51
|
Belenguer G, Duart-Abadia P, Domingo-Muelas A, Morante-Redolat JM, Fariñas I. Cell population analysis of the adult murine subependymal neurogenic lineage by flow cytometry. STAR Protoc 2021; 2:100425. [PMID: 33899012 PMCID: PMC8056273 DOI: 10.1016/j.xpro.2021.100425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This protocol provides a flow-cytometry-based procedure to classify and isolate all cells of the adult rodent subependymal zone (SEZ) neurogenic lineage, without the need for reporter mice, into different cell populations, including three neural stem cell (NSC) fractions with molecular signatures that are coherent with single-cell transcriptomics. Additionally, their cycling behavior can be assessed by means of 5-ethynyl-2′-deoxyuridine (EdU) incorporation. Our method allows the isolation of different NSC fractions and the functional assay of their cycling heterogeneity and quiescence-activation transitions. For complete details on the use, execution, and outcomes of this protocol, please refer to Belenguer et al. (2021). The subependymal neurogenic lineage can be stratified with a set of surface markers Cytometry-based classification and isolation of three distinct neural stem cell states Nucleoside incorporation can be combined to score cycling dynamics and cell transitions Tips for accurate dissection of the subependymal neurogenic niche
Collapse
Affiliation(s)
- Germán Belenguer
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100 Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Pere Duart-Abadia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100 Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Ana Domingo-Muelas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100 Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Jose Manuel Morante-Redolat
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100 Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100 Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| |
Collapse
|
52
|
Verkhratsky A, Dayanithi G. When day meets night: Subsiding calcium signalling translates daylight into new neurones. Cell Calcium 2021; 95:102385. [PMID: 33750576 DOI: 10.1016/j.ceca.2021.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
Day/night cycle controls neurogenesis; melatonin released from pineal gland in darkness stimulates intracellular Ca2+ dynamics thus decreasing proliferation of neural stem cells. In the daylight intracellular Ca2+ activity subsides, which stimulates neural stem cells division and increases generation of newborn neurones.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| | - Govindan Dayanithi
- Molecular Mechanisms in Neurodegenerative Diseases Laboratory, MMDN, University of Montpellier, EPHE-Sorbonne, INSERM, UMR-S1198, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
| |
Collapse
|
53
|
Figueres-Oñate M, Sánchez-González R, López-Mascaraque L. Deciphering neural heterogeneity through cell lineage tracing. Cell Mol Life Sci 2021; 78:1971-1982. [PMID: 33151389 PMCID: PMC7966193 DOI: 10.1007/s00018-020-03689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Understanding how an adult brain reaches an appropriate size and cell composition from a pool of progenitors that proliferates and differentiates is a key question in Developmental Neurobiology. Not only the control of final size but also, the proper arrangement of cells of different embryonic origins is fundamental in this process. Each neural progenitor has to produce a precise number of sibling cells that establish clones, and all these clones will come together to form the functional adult nervous system. Lineage cell tracing is a complex and challenging process that aims to reconstruct the offspring that arise from a single progenitor cell. This tracing can be achieved through strategies based on genetically modified organisms, using either genetic tracers, transfected viral vectors or DNA constructs, and even single-cell sequencing. Combining different reporter proteins and the use of transgenic mice revolutionized clonal analysis more than a decade ago and now, the availability of novel genome editing tools and single-cell sequencing techniques has vastly improved the capacity of lineage tracing to decipher progenitor potential. This review brings together the strategies used to study cell lineages in the brain and the role they have played in our understanding of the functional clonal relationships among neural cells. In addition, future perspectives regarding the study of cell heterogeneity and the ontogeny of different cell lineages will also be addressed.
Collapse
Affiliation(s)
- María Figueres-Oñate
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
- Max Planck Research Unit for Neurogenetics, 60438, Frankfurt am Main, Germany
| | - Rebeca Sánchez-González
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain.
| |
Collapse
|
54
|
Wahis J, Holt MG. Astrocytes, Noradrenaline, α1-Adrenoreceptors, and Neuromodulation: Evidence and Unanswered Questions. Front Cell Neurosci 2021; 15:645691. [PMID: 33716677 PMCID: PMC7947346 DOI: 10.3389/fncel.2021.645691] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Noradrenaline is a major neuromodulator in the central nervous system (CNS). It is released from varicosities on neuronal efferents, which originate principally from the main noradrenergic nuclei of the brain - the locus coeruleus - and spread throughout the parenchyma. Noradrenaline is released in response to various stimuli and has complex physiological effects, in large part due to the wide diversity of noradrenergic receptors expressed in the brain, which trigger diverse signaling pathways. In general, however, its main effect on CNS function appears to be to increase arousal state. Although the effects of noradrenaline have been researched extensively, the majority of studies have assumed that noradrenaline exerts its effects by acting directly on neurons. However, neurons are not the only cells in the CNS expressing noradrenaline receptors. Astrocytes are responsive to a range of neuromodulators - including noradrenaline. In fact, noradrenaline evokes robust calcium transients in astrocytes across brain regions, through activation of α1-adrenoreceptors. Crucially, astrocytes ensheath neurons at synapses and are known to modulate synaptic activity. Hence, astrocytes are in a key position to relay, or amplify, the effects of noradrenaline on neurons, most notably by modulating inhibitory transmission. Based on a critical appraisal of the current literature, we use this review to argue that a better understanding of astrocyte-mediated noradrenaline signaling is therefore essential, if we are ever to fully understand CNS function. We discuss the emerging concept of astrocyte heterogeneity and speculate on how this might impact the noradrenergic modulation of neuronal circuits. Finally, we outline possible experimental strategies to clearly delineate the role(s) of astrocytes in noradrenergic signaling, and neuromodulation in general, highlighting the urgent need for more specific and flexible experimental tools.
Collapse
Affiliation(s)
- Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
55
|
Oproescu AM, Han S, Schuurmans C. New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex. Front Mol Neurosci 2021; 14:642016. [PMID: 33658912 PMCID: PMC7917194 DOI: 10.3389/fnmol.2021.642016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Historically, the mammalian brain was thought to lack stem cells as no new neurons were found to be made in adulthood. That dogma changed ∼25 years ago with the identification of neural stem cells (NSCs) in the adult rodent forebrain. However, unlike rapidly self-renewing mature tissues (e.g., blood, intestinal crypts, skin), the majority of adult NSCs are quiescent, and those that become 'activated' are restricted to a few neurogenic zones that repopulate specific brain regions. Conversely, embryonic NSCs are actively proliferating and neurogenic. Investigations into the molecular control of the quiescence-to-proliferation-to-differentiation continuum in the embryonic and adult brain have identified proneural genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs) as critical regulators. These bHLH TFs initiate genetic programs that remove NSCs from quiescence and drive daughter neural progenitor cells (NPCs) to differentiate into specific neural cell subtypes, thereby contributing to the enormous cellular diversity of the adult brain. However, new insights have revealed that proneural gene activities are context-dependent and tightly regulated. Here we review how proneural bHLH TFs are regulated, with a focus on the murine cerebral cortex, drawing parallels where appropriate to other organisms and neural tissues. We discuss upstream regulatory events, post-translational modifications (phosphorylation, ubiquitinylation), protein-protein interactions, epigenetic and metabolic mechanisms that govern bHLH TF expression, stability, localization, and consequent transactivation of downstream target genes. These tight regulatory controls help to explain paradoxical findings of changes to bHLH activity in different cellular contexts.
Collapse
Affiliation(s)
- Ana-Maria Oproescu
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sisu Han
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
56
|
Shah K, King GD, Jiang H. A chromatin modulator sustains self-renewal and enables differentiation of postnatal neural stem and progenitor cells. J Mol Cell Biol 2021; 12:4-16. [PMID: 31065682 PMCID: PMC7052987 DOI: 10.1093/jmcb/mjz036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 03/31/2019] [Accepted: 04/07/2019] [Indexed: 12/17/2022] Open
Abstract
It remains unknown whether H3K4 methylation, an epigenetic modification associated with gene activation, regulates fate determination of the postnatal neural stem and progenitor cells (NSPCs). By inactivating the Dpy30 subunit of the major H3K4 methyltransferase complexes in specific regions of mouse brain, we demonstrate a crucial role of efficient H3K4 methylation in maintaining both the self-renewal and differentiation capacity of postnatal NSPCs. Dpy30 deficiency disrupts development of hippocampus and especially the dentate gyrus and subventricular zone, the major regions for postnatal NSC activities. Dpy30 is indispensable for sustaining the self-renewal and proliferation of NSPCs in a cell-intrinsic manner and also enables the differentiation of mouse and human neural progenitor cells to neuronal and glial lineages. Dpy30 directly regulates H3K4 methylation and the induction of several genes critical in neurogenesis. These findings link a prominent epigenetic mechanism of gene expression to the fundamental properties of NSPCs and may have implications in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kushani Shah
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gwendalyn D King
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
57
|
Gengatharan A, Malvaut S, Marymonchyk A, Ghareghani M, Snapyan M, Fischer-Sternjak J, Ninkovic J, Götz M, Saghatelyan A. Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell 2021; 184:709-722.e13. [PMID: 33482084 DOI: 10.1016/j.cell.2020.12.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
Neural stem cells (NSCs) in the adult brain transit from the quiescent state to proliferation to produce new neurons. The mechanisms regulating this transition in freely behaving animals are, however, poorly understood. We customized in vivo imaging protocols to follow NSCs for several days up to months, observing their activation kinetics in freely behaving mice. Strikingly, NSC division is more frequent during daylight and is inhibited by darkness-induced melatonin signaling. The inhibition of melatonin receptors affected intracellular Ca2+ dynamics and promoted NSC activation. We further discovered a Ca2+ signature of quiescent versus activated NSCs and showed that several microenvironmental signals converge on intracellular Ca2+ pathways to regulate NSC quiescence and activation. In vivo NSC-specific optogenetic modulation of Ca2+ fluxes to mimic quiescent-state-like Ca2+ dynamics in freely behaving mice blocked NSC activation and maintained their quiescence, pointing to the regulatory mechanisms mediating NSC activation in freely behaving animals.
Collapse
Affiliation(s)
- Archana Gengatharan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Alina Marymonchyk
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Majid Ghareghani
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marina Snapyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Judith Fischer-Sternjak
- Division of Physiological Genomics, BioMedical Center, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center, Munich, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; Department of Cell Biology and Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Magdalena Götz
- Division of Physiological Genomics, BioMedical Center, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
58
|
A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers (Basel) 2021; 13:cancers13020230. [PMID: 33435218 PMCID: PMC7827614 DOI: 10.3390/cancers13020230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) is a highly aggressive and almost inevitably lethal brain tumor. Animal models for GBM are crucial to study how the tumor evolves in vivo and to test novel treatment options. Most currently available models are based on the transplantation of human GBM cells into mice with a defective immune system. However, this approach does not allow to study the contribution of immune cells to GBM growth and to test immunotherapies. Transplantation of murine GBM cells overcomes this limitation, however, up to now, only a limited number, which mostly do not mimic important characteristics of human GBM, have been available. Via in vivo passaging, we established a set of murine GBM cell lines that (i) can be easily cultivated and further genetically manipulated, (ii) upon transplantation develop tumors with phenotypic and pathological features of human GBM, and (iii) are available to be shared with the scientific community. Abstract Glioblastomas (GBM) are the most aggressive tumors affecting the central nervous system in adults, causing death within, on average, 15 months after diagnosis. Immunocompetent in-vivo models that closely mirror human GBM are urgently needed for deciphering glioma biology and for the development of effective treatment options. The murine GBM cell lines currently available for engraftment in immunocompetent mice are not only exiguous but also inadequate in representing prominent characteristics of human GBM such as infiltrative behavior, necrotic areas, and pronounced tumor heterogeneity. Therefore, we generated a set of glioblastoma cell lines by repeated in vivo passaging of cells isolated from a neural stem cell-specific Pten/p53 double-knockout genetic mouse brain tumor model. Transcriptome and genome analyses of the cell lines revealed molecular heterogeneity comparable to that observed in human glioblastoma. Upon orthotopic transplantation into syngeneic hosts, they formed high-grade gliomas that faithfully recapitulated the histopathological features, invasiveness and immune cell infiltration characteristic of human glioblastoma. These features make our cell lines unique and useful tools to study multiple aspects of glioblastoma pathomechanism and to test novel treatments in an intact immune microenvironment.
Collapse
|
59
|
Mouthon MA, Morizur L, Dutour L, Pineau D, Kortulewski T, Boussin FD. Syndecan-1 Stimulates Adult Neurogenesis in the Mouse Ventricular-Subventricular Zone after Injury. iScience 2020; 23:101784. [PMID: 33294792 PMCID: PMC7695966 DOI: 10.1016/j.isci.2020.101784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/25/2020] [Accepted: 11/05/2020] [Indexed: 11/28/2022] Open
Abstract
The production of neurons from neural stem cells (NSCs) persists throughout life in the mouse ventricular-subventricular zone (V-SVZ). We have previously reported that NSCs from adult V-SVZ are contained in cell populations expressing the carbohydrate SSEA-1/LeX, which exhibit either characteristics of quiescent NSCs (qNSCs) or of actively dividing NSCs (aNSCs) based on the absence or the presence of EGF-receptor, respectively. Using the fluorescence ubiquitination cell cycle indicator-Cdt1 transgenic mice to mark cells in G0/G1 phase of the cell cycle, we uncovered a subpopulation of qNSCs which were primed to enter the cell cycle in vitro. Besides, we found that treatment with Syndecan-1, a heparan sulfate proteoglycan involved in NSC proliferation, hastened the division of qNSCs and increased proliferation of aNSCs shortening their G1 phase in vitro. Furthermore, administration of Syndecan-1 ameliorated the recovery of neurogenic populations in the V-SVZ after radiation-induced injury providing potential cure for neurogenesis decline during brain aging or after injury. A subpopulation of quiescent NSCs are primed to enter cell cycle The content of primed quiescent NSCs decreases rapidly with age Syndecan-1 favors cell cycle progression of NSCs in vitro and in vivo
Collapse
Affiliation(s)
- Marc-André Mouthon
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Lise Morizur
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Léa Dutour
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Donovan Pineau
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - François D Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
60
|
Chongtham MC, Wang H, Thaller C, Hsiao NH, Vachkov IH, Pavlov SP, Williamson LH, Yamashima T, Stoykova A, Yan J, Eichele G, Tonchev AB. Transcriptome Response and Spatial Pattern of Gene Expression in the Primate Subventricular Zone Neurogenic Niche After Cerebral Ischemia. Front Cell Dev Biol 2020; 8:584314. [PMID: 33344448 PMCID: PMC7744782 DOI: 10.3389/fcell.2020.584314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
The main stem cell niche for neurogenesis in the adult mammalian brain is the subventricular zone (SVZ) that extends along the cerebral lateral ventricles. We aimed at characterizing the initial molecular responses of the macaque monkey SVZ to transient, global cerebral ischemia. We microdissected tissue lining the anterior horn of the lateral ventricle (SVZa) from 7 day post-ischemic and sham-operated monkeys. Transcriptomics shows that in ischemic SVZa, 541 genes were upregulated and 488 genes were down-regulated. The transcription data encompassing the upregulated genes revealed a profile typical for quiescent stem cells and astrocytes. In the primate brain the SVZ is morphologically subdivided in distinct and separate ependymal and subependymal regions. The subependymal contains predominantly neural stem cells (NSC) and differentiated progenitors. To determine in which SVZa region ischemia had evoked transcriptional upregulation, sections through control and ischemic SVZa were analyzed by high-throughput in situ hybridization for a total of 150 upregulated genes shown in the www.monkey-niche.org image database. The majority of the differentially expressed genes mapped to the subependymal layers on the striatal or callosal aspect of the SVZa. Moreover, a substantial number of upregulated genes was expressed in the ependymal layer, implicating a contribution of the ependyma to stem cell biology. The transcriptome analysis yielded several novel gene markers for primate SVZa including the apelin receptor that is strongly expressed in the primate SVZa niche upon ischemic insult.
Collapse
Affiliation(s)
- Monika C Chongtham
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Christina Thaller
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nai-Hua Hsiao
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ivan H Vachkov
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stoyan P Pavlov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, Varna, Bulgaria.,Department of Stem Cell Biology and Advanced Computational Bioimaging, Research Institute, Medical University, Varna, Bulgaria
| | - Lorenz H Williamson
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, Varna, Bulgaria.,Department of Stem Cell Biology and Advanced Computational Bioimaging, Research Institute, Medical University, Varna, Bulgaria
| | - Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Anastassia Stoykova
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gregor Eichele
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Anton B Tonchev
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, Varna, Bulgaria.,Department of Stem Cell Biology and Advanced Computational Bioimaging, Research Institute, Medical University, Varna, Bulgaria
| |
Collapse
|
61
|
Olatz C, Patricia GG, Jon L, Iker B, Carmen DLH, Fernando U, Gaskon I, Ramon PJ. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. BIOLOGY 2020; 9:biology9120426. [PMID: 33260962 PMCID: PMC7760753 DOI: 10.3390/biology9120426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most human tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers, contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers, including the expression of pluripotency core factors. We discuss some of their similarities and differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity to degenerate to CSCs. We also explore the characteristics of the events and mutations leading to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs) share a great deal of features with many of the so far reported CSC phenotypes found in malignant neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant tumors. This raises the question about the particularities of the dental pulp and what specific barriers to malignancy might be present in the case of this tissue. These notable differences warrant further research to decipher the singular properties of DPSCs that make them resistant to transformation, and to unravel new therapeutic targets to treat deadly tumors.
Collapse
Affiliation(s)
- Crende Olatz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - García-Gallastegui Patricia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Luzuriaga Jon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Badiola Iker
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - de la Hoz Carmen
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Unda Fernando
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Ibarretxe Gaskon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| | - Pineda Jose Ramon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Achucarro Basque Center for Neuroscience Fundazioa, 48940 Leioa, Spain
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| |
Collapse
|
62
|
High-resolution mouse subventricular zone stem-cell niche transcriptome reveals features of lineage, anatomy, and aging. Proc Natl Acad Sci U S A 2020; 117:31448-31458. [PMID: 33229571 DOI: 10.1073/pnas.2014389117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adult neural stem cells (NSC) serve as a reservoir for brain plasticity and origin for certain gliomas. Lineage tracing and genomic approaches have portrayed complex underlying heterogeneity within the major anatomical location for NSC, the subventricular zone (SVZ). To gain a comprehensive profile of NSC heterogeneity, we utilized a well-validated stem/progenitor-specific reporter transgene in concert with single-cell RNA sequencing to achieve unbiased analysis of SVZ cells from infancy to advanced age. The magnitude and high specificity of the resulting transcriptional datasets allow precise identification of the varied cell types embedded in the SVZ including specialized parenchymal cells (neurons, glia, microglia) and noncentral nervous system cells (endothelial, immune). Initial mining of the data delineates four quiescent NSC and three progenitor-cell subpopulations formed in a linear progression. Further evidence indicates that distinct stem and progenitor populations reside in different regions of the SVZ. As stem/progenitor populations progress from neonatal to advanced age, they acquire a deficiency in transition from quiescence to proliferation. Further data mining identifies stage-specific biological processes, transcription factor networks, and cell-surface markers for investigation of cellular identities, lineage relationships, and key regulatory pathways in adult NSC maintenance and neurogenesis.
Collapse
|
63
|
Coronas V, Terrié E, Déliot N, Arnault P, Constantin B. Calcium Channels in Adult Brain Neural Stem Cells and in Glioblastoma Stem Cells. Front Cell Neurosci 2020; 14:600018. [PMID: 33281564 PMCID: PMC7691577 DOI: 10.3389/fncel.2020.600018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
The brain of adult mammals, including humans, contains neural stem cells (NSCs) located within specific niches of which the ventricular-subventricular zone (V-SVZ) is the largest one. Under physiological conditions, NSCs proliferate, self-renew and produce new neurons and glial cells. Several recent studies established that oncogenic mutations in adult NSCs of the V-SVZ are responsible for the emergence of malignant primary brain tumors called glioblastoma. These aggressive tumors contain a small subpopulation of cells, the glioblastoma stem cells (GSCs), that are endowed with proliferative and self-renewal abilities like NSCs from which they may arise. GSCs are thus considered as the cells that initiate and sustain tumor growth and, because of their resistance to current treatments, provoke tumor relapse. A growing body of studies supports that Ca2+ signaling controls a variety of processes in NSCs and GSCs. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are handled by channels, pumps, exchangers, and Ca2+ binding proteins. The concerted action of the Ca2+ toolkit components encodes specific Ca2+ signals with defined spatio-temporal characteristics that determine the cellular responses. In this review, after a general overview of the adult brain NSCs and GSCs, we focus on the multiple roles of the Ca2+ toolkit in NSCs and discuss how GSCs hijack these mechanisms to promote tumor growth. Extensive knowledge of the role of the Ca2+ toolkit in the management of essential functions in healthy and pathological stem cells of the adult brain should help to identify promising targets for clinical applications.
Collapse
Affiliation(s)
- Valérie Coronas
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Elodie Terrié
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Nadine Déliot
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Patricia Arnault
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Bruno Constantin
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| |
Collapse
|
64
|
Wiggans M, Pearson BJ. One stem cell program to rule them all? FEBS J 2020; 288:3394-3406. [PMID: 33063917 DOI: 10.1111/febs.15598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Many species of animals have stem cells that they maintain throughout their lives, which suggests that stem cells are an ancestral feature of all animals. From this, we take the viewpoint that cells with the biological properties of 'stemness'-self-renewal and multipotency-may share ancestral genetic circuitry. However, in practice is it very difficult to identify and compare stemness gene signatures across diverse animals and large evolutionary distances? First, it is critical to experimentally demonstrate self-renewal and potency. Second, genomic methods must be used to determine specific gene expression in stem cell types compared with non-stem cell types to determine stem cell gene enrichment. Third, gene homology must be mapped between diverse animals across large evolutionary distances. Finally, conserved genes that fulfill these criteria must be tested for role in stem cell function. It is our viewpoint that by comparing stem cell-specific gene signatures across evolution, ancestral programs of stemness can be uncovered, and ultimately, the dysregulation of stemness programs drives the state of cancer stem cells.
Collapse
Affiliation(s)
- Mallory Wiggans
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, ON, Canada
| | - Bret J Pearson
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| |
Collapse
|
65
|
LRIG1-Mediated Inhibition of EGF Receptor Signaling Regulates Neural Precursor Cell Proliferation in the Neocortex. Cell Rep 2020; 33:108257. [PMID: 33053360 DOI: 10.1016/j.celrep.2020.108257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/17/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022] Open
Abstract
Here, we ask how neural stem cells (NSCs) transition in the developing neocortex from a rapidly to a slowly proliferating state, a process required to maintain lifelong stem cell pools. We identify LRIG1, known to regulate receptor tyrosine kinase signaling in other cell types, as a negative regulator of cortical NSC proliferation. LRIG1 is expressed in murine cortical NSCs as they start to proliferate more slowly during embryogenesis and then peaks postnatally when they transition to give rise to a portion of adult NSCs. Constitutive or acute loss of Lrig1 in NSCs over this developmental time frame causes stem cell expansion due to increased proliferation. LRIG1 controls NSC proliferation by associating with and negatively regulating the epidermal growth factor receptor (EGFR). These data support a model in which LRIG1 dampens the stem cell response to EGFR ligands within the cortical environment to slow their proliferation as they transition to postnatal adult NSCs.
Collapse
|
66
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
67
|
Mira H, Morante J. Neurogenesis From Embryo to Adult - Lessons From Flies and Mice. Front Cell Dev Biol 2020; 8:533. [PMID: 32695783 PMCID: PMC7339912 DOI: 10.3389/fcell.2020.00533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
The human brain is composed of billions of cells, including neurons and glia, with an undetermined number of subtypes. During the embryonic and early postnatal stages, the vast majority of these cells are generated from neural progenitors and stem cells located in all regions of the neural tube. A smaller number of neurons will continue to be generated throughout our lives, in localized neurogenic zones, mainly confined at least in rodents to the subependymal zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. During neurogenesis, a combination of extrinsic cues interacting with temporal and regional intrinsic programs are thought to be critical for increasing neuronal diversity, but their underlying mechanisms need further elucidation. In this review, we discuss the recent findings in Drosophila and mammals on the types of cell division and cell interactions used by neural progenitors and stem cells to sustain neurogenesis, and how they are influenced by glia.
Collapse
Affiliation(s)
- Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernandez, Alicante, Spain
| |
Collapse
|
68
|
Joppé SE, Cochard LM, Levros LC, Hamilton LK, Ameslon P, Aumont A, Barnabé-Heider F, Fernandes KJ. Genetic targeting of neurogenic precursors in the adult forebrain ventricular epithelium. Life Sci Alliance 2020; 3:3/7/e202000743. [PMID: 32482782 PMCID: PMC7266992 DOI: 10.26508/lsa.202000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023] Open
Abstract
In vivo evidence for precursors that produce neurons independent of neurosphere-forming neural stem cells suggests the adult forebrain, like the developing brain, has two distinct neurogenic pathways. The ventricular epithelium of the adult forebrain is a heterogeneous cell population that is a source of both quiescent and activated neural stem cells (qNSCs and aNSCs, respectively). We genetically targeted a subset of ventricle-contacting, glial fibrillary acidic protein (GFAP)-expressing cells, to study their involvement in qNSC/aNSC–mediated adult neurogenesis. Ventricle-contacting GFAP+ cells were lineage-traced beginning in early adulthood using adult brain electroporation and produced small numbers of olfactory bulb neuroblasts until at least 21 mo of age. Notably, electroporated GFAP+ neurogenic precursors were distinct from both qNSCs and aNSCs: they did not give rise to neurosphere-forming aNSCs in vivo or after extended passaging in vitro and they were not recruited during niche regeneration. GFAP+ cells with these properties included a FoxJ1+GFAP+ subset, as they were also present in an inducible FoxJ1 transgenic lineage-tracing model. Transiently overexpressing Mash1 increased the neurogenic output of electroporated GFAP+ cells in vivo, identifying them as a potentially recruitable population. We propose that the qNSC/aNSC lineage of the adult forebrain coexists with a distinct, minimally expanding subset of GFAP+ neurogenic precursors.
Collapse
Affiliation(s)
- Sandra E Joppé
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Loïc M Cochard
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Louis-Charles Levros
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Laura K Hamilton
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Pierre Ameslon
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Anne Aumont
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada
| | - Fanie Barnabé-Heider
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada
| | - Karl Jl Fernandes
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada .,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
69
|
How TRPC Channels Modulate Hippocampal Function. Int J Mol Sci 2020; 21:ijms21113915. [PMID: 32486187 PMCID: PMC7312571 DOI: 10.3390/ijms21113915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential canonical (TRPC) proteins constitute a group of receptor-operated calcium-permeable nonselective cationic membrane channels of the TRP superfamily. They are largely expressed in the hippocampus and are able to modulate neuronal functions. Accordingly, they have been involved in different hippocampal functions such as learning processes and different types of memories, as well as hippocampal dysfunctions such as seizures. This review covers the mechanisms of activation of these channels, how these channels can modulate neuronal excitability, in particular the after-burst hyperpolarization, and in the persistent activity, how they control synaptic plasticity including pre- and postsynaptic processes and how they can interfere with cell survival and neurogenesis.
Collapse
|
70
|
Pestana F, Edwards-Faret G, Belgard TG, Martirosyan A, Holt MG. No Longer Underappreciated: The Emerging Concept of Astrocyte Heterogeneity in Neuroscience. Brain Sci 2020; 10:brainsci10030168. [PMID: 32183137 PMCID: PMC7139801 DOI: 10.3390/brainsci10030168] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Astrocytes are ubiquitous in the central nervous system (CNS). These cells possess thousands of individual processes, which extend out into the neuropil, interacting with neurons, other glia and blood vessels. Paralleling the wide diversity of their interactions, astrocytes have been reported to play key roles in supporting CNS structure, metabolism, blood-brain-barrier formation and control of vascular blood flow, axon guidance, synapse formation and modulation of synaptic transmission. Traditionally, astrocytes have been studied as a homogenous group of cells. However, recent studies have uncovered a surprising degree of heterogeneity in their development and function, in both the healthy and diseased brain. A better understanding of astrocyte heterogeneity is urgently needed to understand normal brain function, as well as the role of astrocytes in response to injury and disease.
Collapse
Affiliation(s)
- Francisco Pestana
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium;
| | - Gabriela Edwards-Faret
- Laboratory of Neuronal Wiring, VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium;
- Life & Medical Sciences (LIMES) Institute, Faculty of Mathematics and Natural Sciences, University of Bonn, 53115 Bonn, Germany
| | | | - Araks Martirosyan
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium;
- Correspondence: (A.M.); (M.G.H.); Tel.: +32-16-37-31-27 (M.G.H.)
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (A.M.); (M.G.H.); Tel.: +32-16-37-31-27 (M.G.H.)
| |
Collapse
|
71
|
Batiuk MY, Martirosyan A, Wahis J, de Vin F, Marneffe C, Kusserow C, Koeppen J, Viana JF, Oliveira JF, Voet T, Ponting CP, Belgard TG, Holt MG. Identification of region-specific astrocyte subtypes at single cell resolution. Nat Commun 2020; 11:1220. [PMID: 32139688 PMCID: PMC7058027 DOI: 10.1038/s41467-019-14198-8] [Citation(s) in RCA: 488] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 01/26/2023] Open
Abstract
Astrocytes, a major cell type found throughout the central nervous system, have general roles in the modulation of synapse formation and synaptic transmission, blood-brain barrier formation, and regulation of blood flow, as well as metabolic support of other brain resident cells. Crucially, emerging evidence shows specific adaptations and astrocyte-encoded functions in regions, such as the spinal cord and cerebellum. To investigate the true extent of astrocyte molecular diversity across forebrain regions, we used single-cell RNA sequencing. Our analysis identifies five transcriptomically distinct astrocyte subtypes in adult mouse cortex and hippocampus. Validation of our data in situ reveals distinct spatial positioning of defined subtypes, reflecting the distribution of morphologically and physiologically distinct astrocyte populations. Our findings are evidence for specialized astrocyte subtypes between and within brain regions. The data are available through an online database (https://holt-sc.glialab.org/), providing a resource on which to base explorations of local astrocyte diversity and function in the brain.
Collapse
Affiliation(s)
- Mykhailo Y Batiuk
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Araks Martirosyan
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Filip de Vin
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Catherine Marneffe
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Carola Kusserow
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Jordan Koeppen
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - João Filipe Viana
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, IPCA Campus, Barcelos, Portugal
| | - Thierry Voet
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
- KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Chris P Ponting
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - T Grant Belgard
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- The Bioinformatics CRO, Niceville, Florida, 32578, USA
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
72
|
Floriddia EM, Castelo-Branco G. Ancestry Tracing: Uncovering a Gliomagenesis Master Regulator. Cell Stem Cell 2020; 24:677-679. [PMID: 31051128 DOI: 10.1016/j.stem.2019.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this issue of Cell Stem Cell, Weng et al. (2019) characterize a progenitor population that precedes oligodendrocyte progenitor cells (OPCs). The authors identified Zfp36l1 as a key regulator of the cell fate switch between oligodendrocytes and astrocytes in neural progenitors, and thereby an important regulator of cellular processes such as myelination and gliomagenesis.
Collapse
Affiliation(s)
- Elisa M Floriddia
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
73
|
Denninger JK, Chen X, Turkoglu AM, Sarchet P, Volk AR, Rieskamp JD, Yan P, Kirby ED. Defining the adult hippocampal neural stem cell secretome: In vivo versus in vitro transcriptomic differences and their correlation to secreted protein levels. Brain Res 2020; 1735:146717. [PMID: 32035887 DOI: 10.1016/j.brainres.2020.146717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023]
Abstract
Adult hippocampal neural stem and progenitor cells (NSPCs) secrete a variety of proteins that affect tissue function. Though several individual NSPC-derived proteins have been shown to impact key cellular processes, a broad characterization is lacking. Secretome profiling of low abundance stem cell populations is typically achieved via proteomic characterization of in vitro, isolated cells. Here, we identified hundreds of secreted proteins in conditioned media from in vitro adult mouse hippocampal NSPCs using an antibody array and mass spectrometry. Comparison of protein abundance between antibody array and mass spectrometry plus quantification of several key secreted proteins by ELISA revealed notable disconnect between methods in what proteins were identified as being high versus low abundance, suggesting that data from antibody arrays in particular should be approached with caution. We next assessed the NSPC secretome on a transcriptional level with single cell and bulk RNA sequencing (RNAseq) of cultured NSPCs. Comparison of RNAseq transcript levels of highly secreted proteins revealed that quantification of gene expression did not necessarily predict relative protein abundance. Interestingly, comparing our in vitro NSPC gene expression data with similar data from freshly isolated, in vivo hippocampal NSPCs revealed strong correlations in global gene expression between in vitro and in vivo NSPCs. Understanding the components and functions of the NSPC secretome is essential to understanding how these cells may modulate the hippocampal neurogenic niche. Cumulatively, our data emphasize the importance of using proteomics in conjunction with transcriptomics and highlights the need for better methods of unbiased secretome profiling.
Collapse
Affiliation(s)
- Jiyeon K Denninger
- Department of Psychology, College of Arts and Sciences, The Ohio State University, United States
| | - Xi Chen
- Comprehensive Cancer Center, The Ohio State University, United States
| | - Altan M Turkoglu
- College of Arts and Sciences, The Ohio State University, United States
| | - Patricia Sarchet
- Comprehensive Cancer Center, The Ohio State University, United States
| | - Abby R Volk
- College of Arts and Sciences, The Ohio State University, United States
| | - Joshua D Rieskamp
- Neuroscience Graduate Program, The Ohio State University, United States
| | - Pearlly Yan
- Comprehensive Cancer Center, The Ohio State University, United States; Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, United States
| | - Elizabeth D Kirby
- Department of Psychology, College of Arts and Sciences, The Ohio State University, United States; Department of Neuroscience, The Ohio State University, United States; Chronic Brain Injury Initiative, The Ohio State University, United States.
| |
Collapse
|
74
|
Poiana G, Gioia R, Sineri S, Cardarelli S, Lupo G, Cacci E. Transcriptional regulation of adult neural stem/progenitor cells: tales from the subventricular zone. Neural Regen Res 2020; 15:1773-1783. [PMID: 32246617 PMCID: PMC7513981 DOI: 10.4103/1673-5374.280301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In rodents, well characterized neurogenic niches of the adult brain, such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus, support the maintenance of neural/stem progenitor cells (NSPCs) and the production of new neurons throughout the lifespan. The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation. At the same time, it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli. A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging, injury or disease. At the core of the molecular mechanisms regulating neurogenesis, several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues. Here, we focus on REST, Egr1 and Dbx2 and their roles in adult neurogenesis, especially in the subventricular zone. We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche. We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain. Finally, we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis.
Collapse
Affiliation(s)
- Giancarlo Poiana
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Serena Sineri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
75
|
Nakafuku M, Del Águila Á. Developmental dynamics of neurogenesis and gliogenesis in the postnatal mammalian brain in health and disease: Historical and future perspectives. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e369. [PMID: 31825170 DOI: 10.1002/wdev.369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
The mature mammalian brain has long been thought to be a structurally rigid, static organ since the era of Ramón y Cajal in the early 20th century. Evidence accumulated over the past three decades, however, has completely overturned this long-held view. We now know that new neurons and glia are continuously added to the brain at postnatal stages, even in mature adults of various mammalian species, including humans. Moreover, these newly added cells contribute to structural plasticity and play important roles in higher order brain function, as well as repair after damage. A major source of these new neurons and glia is neural stem cells (NSCs) that persist in specialized niches in the brain throughout life. With this new view, our understanding of normal brain physiology and interventional approaches to various brain disorders has changed markedly in recent years. This article provides a brief overview on the historical changes in our understanding of the developmental dynamics of neurogenesis and gliogenesis in the postnatal and adult mammalian brain and discusses the roles of NSCs and other progenitor populations in such cellular dynamics in health and disease of the postnatal mammalian brain. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.
Collapse
Affiliation(s)
- Masato Nakafuku
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ángela Del Águila
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
76
|
Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. Cell Rep 2019; 25:2457-2469.e8. [PMID: 30485812 DOI: 10.1016/j.celrep.2018.11.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/13/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022] Open
Abstract
Neural stem cells (NSCs) contribute to plasticity and repair of the adult brain. Niches harboring NSCs regulate stem cell self-renewal and differentiation. We used comprehensive and untargeted single-cell RNA profiling to generate a molecular cell atlas of the largest germinal region of the adult mouse brain, the subventricular zone (SVZ). We characterized >20 neural and non-neural cell types and gained insights into the dynamics of neurogenesis by predicting future cell states based on computational analysis of RNA kinetics. Furthermore, we applied our single-cell approach to document decreased numbers of NSCs, reduced proliferation activity of progenitors, and perturbations in Wnt and BMP signaling pathways in mice lacking LRP2, an endocytic receptor required for SVZ maintenance. Our data provide a valuable resource to study adult neurogenesis and a proof of principle for the power of single-cell RNA sequencing to elucidate neural cell-type-specific alterations in loss-of-function models.
Collapse
|
77
|
Quiescence of Adult Mammalian Neural Stem Cells: A Highly Regulated Rest. Neuron 2019; 104:834-848. [DOI: 10.1016/j.neuron.2019.09.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
|
78
|
Hirrlinger J, Marx G, Besser S, Sicker M, Köhler S, Hirrlinger PG, Wojcik SM, Eulenburg V, Winkler U, Hülsmann S. GABA-Glycine Cotransmitting Neurons in the Ventrolateral Medulla: Development and Functional Relevance for Breathing. Front Cell Neurosci 2019; 13:517. [PMID: 31803026 PMCID: PMC6877658 DOI: 10.3389/fncel.2019.00517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
Inhibitory neurons crucially contribute to shaping the breathing rhythm in the brain stem. These neurons use GABA or glycine as neurotransmitter; or co-release GABA and glycine. However, the developmental relationship between GABAergic, glycinergic and cotransmitting neurons, and the functional relevance of cotransmitting neurons has remained enigmatic. Transgenic mice expressing fluorescent markers or the split-Cre system in inhibitory neurons were developed to track the three different interneuron phenotypes. During late embryonic development, the majority of inhibitory neurons in the ventrolateral medulla are cotransmitting cells, most of which differentiate into GABAergic and glycinergic neurons around birth and around postnatal day 4, respectively. Functional inactivation of cotransmitting neurons revealed an increase of the number of respiratory pauses, the cycle-by-cycle variability, and the overall variability of breathing. In summary, the majority of cotransmitting neurons differentiate into GABAergic or glycinergic neurons within the first 2 weeks after birth and these neurons contribute to fine-tuning of the breathing pattern.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Grit Marx
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Stefanie Besser
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Marit Sicker
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Petra G Hirrlinger
- Medizinisch-Experimentelles Zentrum, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Volker Eulenburg
- Department for Anesthesiology and Intensive Care Therapy, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Swen Hülsmann
- Department of Anaesthesiology, University Medical Center, Georg-August University, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| |
Collapse
|
79
|
Single-cell transcriptomic profiling of the aging mouse brain. Nat Neurosci 2019; 22:1696-1708. [PMID: 31551601 DOI: 10.1038/s41593-019-0491-3] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/09/2019] [Indexed: 01/09/2023]
Abstract
The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand-receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.
Collapse
|
80
|
Figueres-Oñate M, Sánchez-Villalón M, Sánchez-González R, López-Mascaraque L. Lineage Tracing and Cell Potential of Postnatal Single Progenitor Cells In Vivo. Stem Cell Reports 2019; 13:700-712. [PMID: 31543472 PMCID: PMC6829765 DOI: 10.1016/j.stemcr.2019.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023] Open
Abstract
Understanding the contribution of adult neural progenitor cells (NPCs) and their lineage potential is a great challenge in neuroscience. To reveal progenitor diversity and cell-lineage relationships of postnatal NPCs in the subventricular zone (SVZ), we performed in vivo lineage-tracing genetic analysis using the UbC-StarTrack. We determined the progeny of single SVZ-NPCs, the number of cells per clone, the dispersion of sibling cells, and the cell types within clones. Long-term analysis revealed that both the cell-dispersion pattern and number of cells comprising clones varied depending on the glial/neuronal nature of sibling cells. Sibling-olfactory interneurons were primarily located within the same layer, while sibling-glial cells populated SVZ-adjacent areas. Sibling astrocytes and interneurons did not form big clones, whereas oligodendroglial-lineage clones comprised the largest clones originated in adult brains. These results demonstrate the existence of SVZ postnatal bipotential progenitors that give rise to clones widely dispersed across the olfactory bulb and SVZ-adjacent areas. Bipotent postnatal progenitors produce clones of olfactory neurons and glial cells Different clonal cell patterns in astroglial, oligodendroglial, and neuronal lineages Sibling neuroblasts migrating to the olfactory bulb widespread along the RMS axis Sibling astrocytes and interneurons form discrete cell clones
Collapse
|
81
|
Lepko T, Pusch M, Müller T, Schulte D, Ehses J, Kiebler M, Hasler J, Huttner HB, Vandenbroucke RE, Vandendriessche C, Modic M, Martin‐Villalba A, Zhao S, LLorens‐Bobadilla E, Schneider A, Fischer A, Breunig CT, Stricker SH, Götz M, Ninkovic J. Choroid plexus-derived miR-204 regulates the number of quiescent neural stem cells in the adult brain. EMBO J 2019; 38:e100481. [PMID: 31304985 PMCID: PMC6717894 DOI: 10.15252/embj.2018100481] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of adult neural stem cell (NSC) number is critical for lifelong neurogenesis. Here, we identified a post-transcriptional control mechanism, centered around the microRNA 204 (miR-204), to control the maintenance of quiescent (q)NSCs. miR-204 regulates a spectrum of transcripts involved in cell cycle regulation, neuronal migration, and differentiation in qNSCs. Importantly, inhibition of miR-204 function reduced the number of qNSCs in the subependymal zone (SEZ) by inducing pre-mature activation and differentiation of NSCs without changing their neurogenic potential. Strikingly, we identified the choroid plexus of the mouse lateral ventricle as the major source of miR-204 that is released into the cerebrospinal fluid to control number of NSCs within the SEZ. Taken together, our results describe a novel mechanism to maintain adult somatic stem cells by a niche-specific miRNA repressing activation and differentiation of stem cells.
Collapse
Affiliation(s)
- Tjasa Lepko
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Physiological GenomicsBiomedical CenterMedical FacultyLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
| | - Melanie Pusch
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
| | - Tamara Müller
- Institute of Neurology (Edinger Institute)University HospitalGoethe University FrankfurtFrankfurtGermany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute)University HospitalGoethe University FrankfurtFrankfurtGermany
| | - Janina Ehses
- Department for Cell Biology and AnatomyBiomedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
| | - Michael Kiebler
- Department for Cell Biology and AnatomyBiomedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
| | - Julia Hasler
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
| | - Hagen B Huttner
- Department of NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
- Ghent Gut Inflammation Group (GGIG)Ghent UniversityGhentBelgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
- Ghent Gut Inflammation Group (GGIG)Ghent UniversityGhentBelgium
| | - Miha Modic
- The Francis Crick InstituteLondonUK
- Department for Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | | | - Sheng Zhao
- Molecular NeurobiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Anja Schneider
- Translational Dementia Research GroupGerman Center for Neurodegenerative Diseases (DZNE) BonnBonnGermany
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity Clinic BonnBonnGermany
| | - Andre Fischer
- Department for Epigenetics and Systems MedicineGerman Center for Neurodegenerative Diseases (DZNE) GöttingenGöttingenGermany
| | - Christopher T Breunig
- MCN Junior Research GroupMunich Center for NeurosciencesBioMedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Epigenetic EngineeringHelmholtz Zentrum MünchenNeuherbergGermany
| | - Stefan H Stricker
- MCN Junior Research GroupMunich Center for NeurosciencesBioMedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Epigenetic EngineeringHelmholtz Zentrum MünchenNeuherbergGermany
| | - Magdalena Götz
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
- Physiological GenomicsBiomedical CenterMedical FacultyLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Jovica Ninkovic
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
- Physiological GenomicsBiomedical CenterMedical FacultyLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Department for Cell Biology and AnatomyBiomedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
82
|
Park MH, Choi BJ, Jeong MS, Lee JY, Jung IK, Park KH, Lee HW, Yamaguchi T, Marti HH, Lee BH, Schuchman EH, Jin HK, Bae JS. Characterization of the Subventricular-Thalamo-Cortical Circuit in the NP-C Mouse Brain, and New Insights Regarding Treatment. Mol Ther 2019; 27:1507-1526. [PMID: 31138511 PMCID: PMC6697385 DOI: 10.1016/j.ymthe.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 01/17/2023] Open
Abstract
Gliosis in Niemann-Pick type C (NP-C) disease is characterized by marked changes in microglia and astrocytes. However, the gliosis onset and progression in NP-C has not been systematically studied, nor has the mechanism underlying this finding. Here, we found early gliosis in the subventricular zone (SVZ) of NP-C mice. Neural progenitor damage by Npc1 mutation suppressed vascular endothelial growth factor (VEGF) expression and further induced microglia activation followed by astrogliosis. Interestingly, excessive astrogliosis in the SVZ induced neural progenitor retention and/or migration into thalamus via astrocyte-derived VEGF, resulting in acceleration of thalamic and cortical gliosis through thalamo-cortical pathways. Transplantation of VEGF-overexpressing neural stem cells into the SVZ improved whole-brain pathology of NP-C mice. Overall, our data provide a new pathological perspective on NP-C neural pathology, revealing abnormalities in the subventricular-thalamo-cortical circuit of NP-C mouse brain and highlighting the importance of the SVZ microenvironment as a therapeutic target for NP-C disease.
Collapse
Affiliation(s)
- Min Hee Park
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Byung Jo Choi
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Min Seock Jeong
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Ju Youn Lee
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - In Kyung Jung
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Kang Ho Park
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Hye Won Lee
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Beom Hee Lee
- Medical Genetics Center, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hee Kyung Jin
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea.
| | - Jae-Sung Bae
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
83
|
Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Transl Stroke Res 2019; 11:60-79. [DOI: 10.1007/s12975-019-00717-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|
84
|
Cabello-Rivera D, Sarmiento-Soto H, López-Barneo J, Muñoz-Cabello AM. Mitochondrial Complex I Function Is Essential for Neural Stem/Progenitor Cells Proliferation and Differentiation. Front Neurosci 2019; 13:664. [PMID: 31297047 PMCID: PMC6607990 DOI: 10.3389/fnins.2019.00664] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Neurogenesis in developing and adult mammalian brain is a tightly regulated process that relies on neural stem cell (NSC) activity. There is increasing evidence that mitochondrial metabolism affects NSC homeostasis and differentiation but the precise role of mitochondrial function in the neurogenic process requires further investigation. Here, we have analyzed how mitochondrial complex I (MCI) dysfunction affects NSC viability, proliferation and differentiation, as well as survival of the neural progeny. We have generated a conditional knockout model (hGFAP-NDUFS2 mice) in which expression of the NDUFS2 protein, essential for MCI function, is suppressed in cells expressing the Cre recombinase under the human glial fibrillary acidic protein promoter, active in mouse radial glial cells (RGCs) and in neural stem cells (NSCs) that reside in adult neurogenic niches. In this model we observed that survival of central NSC population does not appear to be severely affected by MCI dysfunction. However, perinatal brain development was markedly inhibited and Ndufs2 knockout mice died before the tenth postnatal day. In addition, in vitro studies of subventricular zone NSCs showed that active neural progenitors require a functional MCI to produce ATP and to proliferate. In vitro differentiation of neural precursors into neurons and oligodendrocytes was also profoundly affected. These data indicate the need of a correct MCI function and oxidative phosphorylation for glia-like NSC proliferation, differentiation and subsequent oligodendrocyte or neuronal maturation.
Collapse
Affiliation(s)
- Daniel Cabello-Rivera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Facultad de Medicina, Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Helia Sarmiento-Soto
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Facultad de Medicina, Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Facultad de Medicina, Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ana M Muñoz-Cabello
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Facultad de Medicina, Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
85
|
Morante-Redolat JM, Porlan E. Neural Stem Cell Regulation by Adhesion Molecules Within the Subependymal Niche. Front Cell Dev Biol 2019; 7:102. [PMID: 31245371 PMCID: PMC6581678 DOI: 10.3389/fcell.2019.00102] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
In the mammalian adult brain, neural stem cells persist in neurogenic niches. The subependymal zone is the most prolific neurogenic niche in adult rodents, where residing stem cells generate large numbers of immature neurons that migrate into the olfactory bulb, where they differentiate into different types of interneurons. Subependymal neural stem cells derive from embryonic radial glia and retain some of their features like apico-basal polarity, with apical processes piercing the ependymal layer, and a basal process contacting blood vessels, constituting an epithelial niche. Conservation of the cytoarchitecture of the niche is of crucial importance for the maintenance of stem cells and for their neurogenic potential. In this minireview we will focus on extracellular matrix and adhesion molecules in the adult subependymal zone, showing their involvement not only as structural elements sustaining the niche architecture and topology, but also in the maintenance of stemness and regulation of the quiescence-proliferation balance.
Collapse
Affiliation(s)
- Jose Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Eva Porlan
- Departamento de Neuropatología Molecular, Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
86
|
Kaneko N, Sawamoto K. Go with the Flow: Cerebrospinal Fluid Flow Regulates Neural Stem Cell Proliferation. Cell Stem Cell 2019; 22:783-784. [PMID: 29859165 DOI: 10.1016/j.stem.2018.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adult neural stem cells in the wall of brain ventricles make direct contact with cerebrospinal fluid. In this issue of Cell Stem Cell, Petrik et al. (2018) demonstrate that these neural stem cells sense the flow of cerebrospinal fluid through a transmembrane sodium channel, ENaC, which regulates their proliferation.
Collapse
Affiliation(s)
- Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
87
|
Stratton JA, Shah P, Sinha S, Crowther E, Biernaskie J. A tale of two cousins: Ependymal cells, quiescent neural stem cells and potential mechanisms driving their functional divergence. FEBS J 2019; 286:3110-3116. [PMID: 31111999 DOI: 10.1111/febs.14930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022]
Abstract
Recent work has suggested that stem cells exhibit far greater heterogeneity than initially thought. Indeed, their dynamic nature and shared traits with surrounding niche cells have made prospective identification of adult neural stem cells (NSCs) challenging. Refined fate mapping strategies and single-cell omics techniques have begun to clarify functionally distinct states within the adult NSC pool, the molecular signatures that govern these states, and the functional contributions/interactions with neighboring cells within the subventricular niche. Ependymal cells are the epithelial cells which line the ventricular system and reside in the same niche as NSCs. Our own work has revealed that, despite sharing similar embryonic origins with NSCs and close geographic proximity, ependymal cells are transcriptionally distinct and fail to exhibit stem cell function in vivo, even following injury. Intriguingly, comparison of ependymal cells with qNSCs revealed transcriptional signatures that are largely overlapping, suggesting that post-transcriptional regulation might underlie their divergent phenotypes. Additional analysis of ependymal versus qNSC gene regulatory network activation supports this notion. This Viewpoint summarizes the historical confusion regarding the identity of NSCs within the lateral ventricle niche and describes recent work that provides greater appreciation for the diverse functional states within the NSC niche.
Collapse
Affiliation(s)
- Jo Anne Stratton
- Hotchkiss Brain Institute, University of Calgary, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Prajay Shah
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Emilie Crowther
- Hotchkiss Brain Institute, University of Calgary, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Jeff Biernaskie
- Hotchkiss Brain Institute, University of Calgary, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Canada
| |
Collapse
|
88
|
Morales AV, Mira H. Adult Neural Stem Cells: Born to Last. Front Cell Dev Biol 2019; 7:96. [PMID: 31214589 PMCID: PMC6557982 DOI: 10.3389/fcell.2019.00096] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 01/17/2023] Open
Abstract
The generation of new neurons is a lifelong process in many vertebrate species that provides an extra level of plasticity to several brain circuits. Frequently, neurogenesis in the adult brain is considered a continuation of earlier developmental processes as it relies in the persistence of neural stem cells, similar to radial glia, known as radial glia-like cells (RGLs). However, adult RGLs are not just leftovers of progenitors that remain in hidden niches in the brain after development has finished. Rather, they seem to be specified and set aside at specific times and places during embryonic and postnatal development. The adult RGLs present several cellular and molecular properties that differ from those observed in developmental radial glial cells such as an extended cell cycle length, acquisition of a quiescence state, a more restricted multipotency and distinct transcriptomic programs underlying those cellular processes. In this minireview, we will discuss the recent attempts to determine how, when and where are the adult RGLs specified.
Collapse
Affiliation(s)
- Aixa V Morales
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
89
|
Obernier K, Cebrian-Silla A, Thomson M, Parraguez JI, Anderson R, Guinto C, Rodas Rodriguez J, Garcia-Verdugo JM, Alvarez-Buylla A. Adult Neurogenesis Is Sustained by Symmetric Self-Renewal and Differentiation. Cell Stem Cell 2019; 22:221-234.e8. [PMID: 29395056 DOI: 10.1016/j.stem.2018.01.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 10/16/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
Abstract
Somatic stem cells have been identified in multiple adult tissues. Whether self-renewal occurs symmetrically or asymmetrically is key to understanding long-term stem cell maintenance and generation of progeny for cell replacement. In the adult mouse brain, neural stem cells (NSCs) (B1 cells) are retained in the walls of the lateral ventricles (ventricular-subventricular zone [V-SVZ]). The mechanism of B1 cell retention into adulthood for lifelong neurogenesis is unknown. Using multiple clonal labeling techniques, we show that the vast majority of B1 cells divide symmetrically. Whereas 20%-30% symmetrically self-renew and can remain in the niche for several months before generating neurons, 70%-80% undergo consuming divisions generating progeny, resulting in the depletion of B1 cells over time. This cellular mechanism decouples self-renewal from the generation of progeny. Limited rounds of symmetric self-renewal and consuming symmetric differentiation divisions can explain the levels of neurogenesis observed throughout life.
Collapse
Affiliation(s)
- Kirsten Obernier
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arantxa Cebrian-Silla
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia 46980, Spain
| | - Matthew Thomson
- Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - José Ignacio Parraguez
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rio Anderson
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cristina Guinto
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - José Rodas Rodriguez
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - José-Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia 46980, Spain
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
90
|
Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis. Cell Stem Cell 2019; 24:707-723.e8. [PMID: 30982771 DOI: 10.1016/j.stem.2019.03.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/30/2018] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
The identity and degree of heterogeneity of glial progenitors and their contributions to brain tumor malignancy remain elusive. By applying lineage-targeted single-cell transcriptomics, we uncover an unanticipated diversity of glial progenitor pools with unique molecular identities in developing brain. Our analysis identifies distinct transitional intermediate states and their divergent developmental trajectories in astroglial and oligodendroglial lineages. Moreover, intersectional analysis uncovers analogous intermediate progenitors during brain tumorigenesis, wherein oligodendrocyte-progenitor intermediates are abundant, hyper-proliferative, and progressively reprogrammed toward a stem-like state susceptible to further malignant transformation. Similar actively cycling intermediate progenitors are prominent components in human gliomas with distinct driver mutations. We further unveil lineage-driving networks underlying glial fate specification and identify Zfp36l1 as necessary for oligodendrocyte-astrocyte lineage transition and glioma growth. Together, our results resolve the dynamic repertoire of common and divergent glial progenitors during development and tumorigenesis and highlight Zfp36l1 as a molecular nexus for balancing glial cell-fate decision and controlling gliomagenesis.
Collapse
|
91
|
Shah PT, Stratton JA, Stykel MG, Abbasi S, Sharma S, Mayr KA, Koblinger K, Whelan PJ, Biernaskie J. Single-Cell Transcriptomics and Fate Mapping of Ependymal Cells Reveals an Absence of Neural Stem Cell Function. Cell 2019; 173:1045-1057.e9. [PMID: 29727663 DOI: 10.1016/j.cell.2018.03.063] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/13/2017] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
Abstract
Ependymal cells are multi-ciliated cells that form the brain's ventricular epithelium and a niche for neural stem cells (NSCs) in the ventricular-subventricular zone (V-SVZ). In addition, ependymal cells are suggested to be latent NSCs with a capacity to acquire neurogenic function. This remains highly controversial due to a lack of prospective in vivo labeling techniques that can effectively distinguish ependymal cells from neighboring V-SVZ NSCs. We describe a transgenic system that allows for targeted labeling of ependymal cells within the V-SVZ. Single-cell RNA-seq revealed that ependymal cells are enriched for cilia-related genes and share several stem-cell-associated genes with neural stem or progenitors. Under in vivo and in vitro neural-stem- or progenitor-stimulating environments, ependymal cells failed to demonstrate any suggestion of latent neural-stem-cell function. These findings suggest remarkable stability of ependymal cell function and provide fundamental insights into the molecular signature of the V-SVZ niche.
Collapse
Affiliation(s)
- Prajay T Shah
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jo A Stratton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Morgan Gail Stykel
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sepideh Abbasi
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sandeep Sharma
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kyle A Mayr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kathrin Koblinger
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff Biernaskie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
92
|
Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 2019; 146:146/4/dev156059. [PMID: 30777863 DOI: 10.1242/dev.156059] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the adult rodent brain, neural stem cells (NSCs) persist in the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), which are specialized niches in which young neurons for the olfactory bulb (OB) and hippocampus, respectively, are generated. Recent studies have significantly modified earlier views on the mechanisms of NSC self-renewal and neurogenesis in the adult brain. Here, we discuss the molecular control, heterogeneity, regional specification and cell division modes of V-SVZ NSCs, and draw comparisons with NSCs in the SGZ. We highlight how V-SVZ NSCs are regulated by local signals from their immediate neighbors, as well as by neurotransmitters and factors that are secreted by distant neurons, the choroid plexus and vasculature. We also review recent advances in single cell RNA analyses that reveal the complexity of adult neurogenesis. These findings set the stage for a better understanding of adult neurogenesis, a process that one day may inspire new approaches to brain repair.
Collapse
Affiliation(s)
- Kirsten Obernier
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA .,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
93
|
Beyer F, Samper Agrelo I, Küry P. Do Neural Stem Cells Have a Choice? Heterogenic Outcome of Cell Fate Acquisition in Different Injury Models. Int J Mol Sci 2019; 20:ijms20020455. [PMID: 30669690 PMCID: PMC6359747 DOI: 10.3390/ijms20020455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022] Open
Abstract
The adult mammalian central nervous system (CNS) is generally considered as repair restricted organ with limited capacities to regenerate lost cells and to successfully integrate them into damaged nerve tracts. Despite the presence of endogenous immature cell types that can be activated upon injury or in disease cell replacement generally remains insufficient, undirected, or lost cell types are not properly generated. This limitation also accounts for the myelin repair capacity that still constitutes the default regenerative activity at least in inflammatory demyelinating conditions. Ever since the discovery of endogenous neural stem cells (NSCs) residing within specific niches of the adult brain, as well as the description of procedures to either isolate and propagate or artificially induce NSCs from various origins ex vivo, the field has been rejuvenated. Various sources of NSCs have been investigated and applied in current neuropathological paradigms aiming at the replacement of lost cells and the restoration of functionality based on successful integration. Whereas directing and supporting stem cells residing in brain niches constitutes one possible approach many investigations addressed their potential upon transplantation. Given the heterogeneity of these studies related to the nature of grafted cells, the local CNS environment, and applied implantation procedures we here set out to review and compare their applied protocols in order to evaluate rate-limiting parameters. Based on our compilation, we conclude that in healthy CNS tissue region specific cues dominate cell fate decisions. However, although increasing evidence points to the capacity of transplanted NSCs to reflect the regenerative need of an injury environment, a still heterogenic picture emerges when analyzing transplantation outcomes in injury or disease models. These are likely due to methodological differences despite preserved injury environments. Based on this meta-analysis, we suggest future NSC transplantation experiments to be conducted in a more comparable way to previous studies and that subsequent analyses must emphasize regional heterogeneity such as accounting for differences in gray versus white matter.
Collapse
Affiliation(s)
- Felix Beyer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| | - Iria Samper Agrelo
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| |
Collapse
|
94
|
Monaco S, Baur K, Hellwig A, Hölzl-Wenig G, Mandl C, Ciccolini F. A Flow Cytometry-Based Approach for the Isolation and Characterization of Neural Stem Cell Primary Cilia. Front Cell Neurosci 2019; 12:519. [PMID: 30692915 PMCID: PMC6339872 DOI: 10.3389/fncel.2018.00519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/12/2018] [Indexed: 01/15/2023] Open
Abstract
In the adult mammalian brain, the apical surface of the subependymal zone (SEZ) is covered by many motile ependymal cilia and a few primary cilia originating from rare intermingled neural stem cells (NSCs). In NSCs the primary cilia are key for the transduction of essential extracellular signals such as Sonic hedgehog (SHH) and platelet-derived growth factor (PDGF). Despite their importance, the analysis of NSC primary cilia is greatly hampered by the fact that they are overwhelmingly outnumbered by the motile cilia. We here take advantage of flow cytometry to purify the two cilia types and allow their molecular characterization. Primary cilia were identified based on immunoreactivity to the marker adenylate cyclase type III (AC3) and differential levels of prominin-1 whereas motile cilia displayed immunoreactivity only to the latter. Consistent with the morphological differences between the two classes of cilia, enrichment of motile cilia positively correlated with size. Moreover, we observed age-dependent variations in the abundance of the two groups of ciliary organelles reflecting the changes associated with their development. The two cilia groups also differed with respect to the expression of signaling molecules, since PDGF receptor (PDGFR)α, smoothened (Smo) and CXC chemokine receptor (CXCR)4 were only detected in isolated primary but not motile cilia. Thus, our novel method of cilia isolation and characterization by flow cytometry has the potential to be extended to the study of cilia from different tissues and organs, providing a powerful tool for the investigation of primary cilia in physiological and pathological conditions.
Collapse
Affiliation(s)
- Sara Monaco
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Katja Baur
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Hellwig
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Mandl
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Francesca Ciccolini
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
95
|
Abstract
In the mammalian brain, highly specialized astrocytes serve as neural stem cells (NSCs) that divide and give rise to new neurons, in a process called neurogenesis. During embryonic development NSCs generate almost all neurons of the brain. Soon after birth the neurogenic potential of NSCs is highly reduced, and neurogenesis occurs only in two specialized brain regions called the neurogenic niches. Niche cells are essential to stem cells as they provide structural and nutritional support, and control fundamental stem cell decisions. Astrocytes, major components of the adult neurogenic niches, are evolving as important regulators of neurogenesis, by controlling NSC proliferation, fate choice, and differentiation of the progeny. Therefore, astrocytes contribute to neurogenesis in two ways: as NSCs and as niche cells. This review highlights the role of astrocyte-like NSCs during development and adulthood, and summarizes how niche astrocytes control the process of adult neurogenesis.
Collapse
|
96
|
Kim E, Hwang SU, Yoon JD, Kim H, Lee G, Hyun SH. Isolation and characterization of GFAP-positive porcine neural stem/progenitor cells derived from a GFAP-CreER T2 transgenic piglet. BMC Vet Res 2018; 14:331. [PMID: 30404643 PMCID: PMC6222979 DOI: 10.1186/s12917-018-1660-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/22/2018] [Indexed: 01/17/2023] Open
Abstract
Background The porcine brain is gyrencephalic with similar gray and white matter composition and size more comparable to the human rather than the rodent brain; however, there is lack of information about neural progenitor cells derived from this model. Results Here, we isolated GFAP-positive porcine neural stem cells (NSCs) from the brain explant of a transgenic piglet, with expression of CreERT2 under the control of the GFAP promoter (pGFAP-CreERT2). The isolated pGFAP-CreERT2 NSCs showed self-renewal and expression of representative NSC markers such as Nestin and Sox2. Pharmacological inhibition studies revealed that Notch1 signaling is necessary to maintain NSC identity, whereas serum treatment induced cell differentiation into reactive astrocytes and neurons. Conclusions Collectively, these results indicate that GFAP promoter-driven porcine CreERT2 NSCs would be a useful tool to study neurogenesis of the porcine adult central nervous system and furthers our understanding of its potential clinical application in the future. Graphical abstract ᅟ![]() Electronic supplementary material The online version of this article (10.1186/s12917-018-1660-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, 02841, Seoul, Republic of Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea. .,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea.
| |
Collapse
|
97
|
Molecular characterization and prospective isolation of human fetal cochlear hair cell progenitors. Nat Commun 2018; 9:4027. [PMID: 30279445 PMCID: PMC6168603 DOI: 10.1038/s41467-018-06334-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 08/27/2018] [Indexed: 01/02/2023] Open
Abstract
Sensory hair cells located in the organ of Corti are essential for cochlear mechanosensation. Their loss is irreversible in humans resulting in permanent hearing loss. The development of therapeutic interventions for hearing loss requires fundamental knowledge about similarities and potential differences between animal models and human development as well as the establishment of human cell based-assays. Here we analyze gene and protein expression of the developing human inner ear in a temporal window spanning from week 8 to 12 post conception, when cochlear hair cells become specified. Utilizing surface markers for the cochlear prosensory domain, namely EPCAM and CD271, we purify postmitotic hair cell progenitors that, when placed in culture in three-dimensional organoids, regain proliferative potential and eventually differentiate to hair cell-like cells in vitro. These results provide a foundation for comparative studies with otic cells generated from human pluripotent stem cells and for establishing novel platforms for drug validation. Hearing requires mechanosensitive hair cells in the organ of Corti, which derive from progenitors of the cochlear duct. Here the authors examine human inner ear development by studying key developmental markers and describe organoid cultures from human cochlear duct progenitors for in vitro hair cell differentiation.
Collapse
|
98
|
Gaborieau E, Hurtado-Chong A, Fernández M, Azim K, Raineteau O. A dual role for the transcription factor Sp8 in postnatal neurogenesis. Sci Rep 2018; 8:14560. [PMID: 30266956 PMCID: PMC6162233 DOI: 10.1038/s41598-018-32134-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/29/2018] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells (NSCs) of the postnatal subventricular zone (SVZ) continue producing distinct subtypes of olfactory bulb (OB) interneurons throughout life. Understanding the transcriptional coding of this diversity remains a great challenge of modern neurosciences. Interneurons expressing calretinin (CalR) represent the main interneuron subtype produced in the glomerular cell layer (GL) after birth. Previous studies have suggested that their specification relies on expression of the transcription factor Sp8 by SVZ NSCs. In this study, we performed fate mapping of NSCs that generate CalR+ or non-CalR+ interneurons, in order to assess the pattern of Sp8 expression during postnatal neurogenesis. We highlight a complex pattern of Sp8 expression, which appears to be expressed in all interneurons lineages, before getting gradually restricted to maturing CalR+ interneurons. To decipher the early and late functions of Sp8 in postnatal OB neurogenesis, we combined transient, permanent and conditional genetic approaches to manipulate Sp8 at distinct neurogenic stages. While Sp8 plays an early role in controlling proliferation in all lineages, it is not involved in the early specification of CalR+ periglomerular interneurons, but plays a crucial role in their long term survival. Together, our results highlight a crucial and dual role for Sp8 during postnatal neurogenesis.
Collapse
Affiliation(s)
- Elodie Gaborieau
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | | | - Maria Fernández
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Kasum Azim
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Olivier Raineteau
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France. .,Brain Research Institute, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
99
|
Qin S, Huang X, Wang D, Hu X, Yuan Y, Sun X, Tan Z, Gu Y, Cheng X, He C, Su Z. Identification of characteristic genes distinguishing neural stem cells from astrocytes. Gene 2018; 681:26-35. [PMID: 30266499 DOI: 10.1016/j.gene.2018.09.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Neural stem cells (NSCs) have unique biological characteristics such as continuous proliferation and multipotential differentiation, providing a possible method for restoration of central nervous system (CNS) function after injury or disease. NSCs and astrocytes share many similar biological properties including cell morphology and molecular expression and can trans-differentiate into each other under certain conditions. However, characteristic genes specifically expressed by NSCs have not been well described. METHODS To provide insights into the characteristic expression of NSCs, bioinformatics analysis of two microarrays of mouse NSCs and astrocytes was performed. Compared to astrocytes, the differentially expressed genes (DEGs) in NSCs were identified and annotated by GO, KEGG and GSEA analysis, respectively. Then key genes were screened by protein-protein interaction (PPI) network and modules analysis, and were verified using multiple high-throughput sequencing resources. Finally, the expression difference between the two cell types was confirmed by Real-time Quantitative PCR (qPCR), western blotting and immunochemical analysis. RESULTS In the present study, 282 and 250 NSC-enriched genes from two microarrays were identified and annotated respectively, and the 77 overlapping DEGs were then selected. From the PPI network 24 key genes in three modules were screened out. Importantly, sequencing data of tissues showed that these 24 key genes tended to be highly expressed in NSCs compared with astrocytes. Furthermore, qPCR and western blot analysis of cultured NSCs and astrocytes showed two genes (KIF2C and TOP2A) were not only differentially expressed in RNA level but also at the protein level. Importantly, the NSC-specific genes KIF2C and TOP2A were validated by immunohistochemistry in vivo. CONCLUSION In present study, we identified 2 hub genes (KIF2C and TOP2A) that might serve as potential biomarkers for distinguishing NSCs from astrocytes, contributing to our comprehensive understanding of the biological properties and functions of NSCs.
Collapse
Affiliation(s)
- Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xiao Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Dan Wang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xin Hu
- Department of Neurological Surgery, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xiu Sun
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Zijian Tan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Yakun Gu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xueyan Cheng
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China.
| |
Collapse
|
100
|
Abstract
The cytokine transforming growth factor (TGF)-β1 is highly induced after encephalopathic brain injury, with data showing that it can both contribute to the pathophysiology and aid in disease resolution. In the immature brain, sustained TGFβ-signaling after injury may prolong inflammation to both exacerbate acute stage damage and perturb the normal course of development. Yet in adult encephalopathy, elevated TGFβ1 may promote a reparative state. In this review, we highlight the context-dependent actions of TGFβ-signaling in the brain during resolution of encephalopathy and focus on neuronal survival mechanisms that are affected by TGFβ1. We discuss the mechanisms that contribute to the disparate actions of TGFβ1 toward elucidating the long-term neurological and neuropsychiatric consequences that follow encephalopathic injury.
Collapse
Affiliation(s)
- Brian H Kim
- 1 Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Steven W Levison
- 1 Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|