51
|
Li YF, Wu JS, Li YY, Dai Y, Zheng M, Zeng JK, Wang GF, Wang TM, Li WK, Zhang XY, Gu M, Huang C, Yang L, Wang ZT, Ma YM. Chicken bile powder protects against α-naphthylisothiocyanate-induced cholestatic liver injury in mice. Oncotarget 2017; 8:97137-97152. [PMID: 29228599 PMCID: PMC5722551 DOI: 10.18632/oncotarget.21385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022] Open
Abstract
This study explored the effects of chicken bile powder (CBP), a 2000-year-old Chinese medicine, on α-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis in mice. CBP treatment for 14 days significantly ameliorated ANIT-induced changes in serum alanine aminotransferase, aspartate aminotransferase, bile acids, bilirubin, γ-glutamyl transpeptidase, alkaline phosphatase, and liver tissue morphology. Serum metabolomics showed changes in 24 metabolites in ANIT-exposed mice; 16 of these metabolites were reversed by CBP treatment via two main pathways (bile acid biosynthesis and arachidonic acid metabolism). Additionally, CBP administration markedly increased fecal and biliary bile acid excretion, and reduced total and hydrophobic bile acid levels in the livers of cholestatic mice. Moreover, CBP increased liver expression of bile acid efflux transporters and metabolic enzymes. It also attenuated ANIT-induced increases in hepatic nuclear factor-κB-mediated inflammatory signaling, and increased liver expression of the nuclear farnesoid X receptor (FXR) in cholestatic mice. CBP also activated FXR in vitro in HEK293T cells expressing mouse Na+-taurocholate cotransporting polypeptide. It did not ameliorate the ANIT-induced liver injuries in FXR-knockout mice. These results suggested that CBP provided protection from cholestatic liver injury by restoring bile acid homeostasis and reducing inflammation in a FXR-dependent manner.
Collapse
Affiliation(s)
- Yi-Fei Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Sheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan-Yuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Dai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Zheng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Kai Zeng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Feng Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Ming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wen-Kai Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xue-Yan Zhang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Research Centre for Traditional Chinese Medicine of Complexity Systems, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng-Tao Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue-Ming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
52
|
Xu L, Sheng T, Liu X, Zhang T, Wang Z, Han H. Analyzing the hepatoprotective effect of the Swertia cincta Burkillextract against ANIT-induced cholestasis in rats by modulating the expression of transporters and metabolic enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:91-99. [PMID: 28734962 DOI: 10.1016/j.jep.2017.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Swertia cincta Burkill was traditionally used for treating jaundice and various types of chronic and acute hepatitis in Yunnan and Tibet in China for hundreds of years. This study aims to investigate the protective effect of S. cincta Burkill (ESC) extract on alpha-naphthylisothiocyanate (ANIT)-induced hepatotoxicity and cholestasis in rats. MATERIALS AND METHODS Crude extracts were prepared using 90% ethanol and by vacuum drying. We utilized an ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS) system to conduct a phytochemical analysis of the active components of ESC. Liver function was evaluated by measuring the serum levels of enzymes and components and by analyzing the liver histology. We also measured the expression of bile metabolism-related transporters and metabolic enzymes at both protein and mRNA levels to elucidate the underlying mechanisms. RESULTS ESC analysis using an UHPLC/Q-TOF-MS revealed eight compounds. Oral administration of ESC to ANIT-treated rats can significantly reduce the increases in serum levels of ALT, AST, ALP, TBIL, and TBA. It can also improve liver pathology and bile flow. Western blot and qRT-PCR analyses showed that ESC upregulated the protein and mRNA expression of Fxr, Ntcp, Bsep, Cyp7a1, Mrp2, and Mdr2. CONCLUSION ESC could alleviate liver injury by reducing enzyme activities of serums, improving liver pathology and bile flow. The protective mechanism was associated with regulation of the expression of hepatic transporters and metabolic enzymes.
Collapse
Affiliation(s)
- Lili Xu
- Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; Institute of Science, Technology and Humanities, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Tingting Sheng
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Xiaolong Liu
- Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Zhengtao Wang
- Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| |
Collapse
|
53
|
Zhang LL, Xu W, Xu YL, Chen X, Huang M, Lu JJ. Therapeutic potential of Rhizoma Alismatis: a review on ethnomedicinal application, phytochemistry, pharmacology, and toxicology. Ann N Y Acad Sci 2017; 1401:90-101. [DOI: 10.1111/nyas.13381] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Wen Xu
- College of Pharmacy; Fujian University of Traditional Chinese Medicine; Fuzhou China
| | - Yu-Lian Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Mingqing Huang
- College of Pharmacy; Fujian University of Traditional Chinese Medicine; Fuzhou China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao China
| |
Collapse
|
54
|
Yu L, Liu X, Yuan Z, Li X, Yang H, Yuan Z, Sun L, Zhang L, Jiang Z. SRT1720 Alleviates ANIT-Induced Cholestasis in a Mouse Model. Front Pharmacol 2017; 8:256. [PMID: 28553227 PMCID: PMC5425580 DOI: 10.3389/fphar.2017.00256] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
Intrahepatic cholestasis is a kind of clinical syndrome along with hepatotoxicity which caused by intrahepatic and systemic accumulations of bile acid. There are several crucial generating factors of the pathogenesis of cholestasis, such as inflammation, dysregulation of bile acid transporters and oxidative stress. SIRT1 is regarded as a class III histone deacetylase (HDAC). According to a set of researches, SIRT1 is one of the most important factors which can regulate the hepatic bile acid metabolism. SRT1720 is a kind of activator of SIRT1 which is 1000 times more potent than resveratrol, and this paper is aimed to study its protective influence on hepatotoxicity and cholestasis induced by alpha-naphthylisothiocyanate (ANIT) in mice. The findings revealed that SRT1720 treatment increased FXR and Nrf2 gene expressions to shield against hepatotoxicity and cholestasis induced by ANIT. The mRNA levels of hepatic bile acid transporters were also altered by SRT1720. Furthermore, SRT1720 enhanced the antioxidative system by increasing Nrf2, SOD, GCLc, GCLm, Nqo1, and HO-1 gene expressions. In conclusion, a protective influence could be provided by SRT1720 to cure ANIT-induced hepatotoxicity and cholestasis, which was partly through FXR and Nrf2 activations. These results indicated that SIRT1 could be regarded as a therapeutic target to cure the cholestasis.
Collapse
Affiliation(s)
- Linxi Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Xiaoxin Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Xiaojiaoyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Hang Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Ziqiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Zhengzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University - Ministry of EducationNanjing, China
| |
Collapse
|
55
|
Zhao Y, He X, Ma X, Wen J, Li P, Wang J, Li R, Zhu Y, Wei S, Li H, Zhou X, Li K, Liu H, Xiao X. Paeoniflorin ameliorates cholestasis via regulating hepatic transporters and suppressing inflammation in ANIT-fed rats. Biomed Pharmacother 2017; 89:61-68. [PMID: 28214689 DOI: 10.1016/j.biopha.2017.02.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
Paeoniflorin has shown the obvious effect on cholestasis according to our previous research. However, its mechanism has not been absolutely explored yet. This study aims at evaluating the potential effect of paeoniflorin on alpha-naphthylisothiocyanate (ANIT) -induced cholestasis by inhibiting nuclear factor kappa-B (NF-κB) and simultaneously regulating hepatocyte transporters. Cholestasis was induced by administration of ANIT. The effect of paeoniflorin on serum indices such as total bilirubin (TBIL), direct bilirubin (DBIL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyltranspeptidase (γ-GT), total bile acid (TBA) and histopathology of liver were determined. Liver protein levels of NF-κB, interleukin 1β (IL-1β) and the hepatocyte transporters such as Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) and cholesterol 7α-hydroxylase (Cyp7a1) were investigated by western blotting. The results demonstrated that paeoniflorin could decrease serum ALT, AST, ALP, γ-GT, TBIL, DBIL and TBA in ANIT-treated rats. Histological examination revealed that rats treated with paeoniflorin represented fewer neutrophils infiltration, edema and necrosis in liver tissue compared with ANIT rats. Moreover, paeoniflorin significantly reduced the over expressions of NF-κB and IL-1β induced by ANIT in liver tissue. In addition, the relative protein expressions of NTCP, BSEP, MRP2 but not Cyp7a1 were also restored by paeoniflorin. The potential mechanism of paeoniflorin in alleviating ANIT-induced cholestasis seems to be related to reduce the over expressions of NF-κB and hepatocyte transporters such as NTCP, BSEP as well as MRP2.
Collapse
Affiliation(s)
- Yanling Zhao
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China.
| | - Xuan He
- Department of Pharmacy, Xindu District Shibantan Public Hospital, Chengdu, People's Republic of China
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu,People's Republic of China
| | - Jianxia Wen
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu,People's Republic of China
| | - Pengyan Li
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Jiabo Wang
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Ruisheng Li
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Yun Zhu
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Shizhang Wei
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Haotian Li
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Xuelin Zhou
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Kun Li
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Honghong Liu
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Xiaohe Xiao
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China.
| |
Collapse
|
56
|
Wang L, Wu G, Wu F, Jiang N, Lin Y. Geniposide attenuates ANIT-induced cholestasis through regulation of transporters and enzymes involved in bile acids homeostasis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:178-185. [PMID: 27988401 DOI: 10.1016/j.jep.2016.12.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/29/2016] [Accepted: 12/14/2016] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GE) is one of the major iridoid glycosides isolated from the fruit of Gardenia jasminoides Ellis that has been used to treat hepatic disorders including cholestasis. However, the underlying mechanisms for GE ameliorating the reduction in bile acids accumulation by α-naphthylisothiocyanate (ANIT) remain unclear. AIM OF THE STUDY The purpose of this study is to characterize the efficacy of GE in regulation of bile acids uptake, synthesis, metabolism, and transport in ANIT-induced rats. MATERIALS AND METHODS Sprague-Dawley rats were orally administrated with vehicle, GE (25, 50, and 100mg/kg), and ursodeoxycholic acid (UDCA) (60mg/kg) once daily for seven days. On the fifth day, a single dose of ANIT (75mg/kg) was administrated via oral gavage. Blood biochemical determination, bile flow rate and liver histopathology were measured to evaluate the protective effect of GE. The mRNA expressions and protein levels of transporters and enzymes involved in bile acids homeostasis were determined by quantitative real-time polymerase chain reaction (PCR) and western blot to study the underlying mechanism of GE against ANIT-induced rats. RESULTS GE (25, 50, and 100mg/kg, po) dose-dependently prevented ANIT-induced changes in serum markers for liver injury. GE treatment reduced basolateral bile acids uptake via repression of OATP2 (P<0.05). Bile acids biosynthesis was decreased through down-regulation of CYP7A1, CYP8B1, and CYP27A1 (P<0.05). GE significantly increased canalicular bile acids secretion via BSEP (P<0.05), subsequently stimulating bile flow during cholestasis. GE also markedly enhanced mRNA level of basolateral transporter OSTβ (P<0.01). Bile acids transported to the plasma were cleared into the urine, resulting in down-regulation of plasma bile acids. However, GE did not alter the mRNA levels of CYP3A2, UGT1A1 and SULT2A1. Furthermore, the gene and protein expression analysis demonstrated activation of FXR, PXR, and SHP after GE administration. CONCLUSION GE attenuates ANIT-induced hepatotoxicity and cholestasis in rats, due to regulation enzymes and transporters responsible for bile acids homeostasis.
Collapse
Affiliation(s)
- Lingling Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Guixin Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Nan Jiang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Yining Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
57
|
Upregulation of PDZK1 by Calculus Bovis Sativus May Play an Important Role in Restoring Biliary Transport Function in Intrahepatic Cholestasis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1640187. [PMID: 28133487 PMCID: PMC5241494 DOI: 10.1155/2017/1640187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/02/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023]
Abstract
Intrahepatic cholestasis is a main cause of hepatic accumulation of bile acids leading to liver injury, fibrosis, and liver failure. Our previous studies proved that Calculus Bovis Sativus (CBS) can restore biliary transport function through upregulating the multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP) in 17α-ethynylestradiol- (EE-) induced intrahepatic cholestasis rats. The regulation mechanism of CBS on these transporters, however, remains unclear. This study was designed to evaluate the possible relationship between the effect of CBS on transport activities and the regulation of CBS on the expression of PDZK1, a mainly scaffold protein which can regulate MRP2 and BCRP. Intrahepatic cholestasis model was induced in rats with injection of EE for five consecutive days and then the biliary excretion rates and cumulative biliary excretions were measured. The mRNA and protein expression levels of PDZK1 were detected by reverse transcription-quantitative real-time polymerase chain reaction, western blot, and immunohistochemical analysis. When treated with CBS, cumulative biliary excretions and mRNA and protein expressions of PDZK1 were significantly increased in intrahepatic cholestasis rats. This study demonstrated that CBS exerted a beneficial effect on EE-induced intrahepatic cholestasis rats by restoring biliary transport function, which may result from the upregulation of PDZK1 expression.
Collapse
|
58
|
Tang X, Yang Q, Yang F, Gong J, Han H, Yang L, Wang Z. Target profiling analyses of bile acids in the evaluation of hepatoprotective effect of gentiopicroside on ANIT-induced cholestatic liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:63-71. [PMID: 27582267 DOI: 10.1016/j.jep.2016.08.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 07/05/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gentiopicroside (GPS), one of iridoid glucoside representatives, is the most potential active component in Gentiana rigescens Franch. ex Hemsl and Gentiana macrophylla Pall. These two herbs have been used to treat jaundice and other hepatic and billiary diseases in traditional Chinese medicine for thousands of years. AIM OF THE STUDY This study aimed to investigate the protective effects and mechanisms of GPS on α-naphthylisothiocyanate (ANIT) induced cholestatic liver injury in mice. MATERIALS AND METHODS Mice were treated with GPS (130mg/kg, ig) for 5 consecutive days. On the third day, mice were given a single dose of Alpha-naphthylisothiocyanate (75mg/kg, ig). Serum biochemical markers and individual bile acids in serum, liver, urine and feces were measured at different time points after ANIT administration. The expression of hepatic bile acid synthesis, uptake and transporter genes as well as ileum bile acid transporter genes were assayed. RESULTS In this study, ANIT exposure resulted in serious cholestasis with liver injury, which was demonstrated by dramatically increased serum levels of ALT, ALP, TBA and TBIL along with TCA CA, MCAs and TMCAs accumulation in both liver and serum. Furthermore, ANIT significantly decreased bile acid synthesis related gene expressions, and increased expression of bile acid transporters in liver. Continuous treatment with GPS attenuated ANIT-induced acute cholestasis as well as liver injury and correct the dyshomeostasis of bile acids induced by ANIT. Our data showed that GPS significantly upregulated the hepatic mRNA levels of synthesis enzymes (Cyp8b1 and Cyp27a1) and transporters (Mrp4 Mdr1 and Ost-β) as well as ileal bile acid circulation mediators (Asbt and Fgf15), accompanied by serum and hepatic bile acid levels decrease and further urinary and fecal bile acid levels increase. CONCLUSION GPS can change bile acids metabolism which highlights its importance in mitigating cholestasis, resulting in the marked decrease of intracellular bile acid pool back toward basal levels. And the protective mechanism was associated with regulation of bile acids-related transporters, but the potential mechanism warrants further investigation.
Collapse
Affiliation(s)
- Xiaowen Tang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qiaoling Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Fan Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Junting Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Han Han
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
59
|
Role of Inflammatory and Oxidative Stress, Cytochrome P450 2E1, and Bile Acid Disturbance in Rat Liver Injury Induced by Isoniazid and Lipopolysaccharide Cotreatment. Antimicrob Agents Chemother 2016; 60:5285-93. [PMID: 27324775 DOI: 10.1128/aac.00854-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/11/2016] [Indexed: 12/22/2022] Open
Abstract
Isoniazid (INH) remains the core drug in tuberculosis management, but serious hepatotoxicity and potentially fatal liver injury continue to accompany INH consumption. Among numerous theories that have been established to explain INH-induced liver injury, an inflammatory stress theory has recently been widely used to explain the idiosyncrasy. Inflammatory stress usually sensitizes tissues to a drug's toxic consequences. Therefore, the present study was conducted to verify whether bacterial lipopolysaccharide (LPS)-induced inflammation may have a role in enhancing INH hepatotoxicity. While single INH or LPS administration showed no major toxicity signs, INH-LPS cotreatment intensified liver toxicity. Both blood biomarkers and histological evaluations clearly showed positive signs of severe liver damage accompanied by massive necrosis, inflammatory infiltration, and hepatic steatosis. Furthermore, elevated serum levels of bile acid associated with the repression of bile acid synthesis and transport regulatory parameters were observed. Moreover, the principal impact of cytochrome P450 2E1 (CYP2E1) on INH toxicity could be anticipated, as its protein expression showed enormous increases in INH-LPS-cotreated animals. Furthermore, the crucial role of CYP2E1 in the production of reactive oxygen species (ROS) was clearly obvious in the repression of hepatic antioxidant parameters. In summary, these results confirmed that this LPS-induced inflammation model might prove valuable in revealing the hepatotoxic mechanisms of INH and the crucial role played by CYP2E1 in the initiation and propagation of INH-induced liver damage, information which could be very useful to clinicians in understanding the pathogenesis of drug-induced liver injury.
Collapse
|
60
|
Yuan ZQ, Li KW. Role of farnesoid X receptor in cholestasis. J Dig Dis 2016; 17:501-509. [PMID: 27383832 DOI: 10.1111/1751-2980.12378] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/23/2016] [Accepted: 07/03/2016] [Indexed: 12/11/2022]
Abstract
The nuclear receptor farnesoid X receptor (FXR) plays an important role in physiological bile acid synthesis, secretion and transport. Defects of FXR regulation in these processes can cause cholestasis and subsequent pathological changes. FXR regulates the synthesis and uptake of bile acid via enzymes. It also increases bile acid solubility and elimination by promoting conjugation reactions and exports pump expression in cholestasis. The changes in bile acid transporters are involved in cholestasis, which can result from the mutations of transporter genes or acquired dysfunction of transport systems, such as inflammation-induced intrahepatic cholestasis. The modulation function of FXR in extrahepatic cholestasis is not identical to that in intrahepatic cholestasis, but the discrepancy may be reduced over time. In extrahepatic cholestasis, increasing biliary pressure can induce bile duct proliferation and bile infarcts, but the absence of FXR may ameliorate them. This review provides an update on the function of FXR in the regulation of bile acid metabolism, its role in the pathophysiological process of cholestasis and the therapeutic use of FXR agonists.
Collapse
Affiliation(s)
- Zhi Qing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ke Wei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
61
|
Tan Z, Liu A, Luo M, Yin X, Song D, Dai M, Li P, Chu Z, Zou Z, Ma M, Guo B, Chen B. Geniposide Inhibits Alpha-Naphthylisothiocyanate-Induced Intrahepatic Cholestasis: The Downregulation of STAT3 and NFκB Signaling Plays an Important Role. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:721-36. [DOI: 10.1142/s0192415x16500397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Traditional medicinal formulation of Yin-zhi-huang (YZH) is widely used in the clinic for the treatment of jaundice and chronic liver diseases in East Asian countries. However, the pharmacologically active components of YZH and the underlying mechanism are still unknown. Geniposide (GEN) was recently identified as one of the most abundant circulating components in YZH. In this study, we investigated the protective effect of GEN against liver injuries induced by alpha-naphthylisothiocyanate (ANIT). 50[Formula: see text]mg/kg of GEN was administered to ICR mice once daily for 5 days, and challenge of ANIT 75[Formula: see text]mg/kg was performed on the 4th day. Blood and liver tissues were collected on day 6 and subjected to biochemical, histopathological and pathway analyses. The biochemical and pathological findings showed that GEN almost totally attenuated ANIT-induced cholestasis and liver injury compared with the vehicle/ANIT group. The altered gene transcription related to bile acid metabolism and transport was normalized by co-treatment with GEN. The expressions of tumor necrosis factor-[Formula: see text] and the suppressor of cytokine signaling 3 were significantly decreased in the GEN/ANIT group. Western blot revealed that GEN inhibited the activation and expression of STAT3 and NF[Formula: see text]B. These data suggest GEN inhibits ANIT-induced hepatotoxicity. The protective effect is associated with the downregulation of STAT3 and NF[Formula: see text]B signaling.
Collapse
Affiliation(s)
- Zhen Tan
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Min Luo
- Medical School of Ningbo University, Ningbo 315211, China
| | - Xuan Yin
- Medical School of Ningbo University, Ningbo 315211, China
| | - Danjun Song
- Medical School of Ningbo University, Ningbo 315211, China
| | - Manyun Dai
- Medical School of Ningbo University, Ningbo 315211, China
| | - Pengxu Li
- Medical School of Ningbo University, Ningbo 315211, China
| | - Zanbo Chu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Zuquan Zou
- Medical School of Ningbo University, Ningbo 315211, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| |
Collapse
|
62
|
Chen H, Huang X, Min J, Li W, Zhang R, Zhao W, Liu C, Yi L, Mi S, Wang N, Wang Q, Zhu C. Geniposidic acid protected against ANIT-induced hepatotoxity and acute intrahepatic cholestasis, due to Fxr-mediated regulation of Bsep and Mrp2. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:197-207. [PMID: 26723467 DOI: 10.1016/j.jep.2015.12.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/12/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposidic acid (GPA) is the main constituent of Gardenia jasminoides Ellis (Rubiaceae), which has long been used to treat inflammation, jaundice and hepatic disorders. The cholagogic effect of Gardenia jasminoides Ellis (Rubiaceae) and GPA have been widely reported, but the underlying occurrence mechanism remains unclear. AIM OF THE STUDY This investigation was designed to evaluate the hepatoprotection effect and potential mechanisms of GPA derived from Gardenia jasminoides Ellis (Rubiaceae) on fighting against α-naphthylisothiocyanate (ANIT) caused liver injury with acute intrahepatic cholestasis. MATERIALS AND METHODS Sprague-Dawley (SD) rats were intragastrically (i.g.) administered with the GPA (100, 50 and 25mg/kg B.W. every 24h) for seven consecutive days, and then they were treated with ANIT (i.g. 65mg/kg once in the 5th day) which induced liver injury with acute intrahepatic cholestasis. Serum and bile biochemical analysis, bile flow rate and liver histopathology were measured to evaluate the protective effect of GPA fight against ANIT treatment. The protein and mRNA expression levels of farnesoid X receptor (Fxr), bile-salt export pump (Bsep), multidrug resistance associated protein2 (Mrp2), were evaluated to study the effect of liver protection about GPA against ANIT induced hepatotoxicity and underlying mechanisms. RESULTS Some abnormalities were observed on ANIT treated rats including weight loss, reduced food intake and hair turned yellow. Obtained results demonstrated that at dose 100 and 50mg/kg B.W. (P<0.01) and 25mg/kg B.W. (P<0.05) of GPA pretreated dramatically prevented ANIT induced decreased in bile flow rate. Compared with ANIT treated group, the results of bile biochemical parameters about total bile acid (TBA) was increased by GPA at groups with any dose (P<0.01), glutathione (GSH) was increased significantly at high dose (P<0.01) and medium dose (P<0.05), total bilirubin (TB) was increased at high and medium dose (P<0.05), direct bilirubin (DB) was only increased at high dose (P<0.01). Serum levels of glutamic-Oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), γ-glutamyltranspeptidase (γ-GT), TB, DB and TBA in comparison with ANIT treated group (P<0.01) were reduced by GPA (between 100 and 50mg/kg B.W.) pretreatment. Histopathology of the liver tissue showed that pathological damages and hepatic portal area filled with bile were relieved after GPA pretreatment compared with ANIT treated group. The protein and mRNA expression of Fxr, Bsep and Mrp2 were decreased in ANIT treated group. On the contrary, the protein and mRNA of Fxr, Bsep and Mrp2 were up regulated significantly pretreatment by GPA at dose of high and medium groups. On protein level of Bsep and Mrp2 the result shown no statistical difference in GPA (25mg/kg B.W.), but it was not same shown in mRNA level. CONCLUSION The results of this investigation have demonstrated that the GPA exerts a dose dependent hepatoprotection effect on ANIT induced liver damage with acute intrahepatic cholestasis in rats, which may due to Fxr mediated regulation of bile transporters like Bsep and Mrp2.
Collapse
Affiliation(s)
- Hao Chen
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Xiaotao Huang
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Jianbin Min
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Weirong Li
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Rong Zhang
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Wei Zhao
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China.
| | - Changhui Liu
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China.
| | - Lang Yi
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Suiqing Mi
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Ningsheng Wang
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Qi Wang
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Chenchen Zhu
- Institute of Clinical Pharmacology Biochemical Pharmacology Laboratory Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| |
Collapse
|
63
|
Luo Y, Wang Q, Zhang Y. A systems pharmacology approach to decipher the mechanism of danggui-shaoyao-san decoction for the treatment of neurodegenerative diseases. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:66-81. [PMID: 26680587 DOI: 10.1016/j.jep.2015.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/27/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neurodegenerative diseases (NDs) is a time-dependent course for a sequence of conditions that primarily impact the neurons in the human brain, ultimately, resulting in persistence and progressive degeneration and / or death of nerve cells and reduction of cognition and memory function. Currently, there are no therapeutic approaches to cure neurodegeneration, except certain medicines that temporarily alleviate symptoms, facilitating the improvement of a patients' quality of life. Danggui-shaoyao-san (DSS), as a famous Chinese herbal formula, has been widely used in the treatment of various illnesses, including neurodegenerative diseases. Although well-practiced in clinical medicine, the mechanisms involved in DSS for the treatment of neurodegenerative diseases remain elusive. MATERIALS AND METHODS In the present study, a novel systems pharmacology approach was developed to decipher the potential mechanism between DSS and neurodegenerative disorders, implicated in oral bioavailability screening, drug-likeness assessment, target identification and network analysis. RESULTS Based on a comprehensive systems approach, active compounds of DSS, relevant potential targets and targets associated with diseases were predicted. Active compounds, targets and diseases were used to construct biological networks, such as, compound-target interactions and target-disease networks, to decipher the mechanisms of DSS to address NDs. CONCLUSIONS Overall, a well-understood picture of DSS, hallmarked by multiple herbs-compounds-targets-pathway-cooperation networks for the treatment of NDs, was revealed. Notably, this systems pharmacology approach provided a novel in silico approach for the development paradigm of traditional Chinese medicine (TCM) and the generation of new strategies for the management of NDs.
Collapse
Affiliation(s)
- Yunxia Luo
- Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yongbin Zhang
- Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
64
|
Gu W, Geng C, Xue W, Wu Q, Chao J, Xu F, Sun H, Jiang L, Han Y, Zhang S. Characterization and function of the 3-hydroxy-3-methylglutaryl-CoA reductase gene in Alisma orientale (Sam.) Juz. and its relationship with protostane triterpene production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:378-389. [PMID: 26546781 DOI: 10.1016/j.plaphy.2015.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
Protostane triterpenes from Alisma orientale (Sam.) Juz. have exhibited distinct pharmacological properties that are currently in high demand. 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is considered the first rate-limiting enzyme in isoprenoid biosynthesis via the mevalonic acid (MVA) pathway. In this study, we cloned a full-length cDNA of A. orientale (Sam.) Juz. HMGR (AoHMGR; 2252 bp; GenBank accession no. KP342318) with an open reading frame (ORF) of 1809 bp. The deduced protein sequence contained four conserved motifs and exhibited homology with HMGR proteins from other plants. We next expressed the cloned gene in Escherichia coli BL21 (Rosetta) cells, collected the expressed products, and incubated those with 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) to determine enzymatic activity. GC/MS analysis revealed that the products were able to catalyze HMG-CoA and NADPH to form MVA. The purified protein was used to immunize New Zealand rabbits and prepare an antibody against AoHMGR. Western blot results demonstrated that the antibodies specifically recognized AoHMGR protein in A. orientale (Sam.) Juz. We then established a rapid test to detect AoHMGR protein in the plant, and found the tuber to be the most AoHMGR protein-abundant organ in A. orientale (Sam.) Juz. Furthermore, we detected the expression level of AoHMGR and contents of the main active component, Alisol B 23-acetate, at different growth phases of A. orientale (Sam.) Juz. A significant positive correlation was identified, indicating that AoHMGR represents a key enzyme in the synthetic pathway of protostane triterpenes.
Collapse
Affiliation(s)
- Wei Gu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Geng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenda Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianguo Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongmei Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ling Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuangquan Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
65
|
Wang JP, Zhang MY, Li B, Xia XM. Farnesyl X receptor expression in rat bile duct cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:5201-5206. [DOI: 10.11569/wcjd.v23.i32.5201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a rat model of bile duct cancer and detect farnesyl X receptor (FXR) expression in bile duct cancer tissues of this model, in order to provide a new method for the prevention and treatment of bile duct cancer.
METHODS: Seventy Wistar rats were randomly divided into either a control group or an experimental group, with 35 rats in each group. The control group was fed an ordinary diet, and the experimental group was fed a 3'-Me-DAB diet. After 20 wk, the bile duct cancer model was successfully established. Bile duct tissues were taken from rats of the control group and bile duct cancer tissues were taken from rats of the experimental group to detect the mRNA expression of FXR by real-time quantitative PCR (qRT-PCR) and protein expression by immunohistochemistry.
RESULTS: qRT-PCR analysis showed that the relative expression level of FXR in the bile duct tissues was significantly higher that in the bile duct cancer tissues. Immunohistochemistry showed that in the experimental group, the positive expression rate of FXR was 21.3%, significantly lower than 72.6% in the control group (χ2 = 10.17, P < 0.05).
CONCLUSION: The expression of FXR decreases significantly in rat bile duct cancer, which suggests that drugs targeting FXR may be a new therapeutic strategy for bile duct cancer.
Collapse
|
66
|
Zhang MY, Wang JP, Xia XM. FXR expression in liver tissue of hyperlipidemia rats. Shijie Huaren Xiaohua Zazhi 2015; 23:3755-3760. [DOI: 10.11569/wcjd.v23.i23.3755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a rat model of hyperlipidemia, detect the expression of farnesyl X receptor (FXR) in the liver tissue of model rats, and explore the role of FXR in bile acid and cholesterol metabolism in hyperlipidemia rats.
METHODS: Sixty Wistar rats were randomly divided into two groups, a control group that was fed an ordinary diet, and an experimental group that was fed a high fat diet. Regular detection of cholesterol and bile acid contents was conducted to assess whether the hyperlipidemia model was successfully established. After successful induction of hyperlipidemia, liver tissue samples were taken to detect the mRNA expression of FXR by reverse transcription-polymerase chain reaction (RT-PCR) and protein expression by immunohistochemistry.
RESULTS: In the experiment group, the contents of cholesterol and bile acid were significantly higher than those in the control group. RT-PCR analysis showed that the mRNA expression of FXR in the liver tissue was significantly higher in the experimental group than in the control group. Immunohistochemistry showed that in the experimental group, the positive expression rate of FXR was 79%, significantly higher than 14.3% in the control group (χ2 = 10.862, P < 0.05).
CONCLUSION: FXR expression increases significantly in rats with hyperlipidemia, which suggests that FXR may be used as a target for treatment of hyperlipidemia and related diseases.
Collapse
|
67
|
Meng Q, Chen X, Wang C, Liu Q, Sun H, Sun P, Huo X, Liu Z, Yao J, Liu K. Protective Effects of Alisol B 23-Acetate Via Farnesoid X Receptor-Mediated Regulation of Transporters and Enzymes in Estrogen-Induced Cholestatic Liver Injury in Mice. Pharm Res 2015; 32:3688-98. [DOI: 10.1007/s11095-015-1727-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022]
|