51
|
Bat-Erdene U, Billingsley JM, Turner WC, Lichman BR, Ippoliti FM, Garg NK, O'Connor SE, Tang Y. Cell-Free Total Biosynthesis of Plant Terpene Natural Products using an Orthogonal Cofactor Regeneration System. ACS Catal 2021; 11:9898-9903. [PMID: 35355836 DOI: 10.1021/acscatal.1c02267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we report the one-pot, cell-free enzymatic synthesis of the plant monoterpene nepetalactol starting from the readily available geraniol. A pair of orthogonal cofactor regeneration systems permitted NAD+-dependent geraniol oxidation followed by NADPH-dependent reductive cyclization without isolation of intermediates. The orthogonal cofactor regeneration system maintained a high ratio of NAD+ to NADH and a low ratio of NADP+ to NADPH. The overall reaction contains four biosynthetic enzymes, including a soluble P450; and five accessory and cofactor regeneration enzymes. Furthermore, addition of a NAD+-dependent dehydrogenase to the one-pot mixture led to ~1 g/L of nepetalactone, the active cat- attractant in catnip.
Collapse
Affiliation(s)
- Undramaa Bat-Erdene
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - William C Turner
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin R Lichman
- Centre for Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Francesca M Ippoliti
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
52
|
Yang C, Liu Y, Liu WQ, Wu C, Li J. Designing Modular Cell-free Systems for Tunable Biotransformation of l-phenylalanine to Aromatic Compounds. Front Bioeng Biotechnol 2021; 9:730663. [PMID: 34395411 PMCID: PMC8355704 DOI: 10.3389/fbioe.2021.730663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Cell-free systems have been used to synthesize chemicals by reconstitution of in vitro expressed enzymes. However, coexpression of multiple enzymes to reconstitute long enzymatic pathways is often problematic due to resource limitation/competition (e.g., energy) in the one-pot cell-free reactions. To address this limitation, here we aim to design a modular, cell-free platform to construct long biosynthetic pathways for tunable synthesis of value-added aromatic compounds, using (S)-1-phenyl-1,2-ethanediol ((S)-PED) and 2-phenylethanol (2-PE) as models. Initially, all enzymes involved in the biosynthetic pathways were individually expressed by an E. coli-based cell-free protein synthesis (CFPS) system and their catalytic activities were confirmed. Then, three sets of enzymes were coexpressed in three cell-free modules and each with the ability to complete a partial pathway. Finally, the full biosynthetic pathways were reconstituted by mixing two related modules to synthesize (S)-PED and 2-PE, respectively. After optimization, the final conversion rates for (S)-PED and 2-PE reached 100 and 82.5%, respectively, based on the starting substrate of l-phenylalanine. We anticipate that the modular cell-free approach will make a possible efficient and high-yielding biosynthesis of value-added chemicals.
Collapse
Affiliation(s)
- Chen Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yushi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Changzhu Wu
- Danish Institute for Advanced Study (DIAS) and Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
53
|
Niu FX, Yan ZB, Huang YB, Liu JZ. Cell-free Biosynthesis of Chlorogenic Acid Using a Mixture of Chassis Cell Extracts and Purified Spy-Cyclized Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7938-7947. [PMID: 34237214 DOI: 10.1021/acs.jafc.1c03309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel cell-free biosynthesis system based on a mixture of chassis cell extracts and purified Spy-cyclized enzymes (CFBS-mixture) was developed. As a demonstration, the CFBS-mixture was applied to chlorogenic acid (CGA) biosynthesis. The mix-and-match and Plackett-Burman experiments demonstrated that Lonicera japonica hydroxycinnamate-CoA quinate transferase and p-hydroxyphenylacetate 3-hydroxylase were the key enzymes for the production of CGA. After optimization of the concentrations of the biosynthetic enzymes in the CFBS-mixture reaction using the Plackett-Burman experimental design and the path of the steepest ascent, 711.26 ± 15.63 mg/L CGA was produced after 16 h, which is 71.1-fold the yield obtained using the conventional crude extract-based CFBS and 9.1-fold the reported yield obtained using the living cells. Based on the CFBS-mixture results, the production of CGA was further enhanced in engineered Escherichia coli. The CFBS-mixture strategy is highly effective and will be useful for high-level CFBS of natural products.
Collapse
Affiliation(s)
- Fu-Xing Niu
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhi-Bo Yan
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuan-Bin Huang
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
54
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
55
|
Sundaram S, Diehl C, Cortina NS, Bamberger J, Paczia N, Erb TJ. A Modular In Vitro Platform for the Production of Terpenes and Polyketides from CO 2. Angew Chem Int Ed Engl 2021; 60:16420-16425. [PMID: 33938102 PMCID: PMC8362062 DOI: 10.1002/anie.202102333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/02/2021] [Indexed: 01/12/2023]
Abstract
A long-term goal in realizing a sustainable biocatalysis and organic synthesis is the direct use of the greenhouse gas CO2 as feedstock for the production of bulk and fine chemicals, such as pharmaceuticals, fragrances and food additives. Here we developed a modular in vitro platform for the continuous conversion of CO2 into complex multi-carbon compounds, such as monoterpenes (C10 ), sesquiterpenes (C15 ) and polyketides. Combining natural and synthetic metabolic pathway modules, we established a route from CO2 into the key intermediates acetyl- and malonyl-CoA, which can be subsequently diversified through the action of different terpene and polyketide synthases. Our proof-of-principle study demonstrates the simultaneous operation of different metabolic modules comprising of up to 29 enzymes in one pot, which paves the way for developing and optimizing synthesis routes for the generation of complex CO2 -based chemicals in the future.
Collapse
Affiliation(s)
- Srividhya Sundaram
- Department of Biochemistry and Synthetic MetabolismMax Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Strasse 1035043MarburgGermany
| | - Christoph Diehl
- Department of Biochemistry and Synthetic MetabolismMax Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Strasse 1035043MarburgGermany
| | - Niña Socorro Cortina
- Department of Biochemistry and Synthetic MetabolismMax Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Strasse 1035043MarburgGermany
| | - Jan Bamberger
- Equipment Center for Mass Spectrometry and Elemental AnalysisDepartment of ChemistryPhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass SpectrometryMax Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Strasse 1035043MarburgGermany
| | - Tobias J. Erb
- Department of Biochemistry and Synthetic MetabolismMax Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Strasse 1035043MarburgGermany
| |
Collapse
|
56
|
Sundaram S, Diehl C, Cortina NS, Bamberger J, Paczia N, Erb TJ. Eine modulare In‐vitro‐Plattform für die Produktion von Terpenen und Polyketiden aus CO
2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Srividhya Sundaram
- Abteilung Biochemie und Synthetischer Metabolismus Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Straße 10 35043 Marburg Deutschland
| | - Christoph Diehl
- Abteilung Biochemie und Synthetischer Metabolismus Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Straße 10 35043 Marburg Deutschland
| | - Niña Socorro Cortina
- Abteilung Biochemie und Synthetischer Metabolismus Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Straße 10 35043 Marburg Deutschland
| | - Jan Bamberger
- Gerätezentrum Massenspektrometrie und Elementanalytik Abteilung Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| | - Nicole Paczia
- Serviceeinheit Metabolomics und Kleinmolekül-Massenspektrometrie Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Straße 10 35043 Marburg Deutschland
| | - Tobias J. Erb
- Abteilung Biochemie und Synthetischer Metabolismus Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Straße 10 35043 Marburg Deutschland
| |
Collapse
|
57
|
Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem Soc Rev 2021; 50:6950-7008. [PMID: 33908526 PMCID: PMC8217322 DOI: 10.1039/d1cs00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. and Invizyne Technologies, Inc., Monrovia, CA, USA
| |
Collapse
|
58
|
Meyer C, Nakamura Y, Rasor BJ, Karim AS, Jewett MC, Tan C. Analysis of the Innovation Trend in Cell-Free Synthetic Biology. Life (Basel) 2021; 11:551. [PMID: 34208358 PMCID: PMC8231175 DOI: 10.3390/life11060551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
Cell-free synthetic biology is a maturing field that aims to assemble biomolecular reactions outside cells for compelling applications in drug discovery, metabolic engineering, biomanufacturing, diagnostics, and education. Cell-free systems have several key features. They circumvent mechanisms that have evolved to facilitate species survival, bypass limitations on molecular transport across the cell wall, enable high-yielding and rapid synthesis of proteins without creating recombinant cells, and provide high tolerance towards toxic substrates or products. Here, we analyze ~750 published patents and ~2000 peer-reviewed manuscripts in the field of cell-free systems. Three hallmarks emerged. First, we found that both patent filings and manuscript publications per year are significantly increasing (five-fold and 1.5-fold over the last decade, respectively). Second, we observed that the innovation landscape has changed. Patent applications were dominated by Japan in the early 2000s before shifting to China and the USA in recent years. Finally, we discovered an increasing prevalence of biotechnology companies using cell-free systems. Our analysis has broad implications on the future development of cell-free synthetic biology for commercial and industrial applications.
Collapse
Affiliation(s)
- Conary Meyer
- Department of Biomedical Engineering, University of California, Davis, CA 95618, USA; (C.M.); (Y.N.)
| | - Yusuke Nakamura
- Department of Biomedical Engineering, University of California, Davis, CA 95618, USA; (C.M.); (Y.N.)
| | - Blake J. Rasor
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; (B.J.R.); (A.S.K.); (M.C.J.)
| | - Ashty S. Karim
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; (B.J.R.); (A.S.K.); (M.C.J.)
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; (B.J.R.); (A.S.K.); (M.C.J.)
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, CA 95618, USA; (C.M.); (Y.N.)
| |
Collapse
|
59
|
Liu H, Bowie JU. Cell-free synthetic biochemistry upgrading of ethanol to 1,3 butanediol. Sci Rep 2021; 11:9449. [PMID: 33941811 PMCID: PMC8093283 DOI: 10.1038/s41598-021-88899-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
It is now possible to efficiently fix flue gas CO/CO2 into ethanol using acetogens, thereby making carbon negative ethanol. While the ethanol could be burned as a fuel, returning the CO2 to the atmosphere, it might also be possible to use the fixed carbon in more diverse chemicals, thereby keeping it fixed. Here we describe a simple synthetic biochemistry approach for converting carbon negative ethanol into the synthetic building block chemical 1,3 butanediol (1,3-BDO). The pathway completely conserves carbon from ethanol and can ultimately be powered electrochemically via formate oxidation. Our proof-of-principle system reached a maximum productivity of 0.16 g/L/h and, with replenishment of feedstock and enzymes, achieved a titer of 7.7 g/L. We identify a number of elements that can be addressed in future work to improve both cell-free and cell-based production of 1,3-BDO.
Collapse
Affiliation(s)
- Hongjiang Liu
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, 611 Charles E. Young Dr. E, Los Angeles, CA, 90095-1570, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, 611 Charles E. Young Dr. E, Los Angeles, CA, 90095-1570, USA.
| |
Collapse
|
60
|
Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, Carothers JM, Peralta-Yahya P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth Biol 2021; 10:670-681. [PMID: 33749249 DOI: 10.1021/acssynbio.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.
Collapse
Affiliation(s)
- Nicholas S. Kruyer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin I. Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
61
|
Aguillón AR, Leão RAC, Miranda LSM, de Souza ROMA. Cannabidiol Discovery and Synthesis-a Target-Oriented Analysis in Drug Production Processes. Chemistry 2021; 27:5577-5600. [PMID: 32780909 DOI: 10.1002/chem.202002887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Indexed: 01/13/2023]
Abstract
The current state of evidence and recommendations for cannabidiol (CBD) and its health effects change the legal landscape and aim to destigmatize its phytotherapeutic research. Recently, some countries have included CBD as an antiepileptic product for compassionate use in children with refractory epilepsy. The growing demand for CBD has led to the need for high-purity cannabinoids on the emerging market. The discovery and development of approaches toward CBD synthesis have arisen from the successful extraction of Cannabis plants for cannabinoid fermentation in brewer's yeast. To understand different contributions to the design and enhancement of the synthesis of CBD and its key intermediates, a detailed analysis of the history behind cannabinoid compounds and their optimization is provided herein.
Collapse
Affiliation(s)
- Anderson R Aguillón
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Raquel A C Leão
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21941-170, CEP, 21941-910, Brazil
| | - Leandro S M Miranda
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Rodrigo O M A de Souza
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21941-170, CEP, 21941-910, Brazil
| |
Collapse
|
62
|
Abstract
Significant advances in enzyme discovery, protein and reaction engineering have transformed biocatalysis into a viable technology for the industrial scale manufacturing of chemicals. Multi-enzyme catalysis has emerged as a new frontier for the synthesis of complex chemicals. However, the in vitro operation of multiple enzymes simultaneously in one vessel poses challenges that require new strategies for increasing the operational performance of enzymatic cascade reactions. Chief among those strategies is enzyme co-immobilization. This review will explore how advances in synthetic biology and protein engineering have led to bioinspired co-localization strategies for the scaffolding and compartmentalization of enzymes. Emphasis will be placed on genetically encoded co-localization mechanisms as platforms for future autonomously self-organizing biocatalytic systems. Such genetically programmable systems could be produced by cell factories or emerging cell-free systems. Challenges and opportunities towards self-assembling, multifunctional biocatalytic materials will be discussed.
Collapse
|
63
|
Reyes SG, Kuruma Y, Fujimi M, Yamazaki M, Eto S, Nishikawa S, Tamaki S, Kobayashi A, Mizuuchi R, Rothschild L, Ditzler M, Fujishima K. PURE mRNA display and cDNA display provide rapid detection of core epitope motif via high-throughput sequencing. Biotechnol Bioeng 2021; 118:1736-1749. [PMID: 33501662 DOI: 10.1002/bit.27696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/02/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022]
Abstract
The reconstructed in vitro translation system known as the PURE system has been used in a variety of cell-free experiments such as the expression of native and de novo proteins as well as various display methods to select for functional polypeptides. We developed a refined PURE-based display method for the preparation of stable messenger RNA (mRNA) and complementary DNA (cDNA)-peptide conjugates and validated its utility for in vitro selection. Our conjugate formation efficiency exceeded 40%, followed by gel purification to allow minimum carry-over of components from the translation system to the downstream assay enabling clean and efficient random peptide sequence screening. We chose the commercially available anti-FLAG M2 antibody as a target molecule for validation. Starting from approximately 1.7 × 1012 random sequences, a round-by-round high-throughput sequencing showed clear enrichment of the FLAG epitope DYKDDD as well as revealing consensus FLAG epitope motif DYK(D/L/N)(L/Y/D/N/F)D. Enrichment of core FLAG motifs lacking one of the four key residues (DYKxxD) indicates that Tyr (Y) and Lys (K) appear as the two key residues essential for binding. Furthermore, the comparison between mRNA display and cDNA display method resulted in overall similar performance with slightly higher enrichment for mRNA display. We also show that gel purification steps in the refined PURE-based display method improve conjugate formation efficiency and enhance the enrichment rate of FLAG epitope motifs in later rounds of selection especially for mRNA display. Overall, the generalized procedure and consistent performance of two different display methods achieved by the commercially available PURE system will be useful for future studies to explore the sequence and functional space of diverse polypeptides.
Collapse
Affiliation(s)
- Sabrina Galiñanes Reyes
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,Extra-cutting-edge Science and Technology Avant-garde Research Program, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan.,James Watt School of Engineering, The University of Glasgow, Glasgow, UK
| | - Yutetsu Kuruma
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,Extra-cutting-edge Science and Technology Avant-garde Research Program, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan.,JST, PRESTO, Saitama, Japan
| | - Mai Fujimi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | | | - Sumie Eto
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,MOLCURE Inc., Shinagawa, Tokyo, Japan
| | - Shota Nishikawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Asaki Kobayashi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Ryo Mizuuchi
- JST, PRESTO, Saitama, Japan.,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Lynn Rothschild
- Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, California, USA
| | - Mark Ditzler
- Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, California, USA
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
64
|
Amalfitano E, Karlikow M, Norouzi M, Jaenes K, Cicek S, Masum F, Sadat Mousavi P, Guo Y, Tang L, Sydor A, Ma D, Pearson JD, Trcka D, Pinette M, Ambagala A, Babiuk S, Pickering B, Wrana J, Bremner R, Mazzulli T, Sinton D, Brumell JH, Green AA, Pardee K. A glucose meter interface for point-of-care gene circuit-based diagnostics. Nat Commun 2021; 12:724. [PMID: 33526784 PMCID: PMC7851131 DOI: 10.1038/s41467-020-20639-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/01/2020] [Indexed: 01/24/2023] Open
Abstract
Recent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2. Getting synthetic biology circuit-based sensors into field applications is still a challenge. Here the authors combine a circuit sensor with a glucose meter for small analyte and nucleic acid detection.
Collapse
Affiliation(s)
- Evan Amalfitano
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Margot Karlikow
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Masoud Norouzi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Katariina Jaenes
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Seray Cicek
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Fahim Masum
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | | | - Yuxiu Guo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Laura Tang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Andrew Sydor
- Program in Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Duo Ma
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, AZ, 85287, USA
| | - Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, M5T 3A9, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Daniel Trcka
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada
| | - Mathieu Pinette
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada
| | - Bradley Pickering
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, R3E 0J9, MB, Canada.,Iowa State University, College of Veterinary Medicine, Department of Veterinary Microbiology and Preventive Medicine, Ames, IA, 50011, USA
| | - Jeff Wrana
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, M5T 3A9, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Tony Mazzulli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Department of Microbiology, Sinai Health System/University Health Network, Toronto, M5G 1X5, ON, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, ON, Canada
| | - John H Brumell
- Program in Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, ON, Canada.,SickKids IBD Centre, Hospital for Sick Children, Toronto, M5G 1X8, ON, Canada
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, AZ, 85287, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada. .,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, ON, Canada.
| |
Collapse
|
65
|
Harding CJ, Sutherland E, Hanna JG, Houston DR, Czekster CM. Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme. RSC Chem Biol 2021; 2:230-240. [PMID: 33937777 PMCID: PMC8084100 DOI: 10.1039/d0cb00142b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/14/2021] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) produce a variety of cyclic dipeptide products by utilising two aminoacylated tRNA substrates. We sought to investigate the minimal requirements for substrate usage in this class of enzymes as the relationship between CDPSs and their substrates remains elusive. Here, we investigated the Bacillus thermoamylovorans enzyme, BtCDPS, which synthesises cyclo(l-Leu-l-Leu). We systematically tested where specificity arises and, in the process, uncovered small molecules (activated amino esters) that will suffice as substrates, although catalytically poor. We solved the structure of BtCDPS to 1.7 Å and combining crystallography, enzymatic assays and substrate docking experiments propose a model for how the minimal substrates interact with the enzyme. This work is the first report of a CDPS enzyme utilizing a molecule other than aa-tRNA as a substrate; providing insights into substrate requirements and setting the stage for the design of improved simpler substrates.
Collapse
Affiliation(s)
- Christopher J Harding
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| | - Emmajay Sutherland
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| | - Jane G Hanna
- Arab Academy for Science, Technology, and Maritime Transport (AASTMT) Cairo Campus Egypt
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh Waddington 1 Building, King's Buildings Edinburgh EH9 3BF UK
| | - Clarissa M Czekster
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| |
Collapse
|
66
|
Toward sustainable, cell-free biomanufacturing. Curr Opin Biotechnol 2021; 69:136-144. [PMID: 33453438 DOI: 10.1016/j.copbio.2020.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Industrial biotechnology is an attractive approach to address the need for low-cost fuels and products from sustainable resources. Unfortunately, cells impose inherent limitations on the effective synthesis and release of target products. One key constraint is that cellular survival objectives often work against the production objectives of biochemical engineers. Additionally, industrial strains release CO2 and struggle to utilize sustainable, potentially profitable feedstocks. Cell-free biotechnology, which uses biological machinery harvested from cells, can address these challenges with advantages including: (i) shorter development times, (ii) higher volumetric production rates, and (iii) tolerance to otherwise toxic molecules. In this review, we highlight recent advances in cell-free technologies toward the production of non-protein products beyond lab-scale demonstrations and describe guiding principles for designing cell-free systems. Specifically, we discuss carbon and energy sources, reaction homeostasis, and scale-up. Expanding the scope of cell-free biomanufacturing practice could enable innovative approaches for the industrial production of green chemicals.
Collapse
|
67
|
Katsimpouras C, Stephanopoulos G. Enzymes in biotechnology: Critical platform technologies for bioprocess development. Curr Opin Biotechnol 2021; 69:91-102. [PMID: 33422914 DOI: 10.1016/j.copbio.2020.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 12/08/2020] [Indexed: 01/02/2023]
Abstract
Enzymes are core elements of biosynthetic pathways employed in the synthesis of numerous bioproducts. Here, we review enzyme promiscuity, enzyme engineering, enzyme immobilization, and cell-free systems as fundamental strategies of bioprocess development. Initially, promiscuous enzymes are the first candidates in the quest for new activities to power new, artificial, or bypass pathways that expand substrate range and catalyze the production of new products. If the activity or regulation of available enzymes is unsuitable for a process, protein engineering can be applied to improve them to the required level. When cell toxicity and low productivity cannot be engineered away, cell-free systems are an attractive option, especially in combination with enzyme immobilization that allows extended enzyme use. Overall, the above methods support powerful platforms for bioprocess development and optimization.
Collapse
Affiliation(s)
- Constantinos Katsimpouras
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA, USA.
| |
Collapse
|
68
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021; 60:88-119. [PMID: 32558088 PMCID: PMC7818486 DOI: 10.1002/anie.202006648] [Citation(s) in RCA: 649] [Impact Index Per Article: 162.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Collapse
Affiliation(s)
- Shuke Wu
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Radka Snajdrova
- Novartis Institutes for BioMedical ResearchGlobal Discovery Chemistry4056BaselSwitzerland
| | - Jeffrey C. Moore
- Process Research and DevelopmentMerck & Co., Inc.126 E. Lincoln AveRahwayNJ07065USA
| | - Kai Baldenius
- Baldenius Biotech ConsultingHafenstr. 3168159MannheimGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| |
Collapse
|
69
|
Young R, Haines M, Storch M, Freemont PS. Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly. Metab Eng 2020; 63:81-101. [PMID: 33301873 DOI: 10.1016/j.ymben.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.
Collapse
Affiliation(s)
- Rosanna Young
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Matthew Haines
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Marko Storch
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK
| | - Paul S Freemont
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK; UK DRI Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
70
|
Danielson N, McKay S, Bloom P, Dunn J, Jakel N, Bauer T, Hannon J, Jewett MC, Shanks B. Industrial Biotechnology—An Industry at an Inflection Point. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.29230.nda] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Sarah McKay
- National Corn Growers Association, St. Charles, MO, USA
| | - Paul Bloom
- Archer Daniels Midland Co., Decatur, IL, USA
| | - Jennifer Dunn
- Northwestern University, Evanston, IL, USA
- Northwestern Argonne Institute of Science and Engineering, Evanston, IL, USA
| | - Neal Jakel
- Fluid Quip Technologies, Cedar Rapids, IA, USA
| | | | | | - Michael C. Jewett
- Northwestern University, Evanston, IL, USA
- Northwestern Argonne Institute of Science and Engineering, Evanston, IL, USA
| | | |
Collapse
|
71
|
Valliere MA, Korman TP, Arbing MA, Bowie JU. A bio-inspired cell-free system for cannabinoid production from inexpensive inputs. Nat Chem Biol 2020; 16:1427-1433. [PMID: 32839605 DOI: 10.1038/s41589-020-0631-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/22/2020] [Indexed: 11/09/2022]
Abstract
Moving cannabinoid production away from the vagaries of plant extraction and into engineered microbes could provide a consistent, purer, cheaper and environmentally benign source of these important therapeutic molecules, but microbial production faces notable challenges. An alternative to microbes and plants is to remove the complexity of cellular systems by employing enzymatic biosynthesis. Here we design and implement a new cell-free system for cannabinoid production with the following features: (1) only low-cost inputs are needed; (2) only 12 enzymes are employed; (3) the system does not require oxygen and (4) we use a nonnatural enzyme system to reduce ATP requirements that is generally applicable to malonyl-CoA-dependent pathways such as polyketide biosynthesis. The system produces ~0.5 g l-1 cannabigerolic acid (CBGA) or cannabigerovarinic acid (CBGVA) from low-cost inputs, nearly two orders of magnitude higher than yeast-based production. Cell-free systems such as this may provide a new route to reliable cannabinoid production.
Collapse
Affiliation(s)
- Meaghan A Valliere
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA
- Conagen, Inc., Bedford, MA, USA
| | - Tyler P Korman
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA
- Invizyne Technologies, Inc., Monrovia, CA, USA
| | - Mark A Arbing
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
72
|
Isobutanol production freed from biological limits using synthetic biochemistry. Nat Commun 2020; 11:4292. [PMID: 32855421 PMCID: PMC7453195 DOI: 10.1038/s41467-020-18124-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/07/2020] [Indexed: 11/09/2022] Open
Abstract
Cost competitive conversion of biomass-derived sugars into biofuel will require high yields, high volumetric productivities and high titers. Suitable production parameters are hard to achieve in cell-based systems because of the need to maintain life processes. As a result, next-generation biofuel production in engineered microbes has yet to match the stringent cost targets set by petroleum fuels. Removing the constraints imposed by having to maintain cell viability might facilitate improved production metrics. Here, we report a cell-free system in a bioreactor with continuous product removal that produces isobutanol from glucose at a maximum productivity of 4 g L−1 h−1, a titer of 275 g L−1 and 95% yield over the course of nearly 5 days. These production metrics exceed even the highly developed ethanol fermentation process. Our results suggest that moving beyond cells has the potential to expand what is possible for bio-based chemical production. A cell free or synthetic biochemistry approach offers a way to circumvent the many constraints of living cells. Here, the authors demonstrate, via enzyme and process enhancements, the production of isobutanol with the metrics exceeding highly developed ethanol fermentation.
Collapse
|
73
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006648] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuke Wu
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry 4056 Basel Schweiz
| | - Jeffrey C. Moore
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Kai Baldenius
- Baldenius Biotech Consulting Hafenstraße 31 68159 Mannheim Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
74
|
Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy. Catalysts 2020. [DOI: 10.3390/catal10080891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immobilization of enzymes using protein coated micro-crystals (PCMCs) was reported for the first time in 2001 by Kreiner and coworkers. The strategy is very simple. First, an enzyme solution must be prepared in a concentrated solution of one compound (salt, sugar, amino acid) very soluble in water and poorly soluble in a water-soluble solvent. Then, the enzyme solution is added dropwise to the water soluble solvent under rapid stirring. The components accompanying the enzyme are called the crystal growing agents, the solvent being the dehydrating agent. This strategy permits the rapid dehydration of the enzyme solution drops, resulting in a crystallization of the crystal formation agent, and the enzyme is deposited on this crystal surface. The reaction medium where these biocatalysts can be used is marked by the solubility of the PCMC components, and usually these biocatalysts may be employed in water soluble organic solvents with a maximum of 20% water. The evolution of these PCMC was to chemically crosslink them and further improve their stabilities. Moreover, the PCMC strategy has been used to coimmobilize enzymes or enzymes and cofactors. The immobilization may permit the use of buffers as crystal growth agents, enabling control of the reaction pH in the enzyme environments. Usually, the PCMC biocatalysts are very stable and more active than other biocatalysts of the same enzyme. However, this simple (at least at laboratory scale) immobilization strategy is underutilized even when the publications using it systematically presented a better performance of them in organic solvents than that of many other immobilized biocatalysts. In fact, many possibilities and studies using this technique are lacking. This review tried to outline the possibilities of this useful immobilization strategy.
Collapse
|
75
|
Black WB, Aspacio D, Bever D, King E, Zhang L, Li H. Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor. Microb Cell Fact 2020; 19:150. [PMID: 32718347 PMCID: PMC7384224 DOI: 10.1186/s12934-020-01415-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Noncanonical redox cofactors are emerging as important tools in cell-free biosynthesis to increase the economic viability, to enable exquisite control, and to expand the range of chemistries accessible. However, these noncanonical redox cofactors need to be biologically synthesized to achieve full integration with renewable biomanufacturing processes. RESULTS In this work, we engineered Escherichia coli cells to biosynthesize the noncanonical cofactor nicotinamide mononucleotide (NMN+), which has been efficiently used in cell-free biosynthesis. First, we developed a growth-based screening platform to identify effective NMN+ biosynthetic pathways in E. coli. Second, we explored various pathway combinations and host gene disruption to achieve an intracellular level of ~ 1.5 mM NMN+, a 130-fold increase over the cell's basal level, in the best strain, which features a previously uncharacterized nicotinamide phosphoribosyltransferase (NadV) from Ralstonia solanacearum. Last, we revealed mechanisms through which NMN+ accumulation impacts E. coli cell fitness, which sheds light on future work aiming to improve the production of this noncanonical redox cofactor. CONCLUSION These results further the understanding of effective production and integration of NMN+ into E. coli. This may enable the implementation of NMN+-directed biocatalysis without the need for exogenous cofactor supply.
Collapse
Affiliation(s)
- William B Black
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Derek Aspacio
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Danielle Bever
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Edward King
- Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Linyue Zhang
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Han Li
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States.
| |
Collapse
|
76
|
Woodley JM. Towards the sustainable production of bulk-chemicals using biotechnology. N Biotechnol 2020; 59:59-64. [PMID: 32693028 DOI: 10.1016/j.nbt.2020.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/06/2023]
Abstract
The design and development of new routes for the production of sustainable bulk-chemicals requires focus on feedstock, conversion technology and downstream product recovery. This brief article discusses some of the constraints with using fermentation and suggests the removal of some constraints by using microbial biocatalysis or enzyme biocatalysis, which give a number of benefits in the context of the requirements for bulk-chemical production. Some potential process concepts are described, for products in the suitable low-price range. These examples (biodiesel, furfurals and amines) are used to illustrate the power of biocatalysis. Suggestions for future research efforts beyond molecular biology, involving process-based concepts, are also discussed.
Collapse
Affiliation(s)
- John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
77
|
Kelwick RJR, Webb AJ, Freemont PS. Biological Materials: The Next Frontier for Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:399. [PMID: 32478045 PMCID: PMC7235315 DOI: 10.3389/fbioe.2020.00399] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Advancements in cell-free synthetic biology are enabling innovations in sustainable biomanufacturing, that may ultimately shift the global manufacturing paradigm toward localized and ecologically harmonized production processes. Cell-free synthetic biology strategies have been developed for the bioproduction of fine chemicals, biofuels and biological materials. Cell-free workflows typically utilize combinations of purified enzymes, cell extracts for biotransformation or cell-free protein synthesis reactions, to assemble and characterize biosynthetic pathways. Importantly, cell-free reactions can combine the advantages of chemical engineering with metabolic engineering, through the direct addition of co-factors, substrates and chemicals -including those that are cytotoxic. Cell-free synthetic biology is also amenable to automatable design cycles through which an array of biological materials and their underpinning biosynthetic pathways can be tested and optimized in parallel. Whilst challenges still remain, recent convergences between the materials sciences and these advancements in cell-free synthetic biology enable new frontiers for materials research.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Alexander J. Webb
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- The London Biofoundry, Imperial College Translation & Innovation Hub, London, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
78
|
Cui Z, Mao Y, Zhao Y, Zheng M, Wang Z, Ma H, Chen T. One-pot efficient biosynthesis of (3 R)-acetoin from pyruvate by a two-enzyme cascade. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01332c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Opening the possibility of sustainable industrial (3R)-acetoin biomanufacturing in vitro.
Collapse
Affiliation(s)
- Zhenzhen Cui
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)
- SynBio Research Platform
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
| | - Yufeng Mao
- Biodesign Center
- Key Laboratory of Systems Microbial Biotechnology
- Tianjin Institute of Industrial Biotechnology
- Chinese Academy of Sciences
- Tianjin 300308
| | - Yujiao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)
- SynBio Research Platform
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
| | - Meiyu Zheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)
- SynBio Research Platform
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)
- SynBio Research Platform
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
| | - Hongwu Ma
- Biodesign Center
- Key Laboratory of Systems Microbial Biotechnology
- Tianjin Institute of Industrial Biotechnology
- Chinese Academy of Sciences
- Tianjin 300308
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)
- SynBio Research Platform
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
| |
Collapse
|