51
|
Woolbright BL, Jaeschke H. Mechanisms of Inflammatory Liver Injury and Drug-Induced Hepatotoxicity. CURRENT PHARMACOLOGY REPORTS 2018; 4:346-357. [PMID: 30560047 PMCID: PMC6294466 DOI: 10.1007/s40495-018-0147-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This article provides a brief overview of mechanisms of inflammatory liver injury and how this applies to drug hepatotoxicity with a particular emphasis on the role of inflammation in acetaminophen-induced liver injury. RECENT FINDINGS Significant progress has been made in the last decade in our understanding of the initiation of sterile inflammation after necrotic cell death by the release of damage-associated molecular patterns and their recognition by toll-like receptors and others on macrophages. These events trigger the formation of cytokines and chemokines directly or with assistance of inflammasome activation thereby activating and recruiting leukocytes including neutrophils and monocyte-derived macrophages into the necrotic areas. Although this sterile inflammatory response is mainly geared towards the removal of necrotic cell debris and preparation of regeneration, there are conditions where these innate immune cells can aggravate the initial injury. The mechanisms and controversial findings of the innate immunity are being discussed in detail. In contrast, drug metabolism and formation of a reactive metabolite that binds to proteins in the absence of extensive cell death, can induce an adaptive immune response, which eventually also results in severe liver injury. However, the initiating event appears to be the formation of protein adducts, which act as haptens to activate an adaptive immune response. Overall, these mechanisms are less well understood. SUMMARY The past decade has revolutionized our understanding of the mechanisms that control the interplay between cell death and innate or adaptive immune responses. This report provides an update on these mechanisms.
Collapse
Affiliation(s)
| | - Hartmut Jaeschke
- Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
52
|
Kim EH, Park PH. Globular adiponectin protects rat hepatocytes against acetaminophen-induced cell death via modulation of the inflammasome activation and ER stress: Critical role of autophagy induction. Biochem Pharmacol 2018; 154:278-292. [DOI: 10.1016/j.bcp.2018.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
|
53
|
Chao X, Wang H, Jaeschke H, Ding WX. Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int 2018; 38:1363-1374. [PMID: 29682868 PMCID: PMC6105454 DOI: 10.1111/liv.13866] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/14/2018] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the USA and many other countries. Although the metabolism and pathogenesis of APAP has been extensively investigated for decades, the mechanisms by which APAP induces liver injury are incompletely known, which hampers the development of effective therapeutic approaches to tackle this important clinical problem. Autophagy is a highly conserved intracellular degradation pathway, which aims at recycling cellular components and damaged organelles in response to adverse environmental conditions and stresses as a survival mechanism. There is accumulating evidence indicating that autophagy is activated in response to APAP overdose in specific liver zone areas, and pharmacological activation of autophagy protects against APAP-induced liver injury. Increasing evidence also suggests that hepatic autophagy is impaired in nonalcoholic fatty livers (NAFLD), and NAFLD patients are more susceptible to APAP-induced liver injury. Here, we summarized the current progress on the role and mechanisms of autophagy in protecting against APAP-induced liver injury.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
54
|
Zhao Z, Wei Q, Hua W, Liu Y, Liu X, Zhu Y. Hepatoprotective effects of berberine on acetaminophen-induced hepatotoxicity in mice. Biomed Pharmacother 2018; 103:1319-1326. [DOI: 10.1016/j.biopha.2018.04.175] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/23/2022] Open
|
55
|
Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol 2018; 17:274-283. [PMID: 29753208 PMCID: PMC6006912 DOI: 10.1016/j.redox.2018.04.019] [Citation(s) in RCA: 415] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure in many developed countries. Mitochondrial oxidative stress is considered to be the predominant cellular event in APAP-induced liver injury. Accordingly, N-acetyl cysteine, a known scavenger of reactive oxygen species (ROS), is recommended as an effective clinical antidote against APAP-induced acute liver injury (AILI) when it is given at an early phase; however, the narrow therapeutic window limits its use. Hence, the development of novel therapeutic approaches that can offer broadly protective effects against AILI is clearly needed. To this end, it is necessary to better understand the mechanisms of APAP hepatotoxicity. Up to now, in addition to mitochondrial oxidative stress, many other cellular processes, including phase I/phase II metabolism, endoplasmic reticulum stress, autophagy, sterile inflammation, microcirculatory dysfunction, and liver regeneration, have been identified to be involved in the pathogenesis of AILI, providing new targets for developing more effective therapeutic interventions against APAP-induced liver injury. In this review, we summarize intracellular and extracellular events involved in APAP hepatotoxicity, along with emphatic discussions on the possible therapeutic approaches targeting these different cellular events.
Collapse
Affiliation(s)
- Mingzhu Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yazhen Huo
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
56
|
Autophagy and acetaminophen-induced hepatotoxicity. Arch Toxicol 2018; 92:2153-2161. [PMID: 29876591 DOI: 10.1007/s00204-018-2237-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug. APAP overdose can induce acute liver injury in humans, which is responsible for approximately 50% of total cases of acute liver failure in the United States and some European countries. Currently, the metabolism of APAP in the body has been extensively investigated; however, the exact mechanisms for APAP hepatotoxicity are not well understood. Recent studies have shown that mitochondrial dysfunction, oxidative stress and inflammatory responses play a critical role in the pathogenesis of APAP hepatotoxicity. Autophagy is a catabolic machinery aimed at recycling cellular components and damaged organelles in response to a variety of stimuli, such as nutrient deprivation and toxic stress. Increasing evidence supports that autophagy is involved in the pathophysiological process of APAP-induced liver injury. In this review, we summarized the changes of autophagy in the liver following APAP intoxication and discussed the role and its possible mechanisms of autophagy in APAP hepatotoxicity. Furthermore, this review highlights the crosstalk between mitophagy, oxidative stress and inflammation in APAP-induced liver injury and presents some possible molecular mechanisms by which activated autophagy protects against APAP-induced liver injury.
Collapse
|
57
|
Rada P, Pardo V, Mobasher MA, García-Martínez I, Ruiz L, González-Rodríguez Á, Sanchez-Ramos C, Muntané J, Alemany S, James LP, Simpson KJ, Monsalve M, Valdecantos MP, Valverde ÁM. SIRT1 Controls Acetaminophen Hepatotoxicity by Modulating Inflammation and Oxidative Stress. Antioxid Redox Signal 2018; 28:1187-1208. [PMID: 29084443 PMCID: PMC9545809 DOI: 10.1089/ars.2017.7373] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS Sirtuin 1 (SIRT1) is a key player in liver physiology and a therapeutic target against hepatic inflammation. We evaluated the role of SIRT1 in the proinflammatory context and oxidative stress during acetaminophen (APAP)-mediated hepatotoxicity. RESULTS SIRT1 protein levels decreased in human and mouse livers following APAP overdose. SIRT1-Tg mice maintained higher levels of SIRT1 on APAP injection than wild-type mice and were protected against hepatotoxicity by modulation of antioxidant systems and restrained inflammatory responses, with decreased oxidative stress, proinflammatory cytokine messenger RNA levels, nuclear factor kappa B (NFκB) signaling, and cell death. Mouse hepatocytes stimulated with conditioned medium of APAP-treated macrophages (APAP-CM) showed decreased SIRT1 levels; an effect mimicked by interleukin (IL)1β, an activator of NFκB. This negative modulation was abolished by neutralizing IL1β in APAP-CM or silencing p65-NFκB in hepatocytes. APAP-CM of macrophages from SIRT1-Tg mice failed to downregulate SIRT1 protein levels in hepatocytes. In vivo administration of the NFκB inhibitor BAY 11-7082 preserved SIRT1 levels and protected from APAP-mediated hepatotoxicity. INNOVATION Our work evidenced the unique role of SIRT1 in APAP hepatoprotection by targeting oxidative stress and inflammation. CONCLUSION SIRT1 protein levels are downregulated by IL1β/NFκB signaling in APAP hepatotoxicity, resulting in inflammation and oxidative stress. Thus, maintenance of SIRT1 during APAP overdose by inhibiting NFκB might be clinically relevant. Rebound Track: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16:293-296, 2012) with the following serving as open reviewers: Rafael de Cabo, Joaquim Ros, Kalervo Hiltunen, and Neil Kaplowitz. Antioxid. Redox Signal. 28, 1187-1208.
Collapse
Affiliation(s)
- Patricia Rada
- 1 Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III , Madrid, Spain
| | - Virginia Pardo
- 1 Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III , Madrid, Spain
| | - Maysa A Mobasher
- 1 Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III , Madrid, Spain .,3 Division of Biochemistry, Department of Pathology, College of Medicine, Al Jouf University , Sakaka, Saudi Arabia
| | - Irma García-Martínez
- 1 Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM) , Madrid, Spain
| | - Laura Ruiz
- 1 Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III , Madrid, Spain
| | - Águeda González-Rodríguez
- 4 Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa , Madrid, Spain
| | - Cristina Sanchez-Ramos
- 1 Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM) , Madrid, Spain
| | - Jordi Muntané
- 5 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III , Madrid, Spain .,6 Oncology Surgery, Cell Therapy and Transplant Organs, Institute of Biomedicine of Seville (IBiS)/University Hospital Virgen del Rocio/CSIC/University of Seville , Seville, Spain
| | - Susana Alemany
- 1 Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM) , Madrid, Spain
| | - Laura P James
- 7 Section of Clinical Pharmacology and Toxicology, Arkansas Children's Hospital , Little Rock, Arkansas
| | - Kenneth J Simpson
- 8 Division of Clinical and Surgical Sciences, University of Edinburgh , Edinburgh, United Kingdom
| | - María Monsalve
- 1 Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM) , Madrid, Spain
| | - Maria Pilar Valdecantos
- 1 Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III , Madrid, Spain
| | - Ángela M Valverde
- 1 Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III , Madrid, Spain
| |
Collapse
|
58
|
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the US, and decades of intense study of its pathogenesis resulted in the development of the antidote N-acetylcysteine, which facilitates scavenging of the reactive metabolite and is the only treatment in clinical use. However, the narrow therapeutic window of this intervention necessitates a better understanding of the intricacies of APAP-induced liver injury for the development of additional therapeutic approaches that can benefit late-presenting patients. More recent investigations into APAP hepatotoxicity have established the critical role of mitochondrial dysfunction in mediating liver injury as well as clarified mechanisms of APAP-induced hepatocyte cell death. Thus, it is now established that mitochondrial oxidative and nitrosative stress is a key mechanistic feature involved in downstream signaling after APAP overdose. The identification of specific mediators of necrotic cell death further establishes the regulated nature of APAP-induced hepatocyte cell death. In addition, the discovery of the role of mitochondrial dynamics and autophagy in APAP-induced liver injury provides additional insight into the elaborate cell signaling mechanisms involved in the pathogenesis of this important clinical problem. In spite of these new insights into the mechanisms of liver injury, significant controversy still exists on the role of innate immunity in APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
59
|
Zhu Y, Que RY, Li Y. Effects of resveratrol on activation of NLRP3 inflammasome in HSC-T6 cells. Shijie Huaren Xiaohua Zazhi 2018; 26:479-487. [DOI: 10.11569/wcjd.v26.i8.479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of resveratrol (Res) on the activation of nod-like receptor protein 3 (NLRP3) inflammasome in hepatic stellate cell (HSC)-T6 cells and to explore the anti-fibrotic mechanism of Res.
METHODS Rat hepatic stellate cell (HSC) line HSC-T6 was used. HSC-T6 cells were seeded into cell culture plates with high glucose DMEM medium containing 10% fetal bovine serum for 24 h. Then, the cells were incubated with Res (4, 8, and 16 μmol/L) or acetylcysteine (NAC; 5 mmol/L) for 24 h. Oxidative stress (OS) was induced by exposure to hydrogen peroxide (H2O2; 0.2 mmol/L) for 4 h. MTT method was used to observe the effect of Res on HSC-T6 cell proliferation. ELISA was used to detect the contents of type I collagen (COL-I), transforming growth factor β1 (TGF-β1), interleukin (IL)-1β, IL-18, malondialdehyde (MDA), and superoxide dismutase (SOD) in cell culture supernatant. Reactive oxygen species (ROS) production was measured with a fluorescence microplate reader following staining with DCFH-DA probe. Western blot analysis was used to detect the expression of alpha-smooth muscle actin (α-SMA), NLRP3, apoptosis-associated speck-like protein (ASC), and cysteinyl aspartate specific proteinase 1 (caspase 1) in HSC-T6 cells.
RESULTS Compared with control cells, Res at concentrations from 4 μmol/L to 64 μmol/L significantly suppressed the proliferation of HSC-T6 cells. Compared with control cells, OS induction significantly increased the proliferation of HSC-T6 cells, the contents of COL-1, TGF-β1, MDA, IL-1β, and IL-18 in cell culture supernatant, intracellular ROS production, and the protein expression of α-SMA, NLRP3, ASC, and caspase 1-p10 (P < 0.01), but decreased the content of SOD in cell culture supernatant (P < 0.01). Compared with the OS group, treatment with low-, medium-, or high-dose Res or positive control NAC significantly decreased the proliferation of HSC-T6 cells, the contents of COL-1, TGF-β1, MDA, IL-1β, and IL-18 in cell culture supernatant, intracellcular ROS production, and the protein expression of α-SMA, NLRP3, ASC, and caspase 1-p10 (P < 0.01), but increased the content of SOD in cell culture supernatant (P < 0.01).
CONCLUSION Res could suppress the proliferation and activation of HSC-T6 cells via down-regulation of ROS-NLRP3 inflammasome signaling.
Collapse
|
60
|
Bachmann M, Pfeilschifter J, Mühl H. A Prominent Role of Interleukin-18 in Acetaminophen-Induced Liver Injury Advocates Its Blockage for Therapy of Hepatic Necroinflammation. Front Immunol 2018; 9:161. [PMID: 29472923 PMCID: PMC5809456 DOI: 10.3389/fimmu.2018.00161] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Acetaminophen [paracetamol, N-acetyl-p-aminophenol (APAP)]-induced acute liver injury (ALI) not only remains a persistent clinical challenge but likewise stands out as well-characterized paradigmatic model of drug-induced liver damage. APAP intoxication associates with robust hepatic necroinflammation the role of which remains elusive with pathogenic but also pro-regenerative/-resolving functions being ascribed to leukocyte activation. Here, we shine a light on and put forward a unique role of the interleukin (IL)-1 family member IL-18 in experimental APAP-induced ALI. Indeed, amelioration of disease as previously observed in IL-18-deficient mice was further substantiated herein by application of the IL-18 opponent IL-18-binding protein (IL-18BPd:Fc) to wild-type mice. Data altogether emphasize crucial pathological action of this cytokine in APAP toxicity. Adding recombinant IL-22 to IL-18BPd:Fc further enhanced protection from liver injury. In contrast to IL-18, the role of prototypic pro-inflammatory IL-1 and tumor necrosis factor-α is controversially discussed with lack of effects or even protective action being repeatedly reported. A prominent detrimental function for IL-18 in APAP-induced ALI as proposed herein should relate to its pivotal role for hepatic expression of interferon-γ and Fas ligand, both of which aggravate APAP toxicity. As IL-18 serum levels increase in patients after APAP overdosing, targeting IL-18 may evolve as novel therapeutic option in those hard-to-treat patients where standard therapy with N-acetylcysteine is unsuccessful. Being a paradigmatic experimental model of ALI, current knowledge on ill-fated properties of IL-18 in APAP intoxication likewise emphasizes the potential of this cytokine to serve as therapeutic target in other entities of inflammatory liver diseases.
Collapse
Affiliation(s)
- Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
61
|
Kennon-McGill S, McGill MR. Extrahepatic toxicity of acetaminophen: critical evaluation of the evidence and proposed mechanisms. J Clin Transl Res 2018. [PMID: 30895271 PMCID: PMC5815839 DOI: 10.18053/jctres.03.201703.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Research on acetaminophen (APAP) toxicity over the last several decades has focused on the pathophysiology of liver injury, but increasingly attention is paid to other known and possible adverse effects. It has been known for decades that APAP causes acute kidney injury, but confusion exists regarding prevalence, and the mechanisms have not been well investigated. More recently, evidence for pulmonary, endocrine, neurological, and neurodevelopmental toxicity has been reported in a number of published experimental, clinical, and epidemiological studies, but the quality of those studies has varied. It is important to view those data critically due to implications for regulation and clinical practice. Here, we review evidence and proposed mechanisms for extrahepatic adverse effects of APAP and weigh weaknesses and strengths in the available data.
Collapse
Affiliation(s)
- Stefanie Kennon-McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
62
|
Borlak J, Länger F, Spanel R, Schöndorfer G, Dittrich C. Immune-mediated liver injury of the cancer therapeutic antibody catumaxomab targeting EpCAM, CD3 and Fcγ receptors. Oncotarget 2018; 7:28059-74. [PMID: 27058902 PMCID: PMC5053709 DOI: 10.18632/oncotarget.8574] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/18/2016] [Indexed: 01/12/2023] Open
Abstract
The immunotherapeutic catumaxomab targets EpCAM positive cancers and is approved for the treatment of peritoneal carcinomatosis. To assess the safety of intravenous applications a phase 1 clinical trial was initiated. Treatment of EpCAM positive tumor patients with catumaxomab caused dose dependent hepatitis as evidenced by significant elevations in serum alanine- and aspartate aminotransferases, bilirubin, γGT and induction of the acute phase C-reactive protein (CRP) and the cytokines IL6 and IL8. The first patient receiving 10μg catumaxomab experienced fatal acute liver failure which led to the termination of the study. Immmunopathology revealed catumaxomab to bind via its Fc-fragment to FcγR-positive Kupffer cells to stimulate CRP, chemokine and cytokine release. The observed CD3+T-cell margination at activated hepatic macrophages exacerbated T-cell mediated cytotoxicity. Strikingly, the combined Kupffer/T-cell responses against liver cells did not require hepatocytes to be EpCAM-positive. Catumaxomab's off-target activity involved T-cell mediated lysis of the granzyme B cell death pathway and the molecular interaction of hepatic sinusoidal macrophages with T-cells induced cytolytic hepatitis. Although the bile ducts were surrounded by densely packed lymphocytes these rarely infiltrated the ducts to suggest an intrahepatic cholestasis as the cause of hyperbilirubinaemia. Lastly, evidence for the programming of memory T-cells was observed with one patient that succumbed to his cancer six weeks after the last catumaxomab infusion. In conclusion, our study exemplifies off-target hepatotoxicity with molecularly targeted therapy and highlights the complexities in the clinical development of immunotherapeutic antibodies.
Collapse
Affiliation(s)
- Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Florian Länger
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.,Institute of Pathology, Viersen, Germany
| | | | - Christian Dittrich
- Applied Cancer Research - Institution for Translational Research Vienna (ACR-ITR VIEnna) and Ludwig Boltzmann Institute for Applied Cancer Research (LBI-ACR VIEnna), Center for Oncology and Hematology, Kaiser Franz Josef-Spital, Vienna, Austria
| |
Collapse
|
63
|
Biochemical targets of drugs mitigating oxidative stress via redox-independent mechanisms. Biochem Soc Trans 2017; 45:1225-1252. [PMID: 29101309 DOI: 10.1042/bst20160473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Acute or chronic oxidative stress plays an important role in many pathologies. Two opposite approaches are typically used to prevent the damage induced by reactive oxygen and nitrogen species (RONS), namely treatment either with antioxidants or with weak oxidants that up-regulate endogenous antioxidant mechanisms. This review discusses options for the third pharmacological approach, namely amelioration of oxidative stress by 'redox-inert' compounds, which do not inactivate RONS but either inhibit the basic mechanisms leading to their formation (i.e. inflammation) or help cells to cope with their toxic action. The present study describes biochemical targets of many drugs mitigating acute oxidative stress in animal models of ischemia-reperfusion injury or N-acetyl-p-aminophenol overdose. In addition to the pro-inflammatory molecules, the targets of mitigating drugs include protein kinases and transcription factors involved in regulation of energy metabolism and cell life/death balance, proteins regulating mitochondrial permeability transition, proteins involved in the endoplasmic reticulum stress and unfolded protein response, nuclear receptors such as peroxisome proliferator-activated receptors, and isoprenoid synthesis. The data may help in identification of oxidative stress mitigators that will be effective in human disease on top of the current standard of care.
Collapse
|
64
|
Jaeschke H. Mechanisms of sterile inflammation in acetaminophen hepatotoxicity. Cell Mol Immunol 2017; 15:74-75. [PMID: 28690323 DOI: 10.1038/cmi.2017.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
65
|
Yang G, Zhang L, Ma L, Jiang R, Kuang G, Li K, Tie H, Wang B, Chen X, Xie T, Gong X, Wan J. Glycyrrhetinic acid prevents acetaminophen-induced acute liver injury via the inhibition of CYP2E1 expression and HMGB1-TLR4 signal activation in mice. Int Immunopharmacol 2017; 50:186-193. [PMID: 28668488 DOI: 10.1016/j.intimp.2017.06.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/05/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
Acetaminophen (APAP) is a widely used antipyretic and analgesic drug, which is safe and effective at the therapeutic dose. Unfortunately, excessive dosage of APAP could cause severe liver injury due to lack of effective therapy. Successful therapeutic strategies are urgently requested in clinic. Glycyrrhetinic acid (GA), derived from a traditional medicine licorice, has been shown to exert anti-inflammatory and antioxidant actions. In this study, the effect and the underlying mechanism of GA on APAP-induced hepatotoxicity were explored. Our results showed that pretreatment with GA significantly reduced serum ALT and AST activities, alleviated hepatic pathological damages with hepatocellular apoptosis, down-regulated expression of CYP2E1 mRNA and protein, increased GSH levels, and reduced reactive oxygen species (ROS) productions in the liver of APAP-exposed mice. Furthermore, GA obviously inhibited APAP-induced HMGB1-TLR4 signal activation, as evaluated by reduced hepatic HMGB1 release, p-IRAK1, p-MAPK and p-IκB expression as well as the productions of TNF-α and IL-1β. In addition, GA attenuated hepatic neutrophils recruitment and macrophages infiltration caused by APAP. These findings reflected that GA could alleviate APAP-induced hepatotoxicity, the possible mechanism is associated with down-regulation of CYP2E1 expression and deactivation of HMGB1-TLR4 signal pathway.
Collapse
Affiliation(s)
- Genling Yang
- Laboratory Animal Center, Chongqing Medical University, Chongqing 40016, China
| | - Li Zhang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 40016, China
| | - Li Ma
- Department of Pharmacology, Chongqing Medical University, Chongqing 40016, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 40016, China
| | - Ge Kuang
- Department of Pharmacology, Chongqing Medical University, Chongqing 40016, China
| | - Ke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, China
| | - Hongtao Tie
- Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, China
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Chen
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Tianjun Xie
- Department of Pharmacology, Chongqing Medical University, Chongqing 40016, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China.
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing 40016, China.
| |
Collapse
|
66
|
Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, Wang W, Zhang S, Iwakura Y, Meng G, Fu YX, Hou B, Tang H. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol 2017; 15:973-982. [PMID: 28504245 DOI: 10.1038/cmi.2017.22] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/08/2023] Open
Abstract
The metabolic intermediate of acetaminophen (APAP) can cause severe hepatocyte necrosis, which triggers aberrant immune activation of liver non-parenchymal cells (NPC). Overzealous hepatic inflammation determines the morbidity and mortality of APAP-induced liver injury (AILI). Interleukin-1 receptor (IL-1R) signaling has been shown to play a critical role in various inflammatory conditions, but its precise role and underlying mechanism in AILI remain debatable. Herein, we show that NLRP3 inflammasome activation of IL-1β is dispensable to AILI, whereas IL-1α, the other ligand of IL-1R1, accounts for hepatic injury by a lethal dose of APAP. Furthermore, Kupffer cells function as a major source of activated IL-1α in the liver, which is activated by damaged hepatocytes through TLR4/MyD88 signaling. Finally, IL-1α is able to chemoattract and activate CD11b+Gr-1+ myeloid cells, mostly neutrophils and inflammatory monocytes, to amplify deteriorated inflammation in the lesion. Therefore, this work identifies that MyD88-dependent activation of IL-1α in Kupffer cells plays a central role in the immunopathogenesis of AILI and implicates that IL-1α is a promising therapeutic target for AILI treatment.
Collapse
Affiliation(s)
- Chao Zhang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jin Feng
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jun Du
- The Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China
| | - Zhiyong Zhuo
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuo Yang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Weihong Zhang
- The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Weihong Wang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shengyuan Zhang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, 278-0022, Chiba, Japan
| | - Guangxun Meng
- The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yang-Xin Fu
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,Department of Pathology, The University of Chicago, 60637, Chicago, USA, IL
| | - Baidong Hou
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hong Tang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China. .,The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
67
|
Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, Weemhoff JL, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, Farhood A, Beschin A, Van Ginderachter JA, Penuela S, Jaeschke H, Cogliati B, Vinken M. Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Arch Toxicol 2017; 91:2245-2261. [PMID: 27826632 PMCID: PMC5654513 DOI: 10.1007/s00204-016-1885-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023]
Abstract
Pannexins constitute a relatively new family of transmembrane proteins that form channels linking the cytoplasmic compartment with the extracellular environment. The presence of pannexin1 in the liver has been documented previously, where it underlies inflammatory responses, such as those occurring upon ischemia-reperfusion injury. In the present study, we investigated whether pannexin1 plays a role in acute drug-induced liver toxicity. Hepatic expression of pannexin1 was characterized in a mouse model of acetaminophen-induced hepatotoxicity. Subsequently, mice were overdosed with acetaminophen followed by treatment with the pannexin1 channel inhibitor 10Panx1. Sampling was performed 1, 3, 6, 24 and 48 h after acetaminophen administration. Evaluation of the effects of pannexin1 channel inhibition was based on a number of clinically relevant readouts, including protein adduct formation, measurement of aminotransferase activity and histopathological examination of liver tissue as well as on a series of markers of inflammation, oxidative stress and regeneration. Although no significant differences were found in histopathological analysis, pannexin1 channel inhibition reduced serum levels of alanine and aspartate aminotransferase. This was paralleled by a reduced amount of neutrophils recruited to the liver. Furthermore, alterations in the oxidized status were noticed with upregulation of glutathione levels upon suppression of pannexin1 channel opening. Concomitant promotion of regenerative activity was detected as judged on increased proliferating cell nuclear antigen protein quantities in 10Panx1-treated mice. Pannexin1 channels are important actors in liver injury triggered by acetaminophen. Inhibition of pannexin1 channel opening could represent a novel approach for the treatment of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Chloé Abels
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - James L Weemhoff
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Taynã Tiburcio
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX, USA
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
68
|
Paridaens A, Raevens S, Colle I, Bogaerts E, Vandewynckel YP, Verhelst X, Hoorens A, van Grunsven LA, Van Vlierberghe H, Geerts A, Devisscher L. Combination of tauroursodeoxycholic acid and N-acetylcysteine exceeds standard treatment for acetaminophen intoxication. Liver Int 2017; 37:748-756. [PMID: 27706903 DOI: 10.1111/liv.13261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/23/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Acetaminophen overdose in mice is characterized by hepatocyte endoplasmic reticulum stress, which activates the unfolded protein response, and centrilobular hepatocyte death. We aimed at investigating the therapeutic potential of tauroursodeoxycholic acid, a hydrophilic bile acid known to have anti-apoptotic and endoplasmic reticulum stress-reducing capacities, in experimental acute liver injury induced by acetaminophen overdose. METHODS Mice were injected with 300 mg/kg acetaminophen, 2 hours prior to receiving tauroursodeoxycholic acid, N-acetylcysteine or a combination therapy, and were euthanized 24 hours later. Liver damage was assessed by serum transaminases, liver histology, terminal deoxynucleotidyl transferase dUTP nick end labelling staining, expression profiling of inflammatory, oxidative stress, unfolded protein response, apoptotic and pyroptotic markers. RESULTS Acetaminophen overdose resulted in a significant increase in serum transaminases, hepatocyte cell death, unfolded protein response activation, oxidative stress, NLRP3 inflammasome activation, caspase 1 and pro-inflammatory cytokine expressions. Standard of care, N-acetylcysteine and, to a lesser extent, tauroursodeoxycholic treatment were associated with significantly lower transaminase levels, hepatocyte death, unfolded protein response activation, oxidative stress markers, caspase 1 expression and NLRP3 levels. Importantly, the combination of N-acetylcysteine and tauroursodeoxycholic acid improved serum transaminase levels, reduced histopathological liver damage, UPR-activated CHOP, oxidative stress, caspase 1 expression, NLRP3 levels, IL-1β levels and the expression of pro-inflammatory cytokines and this to a greater extend than N-acetylcysteine alone. CONCLUSIONS These findings indicate that a combination strategy of N-acetylcysteine and tauroursodeoxycholic acid surpasses the standard of care in acetaminophen-induced liver injury in mice and might represent an attractive therapeutic opportunity for acetaminophen-intoxicated patients.
Collapse
Affiliation(s)
- Annelies Paridaens
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - Sarah Raevens
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - Isabelle Colle
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - Eliene Bogaerts
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | | | - Xavier Verhelst
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University, Ghent, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Lab, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Anja Geerts
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| |
Collapse
|
69
|
Abdelaziz HA, Shaker ME, Hamed MF, Gameil NM. Repression of acetaminophen-induced hepatotoxicity by a combination of celastrol and brilliant blue G. Toxicol Lett 2017; 275:6-18. [PMID: 28435131 DOI: 10.1016/j.toxlet.2017.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023]
Abstract
The sterile inflammatory response is an eminent contributor to acetaminophen (APAP)-hepatotoxicity in humans. Recent advances unraveled an axial role of the NLRP3-inflammasome in APAP-post injury inflammation. Nevertheless, the role of signaling events preceded the NLRP3-inflammasome activation, like the transcription factor NF-κB and the purinergic receptor P2X7, is still unclear and needs further elucidation. Here, we investigated the pharmacological inhibition of these upstream signaling molecules by celastrol and brilliant blue G (BBG) (separately or simultaneously) in APAP-hepatotoxicity in mice. The results indicated that both celastrol and BBG pretreatments, especially when combined together, curbed APAP-induced hepatocellular injury (ALT, AST and LDH) and death (necrosis and apoptosis). The underlying mechanisms of protection of such combination against APAP-challenge were attributed to their efficient cooperation in: i) preventing the consumption of hepatic antioxidants (reduced glutathione and superoxide dismutase); ii) limiting the overproduction of lipid peroxidation aldehydes (malondialdehyde and 4-hydroxynonenal) and total nitrate/nitrite products; iii) attenuating the inflammatory cells accumulation in the liver, as evidenced by reducing the number of F4/80 positive cells/field in immunostaining and myeloperoxidase activity; iv) reversing the dysregulation in production of pro-inflammatory (TNF-α, IL-17A and IL-23) and anti-inflammatory (IL-10) cytokines; and v) enhancing the reparative capacity of injured hepatocytes, as demonstrated by increasing the percentage of PCNA positive hepatocytes per field of immunostaining. In conclusion, this murine study elicits a potential clinical applicability and therapeutic utility of celastrol and BBG combination in human cases of APAP-overdose hepatotoxicity.
Collapse
Affiliation(s)
- Heba A Abdelaziz
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Pharmacology and Biochemistry Dept., Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohamed E Shaker
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohamed F Hamed
- Pathology Dept., Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nariman M Gameil
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
70
|
Woolbright BL, Jaeschke H. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. J Hepatol 2017; 66:836-848. [PMID: 27913221 PMCID: PMC5362341 DOI: 10.1016/j.jhep.2016.11.017] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 12/19/2022]
Abstract
Drug-induced acute liver failure carries a high morbidity and mortality rate. Acetaminophen overdose is the number one cause of acute liver failure and remains a major problem in Western medicine. Administration of N-acetyl cysteine is an effective antidote when given before the initial rise in toxicity; however, many patients present to the hospital after this stage occurs. As such, treatments which can alleviate late-stage acetaminophen-induced acute liver failure are imperative. While the initial mechanisms of toxicity are well described, a debate has recently occurred in the literature over whether there is a second phase of injury, mediated by inflammatory processes. Critical to this potential inflammatory process is the activation of caspase-1 and interleukin-1β by a molecular complex known as the inflammasome. Several different stimuli for the formation of multiple different inflammasome complexes have been identified. Formation of the NACHT, leucine-rich repeat (LRR) and pyrin (PYD) domains-containing protein 3 (Nalp3) inflammasome in particular, has directly been attributed to late-stage acetaminophen toxicity. In this review, we will discuss the mechanisms of acetaminophen-induced liver injury in mice and man with a particular focus on the role of inflammation and the inflammasome.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
71
|
Boyapati RK, Tamborska A, Dorward DA, Ho GT. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Res 2017; 6:169. [PMID: 28299196 PMCID: PMC5321122 DOI: 10.12688/f1000research.10397.1] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2017] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial DNA (mtDNA) has many similarities with bacterial DNA because of their shared common ancestry. Increasing evidence demonstrates mtDNA to be a potent danger signal that is recognised by the innate immune system and can directly modulate the inflammatory response. In humans, elevated circulating mtDNA is found in conditions with significant tissue injury such as trauma and sepsis and increasingly in chronic organ-specific and systemic illnesses such as steatohepatitis and systemic lupus erythematosus. In this review, we examine our current understanding of mtDNA-mediated inflammation and how the mechanisms regulating mitochondrial homeostasis and mtDNA release represent exciting and previously under-recognised important factors in many human inflammatory diseases, offering many new translational opportunities.
Collapse
Affiliation(s)
- Ray K Boyapati
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK; Department of Gastroenterology, Monash Health, Clayton, VIC, Australia
| | - Arina Tamborska
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - David A Dorward
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Gwo-Tzer Ho
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
72
|
Abstract
BACKGROUND The liver has a number of functions in innate immunity. These functions predispose the liver to innate immune-mediated liver injury when inflammation goes unchecked. Significant progress has been made in the last 25 years on sterile inflammatory liver injury in a number of models; however, a great deal of controversy and many questions about the nature of sterile inflammation still exist. AIM The goal of this article is to review sterile inflammatory liver injury using both a basic approach to what constitutes the inflammatory injury, and through examination of current models of liver injury and inflammation. This information will be tied to human patient conditions when appropriate. RELEVANCE FOR PATIENTS Inflammation is one of the most critical factors for managing in-patient liver disease in a number of scenarios. More information is needed for both scientists and clinicians to develop rational treatments.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
73
|
Abstract
Acute liver failure (ALF) is a rare and severe liver disease that usually develops in 8 weeks or less in individuals without preexisting liver disease. Its chief causes worldwide are hepatitis virus infections (hepatitis A, B, and E) and drug hepatotoxicity (particularly intentional or unintentional acetaminophen toxicity). Massive hepatic necrosis is often seen in liver specimens in ALF and features marked loss of hepatocytes, variable degrees of inflammation, and a stereotypic proliferation of bile ductular structures (neocholangioles) derived from activated periportal hepatic progenitor cells. This paper reviews the liver pathology in ALF, including forms of zonal necrosis and their etiologies.
Collapse
|
74
|
Du K, Jaeschke H. Liuweiwuling tablets protect against acetaminophen hepatotoxicity: What is the protective mechanism? World J Gastroenterol 2016; 22:3302-3304. [PMID: 27004010 PMCID: PMC4790008 DOI: 10.3748/wjg.v22.i11.3302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/24/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Study of the effects of natural products, including traditional Chinese Medicines, on acetaminophen hepatotoxicity has gained considerable popularity in recent years, and some of them showed positive results and even promising therapeutic potentials. A recent report suggested that Liuweiwuling tablets protect against acetaminophen hepatotoxicity and promote liver regeneration in a rodent model through alleviating the inflammatory response. However, several concerns exist regarding the limitations of the experimental design and interpretation of the data presented in this manuscript.
Collapse
|
75
|
Du K, McGill MR, Xie Y, Jaeschke H. Benzyl alcohol protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes but causes mitochondrial dysfunction and cell death at higher doses. Food Chem Toxicol 2015; 86:253-61. [PMID: 26522885 DOI: 10.1016/j.fct.2015.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is a serious public health problem in western countries. Current treatment options for APAP poisoning are limited and novel therapeutic intervention strategies are needed. A recent publication suggested that benzyl alcohol (BA) protects against APAP hepatotoxicity and could serve as a promising antidote for APAP poisoning. To assess the protective mechanisms of BA, C56Bl/6J mice were treated with 400 mg/kg APAP and/or 270 mg/kg BA. APAP alone caused extensive liver injury at 6 h and 24 h post-APAP. This injury was attenuated by BA co-treatment. Assessment of protein adduct formation demonstrated that BA inhibits APAP metabolic activation. In support of this, in vitro experiments also showed that BA dose-dependently inhibits cytochrome P450 activities. Correlating with the hepatoprotection of BA, APAP-induced oxidant stress and mitochondrial dysfunction were reduced. Similar results were obtained in primary mouse hepatocytes. Interestingly, BA alone caused mitochondrial membrane potential loss and cell toxicity at high doses, and its protective effect could not be reproduced in primary human hepatocytes (PHH). We conclude that BA protects against APAP hepatotoxicity mainly by inhibiting cytochrome P450 enzymes in mice. Considering its toxic effect and the loss of protection in PHH, BA is not a clinically useful treatment option for APAP overdose patient.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
76
|
Xie Y, Woolbright BL, Kos M, McGill MR, Dorko K, Kumer SC, Schmitt TM, Jaeschke H. Lack of direct cytotoxicity of extracellular ATP against hepatocytes: role in the mechanism of acetaminophen hepatotoxicity. J Clin Transl Res 2015; 1:1-7. [PMID: 30873447 PMCID: PMC6410627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/15/2015] [Accepted: 09/10/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Acetaminophen (APAP) hepatotoxicity is a major cause of acute liver failure in many countries. Mechanistic studies in mice and humans have implicated formation of a reactive metabolite, mitochondrial dysfunction and oxidant stress as critical events in the pathophysiology of APAP-induced liver cell death. It was recently suggested that ATP released from necrotic cells can directly cause cell death in mouse hepatocytes and in a hepatoma cell line (HepG2). AIM To assess if ATP can directly cause cell toxicity in hepatocytes and evaluate their relevance in the human system. METHODS Primary mouse hepatocytes, human HepG2 cells, the metabolically competent human HepaRG cell line and freshly isolated primary human hepatocytes were exposed to 10-100 µM ATP or ATγPin the presence or absence of 5-10 mM APAP for 9-24 h. RESULTS ATP or ATγP was unable to directly cause cell toxicity in all 4 types of hepatocytes. In addition, ATP did not enhance APAP-induced cell death observed in primary mouse or human hepatocytes, or in HepaRG cells as measured by LDH release and by propidium iodide staining in primary mouse hepatocytes. Furthermore, addition of ATP did not cause mitochondrial dysfunction or enhance APAP-induced mitochondrial dysfunction in primary murine hepatocytes, although ATP did cause cell death in murine RAW macrophages. CONCLUSIONS It is unlikely that ATP released from necrotic cells can significantly affect cell death in human or mouse liver during APAP hepatotoxicity. RELEVANCE FOR PATIENTS Understanding the mechanisms of APAP-induced cell injury is critical for identifying novel therapeutic targets to prevent liver injury and acute liver failure in APAP overdose patients.
Collapse
Affiliation(s)
- Yuchao Xie
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Milan Kos
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Sean C Kumer
- Department of Surgery, University of Kansas Medical Center, Kansas City, United States
| | - Timothy M Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, United States
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| |
Collapse
|
77
|
Xie Y, Woolbright BL, Kos M, McGill MR, Dorko K, Kumer SC, Schmitt TM, Jaeschke H. Lack of Direct Cytotoxicity of Extracellular ATP against Hepatocytes: Role in the Mechanism of Acetaminophen Hepatotoxicity. J Clin Transl Res 2015; 1:100-106. [PMID: 26722668 PMCID: PMC4694640 DOI: 10.18053/jctres.201502.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Acetaminophen (APAP) hepatotoxicity is a major cause of acute liver failure in many countries. Mechanistic studies in mice and humans have implicated formation of a reactive metabolite, mitochondrial dysfunction and oxidant stress as critical events in the pathophysiology of APAP-induced liver cell death. It was recently suggested that ATP released from necrotic cells can directly cause cell death in mouse hepatocytes and in a hepatoma cell line (HepG2). AIM To assess if ATP can directly cause cell toxicity in hepatocytes and evaluate their relevance in the human system. METHODS Primary mouse hepatocytes, human HepG2 cells, the metabolically competent human HepaRG cell line and freshly isolated primary human hepatocytes were exposed to 10-100 μM ATP or ATγP in the presence or absence of 5-10 mM APAP for 9-24 h. RESULTS ATP or ATγP was unable to directly cause cell toxicity in all 4 types of hepatocytes. In addition, ATP did not enhance APAP-induced cell death observed in primary mouse or human hepatocytes, or in HepaRG cells as measured by LDH release and by propidium iodide staining in primary mouse hepatocytes. Furthermore, addition of ATP did not cause mitochondrial dysfunction or enhance APAP-induced mitochondrial dysfunction in primary murine hepatocytes, although ATP did cause cell death in murine RAW macrophages. CONCLUSIONS It is unlikely that ATP released from necrotic cells can significantly affect cell death in human or mouse liver during APAP hepatotoxicity. RELEVANCE FOR PATIENTS Understanding the mechanisms of APAP-induced cell injury is critical for identifying novel therapeutic targets to prevent liver injury and acute liver failure in APAP overdose patients.
Collapse
Affiliation(s)
- Yuchao Xie
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Benjamin L. Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Milan Kos
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mitchell R. McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sean C. Kumer
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Timothy M. Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
78
|
Rizvi F, Mathur A, Kakkar P. Morin mitigates acetaminophen-induced liver injury by potentiating Nrf2 regulated survival mechanism through molecular intervention in PHLPP2-Akt-Gsk3β axis. Apoptosis 2015; 20:1296-306. [DOI: 10.1007/s10495-015-1160-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
79
|
Vliegenthart ADB, Antoine DJ, Dear JW. Target biomarker profile for the clinical management of paracetamol overdose. Br J Clin Pharmacol 2015; 80:351-62. [PMID: 26076366 DOI: 10.1111/bcp.12699] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
Paracetamol (acetaminophen) overdose is one of the most common causes of acute liver injury in the Western world. To improve patient care and reduce pressure on already stretched health care providers new biomarkers are needed that identify or exclude liver injury soon after an overdose of paracetamol is ingested. This review highlights the current state of paracetamol poisoning management and how novel biomarkers could improve patient care and save healthcare providers money. Based on the widely used concept of defining a target product profile, a target biomarker profile is proposed that identifies desirable and acceptable key properties for a biomarker in development to enable the improved treatment of this patient population. The current biomarker candidates, with improved hepatic specificity and based on the fundamental mechanistic basis of paracetamol-induced liver injury, are reviewed and their performance compared with our target profile.
Collapse
Affiliation(s)
- A D Bastiaan Vliegenthart
- Pharmacology, Toxicology & Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh
| | - Daniel J Antoine
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - James W Dear
- Pharmacology, Toxicology & Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh
| |
Collapse
|
80
|
Abstract
Inflammation contributes to the pathogenesis of most acute and chronic liver diseases. Inflammasomes are multiprotein complexes that can sense danger signals from damaged cells and pathogens and assemble to mediate caspase-1 activation, which proteolytically activates the cytokines IL-1β and IL-18. In contrast to other inflammatory responses, inflammasome activation uniquely requires two signals to induce inflammation, therefore setting an increased threshold. IL-1β, generated upon caspase-1 activation, provides positive feed-forward stimulation for inflammatory cytokines, thereby amplifying inflammation. Inflammasome activation has been studied in different human and experimental liver diseases and has been identified as a major contributor to hepatocyte damage, immune cell activation and amplification of liver inflammation. In this Review, we discuss the different types of inflammasomes, their activation and biological functions in the context of liver injury and disease progression. Specifically, we focus on the triggers of inflammasome activation in alcoholic steatohepatitis and NASH, chronic HCV infection, ischaemia-reperfusion injury and paracetamol-induced liver injury. The application and translation of these discoveries into therapies promises novel approaches in the treatment of inflammation in liver disease.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
81
|
Baker LA, Lee KCL, Palacios Jimenez C, Alibhai H, Chang YM, Leckie PJ, Mookerjee RP, Davies NA, Andreola F, Jalan R. Circulating microRNAs Reveal Time Course of Organ Injury in a Porcine Model of Acetaminophen-Induced Acute Liver Failure. PLoS One 2015; 10:e0128076. [PMID: 26018205 PMCID: PMC4446266 DOI: 10.1371/journal.pone.0128076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/23/2015] [Indexed: 12/19/2022] Open
Abstract
Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-organ failure. Studies investigating the onset of individual organ injury such as the liver, kidneys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short, non-coding strands of RNA that are released into the circulation following tissue injury. In this study, we have characterised the release of both global microRNA and specific microRNA species into the plasma using a porcine model of acetaminophen-induced acute liver failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated with increasing plasma levels of the damage-associated molecular pattern molecule, genomic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure (P<0.0001) and was associated with increasing international normalised ratio (P<0.0001). MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increasing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-terminal increase in intracranial pressure (P<0.0001) and was associated with decreasing cerebral perfusion pressure (P<0.002). Conclusions: MicroRNAs were released passively into the circulation in response to acetaminophen-induced cellular damage. A significant increase in global microRNA was detectable prior to significant increases in miR122, miR192 and miR124-1, which were associated with clinical evidence of liver, kidney and brain injury respectively.
Collapse
Affiliation(s)
- Luisa A. Baker
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Karla C. L. Lee
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Carolina Palacios Jimenez
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Hatim Alibhai
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Yu-Mei Chang
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Pamela J. Leckie
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Rajeshwar P. Mookerjee
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Nathan A. Davies
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Fausto Andreola
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Rajiv Jalan
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
82
|
Woolbright BL, Jaeschke H. Xenobiotic and Endobiotic Mediated Interactions Between the Cytochrome P450 System and the Inflammatory Response in the Liver. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:131-61. [PMID: 26233906 DOI: 10.1016/bs.apha.2015.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The liver is a unique organ in the body as it has significant roles in both metabolism and innate immune clearance. Hepatocytes in the liver carry a nearly complete complement of drug metabolizing enzymes, including numerous cytochrome P450s. While a majority of these enzymes effectively detoxify xenobiotics, or metabolize endobiotics, a subportion of these reactions result in accumulation of metabolites that can cause either direct liver injury or indirect liver injury through activation of inflammation. The liver also contains multiple populations of innate immune cells including the resident macrophages (Kupffer cells), a relatively large number of natural killer cells, and blood-derived neutrophils. While these cells are primarily responsible for clearance of pathogens, activation of these immune cells can result in significant tissue injury during periods of inflammation. When activated chronically, these inflammatory bouts can lead to fibrosis, cirrhosis, cancer, or death. This chapter will focus on interactions between how the liver processes xenobiotic and endobiotic compounds through the cytochrome P450 system, and how these processes can result in a response from the innate immune cells of the liver. A number of different clinically relevant diseases, as well as experimental models, are currently available to study mechanisms related to the interplay of innate immunity and cytochrome P450-mediated metabolism. A major focus of the chapter will be to evaluate currently understood mechanisms in the context of these diseases, as a way of outlining mechanisms that dictate the interactions between the P450 system and innate immunity.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
83
|
Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury. Cell Death Dis 2015; 6:e1759. [PMID: 25950489 PMCID: PMC4669705 DOI: 10.1038/cddis.2015.126] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 03/28/2015] [Accepted: 04/02/2015] [Indexed: 02/08/2023]
Abstract
Necroptosis is a recently described Caspase 8-independent method of cell death that denotes organized cellular necrosis. The roles of RIP1 and RIP3 in mediating hepatocyte death from acute liver injury are incompletely defined. Effects of necroptosis blockade were studied by separately targeting RIP1 and RIP3 in diverse murine models of acute liver injury. Blockade of necroptosis had disparate effects on disease outcome depending on the precise etiology of liver injury and component of the necrosome targeted. In ConA-induced autoimmune hepatitis, RIP3 deletion was protective, whereas RIP1 inhibition exacerbated disease, accelerated animal death, and was associated with increased hepatocyte apoptosis. Conversely, in acetaminophen-mediated liver injury, blockade of either RIP1 or RIP3 was protective and was associated with lower NLRP3 inflammasome activation. Our work highlights the fact that diverse modes of acute liver injury have differing requirements for RIP1 and RIP3; moreover, within a single injury model, RIP1 and RIP3 blockade can have diametrically opposite effects on tissue damage, suggesting that interference with distinct components of the necrosome must be considered separately.
Collapse
|
84
|
Resveratrol prevents protein nitration and release of endonucleases from mitochondria during acetaminophen hepatotoxicity. Food Chem Toxicol 2015; 81:62-70. [PMID: 25865938 DOI: 10.1016/j.fct.2015.04.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
Overdose of acetaminophen (APAP) is a common cause of acute liver injury and liver failure. The mechanism involves formation of a reactive metabolite, protein binding, oxidative stress and activation of c-Jun N-terminal kinase (JNK), mitochondrial dysfunction, and nuclear DNA fragmentation caused by endonucleases released from damaged mitochondria. Previous work has shown that the natural product resveratrol (RSV) can protect against APAP hepatotoxicity in mice through prevention of lipid peroxidation and anti-inflammatory effects. However, these earlier studies did not take into consideration several fundamental aspects of the pathophysiology. To address this, we treated C57Bl/6 mice with 300 mg/kg APAP followed by 50 mg/kg RSV 1.5 h later. Our results confirmed that RSV reduced liver injury after APAP overdose in mice. Importantly, RSV did not inhibit reactive metabolite formation and protein bindings, nor did it reduce activation of JNK. However, RSV decreased protein nitration after APAP treatment, possibly through direct scavenging of peroxynitrite. Interestingly, RSV also inhibited release of apoptosis-inducing factor and endonuclease G from mitochondria independent of Bax pore formation and prevented the downstream nuclear DNA fragmentation. Our data show that RSV protects against APAP hepatotoxicity both through antioxidant effects and by preventing mitochondrial release of endonucleases and nuclear DNA damage.
Collapse
|
85
|
Abstract
BACKGROUND Drug-induced liver injury is a rare but serious clinical problem. A number of drugs can cause severe liver injury and acute liver failure at therapeutic doses in a very limited number of patients (<1:10,000). This idiosyncratic drug-induced liver injury, which is currently not predictable in preclinical safety studies, appears to depend on individual susceptibility and the inability to adapt to the cellular stress caused by a particular drug. In striking contrast to idiosyncratic drug-induced liver injury, drugs with dose-dependent hepatotoxicity are mostly detected during preclinical studies and do not reach the market. One notable exception is acetaminophen (APAP, paracetamol), which is a safe drug at therapeutic doses but can cause severe liver injury and acute liver failure after intentional and unintentional overdoses. Key Messages: APAP overdose is responsible for more acute liver failure cases in the USA or UK than all other etiologies combined. Since APAP overdose in the mouse represents a model for the human pathophysiology, substantial progress has been made during the last decade in understanding the mechanisms of cell death, liver injury and recovery. More recently, emerging evidence based on mechanistic biomarker analysis in patients and studies of cell death in human hepatocytes suggests that most of the mechanisms discovered in mice also apply to patients. The rapid development of N-acetylcysteine as an antidote against APAP overdose was based on the early understanding of APAP toxicity in mice. However, despite the efficacy of N-acetylcysteine in patients who present early after APAP overdose, there is a need to develop intervention strategies for late-presenting patients. CONCLUSIONS The challenges related to APAP toxicity are to better understand the mechanisms of cell death in order to limit liver injury and prevent acute liver failure, and also to develop biomarkers that better predict as early as possible who is at risk for developing acute liver failure with poor outcome.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kans., USA
| |
Collapse
|
86
|
Cai C, Huang H, Whelan S, Liu L, Kautza B, Luciano J, Wang G, Chen G, Stratimirovic S, Tsung A, Billiar TR, Zuckerbraun BS. Benzyl alcohol attenuates acetaminophen-induced acute liver injury in a Toll-like receptor-4-dependent pattern in mice. Hepatology 2014; 60:990-1002. [PMID: 24798499 DOI: 10.1002/hep.27201] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/01/2014] [Indexed: 01/09/2023]
Abstract
UNLABELLED Acetaminophen (APAP) toxicity is the most common cause of acute liver failure in industrialized countries. Understanding the mechanisms of APAP-induced liver injury as well as other forms of sterile liver injury is critical to improve the care of patients. Recent studies demonstrate that danger signaling and inflammasome activation play a role in APAP-induced injury. The aim of these investigations was to test the hypothesis that benzyl alcohol (BA) is a therapeutic agent that protects against APAP-induced liver injury by modulation of danger signaling. APAP-induced liver injury was dependent, in part, on Toll-like receptor (TLR)9 and receptor for advanced glycation endproducts (RAGE) signaling. BA limited liver injury over a dose range of 135-540 μg/g body weight or when delivered as a pre-, concurrent, or post-APAP therapeutic. Furthermore, BA abrogated APAP-induced cytokines and chemokines as well as high-mobility group box 1 release. Moreover, BA prevented APAP-induced inflammasome signaling as determined by interleukin (IL)-1β, IL-18, and caspase-1 cleavage in liver tissues. Interestingly, the protective effects of BA on limiting liver injury and inflammasome activation were dependent on TLR4 signaling, but not TLR2 or CD14. Cell-type-specific knockouts of TLR4 were utilized to further determine the protective mechanisms of BA. These studies found that TLR4 expression specifically in myeloid cells (LyzCre-tlr4-/-) were necessary for the protective effects of BA. CONCLUSION BA protects against APAP-induced acute liver injury and reduced inflammasome activation in a TLR4-dependent manner. BA may prove to be a useful adjunct in the treatment of APAP and other forms of sterile liver injury.
Collapse
Affiliation(s)
- Changchun Cai
- Central Hospital of Wuhan, Wuhan, China; Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Yadav UCS, Baquer NZ. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. PHARMACEUTICAL BIOLOGY 2014; 52:243-254. [PMID: 24102093 DOI: 10.3109/13880209.2013.826247] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT The health benefits and medicinal properties of herbal food products are known since antiquity. Fenugreek [Trigonella foenum-graecum Linn. (Fabaceae)], a seed spice used to enhance flavor, color and texture of food, is employed for medicinal purposes in many traditional systems. A number of epidemiological studies and laboratory research have unraveled the biological actions of fenugreek. OBJECTIVE Research on fenugreek in recent years has identified a number of health benefits and physiological attributes in both experimental animals as well as clinical trials in humans. In this study we have reviewed the available scientific literature on fenugreek. METHODS This review article summarizes and reviews published experimental studies and scientific literature from the databases including PubMed, Google and local library searches. RESULTS The information available in the literature on the health benefits and pharmaceutical effects of Trigonella accounts for its known medicinal properties and adds new therapeutic effects in newer indications. Besides its known medicinal properties such as carminative, gastric stimulant, antidiabetic and galactogogue (lactation-inducer) effects, newer research has identified hypocholesterolemic, antilipidemia, antioxidant, hepatoprotective, anti-inflammatory, antibacterial, antifungal, antiulcer, antilithigenic, anticarcinogenic and other miscellaneous medicinal effects of fenugreek. Although most of these studies have used whole seed powder or different forms of extracts, some have identified active constituents from seeds and attributed them medicinal values for different indications. CONCLUSION The resarch on Trigonella exhibits its health benefits and potential medicinal properties in various indications and has little or no side effects, suggesting its pharmaceutical, therapeutic and nutritional potential.
Collapse
Affiliation(s)
- Umesh C S Yadav
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch , Galveston, TX , USA and
| | | |
Collapse
|
88
|
Dear JW, Antoine DJ. Stratification of paracetamol overdose patients using new toxicity biomarkers: current candidates and future challenges. Expert Rev Clin Pharmacol 2014; 7:181-9. [PMID: 24450481 DOI: 10.1586/17512433.2014.880650] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the most common causes of acute liver failure in the Western world is paracetamol (acetaminophen) overdose. Specific and sensitive detection of liver injury is important for the prompt and safe treatment of patients with the antidote N-acetylcysteine (NAC) and for the determination of NAC efficacy. Despite many years of intense research, the precise mechanisms of paracetamol-induced liver injury in humans are still not defined, and few studies have examined the optimal dosing regimen for clinical NAC use. It has been widely acknowledged that circulating biomarkers such as microRNA-122, keratin-18 and high mobility group box-1 hold potential to inform on the mechanistic-basis of human drug-induced liver injury. Here, we provide a perspective on the application of these mechanistic biomarkers to the deeper understanding of paracetamol hepatotoxicity in clinical and preclinical studies. Also, we discuss current barriers to using these experimental biomarkers to stratify patients presenting to hospital with this common medical emergency.
Collapse
Affiliation(s)
- James W Dear
- National Poisons Information Service Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
89
|
Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A, Jaeschke H. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol Appl Pharmacol 2014; 275:122-33. [PMID: 24440789 DOI: 10.1016/j.taap.2014.01.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: >800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91(phox)⁻/⁻ mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary Lynn Bajt
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthew R Sharpe
- Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX 78756, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
90
|
Abstract
Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of "programmed" necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article.
Collapse
Affiliation(s)
- Maria Eugenia Guicciardi
- 1Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
91
|
Woolbright BL, Antoine DJ, Jenkins RE, Bajt ML, Park BK, Jaeschke H. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice. Toxicol Appl Pharmacol 2013; 273:524-31. [PMID: 24096036 DOI: 10.1016/j.taap.2013.09.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023]
Abstract
Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6-72 h, or sham operation. Another group of mice were given d-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48-72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
The ability of tissue injury to result in inflammation is a well-recognized phenomenon and is central to a number of common liver and pancreatic diseases including alcoholic steatohepatitis and pancreatitis, as well as drug-induced liver injury, non-alcoholic steatohepatitis, and pancreatitis from other causes. The requirements of extracellular damage-associated molecules and a cytosolic machinery labeled the inflammasome have been established in in vitro culture systems and in vivo disease models. This has provided a generic insight into the pathways involved, and the challenge now is to understand the specifics of these mechanisms in relation to the particular insults and organs involved. One reason for the excitement in this field is that a number of therapeutic candidates such a toll-like receptor antagonists and interleukin-1R antagonists are either approved or in clinical trials for other indications.
Collapse
Affiliation(s)
- Rafaz Hoque
- Section of Digestive Diseases, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
93
|
Williams CD, McGill MR, Farhood A, Jaeschke H. Fas receptor-deficient lpr mice are protected against acetaminophen hepatotoxicity due to higher glutathione synthesis and enhanced detoxification of oxidant stress. Food Chem Toxicol 2013; 58:228-35. [PMID: 23628456 DOI: 10.1016/j.fct.2013.04.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 02/05/2023]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is a classical model of hepatocellular necrosis; however, the involvement of the Fas receptor in the pathophysiology remains controversial. Fas receptor-deficient (lpr) and C57BL/6 mice were treated with APAP to compare the mechanisms of hepatotoxicity. Lpr mice were partially protected against APAP hepatotoxicity as indicated by reduced plasma ALT and GDH levels and liver necrosis. Hepatic Cyp2e1 protein, adduct formation and hepatic glutathione (GSH) depletion were similar, demonstrating equivalent reactive metabolite generation. There was no difference in cytokine formation or hepatic neutrophil recruitment. Interestingly, hepatic GSH recovered faster in lpr mice than in wild type animals resulting in enhanced detoxification of reactive oxygen species. Driving the increased GSH levels, mRNA induction and protein expression of glutamate-cysteine ligase (gclc) were higher in lpr mice. Inducible nitric oxide synthase (iNOS) mRNA and protein levels at 6h were significantly lower in lpr mice, which correlated with reduced nitrotyrosine staining. Heat shock protein 70 (Hsp70) mRNA levels were substantially higher in lpr mice after APAP. CONCLUSION Our data suggest that the faster recovery of hepatic GSH levels during oxidant stress and peroxynitrite formation, reduced iNOS expression and enhanced induction of Hsp70 attenuated the susceptibility to APAP-induced cell death in lpr mice.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
94
|
Jaeschke H, Williams CD, McGill MR, Xie Y, Ramachandran A. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol 2013; 55:279-89. [PMID: 23353004 DOI: 10.1016/j.fct.2012.12.063] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 01/08/2023]
Abstract
Extracts from medicinal plants, many of which have been used for centuries, are increasingly tested in models of hepatotoxicity. One of the most popular models to evaluate the hepatoprotective potential of natural products is acetaminophen (APAP)-induced liver injury, although other hepatotoxicity models such as carbon tetrachloride, thioacetamide, ethanol and endotoxin are occasionally used. APAP overdose is a clinically relevant model of drug-induced liver injury. Critical mechanisms and signaling pathways, which trigger necrotic cell death and sterile inflammation, are discussed. Although there is increasing understanding of the pathophysiology of APAP-induced liver injury, the mechanism is complex and prone to misinterpretation, especially when unknown chemicals such as plant extracts are tested. This review discusses the fundamental aspects that need to be considered when using this model, such as selection of the animal species or in vitro system, timing and dose-responses of signaling events, metabolic activation and protein adduct formation, the role of lipid peroxidation and apoptotic versus necrotic cell death, and the impact of the ensuing sterile inflammatory response. The goal is to enable researchers to select the appropriate model and experimental conditions for testing of natural products that will yield clinically relevant results and allow valid interpretations of the pharmacological mechanisms.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
95
|
Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012; 143:1158-1172. [PMID: 22982943 DOI: 10.1053/j.gastro.2012.09.008] [Citation(s) in RCA: 505] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/10/2012] [Accepted: 09/13/2012] [Indexed: 12/13/2022]
Abstract
Inflammation In the absence of pathogens occurs in all tissues in response to a wide range of stimuli that cause tissue stress and injury. Such sterile inflammation (SI) is a key process in drug-induced liver injury, nonalcoholic steatohepatitis, and alcoholic steatohepatitis and is a major determinant of fibrosis and carcinogenesis. In SI, endogenous damage-associated molecular patterns (DAMPS), which are usually hidden from the extracellular environment, are released on tissue injury and activate receptors on immune cells. More than 20 such DAMPS have been identified and activate cellular pattern recognition receptors, which were originally identified as sensors of pathogen-associated molecular patterns. Activation of pattern recognition receptors by DAMPS results in a wide range of immune responses, including production of proinflammatory cytokines and localization of immune cells to the site of injury. DAMPS result in the assembly of a cytosolic protein complex termed the inflammasome, which activates the serine protease caspase-1, resulting in activation and secretion of interleukin-1β and other cytokines. SI-driven liver diseases are responsible for the majority of liver pathology in industrially developed countries and lack specific therapy. Identification of DAMPS, their receptors, signaling pathways, and cytokines now provides a wide range of therapeutic targets for which many antagonists are already available.
Collapse
Affiliation(s)
- Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Yale University, and West Haven Veterans Medical Center, New Haven, Connecticut.
| |
Collapse
|
96
|
Xie Y, Williams CD, McGill MR, Lebofsky M, Ramachandran A, Jaeschke H. Purinergic receptor antagonist A438079 protects against acetaminophen-induced liver injury by inhibiting p450 isoenzymes, not by inflammasome activation. Toxicol Sci 2012; 131:325-35. [PMID: 22986947 DOI: 10.1093/toxsci/kfs283] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the western world. Controversy exists regarding the hypothesis that the hepatocyte injury is amplified by a sterile inflammatory response, rather than being the result of intracellular mechanisms alone. A recent study suggested that the purinergic receptor antagonist A438079 protects against APAP-induced liver injury by preventing the activation of the Nalp3 inflammasome in Kupffer cells and thereby preventing inflammatory injury. To test the hypothesis that A438079 actually affects the intracellular signaling events in hepatocytes, C57Bl/6 mice were treated with APAP (300 mg/kg) and A438079 (80 mg/kg) or saline and GSH depletion, protein adduct formation, c-jun-N-terminal kinase (JNK) activation, oxidant stress, and liver cell necrosis were determined between 0 and 6 h after APAP administration. APAP caused rapid GSH depletion, extensive protein adduct formation in liver homogenates and in mitochondria, JNK phosphorylation and mitochondrial translocation of phospho-JNK within 2 h, oxidant stress, and extensive centrilobular necrosis at 6 h. A438079 significantly attenuated GSH depletion, which resulted in a 50% reduction of total liver and mitochondrial protein adducts and substantial reduction of JNK activation, mitochondrial P-JNK translocation, oxidant stress, and liver injury. The same results were obtained using primary mouse hepatocytes. A438079 did not directly affect JNK activation induced by tert-butyl hydroperoxide and GSH depletion. However, A438079 dose-dependently inhibited hepatic P450 enzyme activity. Thus, the protective effect of A438079 against APAP hepatotoxicity in vivo can be explained by its effect on metabolic activation and cell death pathways in hepatocytes without involvement of the Nalp3 inflammasome.
Collapse
Affiliation(s)
- Yuchao Xie
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
97
|
Chung RT, Stravitz RT, Fontana RJ, Schiodt FV, Mehal WZ, Reddy KR, Lee WM. Pathogenesis of liver injury in acute liver failure. Gastroenterology 2012; 143:e1-e7. [PMID: 22796239 PMCID: PMC3641754 DOI: 10.1053/j.gastro.2012.07.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | - William M Lee
- University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
98
|
Abstract
Inflammation is a common element in the pathogenesis of most chronic liver diseases that lead to fibrosis and cirrhosis. Inflammation is characterized by activation of innate immune cells and production of pro-inflammatory cytokines IL-1α, IL-1β, and TNFα. Inflammasomes are intracellular multiprotein complexes expressed in both parenchymal and non-parenchymal cells of the liver that in response to cellular danger signals activate caspase-1, and release IL-1β and IL-18. The importance of inflammasome activation in various forms of liver diseases in relation to liver damage, steatosis, inflammation and fibrosis is discussed in this review.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA.
| | | |
Collapse
|
99
|
Abstract
The presence and persistence of alloantigen is necessary for graft-specific T-cell-mediated immunity. However, specificity comprises only a single facet of an extremely complex process. Evidence is accruing to suggest that immunogenicity could be manipulated by endogenous ligands released during tissue injury. Stress molecules are significantly up-regulated following transplantation and stimulate conserved receptors on a range of leucocytes, including dendritic cells (DCs). The DCs are essential for co-stimulation and the induction of adaptive immunity. Stress signals can act as an adjuvant leading to DC maturation and activation. DCs stimulated by endogens exhibit enhanced alloantigen presentation, co-stimulation and production of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. Inflammasomes have a major role in IL-1β/IL-18 production and secretion, and can be stimulated by endogens. Importantly, the polarization toward inflammatory T helper type 17 cells as opposed to regulatory T cells is dependent upon, among other factors, IL-1β. This highlights an important differentiation pathway that may be influenced by endogenous signals. Minimizing graft damage and stress expression should hypothetically be advantageous, and we feel that this area warrants further research, and may provide novel treatment modalities with potential clinical benefit.
Collapse
Affiliation(s)
- William R Critchley
- The Transplant Centre, University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, The University of Manchester, Manchester, UK
| | | |
Collapse
|
100
|
Kim H, Kim Y, Guk K, Yoo D, Lim H, Kang G, Lee D. Fully biodegradable and cationic poly(amino oxalate) particles for the treatment of acetaminophen-induced acute liver failure. Int J Pharm 2012; 434:243-50. [PMID: 22664461 DOI: 10.1016/j.ijpharm.2012.05.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/23/2012] [Accepted: 05/27/2012] [Indexed: 01/13/2023]
Abstract
Acute inflammatory diseases are one of major causes of death in the world and there is great need for developing drug delivery systems that can target drugs to macrophages and enhance their therapeutic efficacy. Poly(amino oxalate) (PAOX) is a new family of fully biodegradable polymer that possesses tertiary amine groups in its backbone and has rapid hydrolytic degradation. In this study, we developed PAOX particles as drug delivery systems for treating acute liver failure (ALF) by taking the advantages of the natural propensity of particulate drug delivery systems to localize to the mononuclear phagocyte system, particularly to liver macrophages. PAOX particles showed a fast drug release kinetics and excellent biocompatibility in vitro and in vivo. A majority of PAOX particles were accumulated in liver, providing a rational strategy for effective treatment of ALF. A mouse model of acetaminophen (APAP)-induced ALF was used to evaluate the potential of PAOX particles using pentoxifylline (PTX) as a model drug. Treatment of PTX-loaded PAOX particles significantly reduced the activity of alanine transaminase (ALT) and inhibited hepatic cell damages in APAP-intoxicated mice. The high therapeutic efficacy of PTX-loaded PAOX particles for ALF treatment may be attributed to the unique properties of PAOX particles, which can target passively liver, stimulate cellular uptake and trigger a colloid osmotic disruption of the phagosome to release encapsulated PTX into the cytosol. Taken together, we believe that PAOX particles are a promising drug delivery candidate for the treatment of acute inflammatory diseases.
Collapse
Affiliation(s)
- Hyungmin Kim
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|