51
|
Lin YW, Lee B, Liu PS, Wei LN. Receptor-Interacting Protein 140 Orchestrates the Dynamics of Macrophage M1/M2 Polarization. J Innate Immun 2015; 8:97-107. [PMID: 26228026 DOI: 10.1159/000433539] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/25/2015] [Indexed: 12/18/2022] Open
Abstract
Macrophage classical (M1) versus alternative (M2) polarization is critical for the homeostatic control of innate immunity. Uncontrolled macrophage polarization is frequently implicated in diseases. This study reports a new functional role for receptor-interacting protein 140 (RIP140) in regulating this phenotypic switch. RIP140 is required for M1 activation, and its degradation is critical to LPS-induced endotoxin tolerance (ET). Here, we found that failure to establish RIP140 degradation-mediated ET prevents M2 polarization, and reducing RIP140 level facilitates an M1/M2 switch, resulting in more efficient wound healing in animal models generated with either transgenic or bone marrow transplant procedures. The M2-suppressive effect is elicited by a new function of RIP140 that, in macrophages exposed to M2 cues, is exported to cytosol, forming complexes with CAPNS1 (calpain regulatory subunit) to activate calpain 1/2, that activates PTP1B phosphatase. The activated PTP1B then reduces STAT6 phosphorylation, thereby suppressing the efficiency of M2 polarization. It is concluded that RIP140 plays dual roles in regulating the M1-M2 phenotype switch: the first, in the nucleus, is an M1 enhancer and the second, in the cytosol, is an M2 suppressor. Modulating the level and/or subcellular distribution of RIP140 can be a new therapeutic strategy for diseases where inflammatory/anti-inflammatory responses are critical.
Collapse
Affiliation(s)
- Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minn., USA
| | | | | | | |
Collapse
|
52
|
Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, Wingett SW, Andrews S, Grey W, Ewels PA, Herman B, Happe S, Higgs A, LeProust E, Follows GA, Fraser P, Luscombe NM, Osborne CS. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 2015; 47:598-606. [PMID: 25938943 DOI: 10.1038/ng.3286] [Citation(s) in RCA: 687] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/02/2015] [Indexed: 12/14/2022]
Abstract
Transcriptional control in large genomes often requires looping interactions between distal DNA elements, such as enhancers and target promoters. Current chromosome conformation capture techniques do not offer sufficiently high resolution to interrogate these regulatory interactions on a genomic scale. Here we use Capture Hi-C (CHi-C), an adapted genome conformation assay, to examine the long-range interactions of almost 22,000 promoters in 2 human blood cell types. We identify over 1.6 million shared and cell type-restricted interactions spanning hundreds of kilobases between promoters and distal loci. Transcriptionally active genes contact enhancer-like elements, whereas transcriptionally inactive genes interact with previously uncharacterized elements marked by repressive features that may act as long-range silencers. Finally, we show that interacting loci are enriched for disease-associated SNPs, suggesting how distal mutations may disrupt the regulation of relevant genes. This study provides new insights and accessible tools to dissect the regulatory interactions that underlie normal and aberrant gene regulation.
Collapse
Affiliation(s)
- Borbala Mifsud
- 1] The Francis Crick Institute, London, UK. [2] UCL Genetics Institute, University College London, London, UK
| | | | - Alice N Young
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Lauren Ferreira
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | | | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, UK
| | - William Grey
- Department of Medical and Molecular Genetics, King's College London School of Medicine, London, UK
| | - Philip A Ewels
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | - Bram Herman
- Diagnostics and Genomics Division, Agilent Technologies, Santa Clara, California, USA
| | - Scott Happe
- Diagnostics and Genomics Division, Agilent Technologies, Santa Clara, California, USA
| | - Andy Higgs
- Diagnostics and Genomics Division, Agilent Technologies, Santa Clara, California, USA
| | - Emily LeProust
- Diagnostics and Genomics Division, Agilent Technologies, Santa Clara, California, USA
| | - George A Follows
- Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | - Nicholas M Luscombe
- 1] The Francis Crick Institute, London, UK. [2] UCL Genetics Institute, University College London, London, UK. [3] Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Cameron S Osborne
- 1] Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK. [2] Department of Medical and Molecular Genetics, King's College London School of Medicine, London, UK
| |
Collapse
|
53
|
Hu F, Wang M, Xiao T, Yin B, He L, Meng W, Dong M, Liu F. miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140. Diabetes 2015; 64:2056-68. [PMID: 25576051 PMCID: PMC4876748 DOI: 10.2337/db14-1117] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/29/2014] [Indexed: 12/20/2022]
Abstract
Members of the microRNA (miR)-30 family have been reported to promote adipogenesis and inhibit osteogenesis, yet their role in the regulation of thermogenesis remains unknown. In this study, we show that miR-30b/c concentrations are greatly increased during adipocyte differentiation and are stimulated by cold exposure or the β-adrenergic receptor activator. Overexpression and knockdown of miR-30b and -30c induced and suppressed, respectively, the expression of thermogenic genes such as UCP1 and Cidea in brown adipocytes. Forced expression of miR-30b/c also significantly increased thermogenic gene expression and mitochondrial respiration in primary adipocytes derived from subcutaneous white adipose tissue, demonstrating a promoting effect of miRNAs on the development of beige fat. In addition, knockdown of miR-30b/c repressed UCP1 expression in brown adipose tissue in vivo. miR-30b/c targets the 3'-untranslated region of the receptor-interacting protein 140 (RIP140), and overexpression of miR-30b/c significantly reduced RIP140 expression. Consistent with RIP140 as a target of miR-30b/c in regulating thermogenic gene expression, overexpression of RIP140 greatly suppressed the promoting effect of miR-30b/c on the expression of UCP1 and Cidea in brown adipocytes. Taken together, the data from our study identify miR-30b/c as a key regulator of thermogenesis and uncover a new mechanism underlying the regulation of brown adipose tissue function and the development of beige fat.
Collapse
Affiliation(s)
- Fang Hu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Key Laboratory of Diabetes Immunology, Ministry of Education, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Wang
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ting Xiao
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Key Laboratory of Diabetes Immunology, Ministry of Education, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bangqi Yin
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linyun He
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Key Laboratory of Diabetes Immunology, Ministry of Education, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Meng
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meijuan Dong
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Key Laboratory of Diabetes Immunology, Ministry of Education, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Key Laboratory of Diabetes Immunology, Ministry of Education, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
54
|
Abstract
Atherosclerosis is characterised by the accumulation of lipid-laden macrophages in atherosclerotic lesions and occurs preferentially at arterial branching points, which are prone to inflammation during hyperlipidaemic stress. The increased susceptibility at branching sites of arteries is attributable to poor adaptation of arterial endothelial cells to disturbed blood flow. In the past 5 years, several studies have provided mechanistic insights into the regulatory roles of microRNAs (miRNAs) in inflammatory activation, proliferation, and regeneration of endothelial cells during this maladaptive process. The intercellular transfer of vesicle-bound miRNAs contributes to arterial homeostasis, and the combinatorial effect of multiple miRNAs controls the unresolved inflammation orchestrated by macrophages in atherosclerotic lesions. In this Review, we highlight the miRNA-dependent regulation of the endothelial phenotype and the proliferative reserve that occurs in response to altered haemodynamic conditions as a prerequisite for atherogenic inflammation. In particular, we discuss the regulation of transcriptional modules by miRNAs and the protective role of complementary strand pairs, which encompasses remote miRNA signalling. In addition, we review the roles of miRNA tandems and describe the relevance of RNA target selection and competition to the behaviour of lesional macrophages. Elucidating miRNA-mediated regulatory mechanisms can aid the development of novel diagnostic and therapeutic strategies for atherosclerosis.
Collapse
|
55
|
RIP140 as a novel therapeutic target in the treatment of atherosclerosis. J Mol Cell Cardiol 2015; 81:136-8. [PMID: 25701715 DOI: 10.1016/j.yjmcc.2015.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 11/23/2022]
|
56
|
Abstract
Skeletal and cardiac muscles play key roles in the regulation of systemic energy homeostasis and display remarkable plasticity in their metabolic responses to caloric availability and physical activity. In this Perspective we discuss recent studies highlighting transcriptional mechanisms that govern systemic metabolism by striated muscles. We focus on the participation of the Mediator complex in this process, and suggest that tissue-specific regulation of Mediator subunits impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Kedryn K Baskin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Benjamin R Winders
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.
| |
Collapse
|
57
|
Lin YW, Liu PS, Adhikari N, Hall JL, Wei LN. RIP140 contributes to foam cell formation and atherosclerosis by regulating cholesterol homeostasis in macrophages. J Mol Cell Cardiol 2015; 79:287-94. [PMID: 25528964 PMCID: PMC4302032 DOI: 10.1016/j.yjmcc.2014.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 11/26/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022]
Abstract
Atherosclerosis, a syndrome with abnormal arterial walls, is one of the major causes that lead to the development of various cardiovascular diseases. The key initiator of atherosclerosis is cholesterol accumulation. The uncontrolled cholesterol deposition, mainly involving low-density lipoprotein (LDL), causes atheroma plaque formation, which initiates chronic inflammation due to the recruitment of inflammatory cells such as macrophages. Macrophages scavenge excess peripheral cholesterol and transport intracellular cholesterol to high-density lipoprotein (HDL) for excretion or storage. Cholesterol-laden macrophage-derived foam cell formation is the main cause of atherogenesis. It is critical to understand the regulatory mechanism of cholesterol homeostasis in the macrophage in order to prevent foam cells formation and further develop novel therapeutic strategies against atherosclerosis. Here we identified a protein, RIP140 (receptor interacting protein 140), which enhances macrophage-derived foam cell formation by reducing expression of reverse cholesterol transport genes, A TP-binding membrane cassette transporter A-1 (ABCA1) and ATP-binding membrane cassette transporter G-1 (ABCG1). In animal models, we found that reducing RIP140 levels by crossing macrophage-specific RIP140 knockdown (MϕRIP140KD) mice with ApoE null mice effectively ameliorates high-cholesterol diet-induced atherosclerosis. Our data suggest that reducing RIP140 levels in macrophages significantly inhibits atherosclerosis, along with markers of inflammation and the number of macrophages in a western diet fed ApoE null mouse. This study provides a proof-of-concept for RIP140 as a risk biomarker of, and a therapeutic target for, atherosclerosis.
Collapse
Affiliation(s)
- Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Pu-Ste Liu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Neeta Adhikari
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jennifer L Hall
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
58
|
He Y, Zhang L, Li Z, Gao H, Yue Z, Liu Z, Liu X, Feng X, Liu P. RIP140 triggers foam-cell formation by repressing ABCA1/G1 expression and cholesterol efflux via liver X receptor. FEBS Lett 2015; 589:455-60. [PMID: 25616132 DOI: 10.1016/j.febslet.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/26/2014] [Accepted: 01/02/2015] [Indexed: 12/23/2022]
Abstract
Receptor-interacting protein 140 (RIP140) is a multifunctional coregulator of lipid metabolism and inflammation. However, the potential role of RIP140 in atherosclerosis remains unknown. The present study investigated the impact of RIP140 on foam cell formation, a critical step in pathogenesis of atherosclerosis. The expression of RIP140 was increased in foam cells. RIP140 overexpression resulted in decreased cholesterol efflux in macrophages and their concomitant differentiation into foam cells. Moreover, RIP140 negatively regulated the macrophage expression of ATP-binding cassette transporters A1 and G1 (ABCA1/G1), by suppressing the expression and activity of liver X receptor (LXR). These findings shed light onto the contribution of RIP140 to the development and progression of atherosclerosis, and suggest a novel therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yanhong He
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Luankun Zhang
- Department of Pharmacy, Sun Yat-sen University cancer center, Guangzhou 510060, PR China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou 510006, PR China
| | - Hui Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Pharmacology, School of Medicine, Jishou University, Jishou, PR China
| | - Zhongbao Yue
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou 510006, PR China
| | - Zhiping Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xueping Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xiaojun Feng
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou 510006, PR China.
| |
Collapse
|
59
|
Vernia S, Cavanagh-Kyros J, Garcia-Haro L, Sabio G, Barrett T, Jung DY, Kim JK, Xu J, Shulha HP, Garber M, Gao G, Davis RJ. The PPARα-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Cell Metab 2014; 20:512-25. [PMID: 25043817 PMCID: PMC4156535 DOI: 10.1016/j.cmet.2014.06.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/30/2014] [Accepted: 06/04/2014] [Indexed: 12/31/2022]
Abstract
The cJun NH2-terminal kinase (JNK) stress signaling pathway is implicated in the metabolic response to the consumption of a high-fat diet, including the development of obesity and insulin resistance. These metabolic adaptations involve altered liver function. Here, we demonstrate that hepatic JNK potently represses the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). Therefore, JNK causes decreased expression of PPARα target genes that increase fatty acid oxidation and ketogenesis and promote the development of insulin resistance. We show that the PPARα target gene fibroblast growth factor 21 (Fgf21) plays a key role in this response because disruption of the hepatic PPARα-FGF21 hormone axis suppresses the metabolic effects of JNK deficiency. This analysis identifies the hepatokine FGF21 as a critical mediator of JNK signaling in the liver.
Collapse
Affiliation(s)
- Santiago Vernia
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julie Cavanagh-Kyros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Luisa Garcia-Haro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guadalupe Sabio
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Tamera Barrett
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Dae Young Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jia Xu
- Bioinformatics Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hennady P Shulha
- Bioinformatics Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Manuel Garber
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA.
| |
Collapse
|
60
|
Rosell M, Nevedomskaya E, Stelloo S, Nautiyal J, Poliandri A, Steel JH, Wessels LFA, Carroll JS, Parker MG, Zwart W. Complex formation and function of estrogen receptor α in transcription requires RIP140. Cancer Res 2014; 74:5469-79. [PMID: 25145671 DOI: 10.1158/0008-5472.can-13-3429] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RIP140 is a transcriptional coregulator involved in energy homeostasis, ovulation, and mammary gland development. Although conclusive evidence is lacking, reports have implicated a role for RIP140 in breast cancer. Here, we explored the mechanistic role of RIP140 in breast cancer and its involvement in estrogen receptor α (ERα) transcriptional regulation of gene expression. Using ChIP-seq analysis, we demonstrate that RIP140 shares more than 80% of its binding sites with ERα, colocalizing with its interaction partners FOXA1, GATA3, p300, CBP, and p160 family members at H3K4me1-demarcated enhancer regions. RIP140 is required for ERα-complex formation, ERα-mediated gene expression, and ERα-dependent breast cancer cell proliferation. Genes affected following RIP140 silencing could be used to stratify tamoxifen-treated breast cancer cohorts, based on clinical outcome. Importantly, this gene signature was only effective in endocrine-treated conditions. Cumulatively, our data suggest that RIP140 plays an important role in ERα-mediated transcriptional regulation in breast cancer and response to tamoxifen treatment.
Collapse
Affiliation(s)
- Meritxell Rosell
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ekaterina Nevedomskaya
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands. Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Suzan Stelloo
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jaya Nautiyal
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ariel Poliandri
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jennifer H Steel
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jason S Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Malcolm G Parker
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Wilbert Zwart
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
61
|
Manavathi B, Samanthapudi VSK, Gajulapalli VNR. Estrogen receptor coregulators and pioneer factors: the orchestrators of mammary gland cell fate and development. Front Cell Dev Biol 2014; 2:34. [PMID: 25364741 PMCID: PMC4207046 DOI: 10.3389/fcell.2014.00034] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022] Open
Abstract
The steroid hormone, 17β-estradiol (E2), plays critical role in various cellular processes such as cell proliferation, differentiation, migration and apoptosis, and is essential for reproduction and mammary gland development. E2 actions are mediated by two classical nuclear hormone receptors, estrogen receptor α and β (ERs). The activity of ERs depends on the coordinated activity of ligand binding, post-translational modifications (PTMs), and importantly the interaction with their partner proteins called “coregulators.” Because coregulators are proved to be crucial for ER transcriptional activity, and majority of breast cancers are ERα positive, an increased interest in the field has led to the identification of a large number of coregulators. In the last decade, gene knockout studies using mouse models provided impetus to our further understanding of the role of these coregulators in mammary gland development. Several coregulators appear to be critical for terminal end bud (TEB) formation, ductal branching and alveologenesis during mammary gland development. The emerging studies support that, coregulators along with the other ER partner proteins called “pioneer factors” together contribute significantly to E2 signaling and mammary cell fate. This review discusses emerging themes in coregulator and pioneer factor mediated action on ER functions, in particular their role in mammary gland cell fate and development.
Collapse
Affiliation(s)
- Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | | | | |
Collapse
|
62
|
Primary vitamin D receptor target genes as biomarkers for the vitamin D3 status in the hematopoietic system. J Nutr Biochem 2014; 25:875-84. [DOI: 10.1016/j.jnutbio.2014.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/10/2014] [Accepted: 04/02/2014] [Indexed: 12/16/2022]
|
63
|
Ryynänen J, Neme A, Tuomainen TP, Virtanen JK, Voutilainen S, Nurmi T, de Mello VDF, Uusitupa M, Carlberg C. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals. Mol Nutr Food Res 2014; 58:2036-45. [DOI: 10.1002/mnfr.201400291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 04/30/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Jussi Ryynänen
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Jyrki K. Virtanen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Sari Voutilainen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Tarja Nurmi
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Vanessa D. F. de Mello
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
64
|
Izzo A, Manco R, Bonfiglio F, Calì G, De Cristofaro T, Patergnani S, Cicatiello R, Scrima R, Zannini M, Pinton P, Conti A, Nitsch L. NRIP1/RIP140 siRNA-mediated attenuation counteracts mitochondrial dysfunction in Down syndrome. Hum Mol Genet 2014; 23:4406-19. [PMID: 24698981 DOI: 10.1093/hmg/ddu157] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial dysfunction, which is consistently observed in Down syndrome (DS) cells and tissues, might contribute to the severity of the DS phenotype. Our recent studies on DS fetal hearts and fibroblasts have suggested that one of the possible causes of mitochondrial dysfunction is the downregulation of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α or PPARGC1A)--a key modulator of mitochondrial function--and of several nuclear-encoded mitochondrial genes (NEMGs). Re-analysis of publicly available expression data related to manipulation of chromosome 21 (Hsa21) genes suggested the nuclear receptor interacting protein 1 (NRIP1 or RIP140) as a good candidate Hsa21 gene for NEMG downregulation. Indeed, NRIP1 is known to affect oxidative metabolism and mitochondrial biogenesis by negatively controlling mitochondrial pathways regulated by PGC-1α. To establish whether NRIP1 overexpression in DS downregulates both PGC-1α and NEMGs, thereby causing mitochondrial dysfunction, we used siRNAs to decrease NRIP1 expression in trisomic human fetal fibroblasts. Levels of PGC-1α and NEMGs were increased and mitochondrial function was restored, as shown by reactive oxygen species decrease, adenosine 5'-triphosphate (ATP) production and mitochondrial activity increase. These findings indicate that the Hsa21 gene NRIP1 contributes to the mitochondrial dysfunction observed in DS. Furthermore, they suggest that the NRIP1-PGC-1α axe might represent a potential therapeutic target for restoring altered mitochondrial function in DS.
Collapse
Affiliation(s)
- Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Rosanna Manco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Gaetano Calì
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Tiziana De Cristofaro
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Simone Patergnani
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara 44100, Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy
| | - Mariastella Zannini
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara 44100, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| |
Collapse
|
65
|
Abstract
Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge.
Collapse
Affiliation(s)
- Christopher J. Millard
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
- Correspondence to:
| |
Collapse
|
66
|
Lapierre M, Docquier A, Castet-Nicolas A, Jalaguier S, Teyssier C, Augereau P, Cavaillès V. Dialogue between estrogen receptor and E2F signaling pathways: The transcriptional coregulator RIP140 at the crossroads. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.410a3006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|