51
|
Binder H, Hoffman L, Zak L, Tiefenboeck T, Aldrian S, Albrecht C. Clinical evaluation after matrix-associated autologous chondrocyte transplantation : a comparison of four different graft types. Bone Joint Res 2021; 10:370-379. [PMID: 34189928 PMCID: PMC8333036 DOI: 10.1302/2046-3758.107.bjr-2020-0370.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims The aim of this retrospective study was to determine if there are differences in short-term clinical outcomes among four different types of matrix-associated autologous chondrocyte transplantation (MACT). Methods A total of 88 patients (mean age 34 years (SD 10.03), mean BMI 25 kg/m2 (SD 3.51)) with full-thickness chondral lesions of the tibiofemoral joint who underwent MACT were included in this study. Clinical examinations were performed preoperatively and 24 months after transplantation. Clinical outcomes were evaluated using the International Knee Documentation Committee (IKDC) Subjective Knee Form, the Brittberg score, the Tegner Activity Scale, and the visual analogue scale (VAS) for pain. The Kruskal-Wallis test by ranks was used to compare the clinical scores of the different transplant types. Results The mean defect size of the tibiofemoral joint compartment was 4.28 cm2 (SD 1.70). In total, 11 patients (12.6%) underwent transplantation with Chondro-Gide (matrix-associated autologous chondrocyte implantation (MACI)), 40 patients (46.0%) with Hyalograft C (HYAFF), 21 patients (24.1%) with Cartilage Regeneration System (CaReS), and 15 patients (17.2%) with NOVOCART 3D. The mean IKDC Subjective Knee Form score improved from 35.71 (SD 6.44) preoperatively to 75.26 (SD 18.36) after 24 months postoperatively in the Hyalograft group, from 35.94 (SD 10.29) to 71.57 (SD 16.31) in the Chondro-Gide (MACI) group, from 37.06 (SD 5.42) to 71.49 (SD 6.76) in the NOVOCART 3D group, and from 45.05 (SD 15.83) to 70.33 (SD 19.65) in the CaReS group. Similar improvements were observed in the VAS and Brittberg scores. Conclusion Two years postoperatively, there were no significant differences in terms of outcomes. Our data demonstrated that MACT, regardless of the implants used, resulted in good clinical improvement two years after transplantation for localized tibiofemoral defects. Cite this article: Bone Joint Res 2021;10(7):370–379.
Collapse
Affiliation(s)
- Harald Binder
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Lukas Hoffman
- First Orthopedic Department, Orthopedic Hospital Vienna Speising, Vienna, Austria
| | - Lukas Zak
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Tiefenboeck
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Silke Aldrian
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Christian Albrecht
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria.,First Orthopedic Department, Orthopedic Hospital Vienna Speising, Vienna, Austria
| |
Collapse
|
52
|
Das P, Mishra R, Devi B, Rajesh K, Basak P, Roy M, Roy P, Lahiri D, Nandi SK. Decellularized xenogenic cartilage extracellular matrix (ECM) scaffolds for the reconstruction of osteochondral defects in rabbits. J Mater Chem B 2021; 9:4873-4894. [PMID: 34095925 DOI: 10.1039/d1tb00314c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of decellularized native allogenic or xenogenic cartilaginous extracellular matrix (ECM) biomaterials is widely expanding in the fields of tissue engineering and regenerative medicine. In this study, we aimed to develop an acellular, affordable, biodegradable, easily available goat conchal cartilaginous ECM derived scaffolding biomaterial for repair and regeneration of osteochondral defects in rabbits. Cartilages harvested from freshly collected goat ears were decellularized using chemical agents, namely, hypotonic-hypertonic (HH) buffer and Triton X-100 solution, separately. The morphologies and ultrastructure orientations of the decellularized cartilages remained unaltered in spite of complete cellular loss. Furthermore, when the acellular cartilaginous ECMs were cultured with murine mesenchymal stem cells (MSCs) (C3H10T1/2 cells), cellular infiltration and proliferation were thoroughly monitored using SEM, DAPI and FDA stained images, whereas the MTT assay proved the biocompatibility of the matrices. The increasing amounts of secreted ECM proteins (collagen and sGAG) indicated successful chondrogenic differentiation of the MSCs in the presence of the treated cartilage samples. In vivo biocompatibility studies showed no significant immune response or tissue rejection in the treated samples but tissue necrosis in control samples after 3 months. Upon implantation of the constructs in rabbits' osteochondral defects for 3 months, the histological and micro-CT evaluation revealed significant enhancement and regeneration of neocartilage and subchondral bony tissues. The IGF-1 loaded cartilaginous constructs showed comparatively better healing response after 3 months. Our results showed that decellularized xenogenic cartilaginous biomaterials preserved the bioactivity and integrity of the matrices that also favored in vitro stem cell proliferation and chondrogenic differentiation and enabled osteochondral regeneration, thus paving a new way for articular cartilage reconstruction.
Collapse
Affiliation(s)
- Piyali Das
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Alturki AM. Rationally design of electrospun polysaccharides polymeric nanofiber webs by various tools for biomedical applications: A review. Int J Biol Macromol 2021; 184:648-665. [PMID: 34102239 DOI: 10.1016/j.ijbiomac.2021.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Nanofibers have a particular benefit when delivering a spectrum of therapeutic drugs for diverse biomedical applications. Nanofibers are easily fabricated from cellulose acetate, chitosan, polycaprolactone, and other polymers with regulated morphology and release profiles due to nanotechnology's recent advancement. This review will provide the latest approaches to the fabrication of electrospun nanofibers containing herbal extracts, antimicrobial peptides, and antibiotics for wound-healing potential. Besides, synthesis and evaluation of nanofibrous mats, including conducting polymer and evaluate their possibility for wound healing. In addition, nanofibers are loaded with some drugs for skin cancer treatment and contain growth factors for tissue regeneration. Also, the current two-dimensional nanofibers limitations and the various techniques for convert two-dimensional to three-dimension nanofibers to avoid these drawbacks. Moreover, the future direction in improving the three-dimensional structure and functionality has been including.
Collapse
Affiliation(s)
- Asma M Alturki
- Department of Chemistry, Faculty of Science, University of Tabuk, Saudi Arabia.
| |
Collapse
|
54
|
Yang Y, Wang X, Zha K, Tian Z, Liu S, Sui X, Wang Z, Zheng J, Wang J, Tian X, Guo Q, Zhao J. Porcine fibrin sealant combined with autologous chondrocytes successfully promotes full-thickness cartilage regeneration in a rabbit model. J Tissue Eng Regen Med 2021; 15:776-787. [PMID: 34044473 PMCID: PMC8453535 DOI: 10.1002/term.3224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
Xenogeneic porcine fibrin sealant (PFS), derived from porcine blood, was used as a scaffold for cartilage tissue engineering. PFS has a porous microstructure, biocompatibility and degradation, and it provides a perfect extracellular matrix environment for the adhesion and proliferation of chondrocytes. Recently, PFS in combination with autologous chondrocytes (ACs) were used to study the microstructure of PFS scaffolds and promotion effect on the proliferation and migration of ACs. In this study, we investigated the effects of PFS in combination with ACs on the healing of cartilage defects in rabbits. A full‐thickness cartilage defect was made in the femoral trochlear in rabbits, subsequently, three surgical procedures were used to repair the defect, namely: the defect was treated with microfracture (MF group); the defect was filled with PFS alone (PFS group) or in combination with ACs (PFS + ACs group); the unrepaired cartilage defects served as the control group (CD group). Three and 6 months after the operation, the reparative effect was evaluated using medical imaging, gross scoring, pathological staining, biomechanical testing and biochemical examination. The PFS group showed a limited effect on defect repair, this result was significantly worse than the MF group. The best reparative effect was observed in the PFS + ACs group. These results hinted that PFS in combination with autologous chondrocytes has broad prospects for clinical applications in cartilage tissue engineering.
Collapse
Affiliation(s)
- Yu Yang
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, China.,The Second People's Hospital of Guiyang, Guiyang, Guizhou, China
| | - Xin Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, China
| | - Kangkang Zha
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, China
| | - Zhuang Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, China
| | - Zhigang Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, China
| | - Jilian Zheng
- The Third Medical Center of PLA General Hospital, Beijing, China
| | - Jun Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaobin Tian
- Guizhou Medical University, University Town, Guiyang, Guizhou, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, China
| | - Jinmin Zhao
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
55
|
Improving In Vitro Cartilage Generation by Co-Culturing Adipose-Derived Stem Cells and Chondrocytes on an Allograft Adipose Matrix Framework. Plast Reconstr Surg 2021; 147:87-99. [PMID: 33002984 DOI: 10.1097/prs.0000000000007511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Microtia is an inherited condition that results in varying degrees of external ear deformities; the most extreme form is anotia. Effective surgical reconstruction techniques have been developed. However, these usually require multistage procedures and have other inherent disadvantages. Tissue engineering technologies offer new approaches in the field of external ear reconstruction. In this setting, chondrocytes are cultured in the laboratory with the aim of creating bioengineered cartilage matrices. However, cartilage engineering has many challenges, including difficulty in culturing sufficient chondrocytes. To overcome these hurdles, the authors propose a novel model of cartilage engineering that involves co-culturing chondrocytes and adipose-derived stem cells on an allograft adipose-derived extracellular matrix scaffold. METHODS Auricular chondrocytes from porcine ear were characterized. Adipose-derived stem cells were isolated and expanded from human lipoaspirate. Then, the auricular chondrocytes were cultured on the allograft adipose matrix either alone or with the adipose-derived stem cells at different ratios and examined histologically. RESULTS Cartilage induction was most prominent when the cells were co-cultured on the allograft adipose matrix at a ratio of 1:9 (auricular chondrocyte-to-adipose-derived stem cell ratio). Furthermore, because of the xenogeneic nature of the experiment, the authors were able to determine that the adipose-derived stem cells contributed to chondrogenesis by means of a paracrine stimulation of the chondrocytes. CONCLUSIONS In this situation, adipose-derived stem cells provide sufficient support to induce the formation of cartilage when the number of auricular chondrocytes available is limited. This novel model of cartilage engineering provides a setting for using the patient's own chondrocytes and adipose tissue to create a customized ear framework that could be further used for surgical reconstruction.
Collapse
|
56
|
Thorp H, Kim K, Kondo M, Maak T, Grainger DW, Okano T. Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage. Cells 2021; 10:cells10030643. [PMID: 33805764 PMCID: PMC7998529 DOI: 10.3390/cells10030643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Articular cartilage defects represent an inciting factor for future osteoarthritis (OA) and degenerative joint disease progression. Despite multiple clinically available therapies that succeed in providing short term pain reduction and restoration of limited mobility, current treatments do not reliably regenerate native hyaline cartilage or halt cartilage degeneration at these defect sites. Novel therapeutics aimed at addressing limitations of current clinical cartilage regeneration therapies increasingly focus on allogeneic cells, specifically mesenchymal stem cells (MSCs), as potent, banked, and available cell sources that express chondrogenic lineage commitment capabilities. Innovative tissue engineering approaches employing allogeneic MSCs aim to develop three-dimensional (3D), chondrogenically differentiated constructs for direct and immediate replacement of hyaline cartilage, improve local site tissue integration, and optimize treatment outcomes. Among emerging tissue engineering technologies, advancements in cell sheet tissue engineering offer promising capabilities for achieving both in vitro hyaline-like differentiation and effective transplantation, based on controlled 3D cellular interactions and retained cellular adhesion molecules. This review focuses on 3D MSC-based tissue engineering approaches for fabricating “ready-to-use” hyaline-like cartilage constructs for future rapid in vivo regenerative cartilage therapies. We highlight current approaches and future directions regarding development of MSC-derived cartilage therapies, emphasizing cell sheet tissue engineering, with specific focus on regulating 3D cellular interactions for controlled chondrogenic differentiation and post-differentiation transplantation capabilities.
Collapse
Affiliation(s)
- Hallie Thorp
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Correspondence: (K.K.); (T.O.); Tel.: +1-801-585-0070 (K.K. & T.O.); Fax: +1-801-581-3674 (K.K. & T.O.)
| | - Makoto Kondo
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
| | - Travis Maak
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT 84108, USA;
| | - David W. Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Wakamatsucho, 2−2, Shinjuku-ku, Tokyo 162-8480, Japan
- Correspondence: (K.K.); (T.O.); Tel.: +1-801-585-0070 (K.K. & T.O.); Fax: +1-801-581-3674 (K.K. & T.O.)
| |
Collapse
|
57
|
Triborheological Study under Physiological Conditions of PVA Hydrogel/HA Lubricant as Synthetic System for Soft Tissue Replacement. Polymers (Basel) 2021; 13:polym13050746. [PMID: 33670837 PMCID: PMC7957559 DOI: 10.3390/polym13050746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/29/2022] Open
Abstract
In soft tissue replacement, hydrophilic, flexible, and biocompatible materials are used to reduce wear and coefficient of friction. This study aims to develop and evaluate a solid/liquid triborheological system, polyvinyl alcohol (PVA)/hyaluronic acid (HA), to mimic conditions in human synovial joints. Hydrogel specimens prepared via the freeze–thawing technique from a 10% (w/v) PVA aqueous solution were cut into disc shapes (5 ± 0.5 mm thickness). Compression tests of PVA hydrogels presented a Young’s modulus of 2.26 ± 0.52 MPa. Friction tests were performed on a Discovery Hybrid Rheometer DHR-3 under physiological conditions using 4 mg/mL HA solution as lubricant at 37 °C. Contact force was applied between 1 and 20 N, highlighting a coefficient of friction change of 0.11 to 0.31 between lubricated and dry states at 3 N load (angular velocity: 40 rad/s). Thermal behavior was evaluated by differential scanning calorimetry (DSC) in the range of 25–250 °C (5 °C/min rate), showing an endothermic behavior with a melting temperature (Tm) around 231.15 °C. Scanning Electron Microscopy (SEM) tests showed a microporous network that enhanced water content absorption to 82.99 ± 1.5%. Hydrogel achieved solid/liquid lubrication, exhibiting a trapped lubricant pool that supported loads, keeping low coefficient of friction during lubricated tests. In dry tests, interstitial water evaporates continuously without countering sliding movement friction.
Collapse
|
58
|
Shin J, Kang EH, Choi S, Jeon EJ, Cho JH, Kang D, Lee H, Yun IS, Cho SW. Tissue-Adhesive Chondroitin Sulfate Hydrogel for Cartilage Reconstruction. ACS Biomater Sci Eng 2021; 7:4230-4243. [PMID: 33538598 DOI: 10.1021/acsbiomaterials.0c01414] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondroitin sulfate (CS), the main component of cartilage extracellular matrix, has attracted attention as a biomaterial for cartilage tissue engineering. However, current CS hydrogel systems still have limitations for application in successful cartilage tissue engineering owing to their unsuitable degradation kinetics, insufficient mechanical similarity, and lack of integration with the native cartilage tissue. In this study, using mussel adhesive-inspired catechol chemistry, we developed a functional CS hydrogel that exhibits tunable physical and mechanical properties as well as excellent tissue adhesion for efficient integration with native tissues. Various properties of the developed catechol-functionalized CS (CS-CA) hydrogel, including swelling, degradation, mechanical properties, and adhesiveness, could be tailored by varying the conjugation ratio of the catechol group to the CS backbone and the concentration of the CS-CA conjugates. CS-CA hydrogels exhibited significantly increased modulus (∼10 kPa) and superior adhesive properties (∼3 N) over conventional CS hydrogels (∼hundreds Pa and ∼0.05 N). In addition, CS-CA hydrogels incorporating decellularized cartilage tissue dice promoted the chondrogenic differentiation of human adipose-derived mesenchymal stem cells by providing a cartilage-like microenvironment. Finally, the transplantation of autologous cartilage dice using tissue-adhesive CS-CA hydrogels enhanced cartilage integration with host tissue and neo-cartilage formation owing to favorable physical, mechanical, and biological properties for cartilage formation. In conclusion, our study demonstrated the potential utility of the CS-CA hydrogel system in cartilage tissue reconstruction.
Collapse
Affiliation(s)
- Jisoo Shin
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun Hye Kang
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Severance Hospital, Seoul 03722, Republic of Korea
| | - Soojeong Choi
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung Ho Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Donyoung Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - In Sik Yun
- Department of Plastic and Reconstructive Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.,Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
59
|
Futrega K, Robey PG, Klein TJ, Crawford RW, Doran MR. A single day of TGF-β1 exposure activates chondrogenic and hypertrophic differentiation pathways in bone marrow-derived stromal cells. Commun Biol 2021; 4:29. [PMID: 33398032 PMCID: PMC7782775 DOI: 10.1038/s42003-020-01520-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Virtually all bone marrow-derived stromal cell (BMSC) chondrogenic induction cultures include greater than 2 weeks exposure to transforming growth factor-β (TGF-β), but fail to generate cartilage-like tissue suitable for joint repair. Herein we used a micro-pellet model (5 × 103 BMSC each) to determine the duration of TGF-β1 exposure required to initiate differentiation machinery, and to characterize the role of intrinsic programming. We found that a single day of TGF-β1 exposure was sufficient to trigger BMSC chondrogenic differentiation and tissue formation, similar to 21 days of TGF-β1 exposure. Despite cessation of TGF-β1 exposure following 24 hours, intrinsic programming mediated further chondrogenic and hypertrophic BMSC differentiation. These important behaviors are obfuscated by diffusion gradients and heterogeneity in commonly used macro-pellet models (2 × 105 BMSC each). Use of more homogenous micro-pellet models will enable identification of the critical differentiation cues required, likely in the first 24-hours, to generate high quality cartilage-like tissue from BMSC.
Collapse
Affiliation(s)
- Kathryn Futrega
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD, USA
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Translational Research Institute (TRI), Brisbane, Queensland, Australia
| | - Pamela G Robey
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD, USA
| | - Travis J Klein
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Ross W Crawford
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Michael R Doran
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD, USA.
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- Translational Research Institute (TRI), Brisbane, Queensland, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- Mater Research Institute, University of Queensland (UQ), Brisbane, Queensland, Australia.
| |
Collapse
|
60
|
Sun L, Ma Y, Niu H, Liu Y, Yuan Y, Liu C. Recapitulation of In Situ Endochondral Ossification Using an Injectable Hypoxia‐Mimetic Hydrogel. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202008515] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 01/06/2025]
Abstract
AbstractDue to the limited ability for perfusion, traditional intramembranous ossification (IMO) often fails to recapitulate the natural regeneration process of most long bones and craniofacial bones. Alternatively, endochondral ossification (ECO) strategy has emerged and has been evidenced to circumvent the drawbacks in the routine application of IMO. Here, an injectable, poly(glycerol sebacate)‐co‐poly (ethylene glycol)/polyacrylic acid (PEGS/PAA) hydrogels are successfully developed to induce a hypoxia‐mimicking environment and subsequently recapitulate ECO via in situ iron chelation. With the incorporation of PAA, these hydrogels present remarkable viscoelasticity and high efficacy of iron ion‐chelating after injection, giving rise to the activation of HIF‐1α signaling pathway and suppression of inflammatory responses, and thereby improving chondrogenic differentiation in the early stage and facilitating vascularization in the later stage, which consequently trigger typical ECO. More importantly, through sustained and stable expression of HIF‐1α regulated by PEGS/PAA hydrogels throughout the regeneration, a harmonious chondrogenic/osteogenic balance can be struck and thereby accelerating the progress of ECO compared to the PEGS. The findings provide an efficient strategy to achieve in situ ECO via biomaterial‐based iron ion‐chelating and ensuing hypoxia‐mimicking, representing a novel and promising concept for future application in bone regeneration.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Haoyi Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yutong Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
61
|
Sumarta NPM, Kamadjaja DB, Hendrijantini N, Danudiningrat CP, Rantam FA. Human Umbilical Cord Mesenchymal Stem Cells Over Platelet Rich Fibrin Scaffold for Mandibular Cartilage Defects Regenerative Medicine. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2021. [DOI: 10.1590/pboci.2021.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
62
|
Thorp H, Kim K, Kondo M, Grainger DW, Okano T. Fabrication of hyaline-like cartilage constructs using mesenchymal stem cell sheets. Sci Rep 2020; 10:20869. [PMID: 33257787 PMCID: PMC7705723 DOI: 10.1038/s41598-020-77842-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Cell and tissue engineering approaches for articular cartilage regeneration increasingly focus on mesenchymal stem cells (MSCs) as allogeneic cell sources, based on availability and innate chondrogenic potential. Many MSCs exhibit chondrogenic potential as three-dimensional (3D) cultures (i.e. pellets and seeded biomaterial scaffolds) in vitro; however, these constructs present engraftment, biocompatibility, and cell functionality limitations in vivo. Cell sheet technology maintains cell functionality as scaffold-free constructs while enabling direct cell transplantation from in vitro culture to targeted sites in vivo. The present study aims to develop transplantable hyaline-like cartilage constructs by stimulating MSC chondrogenic differentiation as cell sheets. To achieve this goal, 3D MSC sheets are prepared, exploiting spontaneous post-detachment cell sheet contraction, and chondrogenically induced. Results support 3D MSC sheets' chondrogenic differentiation to hyaline cartilage in vitro via post-contraction cytoskeletal reorganization and structural transformations. These 3D cell sheets' initial thickness and cellular densities may also modulate MSC-derived chondrocyte hypertrophy in vitro. Furthermore, chondrogenically differentiated cell sheets adhere directly to cartilage surfaces via retention of adhesion molecules while maintaining the cell sheets' characteristics. Together, these data support the utility of cell sheet technology for fabricating scaffold-free, hyaline-like cartilage constructs from MSCs for future transplantable articular cartilage regeneration therapies.
Collapse
Affiliation(s)
- Hallie Thorp
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Kyungsook Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
| | - Makoto Kondo
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Teruo Okano
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
63
|
Zhang J, Liu Z, Li Y, You Q, Yang J, Jin Y, Zou G, Tang J, Ge Z, Liu Y. FGF2: a key regulator augmenting tendon-to-bone healing and cartilage repair. Regen Med 2020; 15:2129-2142. [PMID: 33201773 DOI: 10.2217/rme-2019-0080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligament/tendon and cartilage injuries are clinically common diseases that perplex most clinicians. Because of the lack of blood vessels and nerves, their self-repairing abilities are rather poor. Therefore, surgeries are necessary and also widely used to treat ligament/tendon or cartilage injuries. However, after surgery, there are still many problems that affect healing. In recent years, it has been found that exogenous FGF2 plays an important role in the repair of ligament/tendon and cartilage injuries and exerts a synergistic effect with endogenous FGF2. Therefore, FGF2 can be used as a new type of biomolecule to accelerate tendon-to-bone healing and cartilage repair after injury.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Ziming Liu
- Peking University Institute of Sports Medicine, Beijing 100083, China
| | - Yuwan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qi You
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Jibin Yang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Ying Jin
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Gang Zou
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Jingfeng Tang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Zhen Ge
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Yi Liu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| |
Collapse
|
64
|
Photocrosslinked natural hydrogel composed of hyaluronic acid and gelatin enhances cartilage regeneration of decellularized trachea matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111628. [PMID: 33545814 DOI: 10.1016/j.msec.2020.111628] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Repair of long segmental trachea defects is always a great challenge in the clinic. The key to solving this problem is to develop an ideal trachea substitute with biological function. Using of a decellularized trachea matrix based on laser micropore technique (LDTM) demonstrated the possibility of preparing ideal trachea substitutes with tubular shape and satisfactory cartilage regeneration for tissue-engineered trachea regeneration. However, as a result of the very low cell adhesion of LDTM, an overly high concentration of seeding cell is required, which greatly restricts its clinical translation. To address this issue, the current study proposed a novel strategy using a photocrosslinked natural hydrogel (PNH) carrier to enhance cell retention efficiency and improve tracheal cartilage regeneration. Our results demonstrated that PNH underwent a rapid liquid-solid phase conversion under ultraviolet light. Moreover, the photo-generated aldehyde groups in PNH could rapidly react with inherent amino groups on LDTM surfaces to form imine bonds, which efficiently immobilized the cell-PNH composite to the surfaces of LDTM and/or maintained the composite in the LDTM micropores. Therefore, PNH significantly enhanced cell-seeding efficiency and achieved both stable cell retention and homogenous cell distribution throughout the LDTM. Moreover, PNH exhibited excellent biocompatibility and low cytotoxicity, and provided a natural three-dimensional biomimetic microenvironment to efficiently promote chondrocyte survival and proliferation, extracellular matrix production, and cartilage regeneration. Most importantly, at a relatively low cell-seeding concentration, homogeneous tubular cartilage was successfully regenerated with an accurate tracheal shape, sufficient mechanical strength, good elasticity, typical lacuna structure, and cartilage-specific extracellular matrix deposition. Our findings establish a versatile and efficient cell-seeding strategy for regeneration of various tissue and provide a satisfactory trachea substitute for repair and functional reconstruction of long segmental tracheal defects.
Collapse
|
65
|
Xiahou Z, She Y, Zhang J, Qin Y, Li G, Zhang L, Fang H, Zhang K, Chen C, Yin J. Designer Hydrogel with Intelligently Switchable Stem-Cell Contact for Incubating Cartilaginous Microtissues. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40163-40175. [PMID: 32799444 DOI: 10.1021/acsami.0c13426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stem-cell-derived organoid can resemble in vivo tissue counterpart and mimic at least one function of tissue or organ, possessing great potential for biomedical application. The present study develops a hydrogel with cell-responsive switch to guide spontaneous and sequential proliferation and aggregation of adipose-derived stem cells (ASCs) without inputting artificial stimulus for in vitro constructing cartilaginous microtissues with enhanced retention of cell-matrix and cell-cell interactions. Polylactic acid (PLA) rods are surface-aminolyzed by cystamine, followed by being involved in the amidation of poly(( l-glutamic acid) and adipic acid dihydrazide (ADH) to form a hydrogel. Along with tubular pore formation in hydrogel after dissolution of PLA rods, aminolyzed PLA molecules with disulfide bonds on rod surfaces are covalently transferred to the tubular pore surfaces of poly(l-glutamic acid)/ADH hydrogel. Because PLA attaches cells, while poly(l-glutamic acid)/ADH hydrogel repels cells, ASCs are found to adhere and proliferate on the tubular pore surfaces of hydrogel first and then cleave disulfide bonds by secreting molecules containing thiol, thus inducing desorption of PLA molecules and leading to their spontaneous detachment and aggregation. Associated with chondrogenic induction by TGF-β1 and IGF-1 in vitro for 28 days, the hydrogel as an all-in-one incubator produces well-engineered columnar cartilage microtissues from ASCs, with the glycosaminoglycans (GAGs) and collagen type II (COL II) deposition achieving 64 and 69% of those in chondrocytes pellet, respectively. The cartilage microtissues further matured in vivo for 8 weeks to exhibit extremely similar histological features and biomechanical performance to native hyaline cartilage. The GAGs and COL II content, as well as compressive modulus of the matured tissue show no significant difference with native cartilage. The designer hydrogel may hold a promise for long-term culture of other types of stem cells and organoids.
Collapse
Affiliation(s)
- Zijie Xiahou
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P. R. China
| | - Jiahui Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yechi Qin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
- Central Laboratory, Shanghai Putuo Peoples Hospital, Tongji University School of Medicine, Shanghai 200060, P. R. China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P. R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
66
|
Rahmani Del Bakhshayesh A, Babaie S, Tayefi Nasrabadi H, Asadi N, Akbarzadeh A, Abedelahi A. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1089-1104. [DOI: 10.1080/21691401.2020.1809439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
67
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
68
|
Rosa G, Krieck AMT, Padula E, Pfeifer JPH, de Souza JB, Rossi M, Stievani F, Deffune E, Takahira R, Alves ALG. Allogeneic synovial membrane-derived mesenchymal stem cells do not significantly affect initial inflammatory parameters in a LPS-induced acute synovitis model. Res Vet Sci 2020; 132:485-491. [PMID: 32799173 DOI: 10.1016/j.rvsc.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Gustavo Rosa
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - André Massahiro Teramoto Krieck
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - Enrico Padula
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - João Pedro Hübbe Pfeifer
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - Jaqueline Brandão de Souza
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - Mariana Rossi
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - Fernanda Stievani
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - Elenice Deffune
- Blood Transfusion Center, Cell Engineering Lab - Botucatu Medical School - São Paulo State University UNESP - Brazil, Brazil
| | - Regina Takahira
- Department of Veterinary Clinics - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP - Botucatu, Brazil
| | - Ana Liz Garcia Alves
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil.
| |
Collapse
|
69
|
Jahanbakhsh A, Nourbakhsh MS, Bonakdar S, Shokrgozar MA, Haghighipour N. Evaluation of alginate modification effect on cell-matrix interaction, mechanotransduction and chondrogenesis of encapsulated MSCs. Cell Tissue Res 2020; 381:255-272. [PMID: 32405685 DOI: 10.1007/s00441-020-03216-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/04/2020] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising cell candidates for cartilage regeneration. Furthermore, it is important to control the cell-matrix interactions that have a direct influence on cell functions. Providing an appropriate microenvironment for cell differentiation in response to exogenous stimuli is a critical step towards the clinical utilization of MSCs. In this study, hydrogels consisted of different proportions of alginates that were modified using gelatin, collagen type I and arginine-glycine-aspartic acid (RGD) and were evaluated regarding their effects on mesenchymal stem cells. The effect of applying hydrostatic pressure on MSCs encapsulated in collagen-modified alginate with and without chondrogenic medium was evaluated 7, 14 and 21 days after culture, which is a comprehensive evaluation of chondrogenesis in 3D hydrogels with mechanical and chemical stimulants. Alcian blue, safranin O and dimethyl methylene blue (DMMB) staining showed the chondrogenic phenotype of cells seeded in the collagen- and RGD-modified alginate hydrogels with the highest intensity after 21 days of culture. The results of real-time PCR for cartilage-specific extracellular matrix genes indicated the chondrogenic differentiation of MSCs in all hydrogels. Also, the synergic effects of chemical and mechanical stimuli are indicated. The highest expression levels of the studied genes were observed in the cells embedded in collagen-modified alginate by loading after 14 days of exposure to the chondrogenic medium. The effect of using IHP on encapsulated MSCs in modified alginate with collagen type I is equal or even higher than using TGF-beta on encapsulated cells. The results of immunohistochemical assessments also confirmed the real-time PCR data.
Collapse
Affiliation(s)
- Azadeh Jahanbakhsh
- Biomaterial Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Biomaterial Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran.
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
70
|
Mancini IAD, Schmidt S, Brommer H, Pouran B, Schäfer S, Tessmar J, Mensinga A, van Rijen MHP, Groll J, Blunk T, Levato R, Malda J, van Weeren PR. A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model. Biofabrication 2020; 12:035028. [PMID: 32434160 DOI: 10.1088/1758-5090/ab94ce] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent research has been focusing on the generation of living personalized osteochondral constructs for joint repair. Native articular cartilage has a zonal structure, which is not reflected in current constructs and which may be a cause of the frequent failure of these repair attempts. Therefore, we investigated the performance of a composite implant that further reflects the zonal distribution of cellular component both in vitro and in vivo in a long-term equine model. Constructs constituted of a 3D-printed poly(ϵ-caprolactone) (PCL) bone anchor from which reinforcing fibers protruded into the chondral part of the construct over which two layers of a thiol-ene cross-linkable hyaluronic acid/poly(glycidol) hybrid hydrogel (HA-SH/P(AGE-co-G)) were fabricated. The top layer contained Articular Cartilage Progenitor Cells (ACPCs) derived from the superficial layer of native cartilage tissue, the bottom layer contained mesenchymal stromal cells (MSCs). The chondral part of control constructs were homogeneously filled with MSCs. After six months in vivo, microtomography revealed significant bone growth into the anchor. Histologically, there was only limited production of cartilage-like tissue (despite persistency of hydrogel) both in zonal and non-zonal constructs. There were no differences in histological scoring; however, the repair tissue was significantly stiffer in defects repaired with zonal constructs. The sub-optimal quality of the repair tissue may be related to several factors, including early loss of implanted cells, or inappropriate degradation rate of the hydrogel. Nonetheless, this approach may be promising and research into further tailoring of biomaterials and of construct characteristics seems warranted.
Collapse
Affiliation(s)
- I A D Mancini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM, Utrecht, The Netherlands. Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Hoang Thi TT, Tran Nguyen DH, Nguyen DTD, Nguyen DH, Truong MD. Decellularized Porcine Epiphyseal Plate-Derived Extracellular Matrix Powder: Synthesis and Characterization. Cells Tissues Organs 2020; 209:101-109. [PMID: 32541153 DOI: 10.1159/000507552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to develop a porcine epiphyseal plate-derived extracellular matrix powder (PEPEP) for epiphyseal plate regeneration. PEPEP was characterized by chemical assay to determine the contents of DNA and epiphyseal plate complex chemical components (glycosaminoglycan and hydroxyproline). The effects of PEPEP on the viability, proliferation, and differentiation of human bone marrow mesenchymal stem cells (hBMSCs) were also evaluated. hBMSCs cultured in PEPEP exhibited a good distribution with excellent viability after 72 h, demonstrating the ability of PEPEP to support hBMSC proliferation. At week 4 and 6 in vitro, the PEPEP + hBMSCs structure showed chondrogenic ability and an increase in expression of collagen type I, type II, and type X. PEPEP showed a promising ability to enhance cartilage formation and promote chondrocyte differentiation, maturation, and hypertrophy. The results provide insights into the feasibility of PEPEP as a potential material for tissue engineering applications.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Diem Huong Tran Nguyen
- Institute of Applied Materials Science, Vietnam Academy Science and Technology, Ho Chi Minh City, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | | | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy Science and Technology, Ho Chi Minh City, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Minh-Dung Truong
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea,
| |
Collapse
|
72
|
Dusfour G, Maumus M, Cañadas P, Ambard D, Jorgensen C, Noël D, Le Floc'h S. Mesenchymal stem cells-derived cartilage micropellets: A relevant in vitro model for biomechanical and mechanobiological studies of cartilage growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110808. [PMID: 32409025 DOI: 10.1016/j.msec.2020.110808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/20/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
The prevalence of diseases that affect the articular cartilage is increasing due to population ageing, but the current treatments are only palliative. One innovative approach to repair cartilage defects is tissue engineering and the use of mesenchymal stem/stromal cells (MSCs). Although the combination of MSCs with biocompatible scaffolds has been extensively investigated, no product is commercially available yet. This could be explained by the lack of mechanical stimulation during in vitro culture and the absence of proper and stable cartilage matrix formation, leading to poor integration after implantation. The objective of the present study was to investigate the biomechanical behaviour of MSC differentiation in micropellets, a well-defined 3D in vitro model of cartilage differentiation and growth, in view of tissue engineering applications. MSC micropellet chondrogenic differentiation was induced by exposure to TGFβ3. At different time points during differentiation (35 days of culture), their global mechanical properties were assessed using a very sensitive compression device coupled to an identification procedure based on a finite element parametric model. Micropellets displayed both a non-linear strain-induced stiffening behaviour and a dissipative behaviour that increased from day 14 to day 29, with a maximum instantaneous Young's modulus of 179.9 ± 18.8 kPa. Moreover, chondrocyte gene expression levels were strongly correlated with the observed mechanical properties. This study indicates that cartilage micropellets display the biochemical and biomechanical characteristics required for investigating and recapitulating the different stages of cartilage development.
Collapse
Affiliation(s)
- G Dusfour
- LMGC, Univ. Montpellier, CNRS, Montpellier, France
| | - M Maumus
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France; Hopital Lapeyronie, Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier, France
| | - P Cañadas
- LMGC, Univ. Montpellier, CNRS, Montpellier, France
| | - D Ambard
- LMGC, Univ. Montpellier, CNRS, Montpellier, France
| | - C Jorgensen
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France; Hopital Lapeyronie, Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier, France
| | - D Noël
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France; Hopital Lapeyronie, Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier, France
| | - S Le Floc'h
- LMGC, Univ. Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
73
|
Additive manufactured, highly resilient, elastic, and biodegradable poly(ester)urethane scaffolds with chondroinductive properties for cartilage tissue engineering. Mater Today Bio 2020; 6:100051. [PMID: 32435758 PMCID: PMC7229290 DOI: 10.1016/j.mtbio.2020.100051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023] Open
Abstract
Articular cartilage was thought to be one of the first tissues to be successfully engineered. Despite the avascular and non-innervated nature of the tissue, the cells within articular cartilage – chondrocytes – account for a complex phenotype that is difficult to be maintained in vitro. The use of bone marrow–derived stromal cells (BMSCs) has emerged as a potential solution to this issue. Differentiation of BMSCs toward stable and non-hypertrophic chondrogenic phenotypes has also proved to be challenging. Moreover, hyaline cartilage presents a set of mechanical properties – relatively high Young's modulus, elasticity, and resilience – that are difficult to reproduce. Here, we report on the use of additive manufactured biodegradable poly(ester)urethane (PEU) scaffolds of two different structures (500 μm pore size and 90° or 60° deposition angle) that can support the loads applied onto the knee while being highly resilient, with a permanent deformation lower than 1% after 10 compression-relaxation cycles. Moreover, these scaffolds appear to promote BMSC differentiation, as shown by the deposition of glycosaminoglycans and collagens (in particular collagen II). At gene level, BMSCs showed an upregulation of chondrogenic markers, such as collagen II and the Sox trio, to higher or similar levels than that of traditional pellet cultures, with a collagen II/collagen I relative expression of 2–3, depending on the structure of the scaffold. Moreover, scaffolds with different pore architectures influenced the differentiation process and the final BMSC phenotype. These data suggest that additive manufactured PEU scaffolds could be good candidates for cartilage tissue regeneration in combination with microfracture interventions.
Collapse
|
74
|
Alkaya D, Gurcan C, Kilic P, Yilmazer A, Gurman G. Where is human-based cellular pharmaceutical R&D taking us in cartilage regeneration? 3 Biotech 2020; 10:161. [PMID: 32206495 DOI: 10.1007/s13205-020-2134-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Lately, cellular-based cartilage joint therapies have gradually gained more attention, which leads to next generation bioengineering approaches in the development of cell-based medicinal products for human use in cartilage repair. The greatest hurdles of chondrocyte-based cartilage bioengineering are: (i) preferring the cell source; (ii) differentiation and expansion processes; (iii) the time necessary for chondrocyte expansion pre-implantation; and (iv) fixing the chondrocyte count in accordance with the lesion surface area of the patient in question. The chondrocyte presents itself to be the focal starting material for research and development of bioengineered cartilage-based medicinal products which promise the regeneration and restoration of non-orthopedic cartilage joint defects. Even though chondrocytes seem to be the first choice, inevitable complications related to proliferation, dedifferentation and redifferentiation are probable. Detailed studies are a necessity to fully investigate detailed culturing conditions, the chondrogenic strains of well-defined phenotypes and evaluation of the methods to be used in biomaterial production. Despite a majority of the current methods which aid amelioration of joint functionality, they are insufficient in fully restoring the natural structure and composition of the joint cartilage. Hence current studies have trended towards gene therapy, mesenchymal stem cells and tissue engineering practices. There are many studies addressing the outcomes of chondrocytes in the clinical scene, and many vital biomaterials have been developed for structuring the bioengineered cartilage. This study aims to convey to the audience the practical significance of chondrocyte-based clinical applications.
Collapse
|
75
|
Liang C, Huang J, Luo P, Wang Z, He J, Wu S, Peng C, Cao X. Platelet-Derived Microparticles Mediate the Intra-Articular Homing of Mesenchymal Stem Cells in Early-Stage Cartilage Lesions. Stem Cells Dev 2020; 29:414-424. [PMID: 32000580 DOI: 10.1089/scd.2019.0137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After intra-articular injection, synovium-derived mesenchymal stem cells (SMSCs) can adhere to damaged cartilage (a process called homing) and then repair the cartilage defect. Nonetheless, the main obstacle of the current method is the insufficient homing ratio of SMSCs, which fails to meet the requirements for cartilage repair and thereby greatly limits the therapeutic effect. In this study, the optimal homing time of SMSCs was determined by evaluating the SMSC homing efficiency at 1, 3, 7, 14, and 28 days after injury using a rat cartilage defect model. The ability of platelet-derived microparticles (PMPs) to promote SMSC homing was evaluated by cartilage/subchondral bone cell adhesion, transmembrane migration, and intra-articular cell distribution assays. SMSCs had an optimal homing efficiency in the very early stage (1 day) after cartilage injury. We found that PMPs, which were abundant in the synovial fluid at this early stage, were responsible for this augmented SMSC homing. An ex vivo cell adhesion assay revealed that the coincubation of SMSCs with PMPs at a 1:50 ratio markedly enhanced cell adhesion to cartilage and the subchondral bone surface. The transmembrane cell migration assay yielded similar results. Further in vivo homing assays revealed that PMPs possess excellent homing capacity, which they transferred, to some extent, to SMSCs by coating the cell surface. We measured the expression of homing-related genes in SMSCs exposed to PMPs and identified several upregulated genes. Moreover, platelet-specific adhesion molecules, particularly GPIIb/IIIa, CXCR4, ITGβ1, and ITGα2, were determined to play a critical role in the homing of SMSC/PMP complexes. This improvement in SMSC homing increased the volume of regenerated tissue in the cartilage defect. In conclusion, PMPs significantly promoted the homing of SMSCs to cartilage, which facilitated cartilage regeneration. These data suggest a safe and promising strategy for improving the outcome of stem cell therapy.
Collapse
Affiliation(s)
- Chi Liang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Huang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Pan Luo
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Zili Wang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jinshen He
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Peng
- Department of Burns and Plastic Surgery, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xu Cao
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
76
|
Sabra S, Ragab DM, Agwa MM, Rohani S. Recent advances in electrospun nanofibers for some biomedical applications. Eur J Pharm Sci 2020; 144:105224. [DOI: 10.1016/j.ejps.2020.105224] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
|
77
|
Liu S, Pu Y, Yang R, Liu X, Wang P, Wang X, Ren Y, Tan X, Ye Z, Chi B. Boron-assisted dual-crosslinked poly (γ-glutamic acid) hydrogels with high toughness for cartilage regeneration. Int J Biol Macromol 2020; 153:158-168. [PMID: 32114174 DOI: 10.1016/j.ijbiomac.2020.02.314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022]
Abstract
Although mesenchymal stem cells (MSCs) encapsulated with bionic scaffolds have been widely used in treating trauma induced cartilage defects, challenges still persist for these hydrogel scaffolds to create suitable shelters for the MSCs and guide their behaviors. In this work, novel biomimetic hydrogel scaffolds were prepared by thiol-ene Michael addition between glycidyl methacrylate (GMA)-modified poly (γ-glutamic acid) (γ-PGA-GMA) and DL-1,4-Dithiothreitol (DTT) for cartilage tissue engineering. Sodium tetraborate decahydrate was added into the system to connect with DTT through hydrogen-bond interaction and served as catalyst for thiol-ene Michael addition to strengthen the intensity of the hydrogel. The hydrogels could be compressed to nearly a 90% strain, with 0.95 MPa compression stresses which was better than that of most hydrogels in mechanical property. Additionally, this hydrogel has other properties: fast and controlled gel-forming speed, adjustable swelling ration, suitable interior structure and so on. Above all, hydrogels have excellent cyto/tissue-compatibility. Cells cultured in hydrogels in vitro exhibited good proliferation and adhesion abilities and the hydrogels scaffolds contained stem cells immensely accelerated the regeneration of auricular cartilage of rabbits in vivo versus control group. The overall results approved that this bionic hydrogel may be a promising biomaterial for cartilage regeneration in the future.
Collapse
Affiliation(s)
- Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Zhiwen Ye
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
78
|
Moura CS, Silva JC, Faria S, Fernandes PR, da Silva CL, Cabral JMS, Linhardt R, Bártolo PJ, Ferreira FC. Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (ε-caprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementation. J Biosci Bioeng 2020; 129:756-764. [PMID: 32107152 DOI: 10.1016/j.jbiosc.2020.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Cartilage defects resultant from trauma or degenerative diseases (e.g., osteoarthritis) can potentially be repaired using tissue engineering (TE) strategies combining progenitor cells, biomaterial scaffolds and bio-physical/chemical cues. This work examines promoting chondrogenic differentiation of human bone marrow mesenchymal stem/stromal cells (BM-MSCs) by combining the effects of modified poly (ε-caprolactone) (PCL) scaffolds hydrophilicity and chondroitin sulfate (CS) supplementation in a hypoxic 5% oxygen atmosphere. 3D-extruded PCL scaffolds, characterized by μCT, featured a 21 mm-1 surface area to volume ratio, 390 μm pore size and approximately 100% pore interconnectivity. Scaffold immersion in sodium hydroxide solutions for different periods of time had major effects in scaffold surface morphology, wettability and mechanical properties, but without improvements on cell adhesion. In-situ chondrogenic differentiation of BM-MSC seeded in 3D-extruded PCL scaffolds resulted in higher cell populations and ECM deposition along all scaffold structure, when chondrogenesis was preceded by an expansion phase. Additionally, CS supplementation during BM-MSC expansion was crucial to enhance aggrecan gene expression, known as a hallmark of chondrogenesis. Overall, this study presents an approach to tailor the wettability and mechanical properties of PCL scaffolds and supports the use of CS-supplementation as a biochemical cue in integrated TE strategies for cartilage regeneration.
Collapse
Affiliation(s)
- Carla Sofia Moura
- CDRSP, Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, Portugal; Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João Carlos Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sofia Faria
- Institute of Mechanical Engineering (IDMEC), Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal
| | - Paulo Rui Fernandes
- Institute of Mechanical Engineering (IDMEC), Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim Manuel Sampaio Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Robert Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Paulo Jorge Bártolo
- Manchester Biomanufacturing Centre, School of Mechanical and Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
79
|
Calikoglu Koyuncu AC, Nayman AH, Telci D, Torun Kose G. Tissue transglutaminase_variant 2-transduced mesenchymal stem cells and their chondrogenic potential. Biotechnol Bioeng 2020; 117:1839-1852. [PMID: 32068240 DOI: 10.1002/bit.27311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Accepted: 02/16/2020] [Indexed: 11/09/2022]
Abstract
As cartilage is incapable of self-healing upon severe degeneration because of the lack of blood vessels, cartilage tissue engineering is gaining importance in the treatment of cartilage defects. This study was designed to improve cartilage tissue regeneration by expressing tissue transglutaminase variant 2 (TGM2_v2) in mesenchymal stem cells (MSC) derived from bone marrow of rats. For this purpose, rat MSCs transduced with TGM2_v2 were grown and differentiated on three-dimensional polybutylene succinate (PBSu) and poly-l-lactide (PLLA) blend scaffolds. The transduced cells could not only successfully express the short form transglutaminase-2, but also deposited the protein onto the scaffolds. In addition, they could spontaneously produce cartilage-specific proteins without any chondrogenic induction, suggesting that TGM2_v2 expression provided the cells the ability of chondrogenic differentiation. PBSu:PLLA scaffolds loaded with TGM2_v2 expressing MSCs could be used in repair of articular cartilage defects.
Collapse
Affiliation(s)
| | - Ayse Hande Nayman
- Department of Genetics and Bioengineering/Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering/Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Gamze Torun Kose
- Department of Genetics and Bioengineering/Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| |
Collapse
|
80
|
Casanova MR, Reis RL, Martins A, Neves NM. Fibronectin Bound to a Fibrous Substrate Has Chondrogenic Induction Properties. Biomacromolecules 2020; 21:1368-1378. [DOI: 10.1021/acs.biomac.9b01546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marta R. Casanova
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
81
|
Microrheological study of physical gelation on poly (acrylic acid) polymer hydrophobically modified with C14 alkyl chains, comparison with C18 chain length. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
82
|
Setayeshmehr M, Esfandiari E, Rafieinia M, Hashemibeni B, Taheri-Kafrani A, Samadikuchaksaraei A, Kaplan DL, Moroni L, Joghataei MT. Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:202-224. [PMID: 30648478 DOI: 10.1089/ten.teb.2018.0245] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPACT STATEMENT Scaffolds fabricated from extracellular matrix (ECM) derivatives are composed of conducive structures for cell attachment, proliferation, and differentiation, but generally do not have proper mechanical properties and load-bearing capacity. In contrast, scaffolds based on synthetic biomaterials demonstrate appropriate mechanical strength, but the absence of desirable biological properties is one of their main disadvantages. To integrate mechanical strength and biological cues, these ECM derivatives can be conjugated with synthetic biomaterials. Hence, hybrid scaffolds comprising both advantages of synthetic polymers and ECM derivatives can be considered a robust vehicle for tissue engineering applications.
Collapse
Affiliation(s)
- Mohsen Setayeshmehr
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,2 Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran.,3 MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands
| | - Ebrahim Esfandiari
- 4 Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafieinia
- 2 Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- 4 Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asghar Taheri-Kafrani
- 5 Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ali Samadikuchaksaraei
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,6 Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - David L Kaplan
- 7 Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Lorenzo Moroni
- 3 MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands.,8 CNR Nanotec-Institute of Nanotechnology, c/o Campus Ecotekne, Università del Salento, Lecce, Italy
| | - Mohammad T Joghataei
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,6 Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
83
|
Hu X, Xu J, Li W, Li L, Parungao R, Wang Y, Zheng S, Nie Y, Liu T, Song K. Therapeutic "Tool" in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair. Appl Biochem Biotechnol 2019; 191:785-809. [PMID: 31863349 DOI: 10.1007/s12010-019-03214-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Repairing osteochondral defects to restore joint function is a major challenge in regenerative medicine. However, with recent advances in tissue engineering, the development of potential treatments is promising. In recent years, in addition to single-layer scaffolds, double-layer or multilayer scaffolds have been prepared to mimic the structure of articular cartilage and subchondral bone for osteochondral repair. Although there are a range of different cells such as umbilical cord stem cells, bone marrow mesenchyml stem cell, and others that can be used, the availability, ease of preparation, and the osteogenic and chondrogenic capacity of these cells are important factors that will influence its selection for tissue engineering. Furthermore, appropriate cell proliferation and differentiation of these cells is also key for the optimal repair of osteochondral defects. The development of bioreactors has enhanced methods to stimulate the proliferation and differentiation of cells. In this review, we summarize the recent advances in tissue engineering, including the development of layered scaffolds, cells, and bioreactors that have changed the approach towards the development of novel treatments for osteochondral repair.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.,Key Laboratory of Biological Medicines, Universities of Shandong Province Weifang Key Laboratory of Antibody Medicines, School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China. .,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
84
|
Alleviation of synovitis caused by joint instability with application of platelet-rich plasma. Thromb Res 2019; 186:20-25. [PMID: 31838140 DOI: 10.1016/j.thromres.2019.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Synovitis is an early set and persistent change during the progression of osteoarthritis, which causes symptoms such as pain and swelling of the joints. Platelet-rich plasma (PRP) can release quantities of growth factors and cytokines, and is proved effected in promoting restoration of multiple soft tissues. MATERIALS AND METHODS In this study, twenty rabbits were used to establish animal model of synovitis, with the method of severing the anterior and posterior cruciate ligaments and removing the medial meniscus. Then the rabbits were evenly divided into the PRP group and the control group, and each group received injections of PRP and saline respectively once a week for 3 weeks consecutively, with the first injection administered 3 weeks postoperatively. RESULTS The platelet count, the concentrations of growth factors in PRP and whole blood were investigated, and the IL-1β concentration in the joint fluid was detected via ELISA. The synovium as well as the adjacent articular cartilage were collected for histological assessment. The platelet concentration in PRP is 6.8 fold of that in the whole blood. The IL-1β level in the PRP group was lower than that in the control group 2 and 3 weeks after the administration of PRP. Histological investigation showed that the inflammatory reaction of the synovium and impact on the cartilage was much abated in the PRP group. CONCLUSIONS PRP can effectively alleviate the synovitis caused by osteoarthritis following loss of joint stability. Given the autologous origin, its low cost and low risk features of PRP, it's a promising choice for OA patients to control the symptoms caused by synovitis.
Collapse
|
85
|
Comparison of polysaccharides in articular cartilage regeneration associated with chondrogenic and autophagy-related gene expression. Int J Biol Macromol 2019; 146:922-930. [PMID: 31726172 DOI: 10.1016/j.ijbiomac.2019.09.215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 01/01/2023]
Abstract
Articular cartilage exhibits reduced self-healing following degeneration. This research evaluated the effects of hydrogels derived from various polysaccharides-gellan gum (GG), alginate, and agarose-on cartilage regeneration compared with that of hyaluronic acid (HA), which is commonly used in cartilage tissue engineering. Chondrocytes were isolated from the articular cartilage of New Zealand White (NZW) rabbits and stimulated with IL-1β followed by incubation with polysaccharides. The expressions of NF-κB and Cox-2 were decreased and those of IκBα, Sox-9, aggrecan, and type II collagen were increased in HA, GG, and Alginate groups. Osteochondral defects in NZW rabbits were treated with intra-articular polysaccharide injections; all except alginate resulted in tissue regeneration. Significant improvements were observed in cartilage regeneration in the GG and agarose groups. These results show that GG and agarose improve cartilage regeneration by suppressing inflammatory mediators and inducing cartilage formation and autophagy-related gene expression, indicating their potential for cartilage tissue engineering.
Collapse
|
86
|
Silva JC, Moura CS, Borrecho G, de Matos APA, da Silva CL, Cabral JMS, Bártolo PJ, Linhardt RJ, Ferreira FC. Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(ɛ-Caprolactone) Scaffolds. Biotechnol J 2019; 15:e1900078. [PMID: 31560160 DOI: 10.1002/biot.201900078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/09/2019] [Indexed: 01/12/2023]
Abstract
Novel bioengineering strategies for the ex vivo fabrication of native-like tissue-engineered cartilage are crucial for the translation of these approaches to clinically manage highly prevalent and debilitating joint diseases. Bioreactors that provide different biophysical stimuli have been used in tissue engineering approaches aimed at enhancing the quality of the cartilage tissue generated. However, such systems are often highly complex, expensive, and not very versatile. In the current study, a novel, cost-effective, and customizable perfusion bioreactor totally fabricated by additive manufacturing (AM) is proposed for the study of the effect of fluid flow on the chondrogenic differentiation of human bone-marrow mesenchymal stem/stromal cells (hBMSCs) in 3D porous poly(ɛ-caprolactone) (PCL) scaffolds. hBMSCs are first seeded and grown on PCL scaffolds and hBMSC-PCL constructs are then transferred to 3D-extruded bioreactors for continuous perfusion culture under chondrogenic inductive conditions. Perfused constructs show similar cell metabolic activity and significantly higher sulfated glycosaminoglycan production (≈1.8-fold) in comparison to their non-perfused counterparts. Importantly, perfusion bioreactor culture significantly promoted the expression of chondrogenic marker genes while downregulating hypertrophy. This work highlights the potential of customizable AM platforms for the development of novel personalized repair strategies and more reliable in vitro models with a wide range of applications.
Collapse
Affiliation(s)
- João C Silva
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal.,Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Carla S Moura
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, 2430-028, Portugal
| | - Gonçalo Borrecho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - António P Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Paulo J Bártolo
- School of Mechanical and Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| |
Collapse
|
87
|
Venugopal E, Sahanand KS, Bhattacharyya A, Rajendran S. Electrospun PCL nanofibers blended with Wattakaka volubilis active phytochemicals for bone and cartilage tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102044. [DOI: 10.1016/j.nano.2019.102044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/26/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
|
88
|
Kamel R, El-batanony R, Salama A. Pioglitazone-loaded three-dimensional composite polymeric scaffolds: A proof of concept study in wounded diabetic rats. Int J Pharm 2019; 570:118667. [DOI: 10.1016/j.ijpharm.2019.118667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
|
89
|
Li T, Song X, Weng C, Wang X, Gu L, Gong X, Wei Q, Duan X, Yang L, Chen C. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Int J Biol Macromol 2019; 137:382-391. [DOI: 10.1016/j.ijbiomac.2019.06.245] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022]
|
90
|
Chondrogenesis of human adipose-derived mesenchymal stromal cells on the [devitalized costal cartilage matrix/poly(vinyl alcohol)/fibrin] hybrid scaffolds. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
91
|
Cruciani S, Santaniello S, Montella A, Ventura C, Maioli M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J Stem Cells 2019; 11:464-475. [PMID: 31523367 PMCID: PMC6716083 DOI: 10.4252/wjsc.v11.i8.464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. In vitro manipulation of these cells is focused on understanding stem cell behavior, proliferation and pluripotency. Latest advances in the field of stem cells concern epigenetics and its role in maintaining self-renewal and differentiation capabilities. Chemical and physical stimuli can modulate cell commitment, acting on gene expression of Oct-4, Sox-2 and Nanog, the main stemness markers, and tissue-lineage specific genes. This activation or repression is related to the activity of chromatin-remodeling factors and epigenetic regulators, new targets of many cell therapies. The aim of this review is to afford a view of the current state of in vitro and in vivo stem cell applications, highlighting the strategies used to influence stem cell commitment for current and future cell therapies. Identifying the molecular mechanisms controlling stem cell fate could open up novel strategies for tissue repairing processes and other clinical applications.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Operative Unit of Clinical Genetics and Developmental Biology, Sassari 07100, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari 09042, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy.
| |
Collapse
|
92
|
Chondroitin sulfate immobilized PCL nanofibers enhance chondrogenic differentiation of mesenchymal stem cells. Int J Biol Macromol 2019; 136:616-624. [PMID: 31207331 DOI: 10.1016/j.ijbiomac.2019.06.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Cold Atmospheric Plasma (CAP) is used as a promising method in surface modification for immobilization of chondroitin sulfate functional biomacromolecules on PCL nanofibrous substrates for cartilage tissue engineering. The GAG-grafted scaffolds are able to successfully support the attachment and proliferation of mesenchymal stem cells (MSCs). The seeded scaffolds show the chondro-differentiation of MSCs during a 21-days cell culture in a non-differential medium. Expression of SOX9, Collagen10 and Collagen2 proved the chondro-inductive effect of GAG-grafted scaffolds. Besides, no external chondro-genic differential agent was used in the differentiation of MSCs to chondrocyte. The cells passed the last phase of chondrogenesis after 14 days of incubation. Thus, the GAG-fabricated fibrous scaffolds using CAP are potential candidates for cartilage tissue engineering.
Collapse
|
93
|
Gao X, Gao L, Groth T, Liu T, He D, Wang M, Gong F, Chu J, Zhao M. Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. J Biomed Mater Res A 2019; 107:2076-2087. [PMID: 31087770 DOI: 10.1002/jbm.a.36720] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Three-dimensional scaffolds like hydrogels can be employed as cell carriers for in vitro or in vivo colonization and have become a major research topic to replace damaged tissue. In the current study, a novel composite hydrogel composed of sodium alginate (SA) and platelet-rich-plasma (PRP) varying in blending ratios, cross-linked with calcium ions, released from calcium carbonate-D-Glucono-d-lactone (CaCO3 -GDL) was successfully prepared. It was found that addition of PRP changed largely the physical properties and biological performance of the composite hydrogels, which was depending on the blending ratio. The gelation rate and swelling ratio of alginate hydrogels were significantly reduced by the addition of PRP, which produced also a more homogeneous gel structure. Field emission scanning electron microscopy (FE-SEM) investigation confirmed the incorporation of PRP-derived proteins in the hydrogel, where a porous structure with a pore size of 200-300 μm was found. On the other hand, an increase in surface roughness was observed after the addition of PRP. The compressive mechanical strength of SA/PRP composite hydrogel was enhanced in comparison to the pure SA gel. The composite hydrogels with the highest PRP content exhibited at a maximum compressive stress of 0.26 MPa a maximum strain of 55%, while the maximum compressive strain of pure SA hydrogels was only 45% at a stress of 0.08 MPa. It was also found that the in vitro degradation of the alginate gel was accelerated by the addition of PRP. In terms of cellular responses, all gels exhibited an excellent cytocompatibility. Indeed, the composite hydrogels supported bone marrow-derived mesenchymal stem cells proliferation and their chondrogenesis with up-regulation of chondrogenic marker genes Sox9 and Aggrecan. Overall, the present study suggests a great potential of SA/PRP composite hydrogels as cell carriers for cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liyang Gao
- School of Life Science, Ningxia University, Yinchuan, China
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Interdisciplinary Center of Materials Research, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tianfeng Liu
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dongning He
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Mingrui Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fan Gong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingyan Zhao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
94
|
Intra-articular delivery of synovium-resident mesenchymal stem cells via BMP-7-loaded fibrous PLGA scaffolds for cartilage repair. J Control Release 2019; 302:169-180. [DOI: 10.1016/j.jconrel.2019.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022]
|
95
|
Safari F, Fani N, Eglin D, Alini M, Stoddart MJ, Baghaban Eslaminejad M. Human umbilical cord-derived scaffolds for cartilage tissue engineering. J Biomed Mater Res A 2019; 107:1793-1802. [PMID: 30983084 DOI: 10.1002/jbm.a.36698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 01/19/2023]
Abstract
Since articular cartilage is an avascular tissue, it has limited self-regeneration capacity after damage. Current methods for human bone marrow-derived mesenchymal stem cell (hBM-MSC) differentiation into cartilage result in tissues with a lower quality as compared to native articular cartilage. Decellularized biological scaffolds have the potential to provide appropriate signals, in order to support cellular retention, migration, proliferation, and differentiation. Given the high amount of collagen, hyaluronic acid (HA), and glycosaminoglycan (GAG) in umbilical cord, this tissue can be considered as an abundant natural biomaterial for tissue engineering applications. Human umbilical cord-derived scaffolds were prepared, and the chondrogenic induction of hBM-MSCs loaded onto the scaffolds was investigated. Gelatin-based scaffolds as a commercial material was used as a control. The results show that hBM-MSCs in tissue-derived scaffolds have an increased expression of chondrogenic markers compared with gelatin, whereas there are no significant differences between the expression of hypertrophic and osteogenic markers between tissue and gelatin scaffolds. In conclusion, it is confirmed that umbilical cord-derived scaffolds are able to provide a native environment for the cells and can promote cartilage differentiation. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1793-1802, 2019.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
96
|
Cao X, Luo P, Huang J, Liang C, He J, Wang Z, Shan D, Peng C, Wu S. Intraarticular senescent chondrocytes impair the cartilage regeneration capacity of mesenchymal stem cells. Stem Cell Res Ther 2019; 10:86. [PMID: 30867061 PMCID: PMC6416972 DOI: 10.1186/s13287-019-1193-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background Senescent cells exert a significant influence over their surrounding cellular environment. Senescent chondrocytes (SnChos) were found to be accumulated in degenerated cartilage present in joints affected by osteoarthritis. The influence of SnChos on exogenously transplanted stem cells has yet to be reported. Methods In this study, we evaluated the interactions between SnChos and bone marrow mesenchymal stem cells (BMSCs) when co-cultured as well as in the intra-articular senescent microenvironment (IASM). The effect of IASM on cartilage regeneration was also assessed. Results It was found that a small fraction of SnChos induced BMSC cellular senescence and apoptosis. SnChos also inhibited proliferation, facilitated stemness, and suppressed chondrogenic differentiation of BMSCs. BMSCs induced the apoptosis of SnChos, reduced the proportion of SnChos, stimulated SnChos proliferation, and revealed a bidirectional effect on SnChos inflammaging. IASM significantly suppressed the survival, proliferation, and appropriate differentiation of grafted BMSCs in vivo, all of which impaired cartilage regeneration. Anti-senescence agent ABT-263 was able to partly rescue the cells from the negative effects of SnChos. Conclusions The SnChos and BMSCs interacted with each other at cellular senescence, apoptosis, proliferation, differentiation, and cell functions. This interaction impaired the cartilage repair of MSCs. Anti-senescence agent provided a possible solution for this impairment. Electronic supplementary material The online version of this article (10.1186/s13287-019-1193-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu Cao
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Pan Luo
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Junjie Huang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Chi Liang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jinshen He
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zili Wang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Dongyong Shan
- Department of Oncology of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Peng
- Department of Burns and Plastic Surgery of the 3rd Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Song Wu
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
97
|
Zhang Y, Yu J, Ren K, Zuo J, Ding J, Chen X. Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. Biomacromolecules 2019; 20:1478-1492. [PMID: 30843390 DOI: 10.1021/acs.biomac.9b00043] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Jiakuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, 49 Huayuanbei Road, Beijing 100191, P. R. China
| | - Kaixuan Ren
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 West 34th Street, Los Angeles, California 90089, United States of America
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Jianxun Ding
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
98
|
Evaluation of alginate hydrogel encapsulated mesenchymal stem cell migration in horses. Res Vet Sci 2019; 124:38-45. [PMID: 30826587 DOI: 10.1016/j.rvsc.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 02/07/2023]
Abstract
Osteoarthritis is an incapacitating disease characterized by pain and a progressive decrease in joint mobility. The implantation of mesenchymal stem cells (MSCs) has shown promising results for its treatment. The challenge remains to keep the cells longer at the site of action, increasing their therapeutic potential. The aim of this study was to evaluate the effectiveness of the Qtracker® 655 nanocrystal marking on allogeneic synovial membrane (SM) MSCs, encapsulated in alginate hydrogel, evaluating the migration of these cells. The 10 radiocarpal joints were submitted to arthroscopic surgery (D0), divided into two groups. The chondral defect was treated according to the group: GA free-labelled MSCSM and GB labelled MSCSM microcapsules. Seven days after lesion induction and implantation of labelled cells, biopsies of the lesion site were performed in two animals, and fragments of SM and joint capsule also collected, which were frozen and later processed for fluorescence microscopy. The synovial fluid of the three animals was analyzed by flow cytometry three times - 3, 7 and 21 days after application. The cellular marking with the nanocrystals allowed the visualization of the cells in cartilage, synovial membrane, synovial fluid and articular capsule, but with a predilection for the synovial membrane and the lesion site was scarce. The labelled MSCSM in microcapsules were scarce in the synovial fluid and could be related to the small quantity of MSCs leaving the pores of the microcapsules, also favorable results, as the cells release paracrine effects acting for a long period until the cellular differentiation.
Collapse
|
99
|
Caballero Méndez L, Gaviria Arias D. Desarrollo y caracterización de películas de fibroina de seda para reparación condral. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2019. [DOI: 10.15446/rev.colomb.biote.v21n1.73137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La fibroína de seda es una proteína que ha demostrado ser un biomaterial con gran potencial en medicina regenerativa, por suscaracterísticas de biocompatibilidad y su amplia posibilidad de modificación estructural permite ser usada como andamio favore-ciendo procesos de crecimiento, diferenciación celular y la regeneración del tejido afectado.En este estudio se utilizaron capullos de gusano de seda Bombyx moriL., para la fabricación de películas de fibroína, los capullos fueron desgomados utilizando Na2CO30,02M, la fibroína obtenida se disolvió con LiBr 9,3M, el cual fue eliminado mediante diáli-sis y finalmente la solución de fibroína fue concentrada mediante contradiálisis. La fibroína fue servida en cajas de poliestireno, se-cadas a 90°C/24 horas y esterilizadas con etanol al 70%. Células madre mesenquimales fueron sembradas sobre estas películas de fibroína e inducidas a diferenciación utilizando un medio condrogénico especifico. La diferenciación fue evaluada por triplicadoa los 14 y 21 días mediante extracción de ARN total, síntesis de ADN copia y amplificación por PCR de un grupo de genes específi-cos de cartílago empleando cebadores específicos.Se fabricaron películas de fibroína estables y resistentes que permitieron el crecimiento y la multiplicación celular, así como la dife-renciación condrogénica evidenciada por la expresión de genes condrogenicos, no se afectó la viabilidad ni el recuento celular, las células interactuaron con el andamio evidenciado por el área de tapizado formado sobre la superficie de la película de fibroína.Finalmente se concluye que la fibroína de seda es un biomaterial que puede servir de andamio potencial para la regeneración de lesiones articulares.
Collapse
|
100
|
Huang H, Hu X, Zhang X, Duan X, Zhang J, Fu X, Dai L, Yuan L, Zhou C, Ao Y. Codelivery of Synovium-Derived Mesenchymal Stem Cells and TGF-β by a Hybrid Scaffold for Cartilage Regeneration. ACS Biomater Sci Eng 2018; 5:805-816. [PMID: 33405841 DOI: 10.1021/acsbiomaterials.8b00483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongjie Huang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing 100191, People’s Republic of China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing 100191, People’s Republic of China
| | - Xin Zhang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing 100191, People’s Republic of China
| | - Xiaoning Duan
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing 100191, People’s Republic of China
| | - Jiying Zhang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing 100191, People’s Republic of China
| | - Xin Fu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing 100191, People’s Republic of China
| | - Linghui Dai
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing 100191, People’s Republic of China
| | - Lan Yuan
- Medical and Healthy Analysis Centre, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, People’s Republic of China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, People’s Republic of China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing 100191, People’s Republic of China
| |
Collapse
|