51
|
Kvach MV, Stepanova IA, Prokhorenko IA, Stupak AP, Bolibrukh DA, Korshun VA, Shmanai VV. Practical Synthesis of Isomerically Pure 5- and 6-Carboxytetramethylrhodamines, Useful Dyes for DNA Probes. Bioconjug Chem 2009; 20:1673-82. [DOI: 10.1021/bc900037b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Maksim V. Kvach
- Institute of Physical Organic Chemistry, Surganova 13, 220072 Minsk, Belarus, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia, Institute of Physics, Nezavisimosti av. 70, 220072 Minsk, Belarus, and Institute of Bioorganic Chemistry, Kuprevicha 5/2, 220141, Minsk, Belarus
| | - Irina A. Stepanova
- Institute of Physical Organic Chemistry, Surganova 13, 220072 Minsk, Belarus, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia, Institute of Physics, Nezavisimosti av. 70, 220072 Minsk, Belarus, and Institute of Bioorganic Chemistry, Kuprevicha 5/2, 220141, Minsk, Belarus
| | - Igor A. Prokhorenko
- Institute of Physical Organic Chemistry, Surganova 13, 220072 Minsk, Belarus, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia, Institute of Physics, Nezavisimosti av. 70, 220072 Minsk, Belarus, and Institute of Bioorganic Chemistry, Kuprevicha 5/2, 220141, Minsk, Belarus
| | - Aleksander P. Stupak
- Institute of Physical Organic Chemistry, Surganova 13, 220072 Minsk, Belarus, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia, Institute of Physics, Nezavisimosti av. 70, 220072 Minsk, Belarus, and Institute of Bioorganic Chemistry, Kuprevicha 5/2, 220141, Minsk, Belarus
| | - Dmitry A. Bolibrukh
- Institute of Physical Organic Chemistry, Surganova 13, 220072 Minsk, Belarus, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia, Institute of Physics, Nezavisimosti av. 70, 220072 Minsk, Belarus, and Institute of Bioorganic Chemistry, Kuprevicha 5/2, 220141, Minsk, Belarus
| | - Vladimir A. Korshun
- Institute of Physical Organic Chemistry, Surganova 13, 220072 Minsk, Belarus, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia, Institute of Physics, Nezavisimosti av. 70, 220072 Minsk, Belarus, and Institute of Bioorganic Chemistry, Kuprevicha 5/2, 220141, Minsk, Belarus
| | - Vadim V. Shmanai
- Institute of Physical Organic Chemistry, Surganova 13, 220072 Minsk, Belarus, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia, Institute of Physics, Nezavisimosti av. 70, 220072 Minsk, Belarus, and Institute of Bioorganic Chemistry, Kuprevicha 5/2, 220141, Minsk, Belarus
| |
Collapse
|
52
|
Xia S, Robertus JD. Effect of divalent ions on the minimal relaxase domain of MobA. Arch Biochem Biophys 2009; 488:42-7. [PMID: 19527679 DOI: 10.1016/j.abb.2009.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/05/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
The MobA protein encoded by plasmid R1162 plays an important role in conjugative mobilization between bacterial cells. It has two functional domains, the N-terminal relaxase domain and C-terminal primase domain. The N-terminal 186 residues (minMobA) is the minimal domain required for relaxase activity. We investigated the effects of different divalent metallic cations on minMobA activity measuring DNA binding, DNA nicking, and protein denaturation experiments. The results show that divalent cations are not required for DNA binding but are required for DNA nicking. The range of metals that function in minMobA suggests the cation role is largely structural. The most tightly binding cation is Mn(2+), but the expressed protein shows roughly equal amounts of Mg(2+) and Ca(2+), both of which facilitate substrate binding and catalysis. Surprisingly, Zn(2+) does not facilitate DNA binding nor allow nicking activity.
Collapse
Affiliation(s)
- Shuangluo Xia
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
53
|
Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 2009; 33:657-87. [PMID: 19396961 DOI: 10.1111/j.1574-6976.2009.00168.x] [Citation(s) in RCA: 392] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacterial conjugation is an efficient and sophisticated mechanism of DNA transfer among bacteria. While mobilizable plasmids only encode a minimal MOB machinery that allows them to be transported by other plasmids, conjugative plasmids encode a complete set of transfer genes (MOB1T4SS). The only essential ingredient of the MOB machinery is the relaxase, the protein that initiates and terminates conjugative DNA processing. In this review we compared the sequences and properties of the relaxase proteins contained in gene sequence databases. Proteins were arranged in families and phylogenetic trees constructed from the family alignments. This allowed the classification of conjugative transfer systems in six MOB families:MOB(F), MOB(H), MOB(Q), MOB(C), MOB(P) and MOB(V). The main characteristics of each family were reviewed. The phylogenetic relationships of the coupling proteins were also analysed and resulted in phylogenies congruent to those of the cognate relaxases. We propose that the sequences of plasmid relaxases can be used for plasmid classification. We hope our effort will provide researchers with a useful tool for further mining and analysing the plasmid universe both experimentally and in silico.
Collapse
Affiliation(s)
- María Pilar Garcillán-Barcia
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, Santander, Spain
| | | | | |
Collapse
|
54
|
Guogas LM, Kennedy SA, Lee JH, Redinbo MR. A novel fold in the TraI relaxase-helicase c-terminal domain is essential for conjugative DNA transfer. J Mol Biol 2008; 386:554-68. [PMID: 19136009 DOI: 10.1016/j.jmb.2008.12.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 12/19/2008] [Accepted: 12/22/2008] [Indexed: 11/19/2022]
Abstract
TraI relaxase-helicase is the central catalytic component of the multiprotein relaxosome complex responsible for conjugative DNA transfer (CDT) between bacterial cells. CDT is a primary mechanism for the lateral propagation of microbial genetic material, including the spread of antibiotic resistance genes. The 2.4-A resolution crystal structure of the C-terminal domain of the multifunctional Escherichia coli F (fertility) plasmid TraI protein is presented, and specific structural regions essential for CDT are identified. The crystal structure reveals a novel fold composed of a 28-residue N-terminal alpha-domain connected by a proline-rich loop to a compact alpha/beta-domain. Both the globular nature of the alpha/beta-domain and the presence as well as rigidity of the proline-rich loop are required for DNA transfer and single-stranded DNA binding. Taken together, these data establish the specific structural features of this noncatalytic domain that are essential to DNA conjugation.
Collapse
Affiliation(s)
- Laura M Guogas
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599-3290, USA
| | | | | | | |
Collapse
|
55
|
An equivalent metal ion in one- and two-metal-ion catalysis. Nat Struct Mol Biol 2008; 15:1228-31. [PMID: 18953336 DOI: 10.1038/nsmb.1502] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/24/2008] [Indexed: 11/08/2022]
Abstract
Nucleotidyl-transfer enzymes, which synthesize, degrade and rearrange DNA and RNA, often depend on metal ions for catalysis. All DNA and RNA polymerases, MutH-like or RNase H-like nucleases and recombinases, and group I introns seem to require two divalent cations to form a complete active site. The two-metal-ion mechanism has been proposed to orient the substrate, facilitate acid-base catalysis and allow catalytic specificity to exceed substrate binding specificity attributable to the stringent metal-ion (Mg2+ in particular) coordination. Not all nucleotidyl-transfer enzymes use two metal ions for catalysis, however. The betabetaalpha-Me and HUH nucleases depend on a single metal ion in the active site for the catalysis. All of these one- and two metal ion-dependent enzymes generate 5'-phosphate and 3'-OH products. Structural and mechanistic comparisons show that these seemingly unrelated nucleotidyl-transferases share a functionally equivalent metal ion.
Collapse
|
56
|
Potts RG, Lujan SA, Redinbo MR. Winning the asymmetric war: new strategies for combating antibacterial resistance. Future Microbiol 2008; 3:119-23. [PMID: 18366330 DOI: 10.2217/17460913.3.2.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
57
|
Hekman K, Guja K, Larkin C, Schildbach JF. An intrastrand three-DNA-base interaction is a key specificity determinant of F transfer initiation and of F TraI relaxase DNA recognition and cleavage. Nucleic Acids Res 2008; 36:4565-72. [PMID: 18611948 PMCID: PMC2504302 DOI: 10.1093/nar/gkn422] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial conjugation, transfer of a single conjugative plasmid strand between bacteria, diversifies prokaryotic genomes and disseminates antibiotic resistance genes. As a prerequisite for transfer, plasmid-encoded relaxases bind to and cleave the transferred plasmid strand with sequence specificity. The crystal structure of the F TraI relaxase domain with bound single-stranded DNA suggests binding specificity is partly determined by an intrastrand three-way base-pairing interaction. We showed previously that single substitutions for the three interacting bases could significantly reduce binding. Here we examine the effect of single and double base substitutions at these positions on plasmid mobilization. Many substitutions reduce transfer, although the detrimental effects of some substitutions can be partially overcome by substitutions at a second site. We measured the affinity of the F TraI relaxase domain for several DNA sequence variants. While reduced transfer generally correlates with reduced binding affinity, some oriT variants transfer with an efficiency different than expected from their binding affinities, indicating ssDNA binding and cleavage do not correlate absolutely. Oligonucleotide cleavage assay results suggest the essential function of the three-base interaction may be to position the scissile phosphate for cleavage, rather than to directly contribute to binding affinity.
Collapse
Affiliation(s)
- Katherine Hekman
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
58
|
Croy JE, Fast JL, Grimm NE, Wuttke DS. Deciphering the mechanism of thermodynamic accommodation of telomeric oligonucleotide sequences by the Schizosaccharomyces pombe protection of telomeres 1 (Pot1pN) protein. Biochemistry 2008; 47:4345-4358. [PMID: 18355038 PMCID: PMC3987967 DOI: 10.1021/bi701778x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linear chromosomes terminate in specialized nucleoprotein structures called telomeres, which are required for genomic stability and cellular proliferation. Telomeres end in an unusual 3' single-strand overhang that requires a special capping mechanism to prevent inappropriate recognition by the DNA damage machinery. In Schizosaccharomyces pombe, this protective function is mediated by the Pot1 protein, which binds specifically and with high affinity to telomeric ssDNA. We have characterized the thermodynamics and accommodation of both cognate and noncognate telomeric single-stranded DNA (ssDNA) sequences by Pot1pN, an autonomous ssDNA-binding domain (residues 1-187) found in full-length S. pombe Pot1. Direct calorimetric measurements of cognate telomeric ssDNA binding to Pot1pN show favorable enthalpy, unfavorable entropy, and a negative heat-capacity change. Thermodynamic analysis of the binding of noncognate telomeric ssDNA to Pot1pN resulted in unexpected changes in free energy, enthalpy, and entropy. Chemical-shift perturbation and structural analysis of these bound noncognate sequences show that these thermodynamic changes result from the structural rearrangement of both Pot1pN and the bound oligonucleotide. These data suggest that the ssDNA-binding interface is highly dynamic and, in addition to the conformation observed in the crystal structure of the Pot1pN/d(GGTTAC) complex, capable of adopting alternative thermodynamically equivalent conformations.
Collapse
Affiliation(s)
- Johnny E. Croy
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | | | - Nicole E. Grimm
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| |
Collapse
|
59
|
Eldridge AM, Wuttke DS. Probing the mechanism of recognition of ssDNA by the Cdc13-DBD. Nucleic Acids Res 2008; 36:1624-33. [PMID: 18250086 PMCID: PMC2275150 DOI: 10.1093/nar/gkn017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Saccharomyces cerevisiae protein Cdc13 tightly and specifically binds the conserved G-rich single-stranded overhang at telomeres and plays an essential role in telomere end-protection and length regulation. The 200 residue DNA-binding domain of Cdc13 (Cdc13-DBD) binds an 11mer single-stranded representative of the yeast telomeric sequence [Tel11, d(GTGTGGGTGTG)] with a 3 pM affinity and specificity for three bases (underlined) at the 5′ end. The structure of the Cdc13-DBD bound to Tel11 revealed a large, predominantly aromatic protein interface with several unusual features. The DNA adopts an irregular, extended structure, and the binding interface includes a long (∼30 amino acids) structured loop between strands β2-β3 (L2–3) of an OB-fold. To investigate the mechanism of ssDNA binding, we studied the free and bound states of Cdc13-DBD using NMR spectroscopy. Chemical shift changes indicate that the basic topology of the domain, including L2–3, is essentially intact in the free state. Changes in slow and intermediate time scale dynamics, however, occur in L2–3, while conformational changes distant from the DNA interface suggest an induced fit mechanism for binding in the ‘hot spot’ for binding affinity and specificity. These data point to an overall binding mechanism well adapted to the heterogeneous nature of yeast telomeres.
Collapse
Affiliation(s)
- Aimee M Eldridge
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | |
Collapse
|
60
|
Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F. Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection. Cell 2008; 132:208-20. [PMID: 18243097 PMCID: PMC2680152 DOI: 10.1016/j.cell.2007.12.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 10/28/2007] [Accepted: 12/07/2007] [Indexed: 01/07/2023]
Abstract
The smallest known DNA transposases are those from the IS200/IS605 family. Here we show how the interplay of protein and DNA activates TnpA, the Helicobacter pylori IS608 transposase, for catalysis. First, transposon end binding causes a conformational change that aligns catalytically important protein residues within the active site. Subsequent precise cleavage at the left and right ends, the steps that liberate the transposon from its donor site, does not involve a site-specific DNA-binding domain. Rather, cleavage site recognition occurs by complementary base pairing with a TnpA-bound subterminal transposon DNA segment. Thus, the enzyme active site is constructed from elements of both protein and DNA, reminiscent of the interdependence of protein and RNA in the ribosome. Our structural results explain why the transposon ends are asymmetric and how the transposon selects a target site for integration, and they allow us to propose a molecular model for the entire transposition reaction.
Collapse
Affiliation(s)
- Orsolya Barabas
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Donald R. Ronning
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires Centre National de la Recherche Scientifique, 118 Route de Narbonne, 31062, Toulouse Cedex, France
| | - Alison Burgess Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Bao Ton-Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires Centre National de la Recherche Scientifique, 118 Route de Narbonne, 31062, Toulouse Cedex, France
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires Centre National de la Recherche Scientifique, 118 Route de Narbonne, 31062, Toulouse Cedex, France
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
61
|
Using fluorophore-labeled oligonucleotides to measure affinities of protein-DNA interactions. Methods Enzymol 2008; 450:253-72. [PMID: 19152864 DOI: 10.1016/s0076-6879(08)03412-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Changes in fluorescence emission intensity and anisotropy can reflect changes in the environment and molecular motion of a fluorophore. Researchers can capitalize on these characteristics to assess the affinity and specificity of DNA-binding proteins using fluorophore-labeled oligonucleotides. While there are many advantages to measuring binding using fluorescent oligonucleotides, there are also some distinct disadvantages. Here we describe some of the relevant issues for the novice, illustrating key points using data collected with a variety of labeled oligonucleotides and the relaxase domain of F plasmid TraI. Topics include selection of a fluorophore, experimental design using a fluorometer equipped with an automatic titrating unit, and analysis of direct binding and competition assays.
Collapse
|
62
|
Salgado-Pabón W, Jain S, Turner N, van der Does C, Dillard JP. A novel relaxase homologue is involved in chromosomal DNA processing for type IV secretion in Neisseria gonorrhoeae. Mol Microbiol 2007; 66:930-47. [PMID: 17927698 PMCID: PMC2586181 DOI: 10.1111/j.1365-2958.2007.05966.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Neisseria gonorrhoeae type IV secretion system secretes chromosomal DNA that acts in natural transformation. To examine the mechanism of DNA processing for secretion, we made mutations in the putative relaxase gene traI and used nucleases to characterize the secreted DNA. The nuclease experiments demonstrated that the secreted DNA is single-stranded and blocked at the 5' end. Mutation of traI identified Tyr93 as required for DNA secretion, while substitution of Tyr201 resulted in intermediate levels of DNA secretion. TraI exhibits features of relaxases, but also has features that are absent in previously characterized relaxases, including an HD phosphohydrolase domain and an N-terminal hydrophobic region. The HD domain residue Asp120 was required for wild-type levels of DNA secretion. Subcellular localization studies demonstrated that the TraI N-terminal region promotes membrane interaction. We propose that Tyr93 initiates DNA processing and Tyr201 is required for termination or acts in DNA binding. Disruption of an inverted-repeat sequence eliminated DNA secretion, suggesting that this sequence may serve as the origin of transfer for chromosomal DNA secretion. The TraI domain architecture, although not previously described, is present in 53 uncharacterized proteins, suggesting that the mechanism of TraI function is a widespread process for DNA donation.
Collapse
Affiliation(s)
- Wilmara Salgado-Pabón
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
63
|
Larkin C, Haft RJF, Harley MJ, Traxler B, Schildbach JF. Roles of active site residues and the HUH motif of the F plasmid TraI relaxase. J Biol Chem 2007; 282:33707-33713. [PMID: 17890221 DOI: 10.1074/jbc.m703210200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial conjugation, transfer of a single strand of a conjugative plasmid between bacteria, requires sequence-specific single-stranded DNA endonucleases called relaxases or nickases. Relaxases contain an HUH (His-hydrophobe-His) motif, part of a three-His cluster that binds a divalent cation required for the cleavage reaction. Crystal structures of the F plasmid TraI relaxase domain, with and without bound single-stranded DNA, revealed an extensive network of interactions involving HUH and other residues. Here we study the roles of these residues in TraI function. Whereas substitutions for the three His residues alter metal-binding properties of the protein, the same substitution at each position elicits different effects, indicating that the residues contribute asymmetrically to metal binding. Substitutions for a conserved Asp that interacts with one HUH His demonstrate that the Asp modulates metal affinity despite its distance from the metal. The bound metal enhances binding of ssDNA to the protein, consistent with a role for the metal in positioning the scissile phosphate for cleavage. Most substitutions tested caused significantly reduced in vitro cleavage activities and in vivo transfer efficiencies. In summary, the results suggest that the metal-binding His cluster in TraI is a finely tuned structure that achieves a sufficient affinity for metal while avoiding the unfavorable electrostatics that would result from placing an acidic residue near the scissile phosphate of the bound ssDNA.
Collapse
Affiliation(s)
- Christopher Larkin
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Rembrandt J F Haft
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Matthew J Harley
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Beth Traxler
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Joel F Schildbach
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218.
| |
Collapse
|
64
|
Bobeck MJ, Cleary J, Beckingham JA, Ackroyd PC, Glick GD. Effect of somatic mutation on DNA binding properties of anti-DNA autoantibodies. Biopolymers 2007; 85:471-80. [PMID: 17252585 DOI: 10.1002/bip.20691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autoantibodies that bind DNA are a hallmark of systemic lupus erythematosus. A subset of autoantibody*DNA complexes localize to kidney tissue and lead to damage and even death. 11F8, 9F11, and 15B10 are clonally related anti-DNA autoantibodies isolated from an autoimmune mouse. 11F8 binds ssDNA in a sequence-specific manner and causes tissue damage, while 9F11 and 15B10 bind ssDNA non-specifically and are benign. Among these antibodies, DNA binding properties are mediated by five amino acid differences in primary sequence. Thermodynamic and kinetic parameters associated with recognition of structurally different DNA sequences were determined for each antibody to provide insight toward recognition strategies, and to explore a link between binding properties and disease pathogenesis. A model of 11F8 bound to its high affinity consensus sequence provides a foundation for understanding the differences in thermodynamic and kinetic parameters between the three mAbs. Our data suggest that 11F8 utilizes the proposed ssDNA recognition motif including (Y32)V(L), a hydrogen bonding residue at (91)V(L), and an aromatic residue at the tip of the third heavy chain complementarity determining region. Interestingly, a somatic mutation to arginine at (31)V(H) in 11F8 may afford additional binding site contacts including (R31)V(H), (R96)V(H), and (R98)V(H) that could determine specificity.
Collapse
Affiliation(s)
- Melissa J Bobeck
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
65
|
Gonzalez-Perez B, Lucas M, Cooke LA, Vyle JS, de la Cruz F, Moncalián G. Analysis of DNA processing reactions in bacterial conjugation by using suicide oligonucleotides. EMBO J 2007; 26:3847-57. [PMID: 17660746 PMCID: PMC1952221 DOI: 10.1038/sj.emboj.7601806] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 06/26/2007] [Indexed: 11/09/2022] Open
Abstract
Protein TrwC is the conjugative relaxase responsible for DNA processing in plasmid R388 bacterial conjugation. TrwC has two catalytic tyrosines, Y18 and Y26, both able to carry out cleavage reactions using unmodified oligonucleotide substrates. Suicide substrates containing a 3'-S-phosphorothiolate linkage at the cleavage site displaced TrwC reaction towards covalent adducts and thereby enabled intermediate steps in relaxase reactions to be investigated. Two distinct covalent TrwC-oligonucleotide complexes could be separated from noncovalently bound protein by SDS-PAGE. As observed by mass spectrometry, one complex contained a single, cleaved oligonucleotide bound to Y18, whereas the other contained two cleaved oligonucleotides, bound to Y18 and Y26. Analysis of the cleavage reaction using suicide substrates and Y18F or Y26F mutants showed that efficient Y26 cleavage only occurs after Y18 cleavage. Strand-transfer reactions carried out with the isolated Y18-DNA complex allowed the assignment of specific roles to each tyrosine. Thus, only Y18 was used for initiation. Y26 was specifically used in the second transesterification that leads to strand transfer, thus catalyzing the termination reaction that occurs in the recipient cell.
Collapse
Affiliation(s)
- Blanca Gonzalez-Perez
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-IDICAN), Santander, Spain
| | - María Lucas
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-IDICAN), Santander, Spain
| | - Leonie A Cooke
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, UK
| | - Joseph S Vyle
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, UK
| | - Fernando de la Cruz
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-IDICAN), Santander, Spain
- Departamento de Biologia Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (CSIC), Universidad de Cantabria, Cardenal Herrera Oria s/n, Santander 39011, Spain. Tel.: +34 94 2201 942; Fax: +34 94 2201 945; E-mail:
| | - Gabriel Moncalián
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-IDICAN), Santander, Spain
| |
Collapse
|
66
|
Lujan SA, Guogas LM, Ragonese H, Matson SW, Redinbo MR. Disrupting antibiotic resistance propagation by inhibiting the conjugative DNA relaxase. Proc Natl Acad Sci U S A 2007; 104:12282-7. [PMID: 17630285 PMCID: PMC1916486 DOI: 10.1073/pnas.0702760104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Indexed: 11/18/2022] Open
Abstract
Conjugative transfer of plasmid DNA via close cell-cell junctions is the main route by which antibiotic resistance genes spread between bacterial strains. Relaxases are essential for conjugative transfer and act by cleaving DNA strands and forming covalent phosphotyrosine linkages. Based on data indicating that multityrosine relaxase enzymes can accommodate two phosphotyrosine intermediates within their divalent metal-containing active sites, we hypothesized that bisphosphonates would inhibit relaxase activity and conjugative DNA transfer. We identified bisphosphonates that are nanomolar inhibitors of the F plasmid conjugative relaxase in vitro. Furthermore, we used cell-based assays to demonstrate that these compounds are highly effective at preventing DNA transfer and at selectively killing cells harboring conjugative plasmids. Two potent inhibitors, clodronate and etidronate, are already clinically approved to treat bone loss. Thus, the inhibition of conjugative relaxases is a potentially novel antimicrobial approach, one that selectively targets bacteria capable of transferring antibiotic resistance and generating multidrug resistant strains.
Collapse
Affiliation(s)
- Scott A. Lujan
- Departments of *Chemistry
- Biochemistry and Biophysics, and
| | | | | | | | - Matthew R. Redinbo
- Departments of *Chemistry
- Biochemistry and Biophysics, and
- Program in Molecular Biology and Biotechnology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3290
| |
Collapse
|
67
|
Vega-Rocha S, Gronenborn B, Gronenborn AM, Campos-Olivas R. Solution structure of the endonuclease domain from the master replication initiator protein of the nanovirus faba bean necrotic yellows virus and comparison with the corresponding geminivirus and circovirus structures. Biochemistry 2007; 46:6201-12. [PMID: 17472345 PMCID: PMC2577285 DOI: 10.1021/bi700159q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoviruses are a family of plant viruses that possess a genome of multiple circular single-stranded DNA (ssDNA) components and are strikingly similar in their replication mode to the plant geminiviruses and to the circoviruses that infect birds or mammals. These viruses multiply by rolling circle replication using virus-encoded multifunctional replication initiator proteins (Rep proteins) that catalyze the initiation of replication on a double-stranded DNA (dsDNA) intermediate and the resolution of the ssDNA into circles. Here we report the solution NMR three-dimensional structure of the endonuclease domain from the master Rep (M-Rep) protein of faba bean necrotic yellows virus (FBNYV), a representative of the nanoviruses. The domain comprises amino acids 2-95 (M-Rep2-95), and its global fold is similar to those previously described for the gemini- and circovirus Rep endonuclease domains, consisting of a central 5-stranded antiparallel beta-sheet covered on one side by an alpha-helix and irregular loops and on the other, more open side of the domain, by an alpha-helix containing the catalytic tyrosine residue (the catalytic helix). Longer domain constructs extending to amino acids 117 and 124 were also characterized. They contain an additional alpha-helix, are monomeric, and exhibit catalytic activity indistinguishable from that of M-Rep2-95. The binding site for the catalytic metal was identified by paramagnetic broadening and maps to residues on the exposed face of the central beta-sheet. A comparison with the previously determined Rep endonuclease domain structures of tomato yellow leaf curl Sardinia virus (TYLCSV), a geminivirus, and that of porcine circovirus type 2 (PCV2) Rep allows the identification of a positively charged surface that is most likely involved in dsDNA binding, and reveals common features shared by all endonuclease domains of nanovirus, geminivirus, and circovirus Rep proteins.
Collapse
Affiliation(s)
- Susana Vega-Rocha
- Structural and Computational Biology Program. Spanish National Cancer Center (CNIO). Madrid 28029. Spain
| | - Bruno Gronenborn
- Institut des Sciences du Vegetal. Centre National de la Recherche Scientifique. 91198 Gif-sur-Yvette Cedex, France
| | - Angela M. Gronenborn
- Department of Structural Biology. University of Pittsburgh School of Medicine, BST3, 3501 5th Avenue, Pittsburgh, PA 15261. USA
| | - Ramón Campos-Olivas
- Structural and Computational Biology Program. Spanish National Cancer Center (CNIO). Madrid 28029. Spain
| |
Collapse
|
68
|
Bobeck MJ, Glick GD. Role of conformational dynamics in sequence-specific autoantibody•ssDNA recognition. Biopolymers 2007; 85:481-9. [PMID: 17252586 DOI: 10.1002/bip.20692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
11F8 is a sequence-specific monoclonal anti-ssDNA autoantibody isolated from a lupus prone mouse that forms pathogenic complexes with ssDNA, resulting in kidney damage. Prior studies show that specificity is mediated by a somatic mutation from serine at (31)V(H) to arginine. Reversion back to serine in 11F8 resulted in >30-fold decrease in affinity and altered thermodynamic and kinetic parameters for sequence-specific recognition of its cognate ssDNA ligand. Mutagenesis and structural studies suggest that (R31)V(H) contacts ssDNA via a salt bridge and a bidentate hydrogen bond and may further contribute to specificity by altering binding-site conformation. Fluorescence resonance energy transfer experiments were conducted to assess the kinetics of conformational change during 11F8*ssDNA association. The extent of rearrangement between the six complementary determining regions in the 11F8*ssDNA complex with germline serine or somatically mutated arginine at residue 31 of the heavy chain was examined. Our studies show that greater conformational change occurs in five of six complementarity determining regions after the heavy chain germline J558 sequence undergoes mutation to arginine at (31)V(H).
Collapse
Affiliation(s)
- Melissa J Bobeck
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
69
|
Garcillán-Barcia MP, Jurado P, González-Pérez B, Moncalián G, Fernández LA, de la Cruz F. Conjugative transfer can be inhibited by blocking relaxase activity within recipient cells with intrabodies. Mol Microbiol 2006; 63:404-16. [PMID: 17163977 DOI: 10.1111/j.1365-2958.2006.05523.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Horizontal transfer of antibiotic resistance genes carried by conjugative plasmids poses a serious health problem. As conjugative relaxases are transported to recipient cells during bacterial conjugation, we investigated whether blocking relaxase activity in the recipient cell might inhibit conjugation. For that purpose, we used an intrabody approach generating a single-chain Fv antibody library against the relaxase TrwC of conjugative plasmid R388. Recombinant single-chain Fv antibodies were engineered for cytoplasmic expression in Escherichia coli cells and either selected in vitro for their specific binding to TrwC, or in vivo by their ability to interfere with conjugation using a high-throughput mating assay. Several intrabody clones were identified showing specific inhibition against R388 conjugation upon cytoplasmic expression in the recipient cell. The epitope recognized by one of these intrabodies was mapped to a region of TrwC containing Tyr-26 and involved in the conjugative DNA-processing termination reaction. These findings demonstrate that the transferred relaxase plays an important role in the recipient cell and open a new approach to identify specific inhibitors of bacterial conjugation.
Collapse
Affiliation(s)
- M Pilar Garcillán-Barcia
- Departamento de Biología Molecular (Laboratorio asociado al Centro de Investigaciones Biológicas, C.S.I.C.), Universidad de Cantabria, C/Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
70
|
Monzingo AF, Ozburn A, Xia S, Meyer RJ, Robertus JD. The structure of the minimal relaxase domain of MobA at 2.1 A resolution. J Mol Biol 2006; 366:165-78. [PMID: 17157875 PMCID: PMC1894915 DOI: 10.1016/j.jmb.2006.11.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/03/2006] [Accepted: 11/08/2006] [Indexed: 11/26/2022]
Abstract
The plasmid R1162 encodes proteins that enable its conjugative mobilization between bacterial cells. It can transfer between many different species and is one of the most promiscuous of the mobilizable plasmids. The plasmid-encoded protein MobA, which has both nicking and priming activities on single-stranded DNA, is essential for mobilization. The nicking, or relaxase, activity has been localized to the 186 residue N-terminal domain, called minMobA. We present here the 2.1 A X-ray structure of minMobA. The fold is similar to that seen for two other relaxases, TraI and TrwC. The similarity in fold, and action, suggests these enzymes are evolutionary homologs, despite the lack of any significant amino acid similarity. MinMobA has a well- defined target DNA called oriT. The active site metal is observed near Tyr25, which is known to form a phosphotyrosine adduct with the substrate. A model of the oriT substrate complexed with minMobA has been made, based on observed substrate binding to TrwC and TraI. The model is consistent with observations of substrate base specificity, and provides a rationalization for elements of the likely enzyme mechanism.
Collapse
Affiliation(s)
- Arthur F Monzingo
- Institute of Cellular and Molecular Biology, Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
71
|
Gomis-Rüth FX, Coll M. Cut and move: protein machinery for DNA processing in bacterial conjugation. Curr Opin Struct Biol 2006; 16:744-52. [PMID: 17079132 DOI: 10.1016/j.sbi.2006.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 09/15/2006] [Accepted: 10/18/2006] [Indexed: 11/24/2022]
Abstract
Conjugation is a paradigmatic example of horizontal or lateral gene transfer, whereby DNA is translocated between bacterial cells. It provides a route for the rapid acquisition of new genetic information. Increased antibiotic resistance among pathogens is a troubling consequence of this microbial capacity. DNA transfer across cell membranes requires a sophisticated molecular machinery that involves the participation of several proteins in DNA processing and replication, cell recruitment, and the transport of DNA and proteins from donor to recipient cells. Although bacterial conjugation was first reported in the 1940s, only now are we beginning to unravel the molecular mechanisms behind this process. In particular, structural biology is revealing the detailed molecular architecture of several of the pieces involved.
Collapse
Affiliation(s)
- F Xavier Gomis-Rüth
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain
| | | |
Collapse
|
72
|
Yang JC, Lessard PA, Sengupta N, Windsor SD, O'brien XM, Bramucci M, Tomb JF, Nagarajan V, Sinskey AJ. TraA is required for megaplasmid conjugation in Rhodococcus erythropolis AN12. Plasmid 2006; 57:55-70. [PMID: 16997374 DOI: 10.1016/j.plasmid.2006.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/01/2006] [Accepted: 08/04/2006] [Indexed: 11/13/2022]
Abstract
Pulsed-field gel electrophoresis (PFGE) revealed three previously uncharacterized megaplasmids in the genome of Rhodococcus erythropolis AN12. These megaplasmids, pREA400, pREA250, and pREA100, are approximately 400, 250, and 100kb, respectively, based on their migration in pulsed-field gels. Genetic screening of an AN12 transposon insertion library showed that two megaplasmids, pREA400, and pREA250, are conjugative. Mobilization frequencies of these AN12 megaplasmids to recipient R. erythropolis SQ1 were determined to be approximately 7x10(-4) and 5x10(-4) events per recipient cell, respectively. It is known for other bacterial systems that a relaxase encoded by the traA gene is required to initiate DNA transfer during plasmid conjugation. Sequences adjacent to the transposon insertion in megaplasmid pREA400 revealed a putative traA-like open reading frame. A targeted gene disruption method was developed to generate a traA mutation in AN12, which allowed us to address the role of the traA gene product for Rhodococcus megaplasmid conjugation. We found that the AN12 traA mutant is no longer capable of transferring the pREA400 megaplasmid to SQ1. Furthermore, we confirmed that the conjugation defect was specifically due to the disruption of the traA gene, as pREA400 megaplasmid conjugation defect is restored with a complementing copy of the traA gene.
Collapse
Affiliation(s)
- Joyce C Yang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Haft RJF, Palacios G, Nguyen T, Mally M, Gachelet EG, Zechner EL, Traxler B. General mutagenesis of F plasmid TraI reveals its role in conjugative regulation. J Bacteriol 2006; 188:6346-53. [PMID: 16923902 PMCID: PMC1595373 DOI: 10.1128/jb.00462-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 06/19/2006] [Indexed: 11/20/2022] Open
Abstract
Bacteria commonly exchange genetic information by the horizontal transfer of conjugative plasmids. In gram-negative conjugation, a relaxase enzyme is absolutely required to prepare plasmid DNA for transit into the recipient via a type IV secretion system. Here we report a mutagenesis of the F plasmid relaxase gene traI using in-frame, 31-codon insertions. Phenotypic analysis of our mutant library revealed that several mutant proteins are functional in conjugation, highlighting regions of TraI that can tolerate insertions of a moderate size. We also demonstrate that wild-type TraI, when overexpressed, plays a dominant-negative regulatory role in conjugation, repressing plasmid transfer frequencies approximately 100-fold. Mutant TraI proteins with insertions in a region of approximately 400 residues between the consensus relaxase and helicase sequences did not cause conjugative repression. These unrestrictive TraI variants have normal relaxase activity in vivo, and several have wild-type conjugative functions when expressed at normal levels. We postulate that TraI negatively regulates conjugation by interacting with and sequestering some component of the conjugative apparatus. Our data indicate that the domain responsible for conjugative repression resides in the central region of TraI between the protein's catalytic domains.
Collapse
Affiliation(s)
- Rembrandt J F Haft
- Department of Microbiology, University of Washington, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
|
75
|
Boer R, Russi S, Guasch A, Lucas M, Blanco AG, Pérez-Luque R, Coll M, de la Cruz F. Unveiling the molecular mechanism of a conjugative relaxase: The structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site. J Mol Biol 2006; 358:857-69. [PMID: 16540117 DOI: 10.1016/j.jmb.2006.02.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/03/2006] [Accepted: 02/08/2006] [Indexed: 10/25/2022]
Abstract
TrwC is a DNA strand transferase that catalyzes the initial and final stages of conjugative DNA transfer. We have solved the crystal structure of the N-terminal relaxase domain of TrwC in complex with a 27 base-long DNA oligonucleotide that contains both the recognition hairpin and the scissile phosphate. In addition, a series of ternary structures of protein-DNA complexes with different divalent cations at the active site have been solved. Systematic anomalous difference analysis allowed us to determine unambiguously the nature of the metal bound. Zn2+, Ni2+ and Cu2+ were found to bind the histidine-triad metal binding site. Comparison of the structures of the different complexes suggests two pathways for the DNA to exit the active pocket. They are probably used at different steps of the conjugative DNA-processing reaction. The structural information allows us to propose (i) an enzyme mechanism where the scissile phosphate is polarized by the metal ion facilitating the nucleophilic attack of the catalytic tyrosine, and (ii) a probable sequence of events during conjugative DNA processing that explains the biological function of the relaxase.
Collapse
Affiliation(s)
- Roeland Boer
- Institut de Biologia Molecular de Barcelona (CSIC) and Institut de Recerca Biomèdica, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Williams SL, Schildbach JF. Examination of an inverted repeat within the F factor origin of transfer: context dependence of F TraI relaxase DNA specificity. Nucleic Acids Res 2006; 34:426-35. [PMID: 16418503 PMCID: PMC1331984 DOI: 10.1093/nar/gkj444] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prior to conjugative transfer of plasmids, one plasmid strand is cleaved in a site- and strand-specific manner by an enzyme called a relaxase or nickase. In F and related plasmids, an inverted repeat is located near the plasmid strand cleavage site, and others have proposed that the ability of this sequence to form a hairpin when in single-stranded form is important for transfer. Substitutions were introduced into a cloned F oriT region and their effects on plasmid transfer were assessed. For those substitutions that substantially reduced transfer, the results generally correlated with effects on in vitro binding of oligonucleotides to the F TraI relaxase domain rather than with predicted effects on hairpin formation. One substitution shown previously to dramatically reduce both plasmid transfer and in vitro binding to a 17-base oligonucleotide had little apparent effect on binding to a 30-base oligonucleotide that contained the hairpin region. Results from subsequent experiments strongly suggest that the relaxase domain can bind to hairpin oligonucleotides in two distinct manners with different sequence specificities, and that the protein binds the oligonucleotides at the same or overlapping sites.
Collapse
Affiliation(s)
| | - Joel F. Schildbach
- To whom correspondence should be addressed. Tel: +1 410 516 0176; Fax: +1 410 516 5213;
| |
Collapse
|