51
|
Lu J, Zhang L, Zhu N, Wang D, Xie F, Qin M, Wang Y. High glucose levels delay the senescence of stem cells from human exfoliated deciduous teeth by suppressing autophagy. Arch Oral Biol 2024; 157:105851. [PMID: 37992563 DOI: 10.1016/j.archoralbio.2023.105851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE In this study, we aimed to investigate the effects of varying glucose concentrations on the proliferation and senescence of stem cells from human exfoliated deciduous teeth (SHED) compared to human bone marrow-derived mesenchymal stem cells (hBMSC), and preliminarily clarify the difference of glucose metabolism between SHED and hBMSC. DESIGN We cultured SHED and hBMSC in the presence of increasing glucose concentrations to study the role of glucose in cell viability, proliferation, and senescence. Gene expression related to the stemness of mesenchymal stem cells was evaluated using real-time quantitative reverse transcription-polymerase chain reaction. In addition, glucose consumption, lactic acid production, oxidative phosphorylation, and glycolysis were measured to analyze glucose metabolism and expression of autophagy-related markers, including microtubule-associated proteins 1 A/1B light chain 3 B and p62. RESULTS While a high glucose level (4.5 g/L) promoted the proliferation of both SHED and hBMSC, it delayed senescence in SHED via autophagy inhibition but accelerated hBMSC senescence. In contrast to that in hBMSC, glycolysis in SHED was enhanced under the high-glucose culture condition. CONCLUSIONS The glycometabolism of SHED and hBMSC differed, and a high glucose culture medium was more favorable for SHED.
Collapse
Affiliation(s)
- Jinjin Lu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Lixin Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Dan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China.
| |
Collapse
|
52
|
Podszywalow-Bartnicka P, Neugebauer KM. Multiple roles for AU-rich RNA binding proteins in the development of haematologic malignancies and their resistance to chemotherapy. RNA Biol 2024; 21:1-17. [PMID: 38798162 PMCID: PMC11135835 DOI: 10.1080/15476286.2024.2346688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Post-transcriptional regulation by RNA binding proteins can determine gene expression levels and drive changes in cancer cell proteomes. Identifying mechanisms of protein-RNA binding, including preferred sequence motifs bound in vivo, provides insights into protein-RNA networks and how they impact mRNA structure, function, and stability. In this review, we will focus on proteins that bind to AU-rich elements (AREs) in nascent or mature mRNA where they play roles in response to stresses encountered by cancer cells. ARE-binding proteins (ARE-BPs) specifically impact alternative splicing, stability, decay and translation, and formation of RNA-rich biomolecular condensates like cytoplasmic stress granules (SGs). For example, recent findings highlight the role of ARE-BPs - like TIAR and HUR - in chemotherapy resistance and in translational regulation of mRNAs encoding pro-inflammatory cytokines. We will discuss emerging evidence that different modes of ARE-BP activity impact leukaemia and lymphoma development, progression, adaptation to microenvironment and chemotherapy resistance.
Collapse
Affiliation(s)
- Paulina Podszywalow-Bartnicka
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
53
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
54
|
Zhu G, Gao D, Li L, Yao Y, Wang Y, Zhi M, Zhang J, Chen X, Zhu Q, Gao J, Chen T, Zhang X, Wang T, Cao S, Ma A, Feng X, Han J. Generation of three-dimensional meat-like tissue from stable pig epiblast stem cells. Nat Commun 2023; 14:8163. [PMID: 38071210 PMCID: PMC10710416 DOI: 10.1038/s41467-023-44001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cultured meat production has emerged as a breakthrough technology for the global food industry with the potential to reduce challenges associated with environmental sustainability, global public health, animal welfare, and competition for food between humans and animals. The muscle stem cell lines currently used for cultured meat cannot be passaged in vitro for extended periods of time. Here, we develop a directional differentiation system of porcine pre-gastrulation epiblast stem cells (pgEpiSCs) with stable cellular features and achieve serum-free myogenic differentiation of the pgEpiSCs. We show that the pgEpiSCs-derived skeletal muscle progenitor cells and skeletal muscle fibers have typical muscle cell characteristics and display skeletal muscle transcriptional features during myogenic differentiation. Importantly, we establish a three-dimensional differentiation system for shaping cultured tissue by screening plant-based edible scaffolds of non-animal origin, followed by the generation of pgEpiSCs-derived cultured meat. These advances provide a technical approach for the development of cultured meat.
Collapse
Affiliation(s)
- Gaoxiang Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Linzi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinze Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tianzhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tong Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
55
|
Yang C, Gao Q, Xu N, Yang K, Bian Z. Human Dental Pulp Stem Cells Are Subjected to Metabolic Reprogramming and Repressed Proliferation and Migration by the Sympathetic Nervous System via α1B-Adrenergic Receptor. J Endod 2023; 49:1641-1651.e6. [PMID: 37769871 DOI: 10.1016/j.joen.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Human dental pulp stem cells (hDPSCs) reside in specialized microenvironments in the dental pulp, termed "niches," which are composed of diverse cellular components including nerves. Sensory nerves can positively regulate the expansion and differentiation of pulp cells, while the biological effects of the sympathetic nervous system (SNS) on hDPSCs remain elusive. This study is devoted to investigating the effects and underlying mechanisms of the SNS on the proliferation and migration of hDPSCs. METHODS The distribution of sympathetic nerve fibers in human dental pulp was examined by immunofluorescence staining of tyrosine hydroxylase. The concentration of norepinephrine in healthy and carious human dental pulp tissues was detected using enzyme-linked immunosorbent assay. RNA-sequencing was applied to identify the dominant sympathetic neurotransmitter receptor in hDPSCs. Seahorse metabolic assay, adenosine triphosphate assay, lactate assay, and mitochondrial DNA copy number were performed to determine the level of glycometabolism. Transwell assay, wound healing assay, 5-ethynyl-2'-deoxyuridine staining assay, cell cycle assay, and Cell Counting Kit-8 assay were conducted to analyze the migratory and proliferative capacities of hDPSCs. RESULTS Sprouting of sympathetic nerve fibers and an increased concentration of norepinephrine were observed in inflammatory pulp tissues. Sympathetic nerve fibers were mainly distributed along blood vessels, and aldehyde dehydrogenase 1-positive hDPSCs resided in close proximity to neurovascular bundles. ADRA1B was identified as the major sympathetic neurotransmitter receptor expressed in hDPSCs, and its expression was enhanced in inflammatory pulp tissues. In addition, the SNS inhibited the proliferation and migration of hDPSCs through metabolic reprogramming via ADRA1B and its crosstalk with serine-threonine kinase and p38 mitogen-activated protein kinase signaling pathways. CONCLUSIONS This study demonstrates that the SNS can shift the metabolism of hDPSCs from oxidative phosphorylation to anaerobic glycolysis via ADRA1B and its crosstalk with serine-threonine kinase and p38 mitogen-activated protein kinase signaling pathways, thereby inhibiting the proliferative and migratory abilities of hDPSCs. This metabolic shift may facilitate the maintenance of the quiescent state of hDPSCs.
Collapse
Affiliation(s)
- Chengcan Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qian Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Nuo Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Kai Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
56
|
Li X, Jiang O, Wang S. Molecular mechanisms of cellular metabolic homeostasis in stem cells. Int J Oral Sci 2023; 15:52. [PMID: 38040705 PMCID: PMC10692173 DOI: 10.1038/s41368-023-00262-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
Many tissues and organ systems have intrinsic regeneration capabilities that are largely driven and maintained by tissue-resident stem cell populations. In recent years, growing evidence has demonstrated that cellular metabolic homeostasis plays a central role in mediating stem cell fate, tissue regeneration, and homeostasis. Thus, a thorough understanding of the mechanisms that regulate metabolic homeostasis in stem cells may contribute to our knowledge on how tissue homeostasis is maintained and provide novel insights for disease management. In this review, we summarize the known relationship between the regulation of metabolic homeostasis and molecular pathways in stem cells. We also discuss potential targets of metabolic homeostasis in disease therapy and describe the current limitations and future directions in the development of these novel therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ou Jiang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
57
|
Martic I, Papaccio F, Bellei B, Cavinato M. Mitochondrial dynamics and metabolism across skin cells: implications for skin homeostasis and aging. Front Physiol 2023; 14:1284410. [PMID: 38046945 PMCID: PMC10693346 DOI: 10.3389/fphys.2023.1284410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Aging of human skin is a complex process leading to a decline in homeostasis and regenerative potential of this tissue. Mitochondria are important cell organelles that have a crucial role in several cellular mechanisms such as energy production and free radical maintenance. However, mitochondrial metabolism as well as processes of mitochondrial dynamics, biogenesis, and degradation varies considerably among the different types of cells that populate the skin. Disturbed mitochondrial function is known to promote aging and inflammation of the skin, leading to impairment of physiological skin function and the onset of skin pathologies. In this review, we discuss the essential role of mitochondria in different skin cell types and how impairment of mitochondrial morphology, physiology, and metabolism in each of these cellular compartments of the skin contributes to the process of skin aging.
Collapse
Affiliation(s)
- Ines Martic
- Institute for Biochemical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Cavinato
- Institute for Biochemical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| |
Collapse
|
58
|
Kang H, Kim B, Park J, Youn H, Youn B. The Warburg effect on radioresistance: Survival beyond growth. Biochim Biophys Acta Rev Cancer 2023; 1878:188988. [PMID: 37726064 DOI: 10.1016/j.bbcan.2023.188988] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
The Warburg effect is a phenomenon in which cancer cells rely primarily on glycolysis rather than oxidative phosphorylation, even in the presence of oxygen. Although evidence of its involvement in cell proliferation has been discovered, the advantages of the Warburg effect in cancer cell survival under treatment have not been fully elucidated. In recent years, the metabolic characteristics of radioresistant cancer cells have been evaluated, enabling an extension of the original concept of the Warburg effect. In this review, we focused on the role of the Warburg effect in redox homeostasis and DNA damage repair, two critical factors contributing to radioresistance. In addition, we highlighted the metabolic involvement in the radioresistance of cancer stem cells, which is the root cause of tumor recurrence. Finally, we summarized radiosensitizing drugs that target the Warburg effect. Insights into the molecular mechanisms underlying the Warburg effect and radioresistance can provide valuable information for developing strategies to enhance the efficacy of radiotherapy and provide future directions for successful cancer therapy.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Byeongsoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Junhyeong Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
59
|
George S, Serpe L. Exploring the redox potential induced by low-intensity focused ultrasound on tumor masses. Life Sci 2023; 332:122040. [PMID: 37633418 DOI: 10.1016/j.lfs.2023.122040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Cancer is still a major health problem worldwide despite huge efforts being spent on its biomedical research. Beyond the mainstream therapeutic interventions (i.e., surgery, chemotherapy, immunotherapy and radiotherapy), further significant progresses in anticancer therapy could rely on the development of novel treatment paradigms. To this end, one emerging approach consists in the use of non-thermal low-intensity focused ultrasound (LIFU) for conditioning cancer molecules and/or cancer-targeted compounds, thereby leading to cancer cell death with least side-effects. Cellular redox homeostasis manifested as the generation of reactive oxygen species (ROS) during energy metabolism as well as the antioxidant capacity is interwoven to the composition, size and anatomical location of the tumor masses. The higher content of "oxide free radicals" in cancers makes them vulnerable to disruption of redox homeostasis than in the healthy cells and therefore, one of the best options for preferentially eradicating them is increasing their oxidative stress, excessively. A little is known about the modulation of cellular redox homeostasis by LIFU, and so it will be of great interest and utility to understand the effects of LIFU on the energy metabolism of cancer cells. This review is intended to improve our knowledge on the effect of LIFU on cancer cells with particular reference to its redox metabolism for ultrasound-based therapies. Thereby, it could pave the way for exploring novel methodologies and designing combined anti-cancer therapies, especially, for faster and safer eradication of drug resistant and metastasizing solid tumors.
Collapse
Affiliation(s)
- Sajan George
- School of Bio Sciences & Technology, Vellore Institute of Technology, TN 632 014, India; Laser Research Centre, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Loredana Serpe
- Department of Drug Science & Technology, University of Turin, Turin 10125, Italy
| |
Collapse
|
60
|
van Loo B, Ten Den SA, Araújo-Gomes N, de Jong V, Snabel RR, Schot M, Rivera-Arbeláez JM, Veenstra GJC, Passier R, Kamperman T, Leijten J. Mass production of lumenogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules. Nat Commun 2023; 14:6685. [PMID: 37865642 PMCID: PMC10590445 DOI: 10.1038/s41467-023-42297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2023] [Indexed: 10/23/2023] Open
Abstract
Organoids are engineered 3D miniature tissues that are defined by their organ-like structures, which drive a fundamental understanding of human development. However, current organoid generation methods are associated with low production throughputs and poor control over size and function including due to organoid merging, which limits their clinical and industrial translation. Here, we present a microfluidic platform for the mass production of lumenogenic embryoid bodies and functional cardiospheres. Specifically, we apply triple-jet in-air microfluidics for the ultra-high-throughput generation of hollow, thin-shelled, hydrogel microcapsules that can act as spheroid-forming bioreactors in a cytocompatible, oil-free, surfactant-free, and size-controlled manner. Uniquely, we show that microcapsules generated by in-air microfluidics provide a lumenogenic microenvironment with near 100% efficient cavitation of spheroids. We demonstrate that upon chemical stimulation, human pluripotent stem cell-derived spheroids undergo cardiomyogenic differentiation, effectively resulting in the mass production of homogeneous and functional cardiospheres that are responsive to external electrical stimulation. These findings drive clinical and industrial adaption of stem cell technology in tissue engineering and drug testing.
Collapse
Affiliation(s)
- Bas van Loo
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Simone A Ten Den
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
| | - Nuno Araújo-Gomes
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Vincent de Jong
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Rebecca R Snabel
- Radboud University, Radboud Institute for Molecular Life Sciences, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, The Netherlands
| | - Maik Schot
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - José M Rivera-Arbeláez
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
- University of Twente, TechMed Centre, Max Planck Center for Complex Fluid Dynamics, BIOS Lab-on-a-Chip Group, Enschede, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Radboud Institute for Molecular Life Sciences, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, The Netherlands
| | - Robert Passier
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
- Leiden University Medical Centre, Department of Anatomy and Embryology, Leiden, Netherlands
| | - Tom Kamperman
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
- IamFluidics B.V., De Veldmaat 17, 7522NM, Enschede, The Netherlands
| | - Jeroen Leijten
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands.
| |
Collapse
|
61
|
Bobori SN, Zhu Y, Saarinen A, Liuzzo AJ, Folmes CDL. Metabolic Remodeling during Early Cardiac Lineage Specification of Pluripotent Stem Cells. Metabolites 2023; 13:1086. [PMID: 37887411 PMCID: PMC10608731 DOI: 10.3390/metabo13101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Growing evidence indicates that metabolites and energy metabolism play an active rather than consequential role in regulating cellular fate. Cardiac development requires dramatic metabolic remodeling from relying primarily on glycolysis in pluripotent stem cells (PSCs) to oxidizing a wide array of energy substrates to match the high bioenergetic demands of continuous contraction in the developed heart. However, a detailed analysis of how remodeling of energy metabolism contributes to human cardiac development is lacking. Using dynamic multiple reaction monitoring metabolomics of central carbon metabolism, we evaluated temporal changes in energy metabolism during human PSC 3D cardiac lineage specification. Significant metabolic remodeling occurs during the complete differentiation, yet temporal analysis revealed that most changes occur during transitions from pluripotency to mesoderm (day 1) and mesoderm to early cardiac (day 5), with limited maturation of cardiac metabolism beyond day 5. Real-time metabolic analysis demonstrated that while hPSC cardiomyocytes (hPSC-CM) showed elevated rates of oxidative metabolism compared to PSCs, they still retained high glycolytic rates, confirming an immature metabolic phenotype. These observations support the opportunity to metabolically optimize the differentiation process to support lineage specification and maturation of hPSC-CMs.
Collapse
Affiliation(s)
| | | | | | | | - Clifford D. L. Folmes
- Departments of Biochemistry and Molecular Biology and Cardiovascular Medicine, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA; (S.N.B.)
| |
Collapse
|
62
|
Kaw A, Wu T, Starosolski Z, Zhou Z, Pedroza AJ, Majumder S, Duan X, Kaw K, Pinelo JEE, Fischbein MP, Lorenzi PL, Tan L, Martinez SA, Mahmud I, Devkota L, Taegtmeyer H, Ghaghada KB, Marrelli SP, Kwartler CS, Milewicz DM. Augmenting Mitochondrial Respiration in Immature Smooth Muscle Cells with an ACTA2 Pathogenic Variant Mitigates Moyamoya-like Cerebrovascular Disease. RESEARCH SQUARE 2023:rs.3.rs-3304679. [PMID: 37886459 PMCID: PMC10602100 DOI: 10.21203/rs.3.rs-3304679/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
ACTA2 pathogenic variants altering arginine 179 cause childhood-onset strokes due to moyamoya disease (MMD)-like occlusion of the distal internal carotid arteries. A smooth muscle cell (SMC)-specific knock-in mouse model (Acta2SMC-R179C/+) inserted the mutation into 67% of aortic SMCs, whereas explanted SMCs were uniformly heterozygous. Acta2R179C/+ SMCs fail to fully differentiate and maintain stem cell-like features, including high glycolytic flux, and increasing oxidative respiration (OXPHOS) with nicotinamide riboside (NR) drives the mutant SMCs to differentiate and decreases migration. Acta2SMC-R179C/+ mice have intraluminal MMD-like occlusive lesions and strokes after carotid artery injury, whereas the similarly treated WT mice have no strokes and patent lumens. Treatment with NR prior to the carotid artery injury attenuates the strokes, MMD-like lumen occlusions, and aberrant vascular remodeling in the Acta2SMC-R179C/+ mice. These data highlight the role of immature SMCs in MMD-associated occlusive disease and demonstrate that altering SMC metabolism to drive quiescence of Acta2R179C/+ SMCs attenuates strokes and aberrant vascular remodeling in the Acta2SMC-R179C/+ mice.
Collapse
Affiliation(s)
- Anita Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Ting Wu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Zbigniew Starosolski
- Department of Radiology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Zhen Zhou
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Albert J. Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Xueyan Duan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Kaveeta Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Jose E. E. Pinelo
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara A. Martinez
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laxman Devkota
- Department of Radiology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heinrich Taegtmeyer
- Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Sean P. Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|
63
|
Hirose Y, Taniguchi K. Intratumoral metabolic heterogeneity of colorectal cancer. Am J Physiol Cell Physiol 2023; 325:C1073-C1084. [PMID: 37661922 DOI: 10.1152/ajpcell.00139.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Although the metabolic phenotype within tumors is known to differ significantly from that of the surrounding normal tissue, the importance of this heterogeneity is just becoming widely recognized. Colorectal cancer (CRC) is often classified as the Warburg phenotype, a metabolic type in which the glycolytic system is predominant over oxidative phosphorylation (OXPHOS) in mitochondria for energy production. However, this dichotomy (glycolysis vs. OXPHOS) may be too simplistic and not accurately represent the metabolic characteristics of CRC. Therefore, in this review, we decompose metabolic phenomena into factors based on their source/origin and reclassify them into two categories: extrinsic and intrinsic. In the CRC context, extrinsic factors include those based on the environment, such as hypoxia, nutrient deprivation, and the tumor microenvironment, whereas intrinsic factors include those based on subpopulations, such as pathological subtypes and cancer stem cells. These factors form multiple layers inside and outside the tumor, affecting them additively, dominantly, or mutually exclusively. Consequently, the metabolic phenotype is a heterogeneous and fluid phenomenon reflecting the spatial distribution and temporal continuity of these factors. This allowed us to redefine the characteristics of specific metabolism-related factors in CRC and summarize and update our accumulated knowledge of their heterogeneity. Furthermore, we positioned tumor budding in CRC as an intrinsic factor and a novel form of metabolic heterogeneity, and predicted its metabolic dynamics, noting its similarity to circulating tumor cells and epithelial-mesenchymal transition. Finally, the possibilities and limitations of using human tumor tissue as research material to investigate and assess metabolic heterogeneity are discussed.
Collapse
Affiliation(s)
- Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kohei Taniguchi
- Division of Translational Research, Center for Medical Research & Development, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
64
|
Seo BJ, Na SB, Choi J, Ahn B, Habib O, Park C, Hong K, Do JT. Metabolic and cell cycle shift induced by the deletion of Dnm1l attenuates the dissolution of pluripotency in mouse embryonic stem cells. Cell Mol Life Sci 2023; 80:302. [PMID: 37747543 PMCID: PMC11073397 DOI: 10.1007/s00018-023-04962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Mitochondria are versatile organelles that continuously change their morphology via fission and fusion. However, the detailed functions of mitochondrial dynamics-related genes in pluripotent stem cells remain largely unclear. Here, we aimed to determine the effects on energy metabolism and differentiation ability of mouse embryonic stem cells (ESCs) following deletion of the mitochondrial fission-related gene Dnml1. Resultant Dnm1l-/- ESCs maintained major pluripotency characteristics. However, Dnm1l-/- ESCs showed several phenotypic changes, including the inhibition of differentiation ability (dissolution of pluripotency). Notably, Dnm1l-/- ESCs maintained the expression of the pluripotency marker Oct4 and undifferentiated colony types upon differentiation induction. RNA sequencing analysis revealed that the most frequently differentially expressed genes were enriched in the glutathione metabolic pathway. Our data suggested that differentiation inhibition of Dnm1l-/- ESCs was primarily due to metabolic shift from glycolysis to OXPHOS, G2/M phase retardation, and high level of Nanog and 2-cell-specific gene expression.
Collapse
Affiliation(s)
- Bong Jong Seo
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seung Bin Na
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Joonhyuk Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Omer Habib
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
65
|
Yan RG, He Z, Wang FC, Li S, Shang QB, Yang QE. Transcription factor E4F1 dictates spermatogonial stem cell fate decisions by regulating mitochondrial functions and cell cycle progression. Cell Biosci 2023; 13:177. [PMID: 37749649 PMCID: PMC10521505 DOI: 10.1186/s13578-023-01134-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) provide a foundation for robust and continual spermatogenesis in mammals. SSCs self-renew to maintain a functional stem cell pool and differentiate to supply committed progenitors. Metabolism acts as a crucial determinant of stem cell fates; however, factors linking metabolic programs to SSC development and maintenance are poorly understood. RESULTS We analyzed the chromatin accessibility of undifferentiated spermatogonia at the single-cell level and identified 37 positive TF regulators that may have potential roles in dictating SSC fates. The transcription factor E4F1 is expressed in spermatogonia, and its conditional deletion in mouse germ cells results in progressive loss of the entire undifferentiated spermatogonial pool. Single-cell RNA-seq analysis of control and E4f1-deficient spermatogonia revealed that E4F1 acts as a key regulator of mitochondrial function. E4F1 binds to promotors of genes that encode components of the mitochondrial respiratory chain, including Ndufs5, Cox7a2, Cox6c, and Dnajc19. Loss of E4f1 function caused abnormal mitochondrial morphology and defects in fatty acid metabolism; as a result, undifferentiated spermatogonia were gradually lost due to cell cycle arrest and elevated apoptosis. Deletion of p53 in E4f1-deficient germ cells only temporarily prevented spermatogonial loss but did not rescue the defects in SSC maintenance. CONCLUSIONS Emerging evidence indicates that metabolic signals dictate stem cell fate decisions. In this study, we identified a list of transcription regulators that have potential roles in the fate transitions of undifferentiated spermatogonia in mice. Functional experiments demonstrated that the E4F1-mediated transcription program is a crucial regulator of metabolism and SSC fate decisions in mammals.
Collapse
Affiliation(s)
- Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei-Chen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin-Bang Shang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
66
|
Khan SU, Rayees S, Sharma P, Malik F. Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 2023; 23:1405-1423. [PMID: 36473988 DOI: 10.1007/s10238-022-00955-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Cancer is a dysregulated cellular level pathological condition that results in tumor formation followed by metastasis. In the heterogeneous tumor architecture, cancer stem cells (CSCs) are essential to push forward the progression of tumors due to their strong pro-tumor properties such as stemness, self-renewal, plasticity, metastasis, and being poorly responsive to radiotherapy and chemotherapeutic agents. Cancer stem cells have the ability to withstand various stress pressures by modulating transcriptional and translational mechanisms, and adaptable metabolic changes. Owing to CSCs heterogeneity and plasticity, these cells display varied metabolic and redox profiles across different types of cancers. It has been established that there is a disparity in the levels of Reactive Oxygen Species (ROS) generated in CSCs vs Non-CSC and these differential levels are detected across different tumors. CSCs have unique metabolic demands and are known to change plasticity during metastasis by passing through the interchangeable epithelial and mesenchymal-like phenotypes. During the metastatic process, tumor cells undergo epithelial to mesenchymal transition (EMT) thus attaining invasive properties while leaving the primary tumor site, similarly during the course of circulation and extravasation at a distant organ, these cells regain their epithelial characteristics through Mesenchymal to Epithelial Transition (MET) to initiate micrometastasis. It has been evidenced that levels of Reactive Oxygen Species (ROS) and associated metabolic activities vary between the epithelial and mesenchymal states of CSCs. Similarly, the levels of oxidative and metabolic states were observed to get altered in CSCs post-drug treatments. As oxidative and metabolic changes guide the onset of autophagy in cells, its role in self-renewal, quiescence, proliferation and response to drug treatment is well established. This review will highlight the molecular mechanisms useful for expanding therapeutic strategies based on modulating redox regulation and autophagy activation to targets. Specifically, we will account for the mounting data that focus on the role of ROS generated by different metabolic pathways and autophagy regulation in eradicating stem-like cells hereafter referred to as cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh Rayees
- PK PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Pankaj Sharma
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
67
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
68
|
Amato I, Meurant S, Renard P. The Key Role of Mitochondria in Somatic Stem Cell Differentiation: From Mitochondrial Asymmetric Apportioning to Cell Fate. Int J Mol Sci 2023; 24:12181. [PMID: 37569553 PMCID: PMC10418455 DOI: 10.3390/ijms241512181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The study of the mechanisms underlying stem cell differentiation is under intensive research and includes the contribution of a metabolic switch from glycolytic to oxidative metabolism. While mitochondrial biogenesis has been previously demonstrated in number of differentiation models, it is only recently that the role of mitochondrial dynamics has started to be explored. The discovery of asymmetric distribution of mitochondria in stem cell progeny has strengthened the interest in the field. This review attempts to summarize the regulation of mitochondrial asymmetric apportioning by the mitochondrial fusion, fission, and mitophagy processes as well as emphasize how asymmetric mitochondrial apportioning in stem cells affects their metabolism, and thus epigenetics, and determines cell fate.
Collapse
Affiliation(s)
- Ilario Amato
- Ressearch Unit in Cell Biology (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium; (I.A.); (S.M.)
| | - Sébastien Meurant
- Ressearch Unit in Cell Biology (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium; (I.A.); (S.M.)
| | - Patricia Renard
- Ressearch Unit in Cell Biology (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium; (I.A.); (S.M.)
- Mass Spectrometry Platform (MaSUN), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| |
Collapse
|
69
|
Fan W, Li X. The SIRT1-c-Myc axis in regulation of stem cells. Front Cell Dev Biol 2023; 11:1236968. [PMID: 37554307 PMCID: PMC10405831 DOI: 10.3389/fcell.2023.1236968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
SIRT1 is the most conserved mammalian NAD+-dependent protein deacetylase. Through deacetylation of transcriptional factors and co-factors, this protein modification enzyme is critically involved in metabolic and epigenetic regulation of stem cells, which is functionally important in maintaining their pluripotency and regulating their differentiation. C-Myc, a key member of Myc proton-oncogene family, is a pivotal factor for transcriptional regulation of genes that control acquisition and maintenance of stemness. Previous cancer research has revealed an intriguing positive feedback loop between SIRT1 and c-Myc that is crucial in tumorigenesis. Recent literature has uncovered important functions of this axis in regulation of maintenance and differentiation of stem cells, including pluripotent stem cells and cancer stem cells. This review highlights recent advances of the SIRT1-c-Myc axis in stem cells.
Collapse
Affiliation(s)
- Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
70
|
Srivastava S, Gajwani P, Jousma J, Miyamoto H, Kwon Y, Jana A, Toth PT, Yan G, Ong SG, Rehman J. Nuclear translocation of mitochondrial dehydrogenases as an adaptive cardioprotective mechanism. Nat Commun 2023; 14:4360. [PMID: 37468519 DOI: 10.1038/s41467-023-40084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Chemotherapy-induced cardiac damage remains a leading cause of death amongst cancer survivors. Anthracycline-induced cardiotoxicity is mediated by severe mitochondrial injury, but little is known about the mechanisms by which cardiomyocytes adaptively respond to the injury. We observed the translocation of selected mitochondrial tricarboxylic acid (TCA) cycle dehydrogenases to the nucleus as an adaptive stress response to anthracycline-cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes and in vivo. The expression of nuclear-targeted mitochondrial dehydrogenases shifts the nuclear metabolic milieu to maintain their function both in vitro and in vivo. This protective effect is mediated by two parallel pathways: metabolite-induced chromatin accessibility and AMP-kinase (AMPK) signaling. The extent of chemotherapy-induced cardiac damage thus reflects a balance between mitochondrial injury and the protective response initiated by the nuclear pool of mitochondrial dehydrogenases. Our study identifies nuclear translocation of mitochondrial dehydrogenases as an endogenous adaptive mechanism that can be leveraged to attenuate cardiomyocyte injury.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Priyanka Gajwani
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Jordan Jousma
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Hiroe Miyamoto
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Youjeong Kwon
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Arundhati Jana
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter T Toth
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
- Research Resources Center, University of Illinois, Chicago, IL, USA
| | - Gege Yan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA.
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
71
|
Podinić T, Werstuck G, Raha S. The Implications of Cannabinoid-Induced Metabolic Dysregulation for Cellular Differentiation and Growth. Int J Mol Sci 2023; 24:11003. [PMID: 37446181 DOI: 10.3390/ijms241311003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The endocannabinoid system (ECS) governs and coordinates several physiological processes through an integrated signaling network, which is responsible for inducing appropriate intracellular metabolic signaling cascades in response to (endo)cannabinoid stimulation. This intricate cellular system ensures the proper functioning of the immune, reproductive, and nervous systems and is involved in the regulation of appetite, memory, metabolism, and development. Cannabinoid receptors have been observed on both cellular and mitochondrial membranes in several tissues and are stimulated by various classes of cannabinoids, rendering the ECS highly versatile. In the context of growth and development, emerging evidence suggests a crucial role for the ECS in cellular growth and differentiation. Indeed, cannabinoids have the potential to disrupt key energy-sensing metabolic signaling pathways requiring mitochondrial-ER crosstalk, whose functioning is essential for successful cellular growth and differentiation. This review aims to explore the extent of cannabinoid-induced cellular dysregulation and its implications for cellular differentiation.
Collapse
Affiliation(s)
- Tina Podinić
- The Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Geoff Werstuck
- Department of Medicine and the Thrombosis and Atherosclerosis Research Institute, David Braley Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada
| | - Sandeep Raha
- The Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
72
|
Sato S, Hishida T, Kinouchi K, Hatanaka F, Li Y, Nguyen Q, Chen Y, Wang PH, Kessenbrock K, Li W, Izpisua Belmonte JC, Sassone-Corsi P. The circadian clock CRY1 regulates pluripotent stem cell identity and somatic cell reprogramming. Cell Rep 2023; 42:112590. [PMID: 37261952 DOI: 10.1016/j.celrep.2023.112590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Distinct metabolic conditions rewire circadian-clock-controlled signaling pathways leading to the de novo construction of signal transduction networks. However, it remains unclear whether metabolic hallmarks unique to pluripotent stem cells (PSCs) are connected to clock functions. Reprogramming somatic cells to a pluripotent state, here we highlighted non-canonical functions of the circadian repressor CRY1 specific to PSCs. Metabolic reprogramming, including AMPK inactivation and SREBP1 activation, was coupled with the accumulation of CRY1 in PSCs. Functional assays verified that CRY1 is required for the maintenance of self-renewal capacity, colony organization, and metabolic signatures. Genome-wide occupancy of CRY1 identified CRY1-regulatory genes enriched in development and differentiation in PSCs, albeit not somatic cells. Last, cells lacking CRY1 exhibit differential gene expression profiles during induced PSC (iPSC) reprogramming, resulting in impaired iPSC reprogramming efficiency. Collectively, these results suggest the functional implication of CRY1 in pluripotent reprogramming and ontogenesis, thereby dictating PSC identity.
Collapse
Affiliation(s)
- Shogo Sato
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA; Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA.
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Fumiaki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Altos Labs, San Diego, CA, USA
| | - Yumei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yumay Chen
- UC Irvine Diabetes Center, Sue and Bill Gross Stem Cell Research Center, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ping H Wang
- UC Irvine Diabetes Center, Sue and Bill Gross Stem Cell Research Center, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Altos Labs, San Diego, CA, USA.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
73
|
Chen C, Yan W, Tao M, Fu Y. NAD + Metabolism and Immune Regulation: New Approaches to Inflammatory Bowel Disease Therapies. Antioxidants (Basel) 2023; 12:1230. [PMID: 37371959 DOI: 10.3390/antiox12061230] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a multifactorial systemic inflammatory immune response. Nicotinamide adenine dinucleotide (NAD+) is a co-enzyme involved in cell signaling and energy metabolism. Calcium homeostasis, gene transcription, DNA repair, and cell communication involve NAD+ and its degradation products. There is a growing recognition of the intricate relationship between inflammatory diseases and NAD+ metabolism. In the case of IBD, the maintenance of intestinal homeostasis relies on a delicate balance between NAD+ biosynthesis and consumption. Consequently, therapeutics designed to target the NAD+ pathway are promising for the management of IBD. This review discusses the metabolic and immunoregulatory processes of NAD+ in IBD to examine the molecular biology and pathophysiology of the immune regulation of IBD and to provide evidence and theoretical support for the clinical use of NAD+ in IBD.
Collapse
Affiliation(s)
- Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meihui Tao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
74
|
Dominici C, Villarreal OD, Dort J, Heckel E, Wang YC, Ragoussis I, Joyal JS, Dumont N, Richard S. Inhibition of type I PRMTs reforms muscle stem cell identity enhancing their therapeutic capacity. eLife 2023; 12:RP84570. [PMID: 37285284 PMCID: PMC10328524 DOI: 10.7554/elife.84570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
In skeletal muscle, muscle stem cells (MuSC) are the main cells responsible for regeneration upon injury. In diseased skeletal muscle, it would be therapeutically advantageous to replace defective MuSCs, or rejuvenate them with drugs to enhance their self-renewal and ensure long-term regenerative potential. One limitation of the replacement approach has been the inability to efficiently expand MuSCs ex vivo, while maintaining their stemness and engraftment abilities. Herein, we show that inhibition of type I protein arginine methyltransferases (PRMTs) with MS023 increases the proliferative capacity of ex vivo cultured MuSCs. Single cell RNA sequencing (scRNAseq) of ex vivo cultured MuSCs revealed the emergence of subpopulations in MS023-treated cells which are defined by elevated Pax7 expression and markers of MuSC quiescence, both features of enhanced self-renewal. Furthermore, the scRNAseq identified MS023-specific subpopulations to be metabolically altered with upregulated glycolysis and oxidative phosphorylation (OxPhos). Transplantation of MuSCs treated with MS023 had a better ability to repopulate the MuSC niche and contributed efficiently to muscle regeneration following injury. Interestingly, the preclinical mouse model of Duchenne muscular dystrophy had increased grip strength with MS023 treatment. Our findings show that inhibition of type I PRMTs increased the proliferation capabilities of MuSCs with altered cellular metabolism, while maintaining their stem-like properties such as self-renewal and engraftment potential.
Collapse
Affiliation(s)
- Claudia Dominici
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
- Departments of Human Genetics, McGill UniversityMontrealCanada
| | - Oscar D Villarreal
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | - Emilie Heckel
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | | | | | | | - Nicolas Dumont
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
- Departments of Human Genetics, McGill UniversityMontrealCanada
- Gerald Bronfman, Department of Oncology, McGill UniversityMontréalCanada
- Departments of Medicine, McGill UniversityMontrealCanada
- Departments of Biochemistry, McGill UniversityMontréalCanada
| |
Collapse
|
75
|
Chae SA, Du M, Son JS, Zhu MJ. Exercise improves homeostasis of the intestinal epithelium by activation of apelin receptor-AMP-activated protein kinase signalling. J Physiol 2023; 601:2371-2389. [PMID: 37154385 PMCID: PMC10280693 DOI: 10.1113/jp284552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Intestinal remodelling is dynamically regulated by energy metabolism. Exercise is beneficial for gut health, but the specific mechanisms remain poorly understood. Intestine-specific apelin receptor (APJ) knockdown (KD) and wild-type male mice were randomly divided into two subgroups, with/without exercise, to obtain four groups: WT, WT with exercise, APJ KD and APJ KD with exercise. Animals in the exercise groups were subjected to daily treadmill exercise for 3 weeks. Duodenum was collected at 48 h after the last bout of exercise. AMP-activated protein kinase (AMPK) α1 KD and wild-type mice were also utilized for investigating the mediatory role of AMPK on exercise-induced duodenal epithelial development. AMPK and peroxisome proliferator-activated receptor γ coactivator-1 α were upregulated by exercise via APJ activation in the intestinal duodenum. Correspondingly, exercise induced permissive histone modifications in the PR domain containing 16 (PRDM16) promoter to activate its expression, which was dependent on APJ activation. In agreement, exercise elevated the expression of mitochondrial oxidative markers. The expression of intestinal epithelial markers was downregulated due to AMPK deficiency, and AMPK signalling facilitated epithelial renewal. These data demonstrate that exercise-induced activation of the APJ-AMPK axis facilitates the homeostasis of the intestinal duodenal epithelium. KEY POINTS: Apelin receptor (APJ) signalling is required for improved epithelial homeostasis of the small intestine in response to exercise. Exercise intervention activates PRDM16 through inducing histone modifications, enhanced mitochondrial biogenesis and fatty acid metabolism in duodenum. The morphological development of duodenal villus and crypt is enhanced by the muscle-derived exerkine apelin through the APJ-AMP-activated protein kinase axis.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
76
|
Olivar-Villanueva M, Ren M, Schlame M, Phoon CK. The critical role of cardiolipin in metazoan differentiation, development, and maturation. Dev Dyn 2023; 252:691-712. [PMID: 36692477 PMCID: PMC10238668 DOI: 10.1002/dvdy.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Cardiolipins are phospholipids that are central to proper mitochondrial functioning. Because mitochondria play crucial roles in differentiation, development, and maturation, we would also expect cardiolipin to play major roles in these processes. Indeed, cardiolipin has been implicated in the mechanism of three human diseases that affect young infants, implying developmental abnormalities. In this review, we will: (1) Review the biology of cardiolipin; (2) Outline the evidence for essential roles of cardiolipin during organismal development, including embryogenesis and cell maturation in vertebrate organisms; (3) Place the role(s) of cardiolipin during embryogenesis within the larger context of the roles of mitochondria in development; and (4) Suggest avenues for future research.
Collapse
Affiliation(s)
| | - Mindong Ren
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Colin K.L. Phoon
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
77
|
Lin D, Yan K, Chen L, Chen J, Xu J, Xie Z, Li Z, Lin S, Li J, Chen Z. Hypoxia-induced reprogramming of glucose-dependent metabolic pathways maintains the stemness of human bone marrow-derived endothelial progenitor cells. Sci Rep 2023; 13:8776. [PMID: 37258701 DOI: 10.1038/s41598-023-36007-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
The benefits of hypoxia for maintaining the stemness of cultured human bone marrow-derived endothelial progenitor cells (BM EPCs) have previously been demonstrated but the mechanisms responsible remain unclear. Growing evidences suggest that cellular metabolism plays an important role in regulating stem cell fate and self-renewal. Here we aimed to detect the changes of glucose metabolism and to explore its role on maintaining the stemness of BM EPCs under hypoxia. We identified the metabolic status of BM EPCs by using extracellular flux analysis, LC-MS/MS, and 13C tracing HPLC-QE-MS, and found that hypoxia induced glucose metabolic reprogramming, which manifested as increased glycolysis and pentose phosphate pathway (PPP), decreased tricarboxylic acid (TCA) and mitochondrial respiration. We further pharmacologically altered the metabolic status of cells by employing various of inhibitors of key enzymes of glycolysis, PPP, TCA cycle and mitochondria electron transport chain (ETC). We found that inhibiting glycolysis or PPP impaired cell proliferation either under normoxia or hypoxia. On the contrary, inhibiting pyruvate oxidation, TCA or ETC promoted cell proliferation under normoxia mimicking hypoxic conditions. Moreover, promoting pyruvate oxidation reverses the maintenance effect of hypoxia on cell stemness. Taken together, our data suggest that hypoxia induced glucose metabolic reprogramming maintains the stemness of BM EPCs, and artificial manipulation of cell metabolism can be an effective way for regulating the stemness of BM EPCs, thereby improving the efficiency of cell expansion in vitro.
Collapse
Affiliation(s)
- Dongni Lin
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Kaihao Yan
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Lingyun Chen
- Hygiene Detection Center, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Junxiong Chen
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Jianing Xu
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Zijing Xie
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Zhujun Li
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Shuo Lin
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Jinghuan Li
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Zhenzhou Chen
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China.
| |
Collapse
|
78
|
Zhou J, Hu J, Wang Y, Gao S. Induction and application of human naive pluripotency. Cell Rep 2023; 42:112379. [PMID: 37043354 DOI: 10.1016/j.celrep.2023.112379] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/18/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past few decades, many attempts have been made to capture different states of pluripotency in vitro. Naive and primed pluripotent stem cells, corresponding to the pluripotency states of pre- and post-implantation epiblasts, respectively, have been well characterized in mice and can be interconverted in vitro. Here, we summarize the recently reported strategies to generate human naive pluripotent stem cells in vitro. We discuss their applications in studies of regulatory mechanisms involved in early developmental processes, including identification of molecular features, X chromosome inactivation modeling, transposable elements regulation, metabolic characteristics, and cell fate regulation, as well as potential for extraembryonic differentiation and blastoid construction for embryogenesis modeling. We further discuss the naive pluripotency-related research, including 8C-like cell establishment and disease modeling. We also highlight limitations of current naive pluripotency studies, such as imperfect culture conditions and inadequate responsiveness to differentiation signals.
Collapse
Affiliation(s)
- Jianfeng Zhou
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Jindian Hu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
79
|
Ortiz GGR, Mohammadi Y, Nazari A, Ataeinaeini M, Kazemi P, Yasamineh S, Al-Naqeeb BZT, Zaidan HK, Gholizadeh O. A state-of-the-art review on the MicroRNAs roles in hematopoietic stem cell aging and longevity. Cell Commun Signal 2023; 21:85. [PMID: 37095512 PMCID: PMC10123996 DOI: 10.1186/s12964-023-01117-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/25/2023] [Indexed: 04/26/2023] Open
Abstract
Aging is a biological process determined through time-related cellular and functional impairments, leading to a decreased standard of living for the organism. Recently, there has been an unprecedented advance in the aging investigation, especially the detection that the rate of senescence is at least somewhat regulated via evolutionarily preserved genetic pathways and biological processes. Hematopoietic stem cells (HSCs) maintain blood generation over the whole lifetime of an organism. The senescence process influences many of the natural features of HSC, leading to a decline in their capabilities, independently of their microenvironment. New studies show that HSCs are sensitive to age-dependent stress and gradually lose their self-renewal and regeneration potential with senescence. MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally inhibit translation or stimulate target mRNA cleavage of target transcripts via the sequence-particular connection. MiRNAs control various biological pathways and processes, such as senescence. Several miRNAs are differentially expressed in senescence, producing concern about their use as moderators of the senescence process. MiRNAs play an important role in the control of HSCs and can also modulate processes associated with tissue senescence in specific cell types. In this review, we display the contribution of age-dependent alterations, including DNA damage, epigenetic landscape, metabolism, and extrinsic factors, which affect HSCs function during aging. In addition, we investigate the particular miRNAs regulating HSCs senescence and age-associated diseases. Video Abstract.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Yasaman Mohammadi
- Faculty of Dentistry, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Saman Yasamineh
- Stem Cell Research Center at, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
80
|
Sorimachi Y, Kobayashi H, Shiozawa Y, Koide S, Nakato R, Shimizu Y, Okamura T, Shirahige K, Iwama A, Goda N, Takubo K, Takubo K. Mesenchymal loss of p53 alters stem cell capacity and models human soft tissue sarcoma traits. Stem Cell Reports 2023; 18:1211-1226. [PMID: 37059101 DOI: 10.1016/j.stemcr.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/16/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a heterogeneous group of tumors that originate from mesenchymal cells. p53 is frequently mutated in human STS. In this study, we found that the loss of p53 in mesenchymal stem cells (MSCs) mainly causes adult undifferentiated soft tissue sarcoma (USTS). MSCs lacking p53 show changes in stem cell properties, including differentiation, cell cycle progression, and metabolism. The transcriptomic changes and genetic mutations in murine p53-deficient USTS mimic those seen in human STS. Furthermore, single-cell RNA sequencing revealed that MSCs undergo transcriptomic alterations with aging-a risk factor for certain types of USTS-and that p53 signaling decreases simultaneously. Moreover, we found that human STS can be transcriptomically classified into six clusters with different prognoses, different from the current histopathological classification. This study paves the way for understanding MSC-mediated tumorigenesis and provides an efficient mouse model for sarcoma studies.
Collapse
Affiliation(s)
- Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yusuke Shiozawa
- Department of Pediatrics, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryuichiro Nakato
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo 100-0004, Japan.
| |
Collapse
|
81
|
Mehrotra P, Ikhapoh I, Lei P, Tseropoulos G, Zhang Y, Wang J, Liu S, Bronner ME, Andreadis ST. Wnt/BMP Mediated Metabolic Reprogramming Preserves Multipotency of Neural Crest-Like Stem Cells. Stem Cells 2023; 41:287-305. [PMID: 36617947 PMCID: PMC10020983 DOI: 10.1093/stmcls/sxad001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023]
Abstract
Neural crest-like stem cells resembling embryonic neural crest cells (NCs) can be derived from adult human tissues such as the epidermis. However, these cells lose their multipotency rapidly in culture limiting their expansion for clinical use. Here, we show that the multipotency of keratinocyte-derived NCs (KC-NCs) can be preserved by activating the Wnt and BMP signaling axis, promoting expression of key NC-specifier genes and ultimately enhancing their differentiation potential. We also show that transcriptional changes leading to multipotency are linked to metabolic reprogramming of KC-NCs to a highly glycolytic state. Specifically, KC-NCs treated with CHIR and BMP2 rely almost exclusively on glycolysis for their energy needs, as seen by increased lactate production, glucose uptake, and glycolytic enzyme activities. This was accompanied by mitochondrial depolarization and decreased mitochondrial ATP production. Interestingly, the glycolytic end-product lactate stabilized β-catenin and further augmented NC-gene expression. Taken together, our study shows that activation of the Wnt/BMP signaling coordinates the metabolic demands of neural crest-like stem cells governing decisions regarding multipotency and differentiation, with possible implications for regenerative medicine.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
82
|
Acetate circumvents impaired metabolic switch in skeletal muscle of letrozole-induced PCOS rat model by suppression of PDK4/NLRP3. Nutrition 2023; 107:111914. [PMID: 36521396 DOI: 10.1016/j.nut.2022.111914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Endocrine disorders in women of childbearing age, including polycystic ovarian syndrome (PCOS), have been linked to skeletal muscle insulin resistance with multiple post-receptor intracellular defects, disrupting metabolic flexibility. Short-chain fatty acids, such as acetate have been suggested as a metabolic modulator. However, the effects of acetate on aberrant metabolic switch in skeletal muscle of individuals with PCOS are unknown. This study therefore hypothesized that acetate would circumvent impaired metabolic switch in the skeletal muscle of a letrozole-induced PCOS rat model, probably by suppression of PDK4/NLRP3. METHODS Eight-wk-old female Wistar rats were assigned into three groups (n = 6), which received vehicle, letrozole (1 mg/kg), and letrozole plus acetate (200 mg/kg), respectively. The administrations were done by oral gavage for 21 d. . RESULTS Animals with PCOS had insulin resistance, increased testosterone, and leptin, as well as decreased adiponectin level. Additionally, the skeletal muscle was also characterized with increased lipid deposition, malondialdehyde, inflammatory mediators (nuclear factor-κB and tumor necrosis factor-α), lactate dehydrogenase, lactate/pyruvate ratio, HDAC and PDK 4 with corresponding decrease in glycogen synthesis, glutathione and NrF2. Besides, immunohistochemical evaluation showed severe expression of inflammasome and apoptosis in PCOS animals. Nonetheless, supplementation with acetate significantly attenuated these perturbations. CONCLUSIONS The present results demonstrate aberrant metabolic switch in the skeletal muscle of PCOS animals, which is accompanied by excessive inflammation, oxidative stress and elevated levels of histone deacetylase and PDK4. The results suggested that histone deacetylase inhibitor, acetate circumvents impaired metabolic switch in the skeletal muscle of PCOS rats by suppression of PDK4/NLRP3 inflammasome.
Collapse
|
83
|
GAO Z, ZHOU F, MU J. Research Progress towards the Effects of Fatty Acids on the Differentiation and Maturation of Human Induced Pluripotent Stem Cells into Cardiomyocytes. Rev Cardiovasc Med 2023; 24:69. [PMID: 39077493 PMCID: PMC11264038 DOI: 10.31083/j.rcm2403069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 07/31/2024] Open
Abstract
The incidence of cardiovascular disease has been continuously increasing. Because cardiomyocytes (CM) are non-renewable cells, it is difficult to find appropriate CM sources to repair injured hearts. Research of human induced pluripotent stem cell (hiPSC) differentiation and maturation into CM has been invaluable for the treatment of heart diseases. The use of hiPSCs as regenerative therapy allows for the treatment of many diseases that cannot be cured, including progressive heart failure. This review contributes to the study of cardiac repair and targeted treatment of cardiovascular diseases at the cytological level. Recent studies have shown that for differentiation and maturation of hiPSCs into CMs, fatty acids have a strong influence on cellular metabolism, organelle development, expression of specific genes, and functional performance. This review describes the recent research progress on how fatty acids affect the differentiation of hiPSCs into CMs and their maturation.
Collapse
Affiliation(s)
- Zhen GAO
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029 Beijing, China
| | - Fan ZHOU
- Department of Ultrasound, The Third Medical Center of PLA General Hospital, 100039 Beijing, China
| | - Junsheng MU
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029 Beijing, China
| |
Collapse
|
84
|
Chaudhary S, Ghosal D, Tripathi P, Kumar S. Cellular metabolism: a link connecting cellular behaviour with the physiochemical properties of biomaterials for bone tissue engineering. Biomater Sci 2023; 11:2277-2291. [PMID: 36748852 DOI: 10.1039/d2bm01410f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biomaterial properties, such as surface roughness, morphology, stiffness, conductivity, and chemistry, significantly influence a cell's ability to sense and adhere to its surface and regulate cell functioning. Understanding how biomaterial properties govern changes in cellular function is one of the fundamental goals of tissue engineering. Still, no generalized rule is established to predict cellular processes (adhesion, spreading, growth and differentiation) on biomaterial surfaces. A few studies have highlighted that cells sense biomaterial properties at multiple length scales and regulate various intracellular biochemical processes like cytoskeleton organization, gene regulation, and receptor expression to influence cell function. However, recent studies have found cellular metabolism as another critical aspect of cellular processes that regulate cell behavior, co-relating metabolism to cellular functions like adhesion, proliferation, and differentiation. Now researchers have started to uncover previously overlooked factors on how biomaterial properties govern changes in cellular functions mediated through metabolism. This review highlights how different physiochemical properties of scaffolds designed from different biomaterials influence cell metabolism. The review also discusses the role of metabolism change in cellular functions and cell behavior in the context of bone tissue engineering. It also emphasizes the importance of cell metabolism as a missing link between the cellular behavior and physicochemical properties of scaffolds and serves as a guiding principle for designing scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Shivani Chaudhary
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Doyel Ghosal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Pravesh Tripathi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Sachin Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India. .,Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
85
|
Asal M, Koçak G, Sarı V, Reçber T, Nemutlu E, Utine CA, Güven S. Development of lacrimal gland organoids from iPSC derived multizonal ocular cells. Front Cell Dev Biol 2023; 10:1058846. [PMID: 36684423 PMCID: PMC9846036 DOI: 10.3389/fcell.2022.1058846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Lacrimal gland plays a vital role in maintaining the health and function of the ocular surface. Dysfunction of the gland leads to disruption of ocular surface homeostasis and can lead to severe outcomes. Approaches evolving through regenerative medicine have recently gained importance to restore the function of the gland. Using human induced pluripotent stem cells (iPSCs), we generated functional in vitro lacrimal gland organoids by adopting the multi zonal ocular differentiation approach. We differentiated human iPSCs and confirmed commitment to neuro ectodermal lineage. Then we identified emergence of mesenchymal and epithelial lacrimal gland progenitor cells by the third week of differentiation. Differentiated progenitors underwent branching morphogenesis in the following weeks, typical of lacrimal gland development. We were able to confirm the presence of lacrimal gland specific acinar, ductal, and myoepithelial cells and structures during weeks 4-7. Further on, we demonstrated the role of miR-205 in regulation of the lacrimal gland organoid development by monitoring miR-205 and FGF10 mRNA levels throughout the differentiation process. In addition, we assessed the functionality of the organoids using the β-Hexosaminidase assay, confirming the secretory function of lacrimal organoids. Finally, metabolomics analysis revealed a shift from amino acid metabolism to lipid metabolism in differentiated organoids. These functional, tear proteins secreting human lacrimal gland organoids harbor a great potential for the improvement of existing treatment options of lacrimal gland dysfunction and can serve as a platform to study human lacrimal gland development and morphogenesis.
Collapse
Affiliation(s)
- Melis Asal
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gamze Koçak
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Vedat Sarı
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Canan Aslı Utine
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Department of Ophthalmology, Dokuz Eylül University Hospital, Dokuz Eylül University, Izmir, Turkey
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey,*Correspondence: Sinan Güven,
| |
Collapse
|
86
|
Pillai S, Roy N. Plasticity of Cancer Stem Cell. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:101-117. [DOI: 10.1007/978-981-99-3185-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
87
|
Mannully CT, Bruck-Haimson R, Zacharia A, Orih P, Shehadeh A, Saidemberg D, Kogan NM, Alfandary S, Serruya R, Dagan A, Petit I, Moussaieff A. Lipid desaturation regulates the balance between self-renewal and differentiation in mouse blastocyst-derived stem cells. Cell Death Dis 2022; 13:1027. [PMID: 36477438 PMCID: PMC9729213 DOI: 10.1038/s41419-022-05263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Stem cells are defined by their ability to self-renew and differentiate, both shown in multiple studies to be regulated by metabolic processes. To decipher metabolic signatures of self-renewal in blastocyst-derived stem cells, we compared early differentiating embryonic stem cells (ESCs) and their extra-embryonic counterparts, trophoblast (T)SCs to their self-renewing counterparts. A metabolomics analysis pointed to the desaturation of fatty acyl chains as a metabolic signature of differentiating blastocyst-derived SCs via the upregulation of delta-6 desaturase (D6D; FADS2) and delta-5 desaturase (D5D; FADS1), key enzymes in the biosynthesis of polyunsaturated fatty acids (PUFAs). The inhibition of D6D or D5D by specific inhibitors or SiRNA retained stemness in ESCs and TSCs, and attenuated endoplasmic reticulum (ER) stress-related apoptosis. D6D inhibition in ESCs upregulated stearoyl-CoA desaturase-1 (Scd1), essential to maintain ER homeostasis. In TSCs, however, D6D inhibition downregulated Scd1. TSCs show higher Scd1 mRNA expression and high levels of monounsaturated fatty acyl chain products in comparison to ESCs. The addition of oleic acid, the product of Scd1 (essential for ESCs), to culture medium, was detrimental to TSCs. Interestingly, TSCs express a high molecular mass variant of Scd1 protein, hardly expressed by ESCs. Taken together, our data suggest that lipid desaturation is a metabolic regulator of the balance between differentiation and self-renewal of ESCs and TSCs. They point to lipid polydesaturation as a driver of differentiation in both cell types. Monounsaturated fatty acids (MUFAs), essential for ESCs are detrimental to TSCs.
Collapse
Affiliation(s)
- Chanchal Thomas Mannully
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Bruck-Haimson
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anish Zacharia
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Orih
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alaa Shehadeh
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Saidemberg
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalya M. Kogan
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Alfandary
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Serruya
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arie Dagan
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Petit
- grid.465261.20000 0004 1793 5929Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Arieh Moussaieff
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
88
|
Sun Y, Yu X, Gao X, Zhang C, Sun H, Xu K, Wei D, Wang Q, Zhang H, Shi Y, Li L, He X. RNA sequencing profiles reveal dynamic signaling and glucose metabolic features during bone marrow mesenchymal stem cell senescence. Cell Biosci 2022; 12:62. [PMID: 35568915 PMCID: PMC9107734 DOI: 10.1186/s13578-022-00796-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background Stem cell senescence is considered as a significant driver of organismal aging. As individuals age, the number of stem cells is declined, and the ability to proliferate and survive is also weakened. It has been reported that metabolism plays an important role in stem cell self-renewal, multilineage differentiation, senescence and fate determination, which has aroused widespread concerns. However, whether metabolism-related genes or signalling pathways are involved in physiological aging remain largely undetermined. Results In the current study, we showed 868 up-regulated and 2006 down-regulated differentially expressed genes (DEGs) in bone marrow mesenchymal stem cells (MSCs) from old rats in comparison with that from young rats by performing RNA sequence. And DEGs functions and pathways were further selected by function enrichment analysis. The results indicated that the high expression of DEGs might participate in cell differentiation, growth factor binding and etc., while the down-regulated DEGs were majorly enriched in metabolism process, such as the cellular metabolic process and mitochondria. Then, we screened and verified DEGs related to glucose metabolism and investigated the glycolysis levels. We identified that glucose uptake, lactate secretion, ATP production and relative extracellular acidification rates (ECAR) were all diminished in MSCs from old rats. More importantly, we conducted microRNA prediction on the key DEGs of glycolysis to elucidate the potential molecular mechanisms of glucose metabolism affecting MSC senescence. Conclusions Our study unravelled the profiles of DEGs in age-associated MSC senescence and their functions and pathways. We also clarified DEGs related to glucose metabolism and down-regulated glycolysis level in age-associated MSC senescence. This study will uncover the metabolic effects on regulating stem cell senescence, and provide novel therapeutic targets for ameliorating age-associated phenotypes. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00796-5.
Collapse
|
89
|
Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:590-610. [PMID: 37724254 PMCID: PMC10471094 DOI: 10.1515/mr-2022-0031] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023]
Abstract
Ovarian reserve is essential for fertility and influences healthy aging in women. Advanced maternal age correlates with the progressive loss of both the quantity and quality of oocytes. The molecular mechanisms and various contributing factors underlying ovarian aging have been uncovered. In this review, we highlight some of critical factors that impact oocyte quantity and quality during aging. Germ cell and follicle reserve at birth determines reproductive lifespan and timing the menopause in female mammals. Accelerated diminishing ovarian reserve leads to premature ovarian aging or insufficiency. Poor oocyte quality with increasing age could result from chromosomal cohesion deterioration and misaligned chromosomes, telomere shortening, DNA damage and associated genetic mutations, oxidative stress, mitochondrial dysfunction and epigenetic alteration. We also discuss the intervention strategies to delay ovarian aging. Both the efficacy of senotherapies by antioxidants against reproductive aging and mitochondrial therapy are discussed. Functional oocytes and ovarioids could be rejuvenated from pluripotent stem cells or somatic cells. We propose directions for future interventions. As couples increasingly begin delaying parenthood in life worldwide, understanding the molecular mechanisms during female reproductive aging and potential intervention strategies could benefit women in making earlier choices about their reproductive health.
Collapse
Affiliation(s)
- Zhengmao Zhu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
| | - Wanxue Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lin Liu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Tianjin Union Medical Center, Institute of Translational Medicine, Nankai University, Tianjin, China
| |
Collapse
|
90
|
Arai H, Inaba A, Ikezaki S, Kumakami-Sakano M, Azumane M, Ohshima H, Morikawa K, Harada H, Otsu K. Energy metabolic shift contributes to the phenotype modulation of maturation stage ameloblasts. Front Physiol 2022; 13:1062042. [PMID: 36523561 PMCID: PMC9745043 DOI: 10.3389/fphys.2022.1062042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2023] Open
Abstract
Maturation stage ameloblasts (M-ABs) are responsible for terminal enamel mineralization in teeth and undergo characteristic cyclic changes in both morphology and function between ruffle-ended ameloblasts (RA) and smooth-ended ameloblasts (SA). Energy metabolism has recently emerged as a potential regulator of cell differentiation and fate decisions; however, its implication in M-ABs remains unclear. To elucidate the relationship between M-ABs and energy metabolism, we examined the expression pattern of energy metabolic enzymes in M-ABs of mouse incisors. Further, using the HAT7 cell line with M-AB characteristics, we designed experiments to induce an energy metabolic shift by changes in oxygen concentration. We revealed that RA preferentially utilizes oxidative phosphorylation, whereas SA depends on glycolysis-dominant energy metabolism in mouse incisors. In HAT7 cells, hypoxia induced an energy metabolic shift toward a more glycolytic-dominant state, and the energy metabolic shift reduced alkaline phosphatase (ALP) activity and calcium transport and deposition with a change in calcium-related gene expression, implying a phenotype shift from RA to SA. Taken together, these results indicate that the energy metabolic state is an important determinant of the RA/SA phenotype in M-ABs. This study sheds light on the biological significance of energy metabolism in governing M-ABs, providing a novel molecular basis for understanding enamel mineralization and elucidating the pathogenesis of enamel hypomineralization.
Collapse
Affiliation(s)
- Haruno Arai
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Akira Inaba
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Shojiro Ikezaki
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Mika Kumakami-Sakano
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Marii Azumane
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazumasa Morikawa
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
91
|
Zhao Q, Liu K, Zhang L, Li Z, Wang L, Cao J, Xu Y, Zheng A, Chen Q, Zhao T. BNIP3-dependent mitophagy safeguards ESC genomic integrity via preventing oxidative stress-induced DNA damage and protecting homologous recombination. Cell Death Dis 2022; 13:976. [PMID: 36402748 PMCID: PMC9675825 DOI: 10.1038/s41419-022-05413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Embryonic stem cells (ESCs) have a significantly lower mutation load compared to somatic cells, but the mechanisms that guard genomic integrity in ESCs remain largely unknown. Here we show that BNIP3-dependent mitophagy protects genomic integrity in mouse ESCs. Deletion of Bnip3 increases cellular reactive oxygen species (ROS) and decreases ATP generation. Increased ROS in Bnip3-/- ESCs compromised self-renewal and were partially rescued by either NAC treatment or p53 depletion. The decreased cellular ATP in Bnip3-/- ESCs induced AMPK activation and deteriorated homologous recombination, leading to elevated mutation load during long-term propagation. Whereas activation of AMPK in X-ray-treated Bnip3+/+ ESCs dramatically ascended mutation rates, inactivation of AMPK in Bnip3-/- ESCs under X-ray stress remarkably decreased the mutation load. In addition, enhancement of BNIP3-dependent mitophagy during reprogramming markedly decreased mutation accumulation in established iPSCs. In conclusion, we demonstrated a novel pathway in which BNIP3-dependent mitophagy safeguards ESC genomic stability, and that could potentially be targeted to improve pluripotent stem cell genomic integrity for regenerative medicine.
Collapse
Affiliation(s)
- Qian Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Kun Liu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Lin Zhang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zheng Li
- grid.24696.3f0000 0004 0369 153XDepartment of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Liang Wang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiani Cao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Youqing Xu
- grid.24696.3f0000 0004 0369 153XDepartment of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Aihua Zheng
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Quan Chen
- grid.216938.70000 0000 9878 7032College of Life Sciences, Nankai University, Tianjin, 300073 China
| | - Tongbiao Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
92
|
Qiu S, Kumar H, Yan C, Li H, Paterson AJ, Anderson NR, He J, Yang J, Xie M, Crossman DK, Lu R, Welner RS, Bhatia R. Autophagy inhibition impairs leukemia stem cell function in FLT3-ITD AML but has antagonistic interactions with tyrosine kinase inhibition. Leukemia 2022; 36:2621-2633. [PMID: 36220999 PMCID: PMC9617791 DOI: 10.1038/s41375-022-01719-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
The FLT3-ITD mutation is associated with poor prognosis in acute myeloid leukemia (AML). FLT3 tyrosine kinase inhibitors (TKIs) demonstrate clinical efficacy but fail to target leukemia stem cells (LSC) and do not generate sustained responses. Autophagy is an important cellular stress response contributing to hematopoietic stem cells (HSC) maintenance and promoting leukemia development. Here we investigated the role of autophagy in regulating FLT3-ITD AML stem cell function and response to TKI treatment. We show that autophagy inhibition reduced quiescence and depleted repopulating potential of FLT3-ITD AML LSC, associated with mitochondrial accumulation and increased oxidative phosphorylation. However, TKI treatment reduced mitochondrial respiration and unexpectedly antagonized the effects of autophagy inhibition on LSC attrition. We further show that TKI-mediated targeting of AML LSC and committed progenitors was p53-dependent, and that autophagy inhibition enhanced p53 activity and increased TKI-mediated targeting of AML progenitors, but decreased p53 activity in LSC and reduced TKI-mediated LSC inhibition. These results provide new insights into the role of autophagy in differentially regulating AML stem and progenitor cells, reveal unexpected antagonistic effects of combined oncogenic tyrosine kinase inhibition and autophagy inhibition in AML LSC, and suggest an alternative approach to target AML LSC quiescence and regenerative potential.
Collapse
Affiliation(s)
- Shaowei Qiu
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL,State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Harish Kumar
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Chengcheng Yan
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Hui Li
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Andrew J. Paterson
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Nicholas R. Anderson
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Jianbo He
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Jing Yang
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Min Xie
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - David K. Crossman
- Genomics Core Facility, University of Alabama at Birmingham, Birmingham, AL
| | - Rui Lu
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Robert S. Welner
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Ravi Bhatia
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
93
|
Yu T, Liu Q, Wang X, Liu X, Chen Y, Nielsen J. Metabolic reconfiguration enables synthetic reductive metabolism in yeast. Nat Metab 2022; 4:1551-1559. [PMID: 36302903 PMCID: PMC9684072 DOI: 10.1038/s42255-022-00654-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/06/2022] [Indexed: 02/08/2023]
Abstract
Cell proliferation requires the integration of catabolic processes to provide energy, redox power and biosynthetic precursors. Here we show how the combination of rational design, metabolic rewiring and recombinant expression enables the establishment of a decarboxylation cycle in the yeast cytoplasm. This metabolic cycle can support growth by supplying energy and increased provision of NADPH or NADH in the cytosol, which can support the production of highly reduced chemicals such as glycerol, succinate and free fatty acids. With this approach, free fatty acid yield reached 40% of theoretical yield, which is the highest yield reported for Saccharomyces cerevisiae to our knowledge. This study reports the implementation of a synthetic decarboxylation cycle in the yeast cytosol, and its application in achieving high yields of valuable chemicals in cell factories. Our study also shows that, despite extensive regulation of catabolism in yeast, it is possible to rewire the energy metabolism, illustrating the power of biodesign.
Collapse
Affiliation(s)
- Tao Yu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
- Center for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Quanli Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiang Wang
- Center for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiangjian Liu
- Center for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
- BioInnovation Institute, Copenhagen, Denmark.
| |
Collapse
|
94
|
Li X, Feng L, Zhang C, Wang J, Wang S, Hu L. Insulin-like growth factor binding proteins 7 prevents dental pulp-derived mesenchymal stem cell senescence via metabolic downregulation of p21. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2218-2232. [PMID: 35633481 DOI: 10.1007/s11427-021-2096-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
Cellular senescence affects the efficacy of mesenchymal stem cells (MSCs)-mediated tissue regeneration. Insulin-like growth factor binding proteins-7 (IGFBP7), as a member of the IGF family, is associated with osteogenic differentiation and the senescence of MSCs, but its exact function and mechanism remain unclear. We found IGFBP7 promoted the osteogenic differentiation and prevented the senescence of dental pulp-derived MSCs (DPSCs), as observed in the gain-of-function and loss-of-function analyses, the senescence-associated marker p21 showed the most pronounced expression changes. We demonstrated that IGFBP7 activated the biological activity of SIRT1 deacetylase via metabolism, resulting in a deacetylation of H3K36ac and a decrease of the binding affinity of H3K36ac to p21 promoter, thereby reducing the transcription of p21, which ultimately prevents DPSCs senescence and promotes tissue regeneration. The activation of the mitochondrial electron transport chain (ETC) by Coenzyme Q10 could rescue the promotion of DPSC senescence induced by the knockdown of IGFBP7, whereas the inhibition of ETC by rotenone attenuated the prevention of DPSC senescence induced by IGFBP7 overexpression. In conclusion, our present results reveal a novel function of IGFBP7 in preventing DPSC senescence via the metabolism-induced deacetylation of H3K36ac and reduction of p21 transcription, suggesting that IGFBP7 is a potential target for promoting tissue regeneration in an aging environment.
Collapse
Affiliation(s)
- Xiaoyu Li
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Liang Feng
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, 100069, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, 100069, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100700, China.
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100700, China.
- Department of Prosthodontics, Capital Medical University School of Stomatology, Beijing, 100050, China.
| |
Collapse
|
95
|
Morales A, Andrews MG. Approaches to investigating metabolism in human neurodevelopment using organoids: insights from intestinal and cancer studies. Development 2022; 149:dev200506. [PMID: 36255366 PMCID: PMC9720749 DOI: 10.1242/dev.200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interrogating the impact of metabolism during development is important for understanding cellular and tissue formation, organ and systemic homeostasis, and dysregulation in disease states. To evaluate the vital functions metabolism coordinates during human brain development and disease, pluripotent stem cell-derived models, such as organoids, provide tractable access to neurodevelopmental processes. Despite many strengths of neural organoid models, the extent of their replication of endogenous metabolic programs is currently unclear and requires direct investigation. Studies in intestinal and cancer organoids that functionally evaluate dynamic bioenergetic changes provide a framework that can be adapted for the study of neural metabolism. Validation of in vitro models remains a significant challenge; investigation using in vivo models and primary tissue samples is required to improve our in vitro model systems and, concomitantly, improve our understanding of human development.
Collapse
Affiliation(s)
- Alexandria Morales
- Schoolof Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
- Biomedical Engineering Graduate Program, Arizona State University, Tempe, AZ 85281, USA
| | - Madeline G. Andrews
- Schoolof Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
96
|
Pladevall-Morera D, Zylicz JJ. Chromatin as a sensor of metabolic changes during early development. Front Cell Dev Biol 2022; 10:1014498. [PMID: 36299478 PMCID: PMC9588933 DOI: 10.3389/fcell.2022.1014498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular metabolism is a complex network of biochemical reactions fueling development with energy and biomass; however, it can also shape the cellular epigenome. Indeed, some intermediates of metabolic reactions exert a non-canonical function by acting as co-factors, substrates or inhibitors of chromatin modifying enzymes. Therefore, fluctuating availability of such molecules has the potential to regulate the epigenetic landscape. Thanks to this functional coupling, chromatin can act as a sensor of metabolic changes and thus impact cell fate. Growing evidence suggest that both metabolic and epigenetic reprogramming are crucial for ensuring a successful embryo development from the zygote until gastrulation. In this review, we provide an overview of the complex relationship between metabolism and epigenetics in regulating the early stages of mammalian embryo development. We report on recent breakthroughs in uncovering the non-canonical functions of metabolism especially when re-localized to the nucleus. In addition, we identify the challenges and outline future perspectives to advance the novel field of epi-metabolomics especially in the context of early development.
Collapse
Affiliation(s)
| | - Jan J. Zylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
97
|
Sánchez-Ramírez E, Ung TPL, Alarcón del Carmen A, del Toro-Ríos X, Fajardo-Orduña GR, Noriega LG, Cortés-Morales VA, Tovar AR, Montesinos JJ, Orozco-Solís R, Stringari C, Aguilar-Arnal L. Coordinated metabolic transitions and gene expression by NAD+ during adipogenesis. J Biophys Biochem Cytol 2022; 221:213521. [PMID: 36197339 PMCID: PMC9538974 DOI: 10.1083/jcb.202111137] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 12/17/2022] Open
Abstract
Adipocytes are the main cell type in adipose tissue, which is a critical regulator of metabolism, highly specialized in storing energy as fat. Adipocytes differentiate from multipotent mesenchymal stromal cells (hMSCs) through adipogenesis, a tightly controlled differentiation process involving close interplay between metabolic transitions and sequential programs of gene expression. However, the specific gears driving this interplay remain largely obscure. Additionally, the metabolite nicotinamide adenine dinucleotide (NAD+) is becoming increasingly recognized as a regulator of lipid metabolism, and a promising therapeutic target for dyslipidemia and obesity. Here, we explored how NAD+ bioavailability controls adipogenic differentiation from hMSC. We found a previously unappreciated repressive role for NAD+ on adipocyte commitment, while a functional NAD+-dependent deacetylase SIRT1 appeared crucial for terminal differentiation of pre-adipocytes. Repressing NAD+ biosynthesis during adipogenesis promoted the adipogenic transcriptional program, while two-photon microscopy and extracellular flux analyses suggest that SIRT1 activity mostly relies on the metabolic switch. Interestingly, SIRT1 controls subcellular compartmentalization of redox metabolism during adipogenesis.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Alejandro Alarcón del Carmen
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ximena del Toro-Ríos
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe R. Fajardo-Orduña
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Victor A. Cortés-Morales
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Mexico City, Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Mexico City, Mexico
| | - Ricardo Orozco-Solís
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France,Chiara Stringari:
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico,Correspondence to Lorena Aguilar-Arnal:
| |
Collapse
|
98
|
Sarkar Bhattacharya S, Thirusangu P, Jin L, Staub J, Shridhar V, Molina JR. PFKFB3 works on the FAK-STAT3-SOX2 axis to regulate the stemness in MPM. Br J Cancer 2022; 127:1352-1364. [PMID: 35794237 PMCID: PMC9519537 DOI: 10.1038/s41416-022-01867-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is an aggressive neoplasm and often acquires chemoresistance by increasing stemness in tumour tissue, thereby generating cancer stem cells (CSCs). CSCs escape treatment by deploying metabolic pathways to trigger dormancy or proliferation, also gaining the ability to exit and re-enter the cell cycle to hide their cellular identity. METHODS We employed various cellular and biochemical assays to identify the role of the glycolytic enzyme PFKFB3, by knocking it down and pharmacologically inhibiting it with PFK158, to determine its anticancer effects in vitro and in vivo by targeting the CSC population in MPM. RESULTS Here, we have identified PFKFB3 as a strategic player to target the CSC population in MPM and demonstrated that both pharmacologic (PFK158) and genetic inhibition of PFKFB3 destroy the FAK-Stat3-SOX2 nexus resulting in a decline in conspicuous stem cell markers viz. ALDH, CD133, CD44, SOX2. Inhibition of PFKFB3 accumulates p21 and p27 in the nucleus by decreasing SKP2. Lastly, PFK158 diminishes tumour-initiating cells (TICs) mediated MPM xenograft in vivo. CONCLUSIONS This study confers a comprehensive and mechanistic function of PFKFB3 in CSC maintenance that may foster exceptional opportunities for targeted small molecule blockade of the TICs in MPM.
Collapse
Affiliation(s)
- Sayantani Sarkar Bhattacharya
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Prabhu Thirusangu
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ling Jin
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julie Staub
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Viji Shridhar
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Julian R Molina
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
99
|
Arif T. Lysosomes and Their Role in Regulating the Metabolism of Hematopoietic Stem Cells. BIOLOGY 2022; 11:1410. [PMID: 36290314 PMCID: PMC9598322 DOI: 10.3390/biology11101410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs) have the capacity to renew blood cells at all stages of life and are largely quiescent at a steady state. It is essential to understand the processes that govern quiescence in HSCs to enhance bone marrow transplantation. It is hypothesized that in their quiescent state, HSCs primarily use glycolysis for energy production rather than mitochondrial oxidative phosphorylation (OXPHOS). In addition, the HSC switch from quiescence to activation occurs along a continuous developmental path that is driven by metabolism. Specifying the metabolic regulation pathway of HSC quiescence will provide insights into HSC homeostasis for therapeutic application. Therefore, understanding the metabolic demands of HSCs at a steady state is key to developing innovative hematological therapeutics. Lysosomes are the major degradative organelle in eukaryotic cells. Catabolic, anabolic, and lysosomal function abnormalities are connected to an expanding list of diseases. In recent years, lysosomes have emerged as control centers of cellular metabolism, particularly in HSC quiescence, and essential regulators of cell signaling have been found on the lysosomal membrane. In addition to autophagic processes, lysosomal activities have been shown to be crucial in sustaining quiescence by restricting HSCs access to a nutritional reserve essential for their activation into the cell cycle. Lysosomal activity may preserve HSC quiescence by altering glycolysis-mitochondrial biogenesis. The understanding of HSC metabolism has significantly expanded over the decade, revealing previously unknown requirements of HSCs in both their dividing (active) and quiescent states. Therefore, understanding the role of lysosomes in HSCs will allow for the development of innovative treatment methods based on HSCs to fight clonal hematopoiesis and HSC aging.
Collapse
Affiliation(s)
- Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
100
|
Chen L, Jiao T, Liu W, Luo Y, Wang J, Guo X, Tong X, Lin Z, Sun C, Wang K, He Y, Zhang Y, Xu H, Wang J, Zuo J, Ding Q, He S, Gonzalez FJ, Xie C. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal. Cell Stem Cell 2022; 29:1366-1381.e9. [PMID: 36055192 PMCID: PMC10673678 DOI: 10.1016/j.stem.2022.08.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
Abstract
Although disrupted bile acid (BA) homeostasis is implicated in inflammatory bowel disease (IBD), the role of hepatic BA metabolism in the pathogenesis of colitis is poorly understood. Here, we found that cholic acid (CA) levels were increased in patients and mice. Cytochrome P450 8B1 (CYP8B1), which synthesizes CA, was induced in livers of colitic mice. CA-treated or liver Cyp8b1-overexpressing mice developed more severe colitis with compromised repair of the mucosal barrier, whereas Cyp8b1-knockout mice were resistant to colitis. Mechanistically, CA inhibited peroxisome proliferator-activated receptor alpha (PPARα), resulting in impeded fatty acid oxidation (FAO) and impaired Lgr5+ intestinal stem cell (ISC) renewal. A PPARα agonist restored FAO and improved Lgr5+ ISC function. Activation of the farnesoid X receptor (FXR) suppressed liver CYP8B1 expression and ameliorated colitis in mice. This study reveals a connection between the hepatic CYP8B1-CA axis and colitis via regulating intestinal epithelial regeneration, suggesting that BA-based strategies might be beneficial in IBD treatment.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tingying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Weiwei Liu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China; Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jue Wang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Xiao Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zemin Lin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Chuying Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Yifan He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yuwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Hualing Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Jianping Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Shijun He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|