose that V-ATPase regulates 15-lipoxygenase-1 expression and consequent SPM biosynthesis involving ERK-1/2 during M2 polarization, implying a crucial role for V-ATPase in the resolution of inflammation.
Collapse
Affiliation(s)
- Zhigang Rao
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Rossella Bilancia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; and
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| |
Collapse
|
61
|
IL-17 Promotes Scar Formation by Inducing Macrophage Infiltration. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 188:1693-1702. [PMID: 29753790 DOI: 10.1016/j.ajpath.2018.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/24/2022]
Abstract
Trauma or burn injuries that affect the deep dermis often produce a hypertrophic scar, which limits patients' joint movement and generates an aesthetic problem. Inflammation is believed to be one of the main pathogenic mechanisms. We found that IL-17 was increased in scar tissues from patients with hypertrophic scar compared with normal skin. Recombinant mouse IL-17 was subcutaneously injected into mice that underwent full-thickness excision surgery to investigate the role of IL-17 in scar formation. Mice stimulated with IL-17 showed aggravated fibrogenesis, delayed wound healing, and increased inflammation. In addition, macrophage infiltration was also increased. According to the results of the Transwell assay, IL-17 promoted macrophage infiltration through an indirect mechanism. After depleting macrophages with clodronate liposomes, the effect of IL-17 disappeared. Levels of monocyte chemotactic protein (MCP) 1, MCP2, and MCP3 (together referred to as MCPs) were increased by IL-17 stimulation. Bindarit (an inhibitor of MCPs) was used to verify the role of MCPs. In addition, the Ly6C-low macrophages were responsible for wound fibrogenesis in mice. In this study, we detected the increased levels of IL-17 for the first time and revealed that IL-17 induced the infiltration of a specific subtype of macrophages to aggravate fibrosis through an MCP-dependent mechanism. Thus, our results provide a better understanding of scar formation and new strategies for scar prevention.
Collapse
|
62
|
IL33 attenuates ventricular remodeling after myocardial infarction through inducing alternatively activated macrophages ethical standards statement. Eur J Pharmacol 2019; 854:307-319. [DOI: 10.1016/j.ejphar.2019.04.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022]
|
63
|
Yarnall BW, Chamberlain CS, Hao Z, Muir P. Proinflammatory polarization of stifle synovial macrophages in dogs with cruciate ligament rupture. Vet Surg 2019; 48:1005-1012. [PMID: 31190376 DOI: 10.1111/vsu.13261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine polarization of synovial macrophages during development of cruciate ligament rupture (CR) and determine whether differences in synovial macrophage polarization in CR, osteoarthritis (OA), and healthy joints exist. STUDY DESIGN Prospective case-controlled study. ANIMALS Client-owned dogs with unstable stifles with CR (n = 22), paired stable contralateral stifles with partial CR (pCR; n = 7), joints with OA not related to CR (n = 6), and clinically normal (Normal; n = 7) joints. METHODS Synovial fluid samples were collected. Smears were made for differential cytology counts and estimated total nucleated cell counts. Cytospin preparations were made, and immunocytochemical staining was performed with the pan-macrophage marker CD68, M1 macrophage markers inducible nitric oxide synthase (iNOS) and chemokine (C-C motif) receptor 7 (CCR7), and M2 macrophage markers arginase 1 and CD163. Positively stained cells were counted. RESULTS Numbers of lymphocytes were increased in the CR group compared with the OA and Normal groups (P < .05). Numbers of CD68+ , CCR7+ , and iNOS+ cells in the CR and OA groups were increased compared with the Normal group (P < .05). Globally, the ratio of positively stained M1 polarized CD68+ cells to M2 polarized CD68+ cells was highest for the OA group (2.49), followed by the pCR (2.1), CR (1.63), and Normal (0.7) groups. CONCLUSION Polarization of synovial macrophages toward an M1 proinflammatory phenotype is an early event in the development of canine CR. CLINICAL SIGNIFICANCE M1 polarization in pCR stifles provides evidence of a possible role for macrophages in progressive development of cruciate ligament fiber damage. Lymphocytes may play a role in the synovitis found in CR joints. Our findings provide evidence that these cells are therapeutic targets.
Collapse
Affiliation(s)
- Benjamin W Yarnall
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Connie S Chamberlain
- Department of Orthopedics & Rehabilitation, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zhengling Hao
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Peter Muir
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
64
|
Hans CP, Sharma N, Sen S, Zeng S, Dev R, Jiang Y, Mahajan A, Joshi T. Transcriptomics Analysis Reveals New Insights into the Roles of Notch1 Signaling on Macrophage Polarization. Sci Rep 2019; 9:7999. [PMID: 31142802 PMCID: PMC6541629 DOI: 10.1038/s41598-019-44266-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
Naïve macrophages (Mφ) polarize in response to various environmental cues to a spectrum of cells that have distinct biological functions. The extreme ends of the spectrum are classified as M1 and M2 macrophages. Previously, we demonstrated that Notch1 deficiency promotes Tgf-β2 dependent M2-polarization in a mouse model of abdominal aortic aneurysm. The present studies aimed to characterize the unique set of genes regulated by Notch1 signaling in macrophage polarization. Bone marrow derived macrophages isolated from WT or Notch1+/- mice (n = 12) were differentiated to Mφ, M1 or M2-phenotypes by 24 h exposure to vehicle, LPS/IFN-γ or IL4/IL13 respectively and total RNA was subjected to RNA-Sequencing (n = 3). Bioinformatics analyses demonstrated that Notch1 haploinsufficiency downregulated the expression of 262 genes at baseline level, 307 genes with LPS/IFN-γ and 254 genes with IL4/IL13 treatment. Among these, the most unique genes downregulated by Notch1 haploinsufficiency included fibromodulin (Fmod), caspase-4, Has1, Col1a1, Alpl and Igf. Pathway analysis demonstrated that extracellular matrix, macrophage polarization and osteogenesis were the major pathways affected by Notch1 haploinsufficiency. Gain and loss-of-function studies established a strong correlation between Notch1 haploinsufficiency and Fmod in regulating Tgf-β signaling. Collectively, our studies suggest that Notch1 haploinsufficiency increases M2 polarization through these newly identified genes.
Collapse
Affiliation(s)
- Chetan P Hans
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA.
- Medical Pharmacology and Physiology, University of Missouri, Columbia, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA.
| | - Neekun Sharma
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Sidharth Sen
- MU Informatics Institute, University of Missouri, Columbia, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Rishabh Dev
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Advitiya Mahajan
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
| | - Trupti Joshi
- MU Informatics Institute, University of Missouri, Columbia, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, USA
| |
Collapse
|
65
|
Bottomley MJ, Thomson J, Harwood C, Leigh I. The Role of the Immune System in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:E2009. [PMID: 31022866 PMCID: PMC6515307 DOI: 10.3390/ijms20082009] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. In immunosuppressed populations it is a source of considerable morbidity and mortality due to its enhanced recurrence and metastatic potential. In common with many malignancies, leucocyte populations are both protective against cancer development and also play a role in 'sculpting' the nascent tumor, leading to loss of immunogenicity and tumor progression. UV radiation and chronic viral carriage may represent unique risk factors for cSCC development, and the immune system plays a key role in modulating the response to both. In this review, we discuss the lessons learned from animal and ex vivo human studies of the role of individual leucocyte subpopulations in the development of cutaneous SCC. We then discuss the insights into cSCC immunity gleaned from studies in humans, particularly in populations receiving pharmacological immunosuppression such as transplant recipients. Similar insights in other malignancies have led to exciting and novel immune therapies, which are beginning to emerge into the cSCC clinical arena.
Collapse
Affiliation(s)
- Matthew J Bottomley
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Jason Thomson
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Catherine Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Irene Leigh
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
66
|
Werner M, Jordan PM, Romp E, Czapka A, Rao Z, Kretzer C, Koeberle A, Garscha U, Pace S, Claesson HE, Serhan CN, Werz O, Gerstmeier J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J 2019; 33:6140-6153. [PMID: 30735438 DOI: 10.1096/fj.201802509r] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonsteroidal anti-inflammatory drugs interfere with the metabolism of arachidonic acid to proinflammatory prostaglandins and leukotrienes by targeting cyclooxygenases (COXs), 5-lipoxygenase (LOX), or the 5-LOX-activating protein (FLAP). These and related enzymes act in conjunction with marked crosstalk within a complex lipid mediator (LM) network where also specialized proresolving LMs (SPMs) are formed. Here, we present how prominent LM pathways can be differentially modulated in human proinflammatory M1 and proresolving M2 macrophage phenotypes that, upon exposure to Escherichia coli, produce either abundant prostaglandins and leukotrienes (M1) or SPMs (M2). Targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics was applied to analyze and quantify the specific LM profiles. Besides expected on-target actions, we found that: 1) COX or 15-LOX-1 inhibitors elevate inflammatory leukotriene levels, 2) FLAP and 5-LOX inhibitors reduce leukotrienes in M1 but less so in M2 macrophages, 3) zileuton blocks resolution-initiating SPM biosynthesis, whereas FLAP inhibition increases SPM levels, and 4) that the 15-LOX-1 inhibitor 3887 suppresses SPM formation in M2 macrophages. Conclusively, interference with discrete LM biosynthetic enzymes in different macrophage phenotypes considerably affects the LM metabolomes with potential consequences for inflammation-resolution pharmacotherapy. Our data may allow better appraisal of the therapeutic potential of these drugs to intervene with inflammatory disorders.-Werner, M., Jordan, P. M., Romp, E., Czapka, A., Rao, Z., Kretzer, C., Koeberle, A., Garscha, U., Pace, S., Claesson, H.-E., Serhan, C. N., Werz, O., Gerstmeier, J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome.
Collapse
Affiliation(s)
- Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Erik Romp
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Zhigang Rao
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Hans-Erik Claesson
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Charles N Serhan
- Department of Anesthesia, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
67
|
Lodyga M, Cambridge E, Karvonen HM, Pakshir P, Wu B, Boo S, Kiebalo M, Kaarteenaho R, Glogauer M, Kapoor M, Ask K, Hinz B. Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-β. Sci Signal 2019; 12:12/564/eaao3469. [PMID: 30647145 DOI: 10.1126/scisignal.aao3469] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages contribute to the activation of fibroblastic cells into myofibroblasts, which secrete collagen and contract the collagen matrix to acutely repair injured tissue. Persistent myofibroblast activation leads to the accumulation of fibrotic scar tissue that impairs organ function. We investigated the key processes that turn acute beneficial repair into destructive progressive fibrosis. We showed that homotypic cadherin-11 interactions promoted the specific binding of macrophages to and persistent activation of profibrotic myofibroblasts. Cadherin-11 was highly abundant at contacts between macrophages and myofibroblasts in mouse and human fibrotic lung tissues. In attachment assays, cadherin-11 junctions mediated specific recognition and strong adhesion between macrophages and myofibroblasts. One functional outcome of cadherin-11-mediated adhesion was locally restricted activation of latent transforming growth factor-β (TGF-β) between macrophage-myofibroblast pairs that was not observed in cocultures of macrophages and myofibroblasts that were not in contact with one another. Our data suggest that cadherin-11 junctions maintain latent TGF-β-producing macrophages and TGF-β-activating myofibroblasts in close proximity to one another. Inhibition of homotypic cadherin-11 interactions could be used to cause macrophage-myofibroblast separation, thereby destabilizing the profibrotic niche.
Collapse
Affiliation(s)
- Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Elizabeth Cambridge
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Henna M Karvonen
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.,Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029, Oulu, Finland
| | - Pardis Pakshir
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Brian Wu
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5T 2S8, Canada.,Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Melanie Kiebalo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Riitta Kaarteenaho
- Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029, Oulu, Finland
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Mohit Kapoor
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5T 2S8, Canada.,Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kjetil Ask
- Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, Hamilton, Ontario L8N 4A6, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada. .,Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029, Oulu, Finland.,Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
68
|
Colavite PM, Vieira AE, Palanch Repeke CE, de Araujo Linhari RP, De Andrade RGCS, Borrego A, De Franco M, Trombone APF, Garlet GP. Alveolar bone healing in mice genetically selected in the maximum (AIRmax) or minimum (AIRmin) inflammatory reaction. Cytokine 2018; 114:47-60. [PMID: 30584949 DOI: 10.1016/j.cyto.2018.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 01/15/2023]
Abstract
The exact role of inflammatory immune response in bone healing process is still unclear, but the success of the alveolar bone healing process seems to be associated with a moderate and transitory inflammatory response, while insufficient or exacerbated responses seems to have a detrimental influence in the healing outcome. In this context, we performed a comparative analysis of mice strains genetically selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response to address the influence of inflammation genes in alveolar bone healing outcome. Experimental groups comprised 8-week-old male or female AIRmax and AIRmin submitted to extraction of upper right incisor, and evaluated at 0, 3, 7, 14 and 21 days after upper incision extraction by micro-computed tomography (μCT), histomorphometry, birefringence, immunohistochemistry and molecular (PCRArray) analysis. Overall, the results demonstrate a similar successful bone healing outcome at the endpoint was evidenced in both AIRmin and AIRmax strains. The histormophometric analysis reveal a slight but significant decrease in blood clot and inflammatory cells density, as well a delay in the bone formation in AIRmax strain in the early times, associated with a decreased expression of BMP2, BMP4, BMP7, TGFb1, RUNX2, and ALP. The evaluation of inflammatory cells nature reveals increased GR1+ cells counts in AIRmax strain at 3d, associated with increased levels of neutrophil chemoattractants such as CXCL1 and CXCL2, and its receptor CXCR1, while F4/80+ cell prevails in AIRmin strain at 7d. Also, our results demonstrate a relative predominance of M2 macrophages in AIRmin strain, associated with an increased expression of ARG1, IL10, TGFb, while M1 macrophages prevail in AIRmax, which parallel with increased IL-1B, IL-6 and TNF expression. At late repair stage, AIRmax presents evidences of increased bone remodeling, characterized by increased density of blood vessels and osteoclasts in parallel with decreased bone matrix density, as well increased levels of MMPs, osteoclastogenic and osteocyte markers. In the view of contrasting inflammatory and healing phenotypes of AIRmin and AIRmax strains in other models, the unpredicted phenotype observed suggests the existence of specific QTLs (Quantitative trait loci) responsible for the regulation 'sterile' inflammation and bone healing events. Despite the similar endpoint healing, AIRmax strain delayed repair was associated with increased presence of neutrophils and M1 macrophages, supporting the association of M2 cells with faster bone healing. Further studies are required to clarify the elements responsible for the regulation of inflammatory events at bone healing sites, as well the determinants of bone healing outcome.
Collapse
Affiliation(s)
- Priscila Maria Colavite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Andreia Espindola Vieira
- Histology and Embryology Laboratory, Institute of Biological and Health Sciences (ICBS), Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | | | | | - Andrea Borrego
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, SP, Brazil
| | - Marcelo De Franco
- Diagnostic Section, Pasteur Institute, Secretary of Health, Government of the State of São Paulo, SP, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
69
|
Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation. Mediators Inflamm 2018; 2018:3523642. [PMID: 30647534 PMCID: PMC6311781 DOI: 10.1155/2018/3523642] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder that affects ~2%–3% of the worldwide population. Inappropriate and excessive activation of endosomal Toll-like receptors 7, 8, and 9 (TLRs 7–9) at the psoriatic site has been shown to play a pathogenic role in the onset of psoriasis. Macrophage is a major inflammatory cell type that can be differentiated into phenotypes M1 and M2. M1 macrophages produce proinflammatory cytokines, and M2 macrophages produce anti-inflammatory cytokines. The balance between these two types of macrophages determines the progression of various inflammatory diseases; however, whether macrophage polarization plays a role in psoriatic inflammation activated by endosomal TLRs has not been investigated. In this study, we investigated the function and mechanism of macrophages related to the pathogenic role of TLRs 7–9 in the progression of psoriasis. Analysis of clinical data in database revealed significantly increased expression of macrophage markers and inflammatory cytokines in psoriatic tissues over those in normal tissues. In animal studies, depletion of macrophages in mice ameliorated imiquimod, a TLR 7 agonist-induced psoriatic response. Imiquimod induced expression of genes and cytokines that are signature of M1 macrophage in the psoriatic lesions. In addition, treatment with this TLR 7 agonist shifted macrophages in the psoriatic lesions to a higher M1/M2 ratio. Both of the exogenous and endogenous TLR 7–9 ligands activated M1 macrophage polarization. M1 macrophages expressed higher levels of proinflammatory cytokines and TLRs 7–9 than M2 macrophages. These results suggest that by rendering macrophages into a more inflammatory status and capable of response to their ligands in the psoriatic sites, TLR 7–9 activation drives them to participate in endosomal TLR-activated psoriatic inflammation, resulting in an amplified inflammatory response. Our results also suggest that blocking M1 macrophage polarization could be a strategy which enables inhibition of psoriatic inflammation activated by these TLRs.
Collapse
|
70
|
Fu R, Li Q, Fan R, Zhou Q, Jin X, Cao J, Wang J, Ma Y, Yi T, Zhou M, Yao S, Gao H, Xu Z, Yang Z. iTRAQ-based secretome reveals that SiO 2 induces the polarization of RAW264.7 macrophages by activation of the NOD-RIP2-NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:92-102. [PMID: 30189374 DOI: 10.1016/j.etap.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Silicosis is characterized by inflammation and pulmonary fibrosis due to long-term inhalation of crystalline silica (SiO2). To clarify the role of macrophage polarization in the inflammatory response of silicosis, we used iTRAQ-coupled 2D LC-MS/MS to study the change in the secretome in RAW264.7 macrophages. We successfully screened 330 differentially expressed proteins, including 120 proteins with upregulated expression and 210 proteins with down-regulated expression (p < 0.05). Bioinformatics analysis showed that the differentially expressed proteins were mainly involved in biological processes, such as oxidative stress, mitochondrial damage, apoptosis and acute inflammatory response. In particular, the expression levels of mitochondrial apoptosis-related proteins, such as AKT1, BAX, HSPD1, TNF, CASP8 and DAP, were increased after SiO2 exposure. Taken together, our study indicated that SiO2 could induce macrophage polarization by activation of the NOD-RIP2-NF-κB signaling pathway in RAW264.7 macrophages. This may represent a potential mechanism in the development of silicosis.
Collapse
Affiliation(s)
- Rong Fu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China; Xinxiang Medical University, School of Public Health, Xinxiang 453003, China
| | - Qian Li
- Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Rong Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Qinye Zhou
- Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Xiaohan Jin
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Jin Cao
- Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Jiabao Wang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Yongqiang Ma
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Tailong Yi
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Maobin Zhou
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Sanqiao Yao
- Xinxiang Medical University, School of Public Health, Xinxiang 453003, China
| | - Hongsheng Gao
- Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China.
| | - Zhen Yang
- Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China.
| |
Collapse
|
71
|
Gauthier A, Fisch A, Seuwen K, Baumgarten B, Ruffner H, Aebi A, Rausch M, Kiessling F, Bartneck M, Weiskirchen R, Tacke F, Storm G, Lammers T, Ludwig MG. Glucocorticoid-loaded liposomes induce a pro-resolution phenotype in human primary macrophages to support chronic wound healing. Biomaterials 2018; 178:481-495. [DOI: 10.1016/j.biomaterials.2018.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023]
|
72
|
Zhou S, Lu H, Chen R, Tian Y, Jiang Y, Zhang S, Ni D, Su Z, Shao X. Angiotensin II enhances the acetylation and release of HMGB1 in RAW264.7 macrophage. Cell Biol Int 2018; 42:1160-1169. [PMID: 29741224 DOI: 10.1002/cbin.10984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/05/2018] [Indexed: 12/14/2022]
Abstract
The high-mobility group box-1 (HMGB1), as a highly conserved ubiquitous DNA-binding protein, has been widely studied in various diseases, including inflammation and tumor; however, fewer studies were focused on the mechanisms controlling HMGB1 release compared with the function of HMGB1. Previous studies have proven that ANG II can act as a pro-inflammatory cytokine, both of HMGB1 and ANG II were significantly upregulated in autoimmune diseases; however, the exact role of ANG II in regulating HMGB1 release have not been shown. The present study was to define the effects of ANG II on macrophages and the possible mechanisms in controlling HMGB1 release. Our results showed that ANG II can induce M1 macrophage polarization through upregulated the expression of HMGB1 and caused acetylation of HMGB1 and release via its dissociation from SIRT1, which in a positive feedback upregulates ANG II. Subsequently, HMGB1 inhibitors can reduce the ANG II-elicited polarize of macrophage. Meanwhile, we show that JAK/STAT pathways play an essential role in ANG II-induced HMGB1 nuclear translocation, JAK/STAT specific inhibitors can inhibit ANG II-induced HMGB1 expression. Taken together, our results provide a novel evidence that HMGB1 play a critical role in ANG II mediated macrophage polarization, and we suggest that ANG II mediated HMGB1 release via dissociation from SIRT1, induce hyperacetylation of HMGB1, thus for subsequent release, suggesting that the angiotensin II receptor antagonist is a potential drug target for inhibiting HMGB1 release in inflammation diseases.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Hongxiang Lu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Rong Chen
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Tian
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - YuanYuan Jiang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Shiqing Zhang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Daobing Ni
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyi Shao
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
73
|
Lee H, Roshanravan H, Wang Y, Okamoto K, Ryu J, Shrivastav S, Qu P, Kopp JB. ApoL1 renal risk variants induce aberrant THP-1 monocyte differentiation and increase eicosanoid production via enhanced expression of cyclooxygenase-2. Am J Physiol Renal Physiol 2018; 315:F140-F150. [PMID: 29357411 PMCID: PMC6087794 DOI: 10.1152/ajprenal.00254.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
Apolipoprotein L1 ( ApoL1) genetic variants are strongly associated with kidney diseases. We investigated the role of ApoL1 variants in monocyte differentiation and eicosanoid production in macrophages, as activated tissue macrophages in kidney might contribute to kidney injury. In human monocyte THP-1 cells, transient overexpression of ApoL1 (G0, G1, G2) by transfection resulted in a 5- to 11-fold increase in CD14 and CD68 gene expression, similar to that seen with phorbol-12-myristate acetate treatment. All ApoL1 variants caused monocytes to differentiate into atypical M1 macrophages with marked increase in M1 markers CD80, TNF, IL1B, and IL6 and modest increase in the M2 marker CD163 compared with control cells. ApoL1-G1 transfection induced additional CD206 and TGFB1 expression, and ApoL1-G2 transfection induced additional CD204 and TGFB1 expression. Gene expression of prostaglandin E2 (PGE2) synthase and thromboxane synthase and both gene and protein expression of cyclooxygenase-2 (COX-2) were increased by ApoL1-G1 and -G2 variants compared with -G0 transfection. Higher levels of PGE2 and thromboxane B2, a stable metabolite of thromboxane A2, and transforming growth factor (TGF)-β1 were released into the supernatant of cultured THP-1 cells transfected with ApoL1-G1 and -G2, but not -G0. The increase in PGE2, thromboxane B2, and TGF-β1 was inhibited by COX-2-specific inhibitor CAY10404 but not by COX-1-specific inhibitor SC-560. These results demonstrate a novel role of ApoL1 variants in the regulation of monocyte differentiation and eicosanoid metabolism, which could modify the immune response and promote inflammatory signaling within the local targeted organs and tissues including the kidney.
Collapse
Affiliation(s)
- Hewang Lee
- Institute of Heart and Vessel Diseases, Second Hospital, Dalian Medical University , Dalian , China
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Hila Roshanravan
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Ying Wang
- Institute of Heart and Vessel Diseases, Second Hospital, Dalian Medical University , Dalian , China
| | - Koji Okamoto
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Junghwa Ryu
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Peng Qu
- Institute of Heart and Vessel Diseases, Second Hospital, Dalian Medical University , Dalian , China
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
74
|
HMGB1 silencing in macrophages prevented their functional skewing and ameliorated EAM development: Nuclear HMGB1 may be a checkpoint molecule of macrophage reprogramming. Int Immunopharmacol 2018; 56:277-284. [PMID: 29414662 DOI: 10.1016/j.intimp.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 12/31/2022]
Abstract
High-mobility group box 1 (HMGB1), an important inflammatory factor, plays significant roles in CD4+T cell differentiation, cancer and autoimmune disease development. Our previous data have demonstrated that HMGB1 contributes to macrophage reprogramming and is involved in experimental autoimmune myocarditis (EAM) development. In contrast to the well-explored function of HMGB1, little is known about the nuclear function. Whether HMGB1 can serve as an architectural factor and control functional skewing of macrophages remains unclear. Therefore, the present work was performed to address the above speculation. The adenovirus-mediated shRNA (Ad-shRNA) was employed to knock down HMGB1 in RAW264.7 and monocytes/macrophages of EAM mice. Our data showed that in vitro HMGB1 silencing limited functional skewing of macrophages and down-regulated inflammatory factors secretion, which can't be reversed by the exogenous HMGB1. In M1 polarization system, the phosphorylations of NF-κB, p38 and Erk1/2 were inhibited following HMGB1 silencing. In vivo, HMGB1 silencing could effectively ameliorate EAM development. Our data suggest that HMGB1 may be a checkpoint nuclear factor of macrophage reprogramming. Our findings also provide an exciting therapeutic method for inflammatory disorders.
Collapse
|
75
|
Zhang Z, Xu J, Liu Y, Wang T, Pei J, Cheng L, Hao D, Zhao X, Chen HZ, Liu DP. Mouse macrophage specific knockout of SIRT1 influences macrophage polarization and promotes angiotensin II-induced abdominal aortic aneurysm formation. J Genet Genomics 2018; 45:25-32. [PMID: 29396144 DOI: 10.1016/j.jgg.2018.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/06/2018] [Accepted: 01/11/2018] [Indexed: 11/26/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular degenerative disease. Macrophage polarization and the balance between classically activated macrophages (M1) and alternatively activated macrophages (M2) are crucial for AAA pathogenesis. The present study aims to investigate the roles of macrophage SIRT1 in AAA formation and macrophage polarization. We found that in mouse peritoneal macrophages, SIRT1 expression was decreased after M1 stimulation, but was enhanced after M2 stimulation. Results from SIRT1flox/flox mice and macrophage specific SIRT1 knockout mice with treatment of angiotensin II (Ang II) for 4 weeks showed that macrophage specific deficiency of SIRT1 increased the incidence of AAA and exacerbated the severity, including more severe aneurysm types, enlarged diameter of the aneurysm and increased degradation of elastin. In mouse aortas, SIRT1 deficiency increased the pro-inflammatory M1 molecule inducible nitric oxide synthase (iNOS), and decreased M2 molecules such as arginase 1 (Arg1) and mannose receptor (MR). Furthermore, in peritoneal macrophages, SIRT1 deficiency increased the expression of M1 inflammatory molecules, but decreased the expression of M2 molecules. Overexpression of SIRT1 had the opposite effects. Thus, macrophage specific knockout of SIRT1 influences macrophage polarization and accelerates Ang II-induced AAA formation.
Collapse
Affiliation(s)
- Zhuqin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing 100005, China
| | - Jing Xu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing 100005, China
| | - Yue Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing 100005, China
| | - Tingting Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing 100005, China
| | - Jianfei Pei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing 100005, China
| | - Liqin Cheng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing 100005, China
| | - Delong Hao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiang Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing 100005, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing 100005, China.
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing 100005, China.
| |
Collapse
|
76
|
Li J, Li Y, Gao B, Qin C, He Y, Xu F, Yang H, Lin M. Engineering mechanical microenvironment of macrophage and its biomedical applications. Nanomedicine (Lond) 2018; 13:555-576. [PMID: 29334336 DOI: 10.2217/nnm-2017-0324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Macrophages are the most plastic cells in the hematopoietic system and can be widely found in almost all tissues. Recently studies have shown that mechanical cues (e.g., matrix stiffness and stress/strain) can significantly affect macrophage behaviors. Although existing reviews on the physical and mechanical cues that regulate the macrophage's phenotype are available, engineering mechanical microenvironment of macrophages in vitro as well as a comprehensive overview and prospects for their biomedical applications (e.g., tissue engineering and immunotherapy) has yet to be summarized. Thus, this review provides an overview on the existing methods for engineering mechanical microenvironment of macrophages in vitro and then a section on their biomedical applications and further perspectives are presented.
Collapse
Affiliation(s)
- Jing Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.,Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.,Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,Key Laboratory on Space Physics and Chemistry of Ministry of Education and Key Laboratory on Macromolecular Science & Technology of Shanxi Province, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, 710072, P.R China
| | - Yuhui Li
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bin Gao
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Chuanguang Qin
- Key Laboratory on Space Physics and Chemistry of Ministry of Education and Key Laboratory on Macromolecular Science & Technology of Shanxi Province, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, 710072, P.R China
| | - Yining He
- College of Food Science and Engineering, Northwest A & F University Yangling Shaanxi 712100 China
| | - Feng Xu
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.,Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Min Lin
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
77
|
Werz O, Gerstmeier J, Libreros S, De la Rosa X, Werner M, Norris PC, Chiang N, Serhan CN. Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nat Commun 2018; 9:59. [PMID: 29302056 PMCID: PMC5754355 DOI: 10.1038/s41467-017-02538-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022] Open
Abstract
Proinflammatory eicosanoids (prostaglandins and leukotrienes) and specialized pro-resolving mediators (SPM) are temporally regulated during infections. Here we show that human macrophage phenotypes biosynthesize unique lipid mediator signatures when exposed to pathogenic bacteria. E. coli and S. aureus each stimulate predominantly proinflammatory 5-lipoxygenase (LOX) and cyclooxygenase pathways (i.e., leukotriene B4 and prostaglandin E2) in M1 macrophages. These pathogens stimulate M2 macrophages to produce SPMs including resolvin D2 (RvD2), RvD5, and maresin-1. E. coli activates M2 macrophages to translocate 5-LOX and 15-LOX-1 to different subcellular locales in a Ca2+-dependent manner. Neither attenuated nor non-pathogenic E. coli mobilize Ca2+ or activate LOXs, rather these bacteria stimulate prostaglandin production. RvD5 is more potent than leukotriene B4 at enhancing macrophage phagocytosis. These results indicate that M1 and M2 macrophages respond to pathogenic bacteria differently, producing either leukotrienes or resolvins that further distinguish inflammatory or pro-resolving phenotypes.
Collapse
Affiliation(s)
- Oliver Werz
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, BTM 3016, Boston, MA, 02115, USA.
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany.
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, BTM 3016, Boston, MA, 02115, USA
| | - Xavier De la Rosa
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, BTM 3016, Boston, MA, 02115, USA
| | - Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, BTM 3016, Boston, MA, 02115, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, BTM 3016, Boston, MA, 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, BTM 3016, Boston, MA, 02115, USA.
| |
Collapse
|
78
|
Boakye YD, Groyer L, Heiss EH. An increased autophagic flux contributes to the anti-inflammatory potential of urolithin A in macrophages. Biochim Biophys Acta Gen Subj 2017; 1862:61-70. [PMID: 29031765 DOI: 10.1016/j.bbagen.2017.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/10/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND An extract of Phyllanthus muellerianus and its constituent geraniin have been reported to exert anti-inflammatory activity in vivo. However, orally consumed geraniin, an ellagitannin, shows low bioavailability and undergoes metabolization to urolithins by gut microbiota. This study aimed at comparing geraniin and urolithin A with respect to inhibition of M1 (LPS) polarization of murine J774.1 macrophages and shedding more light on possible underlying mechanisms. METHODS Photometric, fluorimetric as well as luminescence-based assays monitored production of reactive oxygen species (ROS) and nitric oxide (NO), cell viability or reporter gene expression. Western blot analyses and confocal microscopy showed abundance and localization of target proteins, respectively. RESULTS Urolithin A is a stronger inhibitor of M1 (LPS) macrophage polarization (production of NO, ROS and pro-inflammatory proteins) than geraniin. Urolithin A leads to an elevated autophagic flux in macrophages. Inhibition of autophagy in M1 (LPS) macrophages overcomes the suppressed nuclear translocation of p65 (NF-kB; nuclear factor kB), the reduced expression of pro-inflammatory genes as well as the diminished NO production brought about by urolithin A. The increased autophagic flux is furthermore associated with impaired Akt/mTOR (mammalian target of rapamycin) signaling in urolithin A-treated macrophages. CONCLUSIONS AND GENERAL SIGNIFICANCE Intestinal metabolization may boost the potential health benefit of widely consumed dietary ellagitannins, as suggested by side by side comparison of geraniin and urolithin A in M1(LPS) macrophages. Increased activity of the autophagic cellular recycling machinery aids the anti-inflammatory bioactivity of urolithin A.
Collapse
Affiliation(s)
- Yaw Duah Boakye
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Laura Groyer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
79
|
Griffiths HR, Gao D, Pararasa C. Redox regulation in metabolic programming and inflammation. Redox Biol 2017; 12:50-57. [PMID: 28212523 PMCID: PMC5312548 DOI: 10.1016/j.redox.2017.01.023] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/27/2022] Open
Abstract
Energy metabolism and redox state are intrinsically linked. In order to mount an adequate immune response, cells must have an adequate and rapidly available energy resource to migrate to the inflammatory site, to generate reactive oxygen species using NADPH as a cofactor and to engulf bacteria or damaged tissue. The first responder cells of the innate immune response, neutrophils, are largely dependent on glycolysis. Neutrophils are relatively short-lived, dying via apoptosis in the process of bacterial killing through production of hypochlorous acid and release of extracellular NETs. Later on, the most prevalent recruited innate immune cells are monocytes. Their role is to complete a damage limitation exercise initiated by neutrophils and then, as re-programmed M2 macrophages, to resolve the inflammatory event. Almost twenty five years ago, it was noted that macrophages lose their glycolytic capacity and become anti-inflammatory after treatment with corticosteroids. In support of this we now understand that, in contrast to early responders, M2 macrophages are predominantly dependent on oxidative phosphorylation for energy. During early inflammation, polarisation towards M1 macrophages is dependent on NOX2 activation which, via protein tyrosine phosphatase oxidation and AKT activation, increases trafficking of glucose transporters to the membrane and consequently increases glucose uptake for glycolysis. In parallel, mitochondrial efficiency is likely to be compromised via nitrosylation of the electron transport chain. Resolution of inflammation is triggered by encounter with apoptotic membranes exposing oxidised phosphatidylserine that interact with the scavenger receptor, CD36. Downstream of CD36, activation of AMPK and PPARγ elicits mitochondrial biogenesis, arginase expression and a switch towards oxidative phosphorylation in the M2 macrophage. Proinflammatory cytokine production by M2 cells decreases, but anti-inflammatory and wound healing growth factor production is maintained to support restoration of normal function.
Collapse
Affiliation(s)
- Helen R Griffiths
- Departments of Biochemical and Nutritional Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Dan Gao
- Life Sciences, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chathyan Pararasa
- Life & Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
80
|
Shiratori H, Feinweber C, Luckhardt S, Linke B, Resch E, Geisslinger G, Weigert A, Parnham MJ. THP-1 and human peripheral blood mononuclear cell-derived macrophages differ in their capacity to polarize in vitro. Mol Immunol 2017; 88:58-68. [PMID: 28600970 DOI: 10.1016/j.molimm.2017.05.027] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 01/04/2023]
Abstract
Macrophages (Mφ) undergo activation to pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes in response to pathophysiologic stimuli and dysregulation of the M1-M2 balance is often associated with diseases. Therefore, studying mechanisms of macrophage polarization may reveal new drug targets. Human Mφ polarization is generally studied in primary monocyte-derived Mφ (PBMC Mφ) and THP-1-derived Mφ (THP-1 Mφ). We compared the polarization profile of THP-1 Mφ with that of PBMC Mφ to assess the alternative use of THP-1 for polarization studies. Cellular morphology, the expression profiles of 18 genes and 4 cell surface proteins, and phagocytosis capacity for apoptotic cells and S. aureus bioparticles were compared between these Mφ, activated towards M1, M2a, or M2c subsets by stimulation with LPS/IFNγ, IL-4, or IL-10, respectively, for 6h, 24h and 48h. The Mφ types are unique in morphology and basal expression of polarization marker genes, particularly CCL22, in a pre-polarized state, and were differentially sensitive to polarization stimuli. Generally, M1 markers were instantly induced and gradually decreased, while M2 markers were markedly expressed at a later time. Expression profiles of M1 markers were similar between the polarized Mφ types, but M2a cell surface markers demonstrated an IL-4-dependent upregulation only in PBMC Mφ. Polarized THP-1 Mφ but not PBMC Mφ showed distinctive phagocytic capacity for apoptotic cells and bacterial antigens, respectively. In conclusion, our data suggest that THP-1 may be useful for performing studies involving phagocytosis and M1 polarization, rather than M2 polarization.
Collapse
Affiliation(s)
- Hiromi Shiratori
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Carmen Feinweber
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Sonja Luckhardt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Bona Linke
- Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
81
|
Rojas A, Añazco C, Araya P. M2 macrophages do not fly into a "RAGE". Inflamm Res 2017; 66:13-15. [PMID: 27699448 DOI: 10.1007/s00011-016-0994-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are key elements in orchestrating host responses inside tumor stroma. This population may undergo a polarized activation process, thus rendering a heterogeneous spectrum of phenotypes, where the classically activated type 1 macrophages (M1) and the alternative activated type 2 macrophages (M2) represent two extreme phenotypes. In this commentary, based on very recent research findings, we intend to highlight how complex could be the crosstalk among all components of tumor stroma, where the coexistence of non-natural partners may even skew the canonical responses that we can expect.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, 3605 San Miguel Ave., Talca, Chile.
| | - Carolina Añazco
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, 3605 San Miguel Ave., Talca, Chile
| | - Paulina Araya
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, 3605 San Miguel Ave., Talca, Chile
| |
Collapse
|
82
|
Braga TT, Correa-Costa M, Azevedo H, Silva RC, Cruz MC, Almeida MES, Hiyane MI, Moreira-Filho CA, Santos MF, Perez KR, Cuccovia IM, Camara NOS. Early infiltration of p40IL12(+)CCR7(+)CD11b(+) cells is critical for fibrosis development. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:300-14. [PMID: 27621813 PMCID: PMC5004285 DOI: 10.1002/iid3.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Macrophages are heterogeneous and thus can be correlated with distinct tissue outcomes after injury. Conflicting data have indicated that the M2-related phenotype directly triggers fibrosis. Conversely, we hypothesize here that the inflammatory milieu provided by early infiltration of pro-inflammatory macrophages dictates tissue scarring after injury. METHODS AND RESULTS We first determined that tissue-localized macrophages exhibit a pro-inflammatory phenotype (p40IL12(+)CCR7(+)CD11b(+)) during the early phase of a chronic injury model, in contrast to a pro-resolving phenotype (Arg1(+)IL10(+)CD206(+)CD11b(+)) at a later stage. Then, we evaluated the effects of injecting macrophages differentiated in vitro in the presence of IFNγ + LPS or IL4 + IL13 or non-differentiated macrophages (hereafter, M0) on promoting inflammation and progression of chronic injury in macrophage-depleted mice. In addition to enhancing the expression of pro-inflammatory cytokines, the injection of M (IFNγ + LPS), but not M (IL4 + IL13) or M0, accentuated fibrosis while augmenting levels of anti-inflammatory molecules, increasing collagen deposition and impairing organ function. We observed a similar profile after injection of sorted CCR7(+)CD11b(+) cells and a more pronounced effect of M (IFNγ + LPS) cells originated from Stat6(-/-) mice. The injection of M (IFNγ + LPS) cells was associated with the up-regulation of inflammation- and fibrosis-related proteins (Thbs1, Mmp7, Mmp8, and Mmp13). CONCLUSIONS Our results suggest that pro-inflammatory macrophages promote microenvironmental changes that may lead to fibrogenesis by inducing an inflammatory milieu that alters a network of extracellular-related genes, culminating in tissue fibrosis.
Collapse
Affiliation(s)
- Tarcio Teodoro Braga
- Laboratory of Transplantation Immunobiology, Department of Immunology Institute of Biomedical Sciences IV, University of São Paulo (USP) São Paulo Brazil
| | - Matheus Correa-Costa
- Laboratory of Transplantation Immunobiology, Department of Immunology Institute of Biomedical Sciences IV, University of São Paulo (USP) São Paulo Brazil
| | - Hatylas Azevedo
- Department of Pediatrics Faculdade de Medicina da Universidade de São Paulo (FMUSP) São Paulo Brazil
| | - Reinaldo Correia Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology Institute of Biomedical Sciences IV, University of São Paulo (USP) São Paulo Brazil
| | - Mario Costa Cruz
- Laboratory of Transplantation Immunobiology, Department of Immunology Institute of Biomedical Sciences IV, University of São Paulo (USP) São Paulo Brazil
| | | | - Meire Ioshie Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology Institute of Biomedical Sciences IV, University of São Paulo (USP) São Paulo Brazil
| | | | - Marinilce Fagundes Santos
- Department of Cellular Biology-Institute of Biomedical Sciences University of São Paulo (USP) São Paulo Brazil
| | - Katia Regina Perez
- Department of Biochemistry-Institute of Chemistry University of São Paulo (USP) São Paulo Brazil
| | - Iolanda Midea Cuccovia
- Department of Biochemistry-Institute of Chemistry University of São Paulo (USP) São Paulo Brazil
| | - Niels Olsen Saraiva Camara
- Laboratory of Transplantation Immunobiology, Department of ImmunologyInstitute of Biomedical Sciences IV, University of São Paulo (USP)São PauloBrazil; Laboratory of Clinical and Experimental Immunology, Division of NephrologyFederal University of São Paulo (UNIFESP)São PauloBrazil; Renal Pathophysiology Laboratory (LIM16)Faculty of Medicine, University of São PauloSão PauloBrazil
| |
Collapse
|
83
|
Ju C, Liangpunsakul S. Role of hepatic macrophages in alcoholic liver disease. J Investig Med 2016; 64:1075-7. [PMID: 27382116 DOI: 10.1136/jim-2016-000210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 12/14/2022]
Abstract
Alcohol consumption can lead to the increase in gut permeability and cause the translocation of bacteria-derived lipopolysaccharides from the gut to the liver, which subsequently activates immune responses. In this process, macrophages play a critical role and involve in the pathogenesis of alcoholic liver disease (ALD). To define the mechanism underpinning the function of macrophages, it is important to conduct extensive studies to further explicate the phenotypic diversity of macrophages in the context of ALD. In this review, the role of hepatic macrophages in the pathogenesis of ALD is discussed.
Collapse
Affiliation(s)
- Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, Colorado, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
84
|
Kamada N, Rogler G. The Innate Immune System: A Trigger for Many Chronic Inflammatory Intestinal Diseases. Inflamm Intest Dis 2016; 1:70-77. [PMID: 29922660 DOI: 10.1159/000445261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
Background Mononuclear phagocytes, such as monocytes, macrophages, and dendritic cells, are important cellular components of the innate immune system that contribute to the pathogenesis of many intestinal inflammatory diseases. Summary While mononuclear phagocytes play a key role in the induction of inflammation in many different tissues through production of pro-inflammatory cytokines and chemokines (such as IL-1, TNF, IL-6, IL-8 and MCP-1), free oxygen radicals (also termed 'oxidative burst'), proteases (such as cathepsins) and tissue-degrading enzymes (such as metalloproteinases), resident macrophages as well as dendritic cells in the intestine display an anergic and 'tolerogenic' phenotype mediating tolerance to commensal bacteria. In recent years many single nucleotide polymorphisms (SNPs) in genes mainly expressed in the above-mentioned cell types have been identified to convey an increased risk of autoimmune diseases. SNPs in the NOD2, ATG16L1 and TNFSF15 genes, which are involved in the function of the innate immune cells, are identified as risk factors for Crohn's disease (CD). Of note, these genes are involved in the different functions in the innate immune cells. For example, while NOD2 is required for intracellular recognition of microbial components, ATG16L1 is involved in autophagy responses against intracellular microbes. Likewise, TNFSF15 contributes to the induction of inflammatory responses by innate immune cells. Furthermore, the frequency of mutations in these genes differs by ethnicity. Genetic variations in the NOD2 and ATG16L1 genes are associated with CD in Caucasians but much less in Eastern Asian populations, whereas SNPs in TNFSF15 are dominated in Asian populations. Thus, different genetic risks may eventually lead to similar impairments in innate immune cells, thereby developing the same disease in Western and Asian patients with CD. Key Messages Despite differences in risk genes, similar mechanisms associated with the innate immune system may trigger autoimmune and chronic inflammatory intestinal diseases in East and West.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Mich., USA
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
85
|
Wu XQ, Dai Y, Yang Y, Huang C, Meng XM, Wu BM, Li J. Emerging role of microRNAs in regulating macrophage activation and polarization in immune response and inflammation. Immunology 2016; 148:237-48. [PMID: 27005899 DOI: 10.1111/imm.12608] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/05/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Diversity and plasticity are hallmarks of macrophages. Classically activated macrophages are considered to promote T helper type 1 responses and have strong microbicidal, pro-inflammatory activity, whereas alternatively activated macrophages are supposed to be associated with promotion of tissue remodelling and responses to anti-inflammatory reactions. Transformation of different macrophage phenotypes is reflected in their different, sometimes even opposite, roles in various diseases or inflammatory conditions. MicroRNAs (miRNAs) have emerged as critical regulators of macrophage polarization (MP). Several miRNAs are induced by Toll-like receptors signalling in macrophages and target the 3'-untranslated regions of mRNAs encoding key molecules involved in MP. Therefore, identification of miRNAs related to the dynamic changes of MP and understanding their functions in regulating this process are important for discussing the molecular basis of disease progression and developing novel miRNA-targeted therapeutic strategies. Here, we review the current knowledge of the role of miRNAs in MP with relevance to immune response and inflammation.
Collapse
Affiliation(s)
- Xiao-Qin Wu
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yao Dai
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China.,Department of Medicine, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yang Yang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Bao-Ming Wu
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
86
|
Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol 2016; 38:425-48. [PMID: 27116944 PMCID: PMC4896979 DOI: 10.1007/s00281-016-0560-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
Abstract
Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered.
Collapse
Affiliation(s)
- C T Robb
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - K H Regan
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
87
|
HMGB1 Facilitated Macrophage Reprogramming towards a Proinflammatory M1-like Phenotype in Experimental Autoimmune Myocarditis Development. Sci Rep 2016; 6:21884. [PMID: 26899795 PMCID: PMC4761996 DOI: 10.1038/srep21884] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022] Open
Abstract
Macrophages can be reprogramming, such as the classical activated macrophage, M1 or alternative activated macrophages, M2 phenotype following the milieu danger signals, especially inflammatory factors. Macrophage reprogramming is now considered as a key determinant of disease development and/or regression. Experimental autoimmune myocarditis (EAM) is characterized by monocytes/macrophage infiltration, Th17 cells activation and inflammatory factors producing such as high mobility group box 1 (HMGB1). Whether infiltrated macrophages could be reprogramming in EAM? HMGB1 was associated with macrophage reprogramming? Our results clearly demonstrated that infiltrated macrophage was reprogrammed towards a proinflammatory M1-like phenotype and cardiac protection by monocytes/macrophages depletion or HMGB1 blockade in EAM; in vitro, HMGB1 facilitated macrophage reprogramming towards M1-like phenotype dependent on TLR4-PI3Kγ-Erk1/2 pathway; furthermore, the reprogramming M1-like macrophage promoted Th17 expansion. Therefore, we speculated that HMGB1 contributed EAM development via facilitating macrophage reprogramming towards M1-like phenotype except for directly modulating Th17 cells expansion.
Collapse
|