51
|
Lu Q, Li S, Shao F. Sweet Talk: Protein Glycosylation in Bacterial Interaction With the Host. Trends Microbiol 2015; 23:630-641. [DOI: 10.1016/j.tim.2015.07.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/29/2015] [Accepted: 07/10/2015] [Indexed: 02/04/2023]
|
52
|
Kluin PM, Langerak AW, Beverdam-Vincent J, Geurts-Giele WRR, Visser L, Rutgers B, Schuuring E, Van Baarlen J, Lam KH, Seldenrijk K, Kibbelaar RE, de Wit P, Diepstra A, Rosati S, van Noesel MM, Zwaan CM, Hunting JCB, Hoogendoorn M, van der Gaag EJ, van Esser JWJ, de Bont E, Kluin-Nelemans HC, Winter RH, Lo ten Foe JR, van der Zanden AGM. Paediatric nodal marginal zone B-cell lymphadenopathy of the neck: a Haemophilus influenzae
-driven immune disorder? J Pathol 2015; 236:302-14. [DOI: 10.1002/path.4524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/10/2015] [Accepted: 02/23/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Philip M Kluin
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC; University Medical Centre Rotterdam; Rotterdam The Netherlands
| | - Jannetta Beverdam-Vincent
- Microbiology and Infection Control, Zorggroep Twente; Hengelo The Netherlands
- Laboratory for Microbiology; Twente Achterhoek Hengelo The Netherlands
| | | | - Lydia Visser
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | | | - King H Lam
- Department of Pathology, Erasmus Medical Centre Rotterdam; EMCR; Rotterdam The Netherlands
| | - Kees Seldenrijk
- Department of Pathology; St Antonius Hospital; Nieuwegein The Netherlands
| | - Robby E Kibbelaar
- Department of Pathology; Pathologie Friesland; Leeuwarden The Netherlands
| | - Peter de Wit
- Department of Pathology; Amphia Hospital; Breda The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Stefano Rosati
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Max M van Noesel
- Department of Oncology and Hematology; Sophia Children Hospital; Rotterdam The Netherlands
| | - C Michel Zwaan
- Department of Oncology and Hematology; Sophia Children Hospital; Rotterdam The Netherlands
| | - Jarmo CB Hunting
- Department of Internal Medicine; St Antonius Ziekenhuis; Nieuwegein The Netherlands
| | - Mels Hoogendoorn
- Department of Internal Medicine; Medisch Centrum Leeuwarden; The Netherlands
| | | | | | - Eveline de Bont
- Department of Pediatric Oncology & Hematology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Hanneke C Kluin-Nelemans
- Department of Hematology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Rik H Winter
- Department of Medical Microbiology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Jerome R Lo ten Foe
- Department of Medical Microbiology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Adri GM van der Zanden
- Microbiology and Infection Control, Zorggroep Twente; Hengelo The Netherlands
- Laboratory for Microbiology; Twente Achterhoek Hengelo The Netherlands
| |
Collapse
|
53
|
Choi J, Nix EB, Gaultier GN, Cox AD, McCready W, Ulanova M. Naturally occurring bactericidal antibodies specific for Haemophilus influenzae Lipooligosaccharide are present in healthy adult individuals. Vaccine 2015; 33:1941-7. [DOI: 10.1016/j.vaccine.2015.02.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/03/2015] [Accepted: 02/22/2015] [Indexed: 11/30/2022]
|
54
|
Obaid NA, Jacobson GA, Tristram S. Relationship between clinical site of isolation and ability to form biofilms in vitro in nontypeable Haemophilus influenzae. Can J Microbiol 2015; 61:243-5. [PMID: 25706230 DOI: 10.1139/cjm-2014-0763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen associated with a range of infections, including various lower respiratory infections, otitis media, and conjunctivitis. There is some debate as to whether or not NTHi produces biofilms and, if so, whether or not this is relevant to pathogenesis. Although many studies have examined the association between in vitro biofilm formation and isolates from a specific infection type, few have made comparisons from isolates from a broad range of isolates grouped by clinical source. In our study 50 NTHi from different clinical sources, otitis media, conjunctivitis, lower respiratory tract infections in both cystic fibrosis and non-cystic fibrosis patients, and nasopharyngeal carriage, plus 10 nasopharyngeal isolates of the commensal Haemophilus haemolyticus were tested for the ability to form biofilm by using a static microtitre plate crystal violet assay. A high degree of variation in biofilm forming ability was observed across all isolates, with no statistically significant differences observed between the groups, with the exception of the isolates from conjunctivitis. These isolates had uniformly lower biofilm forming ability compared with isolates from the other groups (p < 0.005).
Collapse
Affiliation(s)
- Najla A Obaid
- School of Medicine, University of Tasmania, Private Bag 26, Hobart, 7005, Tasmania, Australia
| | | | | |
Collapse
|
55
|
Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat Commun 2015; 6:6062. [PMID: 25585690 PMCID: PMC4309435 DOI: 10.1038/ncomms7062] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/09/2014] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids are among the most commonly used anti-inflammatory agents. Despite the enormous efforts in elucidating the glucocorticoid-mediated anti-inflammatory actions, how glucocorticoids tightly control overactive inflammatory response is not fully understood. Here we show that glucocorticoids suppress bacteria-induced inflammation by enhancing IRAK-M, a central negative regulator of Toll-like receptor signalling. The ability of glucocorticoids to suppress pulmonary inflammation induced by non-typeable Haemophilus influenzae is significantly attenuated in IRAK-M-deficient mice. Glucocorticoids improve the survival rate after a lethal non-typeable Haemophilus influenzae infection in wild-type mice, but not in IRAK-M-deficient mice. Moreover, we show that glucocorticoids and non-typeable Haemophilus influenzae synergistically upregulate IRAK-M expression via mutually and synergistically enhancing p65 and glucocorticoid receptor binding to the IRAK-M promoter. Together, our studies unveil a mechanism by which glucocorticoids tightly control the inflammatory response and host defense via the induction of IRAK-M and may lead to further development of anti-inflammatory therapeutic strategies.
Collapse
|
56
|
A role for CCL28-CCR3 in T-cell homing to the human upper airway mucosa. Mucosal Immunol 2015; 8:107-14. [PMID: 24917456 DOI: 10.1038/mi.2014.46] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 05/11/2014] [Indexed: 02/04/2023]
Abstract
Lymphocyte recruitment to peripheral tissues is fundamental for immune surveillance and homeostasis, but the chemokines and chemokine receptors responsible for tissue-specific homing of T cells to the upper airway mucosa have not been determined. To address this, we analyzed the chemokines expressed in the normal human nasal mucosa and found that CCL28 is preferentially expressed at a high level on the lumenal face of vascular endothelial cells in the mucosa. Analysis of the cognate chemokine receptors revealed that close to 50% of the CD4(+) T cells in the human nasal mucosa expressed the CCL28 receptor CCR3, whereas CCR3 was hardly detectable on T cells in the small intestine and skin. In the circulation, CCR3(+) T cells comprised a small subset that did not express homing receptors to the intestine or skin. Moreover, depletion of CCR3(+)CD4(+) T cells abrogated the proliferative response of human blood CD4(+) T cells against the opportunistic nasopharyngeal pathogen Haemophilus influenzae, indicating that the CCR3(+)CD4(+) T-cell subset in the circulation contains antigen specificities relevant for the upper airways. Together, these findings indicate that CCL28-CCR3 interactions are involved in the homeostatic trafficking of CD4(+) T cells to the upper airways.
Collapse
|
57
|
Post DMB, Held JM, Ketterer MR, Phillips NJ, Sahu A, Apicella MA, Gibson BW. Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry. BMC Microbiol 2014; 14:329. [PMID: 25551439 PMCID: PMC4302520 DOI: 10.1186/s12866-014-0329-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/16/2014] [Indexed: 11/25/2022] Open
Abstract
Background Non-typeable H. influenzae (NTHi) is a nasopharyngeal commensal that can become an opportunistic pathogen causing infections such as otitis media, pneumonia, and bronchitis. NTHi is known to form biofilms. Resistance of bacterial biofilms to clearance by host defense mechanisms and antibiotic treatments is well-established. In the current study, we used stable isotope labeling by amino acids in cell culture (SILAC) to compare the proteomic profiles of NTHi biofilm and planktonic organisms. Duplicate continuous-flow growth chambers containing defined media with either “light” (L) isoleucine or “heavy” (H) 13C6-labeled isoleucine were used to grow planktonic (L) and biofilm (H) samples, respectively. Bacteria were removed from the chambers, mixed based on weight, and protein extracts were generated. Liquid chromatography-mass spectrometry (LC-MS) was performed on the tryptic peptides and 814 unique proteins were identified with 99% confidence. Results Comparisons of the NTHi biofilm to planktonic samples demonstrated that 127 proteins showed differential expression with p-values ≤0.05. Pathway analysis demonstrated that proteins involved in energy metabolism, protein synthesis, and purine, pyrimidine, nucleoside, and nucleotide processes showed a general trend of downregulation in the biofilm compared to planktonic organisms. Conversely, proteins involved in transcription, DNA metabolism, and fatty acid and phospholipid metabolism showed a general trend of upregulation under biofilm conditions. Selected reaction monitoring (SRM)-MS was used to validate a subset of these proteins; among these were aerobic respiration control protein ArcA, NAD nucleotidase and heme-binding protein A. Conclusions The present proteomic study indicates that the NTHi biofilm exists in a semi-dormant state with decreased energy metabolism and protein synthesis yet is still capable of managing oxidative stress and in acquiring necessary cofactors important for biofilm survival. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0329-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah M B Post
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | - Jason M Held
- Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | | | - Nancy J Phillips
- The University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Alexandria Sahu
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | | | - Bradford W Gibson
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA. .,The University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
58
|
Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S. A basis for vaccine development: Comparative characterization of Haemophilus influenzae outer membrane vesicles. Int J Med Microbiol 2014; 305:298-309. [PMID: 25592265 DOI: 10.1016/j.ijmm.2014.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/09/2014] [Accepted: 12/14/2014] [Indexed: 11/29/2022] Open
Abstract
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconnected OMV biogenesis mechanisms in H. influenzae. Nanoparticle tracking analysis, transmission electron microscopy, as well as protein and lipooligosaccharide quantifications demonstrated that heterologous H. influenzae strains differ in their OMV size and quantity. Lipidomic analyses identified palmitic acid as the most abundant fatty acid, while phosphatidylethanolamine was found to be the most dominant phospholipid present in OMVs and the OM of all strains tested. Proteomic analysis confirmed that H. influenzae OMVs contain vaccine candidate proteins as well as important virulence factors. These findings contribute to the understanding of OMV biogenesis as well as biological roles of OMVs and, in addition, may be important for the future development of OMV based vaccines against H. influenzae infections.
Collapse
Affiliation(s)
- Sandro Roier
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Thomas Blume
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Lisa Klug
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | - Gabriel E Wagner
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed-Graz, Heinrichstraße 28, A-8010 Graz, Austria
| | - Wael Elhenawy
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Klaus Zangger
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed-Graz, Heinrichstraße 28, A-8010 Graz, Austria
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, BioTechMed-Graz, Harrachgasse 21, A-8010 Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | - Mario F Feldman
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria.
| |
Collapse
|
59
|
Molecular characterization of fluoroquinolone resistance in nontypeable Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother 2014; 59:461-6. [PMID: 25385097 DOI: 10.1128/aac.04005-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a common cause of respiratory infections in adults, who are frequently treated with fluoroquinolones. The aims of this study were to characterize the genotypes of fluoroquinolone-resistant NTHi isolates and their mechanisms of resistance. Among 7,267 H. influenzae isolates collected from adult patients from 2000 to 2013, 28 (0.39%) were ciprofloxacin resistant according to Clinical and Laboratory Standards Institute (CLSI) criteria. In addition, a nalidixic acid screening during 2010 to 2013 detected five (0.23%) isolates that were ciprofloxacin susceptible but nalidixic acid resistant. Sequencing of their quinolone resistance-determining regions and genotyping by pulse-field gel electrophoresis and multilocus sequence typing of the 25 ciprofloxacin-resistant isolates available and all 5 nalidixic acid-resistant isolates were performed. In the NTHi isolates studied, two mutations producing changes in two GyrA residues (Ser84, Asp88) and/or two ParC residues (Ser84, Glu88) were associated with increased fluoroquinolone MICs. Strains with one or two mutations (n = 15) had ciprofloxacin and levofloxacin MICs of 0.12 to 2 μg/ml, while those with three or more mutations (n = 15) had MICs of 4 to 16 μg/ml. Long persistence of fluoroquinolone-resistant strains was observed in three chronic obstructive pulmonary disease patients. High genetic diversity was observed among fluoroquinolone-resistant NTHi isolates. Although fluoroquinolones are commonly used to treat respiratory infections, the proportion of resistant NTHi isolates remains low. The nalidixic acid disk test is useful for detecting the first changes in GyrA or in GyrA plus ParC among fluoroquinolone-susceptible strains that are at a potential risk for the development of resistance under selective pressure by fluoroquinolone treatment.
Collapse
|
60
|
Puig C, Grau I, Marti S, Tubau F, Calatayud L, Pallares R, Liñares J, Ardanuy C. Clinical and molecular epidemiology of haemophilus influenzae causing invasive disease in adult patients. PLoS One 2014; 9:e112711. [PMID: 25379704 PMCID: PMC4224504 DOI: 10.1371/journal.pone.0112711] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/14/2014] [Indexed: 12/02/2022] Open
Abstract
Objectives The epidemiology of invasive Haemophilus influenzae (Hi) has changed since the introduction of the Hi type b (Hib) vaccine. The aim of this study was to analyze the clinical and molecular epidemiology of Hi invasive disease in adults. Methods Clinical data of the 82 patients with Hi invasive infections were analyzed. Antimicrobial susceptibility, serotyping, and genotyping were studied (2008–2013). Results Men accounted for 63.4% of patients (whose mean age was 64.3 years). The most frequent comorbidities were immunosuppressive therapy (34.1%), malignancy (31.7%), diabetes, and COPD (both 22%). The 30-day mortality rate was 20.7%. The majority of the strains (84.3%) were nontypeable (NTHi) and serotype f was the most prevalent serotype in the capsulated strains. The highest antimicrobial resistance was for cotrimoxazole (27.1%) and ampicillin (14.3%). Twenty-three isolates (32.9%) had amino acid changes in the PBP3 involved in resistance. Capsulated strains were clonal and belonged to clonal complexes 6 (serotype b), 124 (serotype f), and 18 (serotype e), whereas NTHi were genetically diverse. Conclusions Invasive Hi disease occurred mainly in elderly and those with underlying conditions, and it was associated with a high mortality rate. NTHi were the most common cause of invasive disease and showed high genetic diversity.
Collapse
Affiliation(s)
- Carmen Puig
- Department of Microbiology, Hospital Universitari de Bellvitge, Universitat de Barcelona-IDIBELL, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
| | - Imma Grau
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Universitat de Barcelona-IDIBELL, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
| | - Sara Marti
- Department of Microbiology, Hospital Universitari de Bellvitge, Universitat de Barcelona-IDIBELL, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
- * E-mail: (CA); (SM)
| | - Fe Tubau
- Department of Microbiology, Hospital Universitari de Bellvitge, Universitat de Barcelona-IDIBELL, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
| | - Laura Calatayud
- Department of Microbiology, Hospital Universitari de Bellvitge, Universitat de Barcelona-IDIBELL, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
| | - Roman Pallares
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Universitat de Barcelona-IDIBELL, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
| | - Josefina Liñares
- Department of Microbiology, Hospital Universitari de Bellvitge, Universitat de Barcelona-IDIBELL, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
| | - Carmen Ardanuy
- Department of Microbiology, Hospital Universitari de Bellvitge, Universitat de Barcelona-IDIBELL, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
- * E-mail: (CA); (SM)
| |
Collapse
|
61
|
Peroxiredoxin-glutaredoxin and catalase promote resistance of nontypeable Haemophilus influenzae 86-028NP to oxidants and survival within neutrophil extracellular traps. Infect Immun 2014; 83:239-46. [PMID: 25348637 DOI: 10.1128/iai.02390-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a common commensal and opportunistic pathogen of the human airways. For example, NTHI is a leading cause of otitis media and is the most common cause of airway infections associated with chronic obstructive pulmonary disease (COPD). These infections are often chronic/recurrent in nature and involve bacterial persistence within biofilm communities that are highly resistant to host clearance. Our previous work has shown that NTHI within biofilms has increased expression of factors associated with oxidative stress responses. The goal of this study was to define the roles of catalase (encoded by hktE) and a bifunctional peroxiredoxin-glutaredoxin (encoded by pdgX) in resistance of NTHI to oxidants and persistence in vivo. Isogenic NTHI strain 86-028NP mutants lacking hktE and pdgX had increased susceptibility to peroxide. Moreover, these strains had persistence defects in the chinchilla infection model for otitis media, as well as in a murine model for COPD. Additional work showed that pdgX and hktE were important determinants of NTHI survival within neutrophil extracellular traps (NETs), which we have shown to be an integral part of NTHI biofilms in vivo. Based on these data, we conclude that catalase and peroxiredoxin-glutaredoxin are determinants of bacterial persistence during chronic/recurrent NTHI infections that promote bacterial survival within NETs.
Collapse
|
62
|
Finney LJ, Ritchie A, Pollard E, Johnston SL, Mallia P. Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. Int J Chron Obstruct Pulmon Dis 2014; 9:1119-32. [PMID: 25342897 DOI: 10.2147/copd.s54477] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial infection of the lower respiratory tract in chronic obstructive pulmonary disease (COPD) patients is common both in stable patients and during acute exacerbations. The most frequent bacteria detected in COPD patients is Haemophilus influenzae, and it appears this organism is uniquely adapted to exploit immune deficiencies associated with COPD and to establish persistent infection in the lower respiratory tract. The presence of bacteria in the lower respiratory tract in stable COPD is termed colonization; however, there is increasing evidence that this is not an innocuous phenomenon but is associated with airway inflammation, increased symptoms, and increased risk for exacerbations. In this review, we discuss host immunity that offers protection against H. influenzae and how disturbance of these mechanisms, combined with pathogen mechanisms of immune evasion, promote persistence of H. influenzae in the lower airways in COPD. In addition, we examine the role of H. influenzae in COPD exacerbations, as well as interactions between H. influenzae and respiratory virus infections, and review the role of treatments and their effect on COPD outcomes. This review focuses predominantly on data derived from human studies but will refer to animal studies where they contribute to understanding the disease in humans.
Collapse
Affiliation(s)
- Lydia J Finney
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Andrew Ritchie
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Patrick Mallia
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
63
|
Increased biofilm formation by nontypeable Haemophilus influenzae isolates from patients with invasive disease or otitis media versus strains recovered from cases of respiratory infections. Appl Environ Microbiol 2014; 80:7088-95. [PMID: 25192997 DOI: 10.1128/aem.02544-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biofilm formation by nontypeable (NT) Haemophilus influenzae remains a controversial topic. Nevertheless, biofilm-like structures have been observed in the middle-ear mucosa of experimental chinchilla models of otitis media (OM). To date, there have been no studies of biofilm formation in large collections of clinical isolates. This study aimed to investigate the initial adhesion to a solid surface and biofilm formation by NT H. influenzae by comparing isolates from healthy carriers, those with noninvasive respiratory disease, and those with invasive respiratory disease. We used 352 isolates from patients with nonbacteremic community-acquired pneumonia (NB-CAP), chronic obstructive pulmonary disease (COPD), OM, and invasive disease and a group of healthy colonized children. We then determined the speed of initial adhesion to a solid surface by the BioFilm ring test and quantified biofilm formation by crystal violet staining. Isolates from different clinical sources displayed high levels of biofilm formation on a static solid support after growth for 24 h. We observed clear differences in initial attachment and biofilm formation depending on the pathology associated with NT H. influenzae isolation, with significantly increased biofilm formation for NT H. influenzae isolates collected from patients with invasive disease and OM compared with NT H. influenzae isolates from patients with NB-CAP or COPD and healthy colonized subjects. In all cases, biofilm structures were detached by proteinase K treatment, suggesting an important role for proteins in the initial adhesion and static biofilm formation measured by crystal violet staining.
Collapse
|
64
|
Dectin-1 is expressed in human lung and mediates the proinflammatory immune response to nontypeable Haemophilus influenzae. mBio 2014; 5:e01492-14. [PMID: 25161190 PMCID: PMC4173778 DOI: 10.1128/mbio.01492-14] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The C-type lectin receptor Dectin-1 is expressed mainly on myeloid cells mediating the immune response targeting respiratory pathogens such as Aspergillus fumigatus and Mycobacterium tuberculosis. The pulmonary epithelium serves as an important interface for interactions between these pathogens and the respiratory tract. Therefore, we analyzed the expression pattern of Dectin-1 in the human lung. Immunohistochemically stained human lung sections from 17 out of 19 individuals were positive for Dectin-1, which was expressed mainly apically on bronchial and alveolar epithelium. Our results showed no correlation with chronic obstructive pulmonary disease (COPD) or the smoking habits of the patients. Nontypeable Haemophilus influenzae (NTHI), an important bacterial pathogen of the respiratory tract with significant importance in COPD, has also been proposed to be recognized by Dectin-1, suggesting a possible impact on the NTHI-dependent immune response in human airways. Therefore, the involvement of Dectin-1 in NTHI-triggered cytokine responses was investigated in primary normal human bronchial epithelial (NHBE) cells and in the A549 cell line stably transfected with Dectin-1. The presence of Dectin-1 significantly increased cytokine release in response to NTHI in NHBE and A549 cells. In addition, phosphorylation of the Dectin-1 hem-immunoreceptor tyrosine-based activation motif (hemITAM) was essential for the Dectin-1-triggered response to NTHI in A549 cells. In conclusion, in human airways, epithelium-expressed Dectin-1 may play a significant role in generating an NTHI-mediated, proinflammatory immune response. IMPORTANCE In this study, we demonstrated, for the first time, the expression of Dectin-1 on human lung tissues and, in particular, pulmonary epithelium by making use of immunohistochemical staining. The epithelial lining of the human airways is an important interface for host-pathogen interactions. Therefore, our data suggest that epithelium-expressed Dectin-1 is of considerable importance for the interaction of the human airways with pathogens detected by this receptor, such as A. fumigatus and M. tuberculosis. Moreover, we further demonstrated that, in pulmonary epithelial cells, Dectin-1 enhances the proinflammatory immune response to NTHI. In COPD patients, NTHI is a major cause of respiratory tract infections and is associated with proinflammatory immune responses in the lower airways. Therefore, our data suggest that the functional interaction of Dectin-1 with NTHI in human airways may have an important impact on the pathogenesis of COPD.
Collapse
|
65
|
Krishnamurthy A, Kyd J. The roles of epithelial cell contact, respiratory bacterial interactions and phosphorylcholine in promoting biofilm formation by Streptococcus pneumoniae and nontypeable Haemophilus influenzae. Microbes Infect 2014; 16:640-7. [DOI: 10.1016/j.micinf.2014.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 06/16/2014] [Accepted: 06/25/2014] [Indexed: 11/30/2022]
|
66
|
Puig C, Marti S, Fleites A, Trabazo R, Calatayud L, Liñares J, Ardanuy C. Oropharyngeal colonization by nontypeable Haemophilus influenzae among healthy children attending day care centers. Microb Drug Resist 2014; 20:450-5. [PMID: 24716536 DOI: 10.1089/mdr.2013.0186] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Haemophilus influenzae colonizes the upper respiratory tract and can spread causing otitis and sinusitis. This work aimed to study the oropharyngeal carriage rate in healthy <5-year-old children attending day care centers in Oviedo, Spain in two consecutive years (January to March 2004-2005). The carriage rate was 42% (400/960) and highly variable among centers (range, 12% to 83%). Isolates were mainly identified as nontypeable H. influenzae (NTHi, 99%). Epidemiologically, 127 different genotypes were identified by PFGE with a minimum of two genotypes per center. One hundred fourteen children (12%) were included in both studies and none of them harbored the same strain over a period of time. The isolates only showed resistance to cotrimoxazol and ampicillin, presenting a shift in the level of ampicillin reduced susceptibility, showing a predominance of PBP3 mutations in 2004 and a predominance of β-lactamase production in 2005. This study proved the great genetic variability of NTHi isolates that present similar genotypic patterns in both years with no long-term carriage of the same strain.
Collapse
Affiliation(s)
- Carmen Puig
- 1 Microbiology Department, Hospital Universitari de Bellvitge, University of Barcelona , IDIBELL, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
67
|
Puig C, Marti S, Hermans PWM, de Jonge MI, Ardanuy C, Liñares J, Langereis JD. Incorporation of phosphorylcholine into the lipooligosaccharide of nontypeable Haemophilus influenzae does not correlate with the level of biofilm formation in vitro. Infect Immun 2014; 82:1591-9. [PMID: 24452688 PMCID: PMC3993405 DOI: 10.1128/iai.01445-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/20/2014] [Indexed: 12/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that causes otitis media in children and community-acquired pneumonia or exacerbations of chronic obstructive pulmonary disease in adults. A large variety of studies suggest that biofilm formation by NTHi may be an important step in the pathogenesis of this bacterium. The objective of this report was to determine the relationship between the presence of phosphorylcholine in the lipooligosaccharide of NTHi and the level of biofilm formation. The study was performed on 111 NTHi clinical isolates collected from oropharyngeal samples of healthy children, middle ear fluid of children with otitis media, and sputum samples of patients with chronic obstructive pulmonary disease or community-acquired pneumonia. NTHi clinical isolates presented a large variation in the level of biofilm formation in a static assay and phosphorylcholine content. Isolates collected from the oropharynx and middle ear fluid of children tended to have more phosphorylcholine and made denser biofilms than isolates collected from sputum samples of patients with chronic obstructive pulmonary disease or community-acquired pneumonia. No correlation was observed between biofilm formation and the presence of phosphorylcholine in the lipooligosaccharide for either planktonic or biofilm growth. This lack of correlation was confirmed by abrogating phosphorylcholine incorporation into lipooligosaccharide through licA gene deletion, which had strain-specific effects on biofilm formation. Altogether, we present strong evidence to conclude that there is no correlation between biofilm formation in a static assay and the presence of phosphorylcholine in lipooligosaccharide in a large collection of clinical NTHi isolates collected from different groups of patients.
Collapse
Affiliation(s)
- Carmen Puig
- Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona, IDIBELL, Barcelona, Spain
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
- CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Sara Marti
- Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona, IDIBELL, Barcelona, Spain
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
- CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marien I. de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona, IDIBELL, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Josefina Liñares
- Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona, IDIBELL, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Jeroen D. Langereis
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
68
|
Activation of innate immune responses by Haemophilus influenzae lipooligosaccharide. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:769-76. [PMID: 24671554 DOI: 10.1128/cvi.00063-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A Gram-negative pathogen Haemophilus influenzae has a truncated endotoxin known as lipooligosaccharide (LOS). Recent studies on H. influenzae LOS highlighted its structural and compositional implications for bacterial virulence; however, the role of LOS in the activation of innate and adaptive immunity is poorly understood. THP-1 monocytes were stimulated with either lipopolysaccharide (LPS) from Escherichia coli or LOS compounds derived from H. influenzae Eagan, Rd, and Rd lic1 lpsA strains. Cell surface expression of key antigen-presenting, costimulatory, and adhesion molecules, as well as gene expression of some cytokines and pattern recognition receptors, were studied. Eagan and Rd LOS had a lower capacity to induce the expression of ICAM-1, CD40, CD58, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) compared to LPS. In contrast, antigen-presenting (HLA-ABC or HLA-DR) and costimulatory (CD86) molecules and NOD2 were similarly upregulated in response to LOS and LPS. LOS from a mutant Rd strain (Rd lic1 lpsA) consistently induced higher expression of innate immune molecules than the wild-type LOS, suggesting the importance of phosphorylcholine and/or oligosaccharide extension in cellular responses to LOS. An LOS compound with a strong ability to upregulate antigen-presenting and costimulatory molecules combined with a low proinflammatory activity may be considered a vaccine candidate to immunize against H. influenzae.
Collapse
|
69
|
Puig C, Calatayud L, Martí S, Tubau F, Garcia-Vidal C, Carratalà J, Liñares J, Ardanuy C. Molecular epidemiology of nontypeable Haemophilus influenzae causing community-acquired pneumonia in adults. PLoS One 2013; 8:e82515. [PMID: 24349303 PMCID: PMC3862678 DOI: 10.1371/journal.pone.0082515] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen which causes a variety of respiratory infections. The objectives of the study were to determine its antimicrobial susceptibility, to characterize the β-lactam resistance, and to establish a genetic characterization of NTHi isolates. Ninety-five NTHi isolates were analyzed by pulsed field gel electrophoresis (PFGE) and multi locus sequence typing (MLST). Antimicrobial susceptibility was determined by microdilution, and the ftsI gene (encoding penicillin-binding protein 3, PBP3) was PCR amplified and sequenced. Thirty (31.6%) isolates were non-susceptible to ampicillin (MIC ≥ 2 mg/L), with 10 of them producing β-lactamase type TEM-1 as a resistance mechanism. After ftsI sequencing, 39 (41.1%) isolates showed amino acid substitutions in PBP3, with Asn526 → Lys being the most common (69.2%). Eighty-four patients were successfully treated with amoxicillin/clavulanic acid, ceftriaxone and levofloxacin. Eight patients died due either to aspiration or complication of their comorbidities. In conclusion, NTHi causing CAP in adults shows high genetic diversity and is associated with a high rate of reduced susceptibility to ampicillin due to alterations in PBP3. The analysis of treatment and outcomes demonstrated that NTHi strains with mutations in the ftsI gene could be successfully treated with ceftriaxone or fluoroquinolones.
Collapse
Affiliation(s)
- Carmen Puig
- Department of Microbiology, Hospital Universitari de Bellvitge, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
- Epidemiology of Bacterial Infections Group, IDIBELL, Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona, Spain
| | - Laura Calatayud
- Department of Microbiology, Hospital Universitari de Bellvitge, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
- Epidemiology of Bacterial Infections Group, IDIBELL, Barcelona, Spain
| | - Sara Martí
- Department of Microbiology, Hospital Universitari de Bellvitge, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
- Epidemiology of Bacterial Infections Group, IDIBELL, Barcelona, Spain
| | - Fe Tubau
- Department of Microbiology, Hospital Universitari de Bellvitge, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
| | - Carolina Garcia-Vidal
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain
- Spanish Network for Research on Infectious Diseases (REIPI), ISCIII, Madrid, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain
- Spanish Network for Research on Infectious Diseases (REIPI), ISCIII, Madrid, Spain
| | - Josefina Liñares
- Department of Microbiology, Hospital Universitari de Bellvitge, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
- Epidemiology of Bacterial Infections Group, IDIBELL, Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona, Spain
| | - Carmen Ardanuy
- Department of Microbiology, Hospital Universitari de Bellvitge, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
- Epidemiology of Bacterial Infections Group, IDIBELL, Barcelona, Spain
- * E-mail:
| |
Collapse
|
70
|
Geelen TH, Gaajetaan GR, Wouters EF, Rohde GG, Franssen FM, Grauls GE, Stobberingh EE, Bruggeman CA, Stassen FR. The host immune response contributes to Haemophilus influenzae virulence. Respir Med 2013; 108:144-52. [PMID: 24011804 DOI: 10.1016/j.rmed.2013.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/25/2013] [Accepted: 08/07/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is compelling evidence that infections with non-typeable Haemophilus influenzae (NTHi) are associated with exacerbations in COPD patients. However, NTHi has also been isolated frequently during clinically stable disease. In this study we tested the hypothesis that genetically distinct NTHi isolates obtained from COPD patients differ in virulence which could account for dissimilarities in the final outcome of an infection (stable vs. exacerbation). RESULTS NTHi isolates (n = 32) were obtained from stable COPD patients, or during exacerbations. Genetically divergent NTHi isolates were selected and induction of inflammation was assessed as an indicator of virulence using different in vitro models. Despite marked genomic differences among NTHi isolates, in vitro studies could not distinguish between NTHi isolates based on their inflammatory capacities. Alternatively, when using a whole blood assay results demonstrated marked inter-, but not intra-individual differences in cytokine release between healthy volunteers irrespective of the origin of the NTHi isolate used. CONCLUSION Results suggest that the individual immune reactivity might be an important predictor for the clinical outcome (exacerbation vs. no exacerbation) following NTHi infection.
Collapse
Affiliation(s)
- Tanja H Geelen
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Giel R Gaajetaan
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Emiel F Wouters
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Centre, Maastricht, The Netherlands; Program Development Centre, CIRO+, Horn, The Netherlands.
| | - Gernot G Rohde
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | - Gert E Grauls
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Ellen E Stobberingh
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Cathrien A Bruggeman
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Frank R Stassen
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| |
Collapse
|
71
|
Kosikowska U, Malm A, Pitucha M, Rajtar B, Polz-Dacewicz M. Inhibitory effect of N-ethyl-3-amino-5-oxo-4-phenyl-2,5-dihydro-1 H-pyrazole-1-carbothioamide on Haemophilus spp. planktonic or biofilm-forming cells. Med Chem Res 2013; 23:1057-1066. [PMID: 24465123 PMCID: PMC3895188 DOI: 10.1007/s00044-013-0700-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/08/2013] [Indexed: 01/05/2023]
Abstract
During this study, we have investigated in vitro activity of N-substituted-3-amino-5-oxo-4-phenyl-2,5-dihydro-1H-pyrazole-1-carbothioamide derivatives with N-ethyl, N-(4-metoxyphenyl) and N-cyclohexyl substituents against Gram-negative Haemophilus influenzae and H. parainfluenzae bacteria. A spectrophotometric assay was used in order to determine the bacterial growth and biofilm formation using a microtiter plate to estimate minimal inhibitory concentration (MIC) and minimal biofilm inhibitory concentration (MBIC). Among the tested N-substituted pyrazole derivatives, only N-ethyl-3-amino-5-oxo-4-phenyl-2,5-dihydro-1H-pyrazole-1-carbothioamide showed a significant in vitro activity against both planktonic cells of H. parainfluenzae (MIC = 0.49-31.25 μg ml-1) and H. influenzae (MIC = 0.24-31.25 μg ml-1) as well as biofilm-forming cells of H. parainfluenzae (MBIC = 0.24-31.25 μg ml-1) and H. influenzae (MBIC = 0.49 to ≥31.25 μg ml-1). The pyrazole compound exerted higher inhibitory effect both on the growth of planktonic cells and biofilm formation by penicillinase-positive and penicillinase-negative isolates of H. parainfluenzae than the activity of commonly used antibiotics such as ampicillin. No cytotoxicity of the tested compound in vitro at concentrations used was found. The tested pyrazole N-ethyl derivative could be considered as a compound for the design of agents active against both pathogenic H. influenzae and opportunistic H. parainfluenzae, showing also anti-biofilm activity. This appears important because biofilms are determinants of bacterial persistence in long-term and recurrent infections recalcitrant to standard therapy.
Collapse
Affiliation(s)
- Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Str. 1, 20-093 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Str. 1, 20-093 Lublin, Poland
| | - Monika Pitucha
- Department of Organic Chemistry, Medical University, Chodzki Str. 4a, 20-093 Lublin, Poland
| | - Barbara Rajtar
- Department of Virology, Medical University, Chodzki Str. 1, 20-093 Lublin, Poland
| | | |
Collapse
|
72
|
Murphy TF, Chonmaitree T, Barenkamp S, Kyd J, Nokso-Koivisto J, Patel JA, Heikkinen T, Yamanaka N, Ogra P, Swords WE, Sih T, Pettigrew MM. Panel 5: Microbiology and immunology panel. Otolaryngol Head Neck Surg 2013; 148:E64-89. [PMID: 23536533 DOI: 10.1177/0194599812459636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective is to perform a comprehensive review of the literature from January 2007 through June 2011 on the virology, bacteriology, and immunology related to otitis media. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS Three subpanels with co-chairs comprising experts in the virology, bacteriology, and immunology of otitis media were formed. Each of the panels reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a second draft was created. The entire panel met at the 10th International Symposium on Recent Advances in Otitis Media in June 2011 and discussed the review and refined the content further. A final draft was created, circulated, and approved by the panel. CONCLUSION Excellent progress has been made in the past 4 years in advancing an understanding of the microbiology and immunology of otitis media. Advances include laboratory-based basic studies, cell-based assays, work in animal models, and clinical studies. IMPLICATIONS FOR PRACTICE The advances of the past 4 years formed the basis of a series of short-term and long-term research goals in an effort to guide the field. Accomplishing these goals will provide opportunities for the development of novel interventions, including new ways to better treat and prevent otitis media.
Collapse
Affiliation(s)
- Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York 14203, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
|
74
|
Nwosu FC, Thorkildsen LT, Avershina E, Ricanek P, Perminow G, Brackmann S, Vatn MH, Rudi K. Age-dependent fecal bacterial correlation to inflammatory bowel disease for newly diagnosed untreated children. Gastroenterol Res Pract 2013; 2013:302398. [PMID: 23690761 PMCID: PMC3652150 DOI: 10.1155/2013/302398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/01/2013] [Indexed: 12/22/2022] Open
Abstract
The knowledge about correlation patterns between the fecal microbiota and inflammatory bowel diseases (IBD)-comprising the two subforms Crohn's disease (CD) and ulcerative colitis (UC)-for newly diagnosed untreated children is limited. To address this knowledge gap, a selection of faecal specimens (CD, n = 27 and UC, n = 16) and non-IBD controls (n = 30) children (age < 18 years) was analysed utilising bacterial small subunit (SSU) rRNA. We found, surprising age dependence for the fecal microbiota correlating to IBD. The most pronounced patterns were that E. coli was positively (R (2) = 0.16, P = 0.05) and Bacteroidetes, negatively (R (2) = 0.15, P = 0.05) correlated to age for CD patients. For UC, we found an apparent opposite age-related disease correlation for both Bacteroides and Escherichia. In addition, there was an overrepresentation of Haemophilus for the UC children. From our, results we propose a model where the aetiology of IBD is related to an on-going immunological development in children requiring different age-dependent bacterial stimuli. The impact of our findings could be a better age stratification for understanding and treating IBD in children.
Collapse
Affiliation(s)
- Felix Chinweije Nwosu
- Hedmark University College, Hamar, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University for Life Sciences, Ås, Oslo, Norway
| | | | - Ekaterina Avershina
- Department of Chemistry, Biotechnology and Food Science, Norwegian University for Life Sciences, Ås, Oslo, Norway
| | - Petr Ricanek
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
- EpiGen Institute, Research Centre, Akershus University Hospital, Lørenskog, Norway
| | - Gøri Perminow
- Pediatric Department, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Stephan Brackmann
- EpiGen Institute, Akershus University Hospital, University of Oslo, Oslo, Norway
| | - Morten H. Vatn
- EpiGen Institute, Akershus University Hospital, University of Oslo, Oslo, Norway
- Medical Clinic, Oslo University Hospital, Rikshospitalet, Norway
| | - Knut Rudi
- Department of Chemistry, Biotechnology and Food Science, Norwegian University for Life Sciences, Ås, Oslo, Norway
| |
Collapse
|
75
|
Priftis KN, Litt D, Manglani S, Anthracopoulos MB, Thickett K, Tzanakaki G, Fenton P, Syrogiannopoulos GA, Vogiatzi A, Douros K, Slack M, Everard ML. Bacterial bronchitis caused by Streptococcus pneumoniae and nontypable Haemophilus influenzae in children: the impact of vaccination. Chest 2013; 143:152-157. [PMID: 22911476 DOI: 10.1378/chest.12-0623] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Protracted bacterial bronchitis is a major cause of persistent cough in childhood. The organisms most commonly isolated are nontypable Haemophilus influenzae and Streptococcus pneumoniae . There are no studies addressing typing of these organisms when recovered from the lower airways. METHODS Isolates of these two organisms (identified in BAL samples from children undergoing routine investigation of a chronic cough thought to be attributable to a protracted bacterial bronchitis) were subject to typing. Samples were collected in Sheffield, England, and Athens, Greece. The majority of the children from Sheffield had received pneumococcal-conjugate vaccines 7 or 13 (PCV-7 or PCV-13) conjugate vaccine but only a minority of Greek children had received PCV-7. RESULTS All 18 S pneumoniae isolates from Greek BAL samples are serotypes contained in PCV-13 while 10 are contained in PCV-7. In contrast, 28 of the 39 samples from Sheffield contained serotypes that are not included in PCV-13. All 26 of the nontypable H influenzae samples obtained in Sheffield produced distinct multilocus variable-number tandem repeat analysis profiles. There was a significant difference between children from Athens and Sheffield in the distribution of serotypes contained or not contained in the pneumococcal vaccine ( P = .04). More specifically, immunization with pneumococcal vaccine was related with isolation of S pneumoniae serotypes not included in the vaccine (OR, 0.021; CI, 0.003-0.115; P < .001). CONCLUSIONS The data suggest that both vaccine and nonvaccine S pneumoniae serotypes may play a role in protracted bacterial bronchitis and provide some hints that serotype replacement may occur in response to the introduction of conjugate vaccines.
Collapse
Affiliation(s)
- Kostas N Priftis
- Third Department of Paediatrics, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - David Litt
- Respiratory and Systemic Infection Laboratory, HPA Microbiology Services, Colindale, Health Protection Agency, London, England
| | - Sapna Manglani
- Respiratory and Systemic Infection Laboratory, HPA Microbiology Services, Colindale, Health Protection Agency, London, England
| | | | - Keith Thickett
- Microbiology Department, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Georgina Tzanakaki
- National Meningitis Reference Laboratory, National School of Public Health, Athens, Greece
| | - Patricia Fenton
- Microbiology Department, Western Bank, Sheffield Children's NHS Foundation Trust, Sheffield, England
| | - George A Syrogiannopoulos
- Department of Pediatrics, University of Thessaly, School of Medicine, University Hospital of Larissa, Larissa, Greece
| | - Aliki Vogiatzi
- Department of Clinical Microbiology, 'Penteli' Children's Hospital, Athens, Greece
| | - Konstantinos Douros
- Third Department of Paediatrics, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Mary Slack
- Respiratory and Systemic Infection Laboratory, HPA Microbiology Services, Colindale, Health Protection Agency, London, England
| | - Mark L Everard
- Department of Respiratory Medicine, Sheffield Children's NHS Foundation Trust, Sheffield, England.
| |
Collapse
|
76
|
Lactobacillus priming of the respiratory tract: Heterologous immunity and protection against lethal pneumovirus infection. Antiviral Res 2012; 97:270-9. [PMID: 23274789 DOI: 10.1016/j.antiviral.2012.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 11/23/2022]
Abstract
We showed previously that wild-type mice primed via intranasal inoculation with live or heat-inactivated Lactobacillus species were fully (100%) protected against the lethal sequelae of infection with the virulent pathogen, pneumonia virus of mice (PVM), a response that is associated with diminished expression of proinflammatory cytokines and diminished virus recovery. We show here that 40% of the mice primed with live Lactobacillus survived when PVM challenge was delayed for 5months. This robust and sustained resistance to PVM infection resulting from prior interaction with an otherwise unrelated microbe is a profound example of heterologous immunity. We undertook the present study in order to understand the nature and unique features of this response. We found that intranasal inoculation with L. reuteri elicited rapid, transient neutrophil recruitment in association with proinflammatory mediators (CXCL1, CCL3, CCL2, CXCL10, TNF-alpha and IL-17A) but not Th1 cytokines. IFNγ does not contribute to survival promoted by Lactobacillus-priming. Live L. reuteri detected in lung tissue underwent rapid clearance, and was undetectable at 24h after inoculation. In contrast, L. reuteri peptidoglycan (PGN) and L. reuteri genomic DNA (gDNA) were detected at 24 and 48h after inoculation, respectively. In contrast to live bacteria, intranasal inoculation with isolated L. reuteri gDNA elicited no neutrophil recruitment, had minimal impact on virus recovery and virus-associated production of CCL3, and provided no protection against the negative sequelae of virus infection. Isolated PGN elicited neutrophil recruitment and proinflammatory cytokines but did not promote sustained survival in response to subsequent PVM infection. Overall, further evaluation of the responses leading to Lactobacillus-mediated heterologous immunity may provide insight into novel antiviral preventive modalities.
Collapse
|
77
|
Meyler KL, Meehan M, Bennett D, Cunney R, Cafferkey M. Development of a diagnostic real-time polymerase chain reaction assay for the detection of invasive Haemophilus influenzae in clinical samples. Diagn Microbiol Infect Dis 2012; 74:356-62. [DOI: 10.1016/j.diagmicrobio.2012.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/29/2012] [Accepted: 08/19/2012] [Indexed: 11/26/2022]
|
78
|
Ünal CM, Singh B, Fleury C, Singh K, Chávez de Paz L, Svensäter G, Riesbeck K. QseC controls biofilm formation of non-typeable Haemophilus influenzae in addition to an AI-2-dependent mechanism. Int J Med Microbiol 2012; 302:261-9. [DOI: 10.1016/j.ijmm.2012.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 06/02/2012] [Accepted: 07/08/2012] [Indexed: 12/24/2022] Open
|
79
|
Pfeifer Y, Meisinger I, Brechtel K, Gröbner S. Emergence of a multidrug-resistant Haemophilus influenzae strain causing chronic pneumonia in a patient with common variable immunodeficiency. Microb Drug Resist 2012; 19:1-5. [PMID: 23095085 DOI: 10.1089/mdr.2012.0060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the emergence of a multidrug-resistant Haemophilus influenzae strain in a patient with common variable immunodeficiency suffering from recurrent bronchopneumonia caused by H. influenzae. After the patient had received several antibiotic therapies, a strain was isolated showing resistance to ampicillin, ampicillin/sulbactam, cefazolin, cefuroxime, ciprofloxacin, and clarithromycin. Polymerase chain reaction analyses and sequencing revealed the presence of the beta-lactamase gene bla(TEM-1), two mutations (A502T and R517H) in the ftsI gene encoding the transpeptidase region of the penicillin-binding protein 3, and one mutation in the ribosomal protein gene L4 (G65D) conferring resistance to beta-lactams and macrolides, respectively. Additionally, the plasmid-encoded aac(6')-Ib-cr gene mediating slightly reduced susceptibility to quinolones and two mutations in the DNA gyrase gene gyrA and one mutation in the topoisomerase IV gene parC were identified leading to a high-level fluoroquinolone-resistant phenotype. In conclusion, the treatment of H. influenzae infections accompanied by high bacterial loads such as bronchopneumonia can be complicated by the selection of multidrug-resistant strains. Moreover, the emergence of aac(6')-Ib-cr in H. influenzae causing low fluoroquinolone resistance levels might have contributed to the selection of DNA gyrase and topoisomerase IV mutants.
Collapse
Affiliation(s)
- Yvonne Pfeifer
- Robert-Koch-Institute, FG13 Nosocomial Infections, Wernigerode, Germany
| | | | | | | |
Collapse
|
80
|
Zhang L, Xie J, Patel M, Bakhtyar A, Ehrlich GD, Ahmed A, Earl J, Marrs CF, Clemans D, Murphy TF, Gilsdorf JR. Nontypeable Haemophilus influenzae genetic islands associated with chronic pulmonary infection. PLoS One 2012; 7:e44730. [PMID: 22970300 PMCID: PMC3435294 DOI: 10.1371/journal.pone.0044730] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022] Open
Abstract
Background Haemophilus influenzae (Hi) colonizes the human respiratory tract and is an important pathogen associated with chronic obstructive pulmonary disease (COPD). Bacterial factors that interact with the human host may be important in the pathogenesis of COPD. These factors, however, have not been well defined. The overall goal of this study was to identify bacterial genetic elements with increased prevalence among H. influenzae strains isolated from patients with COPD compared to those isolated from the pharynges of healthy individuals. Methodology/Principal Findings Four nontypeable H. influenzae (NTHi) strains, two isolated from the airways of patients with COPD and two from a healthy individual, were subjected to whole genome sequencing using 454 FLX Titanium technology. COPD strain-specific genetic islands greater than 500 bp in size were identified by in silico subtraction. Open reading frames residing within these islands include known Hi virulence genes such as lic2b, hgbA, iga, hmw1 and hmw2, as well as genes encoding urease and other enzymes involving metabolic pathways. The distributions of seven selected genetic islands were assessed among a panel of 421 NTHi strains of both disease and commensal origins using a Library-on-a-Slide high throughput dot blot DNA hybridization procedure. Four of the seven islands screened, containing genes that encode a methyltransferase, a dehydrogenase, a urease synthesis enzyme, and a set of unknown short ORFs, respectively, were more prevalent in COPD strains than in colonizing strains with prevalence ratios ranging from 1.21 to 2.85 (p≤0.0002). Surprisingly, none of these sequences show increased prevalence among NTHi isolated from the airways of patients with cystic fibrosis. Conclusions/Significance Our data suggest that specific bacterial genes, many involved in metabolic functions, are associated with the ability of NTHi strains to survive in the lower airways of patients with COPD.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Everard ML. The unified airway - a bug's eye view. Paediatr Respir Rev 2012; 13:133-4. [PMID: 22726866 DOI: 10.1016/j.prrv.2012.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
82
|
Bakaletz LO. Bacterial biofilms in the upper airway - evidence for role in pathology and implications for treatment of otitis media. Paediatr Respir Rev 2012; 13:154-9. [PMID: 22726871 PMCID: PMC3509202 DOI: 10.1016/j.prrv.2012.03.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Understanding the nature of the biofilm component in the pathogenesis of otitis media [OM] will likely have a meaningful influence on the development of novel strategies to prevent and/or treat this highly prevalent pediatric disease. The design of vaccine candidates for OM that currently focus on preventing colonization are predicated on the assumption that by reducing the burden of bacteria present in the pediatric nasopharynx, one could reduce or eliminate the likelihood of retrograde ascension of the Eustachian tube by bacteria from the nasopharynx to the middle ear. If effective, this strategy could prevent biofilms from ever forming in the middle ear. Additionally, gaining an improved understanding of the unique properties of bacteria resident within a biofilm and the proteins they express while growing as part of this organized community has the potential to identify novel and perhaps biofilm-specific molecular targets for the design of either therapeutic agents or vaccine candidates for the resolution of existing OM.
Collapse
Affiliation(s)
- Lauren O. Bakaletz
- Correspondence info: Lauren O. Bakaletz, Ph.D., Director, Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, 700 Children's Drive, W591, Columbus, OH 43205, Phone: (614)722-2915 Fax: (614)722-2818,
| |
Collapse
|
83
|
Jones EA, McGillivary G, Bakaletz LO. Extracellular DNA within a nontypeable Haemophilus influenzae-induced biofilm binds human beta defensin-3 and reduces its antimicrobial activity. J Innate Immun 2012; 5:24-38. [PMID: 22922323 DOI: 10.1159/000339961] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/11/2012] [Indexed: 12/18/2022] Open
Abstract
Biofilms formed by nontypeable Haemophilus influenzae (NTHI) are associated with multiple chronic infections of the airway, including otitis media. Extracellular DNA (eDNA) is part of the biofilm matrix and serves as a structural component. Human β-defensin-3 (hBD-3) is a cationic antimicrobial host defense protein (AMP) critical to the protection of the middle ear. We hypothesized that anionic eDNA could interact with and bind hBD-3 and thus shield NTHI in biofilms from its antimicrobial activity. We demonstrated that recombinant hBD-3 [(r)hBD-3] bound eDNA in vitro and that eDNA in biofilms produced by NTHI in the chinchilla middle ear co-localized with the orthologue of this AMP. Incubation of physiological concentrations of (r)hBD-3 with NTHI genomic DNA abrogated the ability of this innate immune effector to prevent NTHI from forming robust biofilms in vitro. Establishment of NTHI biofilms in the presence of both DNase I and (r)hBD-3 resulted in a marked reduction in the overall height and thickness of the biofilms and rescued the antimicrobial activity of the AMP. Our results demonstrated that eDNA in NTHI biofilms sequestered hBD-3 and thus diminished the biological activity of an important effector of innate immunity. Our observations have important implications for chronicity of NTHI-induced diseases.
Collapse
Affiliation(s)
- Eric A Jones
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University, College of Medicine, Columbus, Ohio 43205, USA
| | | | | |
Collapse
|
84
|
Livorsi DJ, Macneil JR, Cohn AC, Bareta J, Zansky S, Petit S, Gershman K, Harrison LH, Lynfield R, Reingold A, Schaffner W, Thomas A, Farley MM. Invasive Haemophilus influenzae in the United States, 1999-2008: epidemiology and outcomes. J Infect 2012; 65:496-504. [PMID: 22902945 DOI: 10.1016/j.jinf.2012.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Introduction of the Haemophilus influenzae type b (Hib) conjugate vaccine has resulted in a dramatic reduction of Hib disease in the U.S. and an increase in the relative importance of infections caused by nontypeable strains. The current project describes the characteristics and clinical outcomes of pediatric and adult patients with invasive H. influenzae (HI) and, through multivariable analysis, identifies risk factors for in-hospital mortality. METHODS HI cases were identified during 1999-2008 through active surveillance as part of active bacterial core surveillance (ABCs). Multivariable analysis was performed with logistic regression to identify factors predictive of in-hospital death. RESULTS 4839 cases of HI were identified from 1999-2008. Children accounted for 17.1% of cases and adults 82.9%. Underlying conditions were present in 20.7% of children and 74.8% of adults. In-hospital mortality was highest in cases ≥65 years (21.9%) and <3 months (16.2%). The risk of in-hospital death in children <1 year was higher among those who were prematurely-born (<28 weeks, OR 7.1, 95% CI 3.2-15.6; 28-36 weeks OR 2.1, 95% CI 0.9-4.8) and, among children aged 1-17 years, higher in those with healthcare-associated onset and dialysis (OR 5.66, 95% CI 1.84-17.39; OR 18.11, 95% CI 2.77-118.65). In adults, age ≥40 was associated with death in nontypeable, but not encapsulated, infections. Infections with nontypeable strains increased the risk of death in cases ≥65 years (OR 1.81, 95% CI 1.31-2.52). Healthcare-associated HI, bacteremia without identifiable focus, bacteremic pneumonia, associated cirrhosis, cerebrovascular accident, dialysis, heart failure, and non-hematologic malignancy also increased the risk of death in adults. CONCLUSION Prematurity in infants, advanced age and certain chronic diseases in adults were associated with an increased risk of in-hospital death. Nontypeable HI was associated with higher mortality in the elderly.
Collapse
Affiliation(s)
- Daniel J Livorsi
- Department of Medicine, Emory University School of Medicine, The Atlanta VA Medical Center, 1670 Clairmont Road, Mail Code 151-ID, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Intranasal immunization with nontypeable Haemophilus influenzae outer membrane vesicles induces cross-protective immunity in mice. PLoS One 2012; 7:e42664. [PMID: 22880074 PMCID: PMC3411803 DOI: 10.1371/journal.pone.0042664] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/10/2012] [Indexed: 01/29/2023] Open
Abstract
Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi) is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs) as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections.
Collapse
|
86
|
Swords WE. Nontypeable Haemophilus influenzae biofilms: role in chronic airway infections. Front Cell Infect Microbiol 2012; 2:97. [PMID: 22919686 PMCID: PMC3417564 DOI: 10.3389/fcimb.2012.00097] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/26/2012] [Indexed: 11/24/2022] Open
Abstract
Like many pathogens inhabiting mucosal surfaces, nontypeable Haemophilus influenzae (NTHi) forms multicellular biofilm communities both in vitro and in various infection models. In the past 15 years much has been learned about determinants of biofilm formation by this organism and potential roles in bacterial virulence, especially in the context of chronic and recurrent infections. However, this concept has not been without some degree of controversy, and in the past some have expressed doubts about the relevance of NTHi biofilms to disease. In this review, I will summarize the present information on the composition and potential role(s) of NTHi biofilms in different clinical contexts, as well as highlight potential areas for future work.
Collapse
Affiliation(s)
- W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem NC, USA.
| |
Collapse
|
87
|
Kyo Y, Kato K, Park YS, Gajghate S, Gajhate S, Umehara T, Lillehoj EP, Suzaki H, Kim KC. Antiinflammatory role of MUC1 mucin during infection with nontypeable Haemophilus influenzae. Am J Respir Cell Mol Biol 2012; 46:149-56. [PMID: 22298528 DOI: 10.1165/rcmb.2011-0142oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MUC1 (or Muc1 in nonhuman species) is a membrane-tethered mucin expressed on the apical surface of mucosal epithelia (including those of the airways) that suppresses Toll-like receptor (TLR) signaling. We sought to determine whether the anti-inflammatory effect of MUC1 is operative during infection with nontypeable Haemophilus influenzae (NTHi), and if so, which TLR pathway was affected. Our results showed that: (1) a lysate of NTHi increased the early release of IL-8 and later production of MUC1 protein by A549 cells in dose-dependent and time-dependent manners, compared with vehicle control; (2) both effects were attenuated after transfection of the cells with a TLR2-targeting small interfering (si) RNA, compared with a control siRNA; (3) the NTHi-induced release of IL-8 was suppressed by an overexpression of MUC1, and was enhanced by the knockdown of MUC1; (4) the TNF-α released after treatment with NTHi was sufficient to up-regulate MUC1, which was completely inhibited by pretreatment with a soluble TNF-α receptor; and (5) primary murine tracheal surface epithelial (MTSE) cells from Muc1 knockout mice exhibited an increased in vitro production of NTHi-stimulated keratinocyte chemoattractant compared with MTSE cells from Muc1-expressing animals. These results suggest a hypothetical feedback loop model whereby NTHi activates TLRs (mainly TLR2) in airway epithelial cells, leading to the increased production of TNF-α and IL-8, which subsequently up-regulate the expression of MUC1, resulting in suppressed TLR signaling and decreased production of IL-8. This report is the first, to the best of our knowledge, demonstrating that the inflammatory response in airway epithelial cells during infection with NTHi is controlled by MUC1 mucin, mainly through the suppression of TLR2 signaling.
Collapse
Affiliation(s)
- Yoshiyuki Kyo
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
OBJECTIVE The spectrum of diseases caused by Streptococcus pneumoniae and non-typeable Haemophilus influenzae (NTHi) represents a large burden on healthcare systems around the world. Meningitis, bacteraemia, community-acquired pneumonia (CAP), and acute otitis media (AOM) are vaccine-preventable infectious diseases that can have severe consequences. The health economic model presented here is intended to estimate the clinical and economic impact of vaccinating birth cohorts in Canada and the UK with the 10-valent, pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) compared with the newly licensed 13-valent pneumococcal conjugate vaccine (PCV-13). METHODS The model described herein is a Markov cohort model built to simulate the epidemiological burden of pneumococcal- and NTHi-related diseases within birth cohorts in the UK and Canada. Base-case assumptions include estimates of vaccine efficacy and NTHi infection rates that are based on published literature. RESULTS The model predicts that the two vaccines will provide a broadly similar impact on all-cause invasive disease and CAP under base-case assumptions. However, PHiD-CV is expected to provide a substantially greater reduction in AOM compared with PCV-13, offering additional savings of Canadian $9.0 million and £4.9 million in discounted direct medical costs in Canada and the UK, respectively. LIMITATIONS The main limitations of the study are the difficulties in modelling indirect vaccine effects (herd effect and serotype replacement), the absence of PHiD-CV- and PCV-13-specific efficacy data and a lack of comprehensive NTHi surveillance data. Additional limitations relate to the fact that the transmission dynamics of pneumococcal serotypes have not been modelled, nor has antibiotic resistance been accounted for in this paper. CONCLUSION This cost-effectiveness analysis suggests that, in Canada and the UK, PHiD-CV's potential to protect against NTHi infections could provide a greater impact on overall disease burden than the additional serotypes contained in PCV-13.
Collapse
|
89
|
By Å, Sobocki P, Forsgren A, Silfverdal SA. Comparing Health Outcomes and Costs of General Vaccination with Pneumococcal Conjugate Vaccines in Sweden: A Markov Model. Clin Ther 2012; 34:177-89. [DOI: 10.1016/j.clinthera.2011.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
90
|
Micol R, Kayal S, Mahlaoui N, Beauté J, Brosselin P, Dudoit Y, Obenga G, Barlogis V, Aladjidi N, Kebaili K, Thomas C, Dulieu F, Monpoux F, Nové-Josserand R, Pellier I, Lambotte O, Salmon A, Masseau A, Galanaud P, Oksenhendler E, Tabone MD, Teira P, Coignard-Biehler H, Lanternier F, Join-Lambert O, Mouillot G, Theodorou I, Lecron JC, Alyanakian MA, Picard C, Blanche S, Hermine O, Suarez F, Debré M, Lecuit M, Lortholary O, Durandy A, Fischer A. Protective effect of IgM against colonization of the respiratory tract by nontypeable Haemophilus influenzae in patients with hypogammaglobulinemia. J Allergy Clin Immunol 2011; 129:770-7. [PMID: 22153772 DOI: 10.1016/j.jaci.2011.09.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/01/2011] [Accepted: 09/26/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Primary immunoglobulin deficiencies lead to recurrent bacterial infections of the respiratory tract and bronchiectasis, even with adequate immunoglobulin replacement therapy. It is not known whether patients able to secrete IgM (eg, those with hyper-IgM [HIgM] syndrome) are as susceptible to these infections as patients who lack IgM production (eg, those with panhypogammaglobulinemia [PHG]). OBJECTIVE This study is aimed at identifying specific microbiological and clinical (infections) characteristics that distinguish immunoglobulin-substituted patients with PHG from patients with HIgM syndrome. METHODS A cohort of patients with HIgM syndrome (n = 25) and a cohort of patients with PHG (n = 86) were monitored prospectively for 2 years while receiving similar polyvalent immunoglobulin replacement therapies. Regular bacterial analyses of nasal swabs and sputum were performed, and clinical events were recorded. In parallel, serum and saliva IgM antibody concentrations were measured. RESULTS When compared with patients with PHG, patients with HIgM syndrome were found to have a significantly lower risk of nontypeable Haemophilus influenzae carriage in particular (relative risk, 0.39; 95% CI, 0.21-0.63). Moreover, patients with HIgM syndrome (including those unable to generate somatic hypermutations of immunoglobulin genes) displayed anti-nontypeable H influenzae IgM antibodies in their serum and saliva. Also, patients with HIgM syndrome had a lower incidence of acute respiratory tract infections. CONCLUSIONS IgM antibodies appear to be microbiologically and clinically protective and might thus attenuate the infectious consequences of a lack of production of other immunoglobulin isotypes in patients with HIgM syndrome. Polyvalent IgG replacement therapy might not fully compensate for IgM deficiency. It might thus be worth adapting long-term antimicrobial prophylactic regimens according to the underlying B-cell immunodeficiency phenotype.
Collapse
Affiliation(s)
- Romain Micol
- CEREDIH Network (French National Reference Center for Primary Immunodeficiencies), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Clementi CF, Murphy TF. Non-typeable Haemophilus influenzae invasion and persistence in the human respiratory tract. Front Cell Infect Microbiol 2011; 1:1. [PMID: 22919570 PMCID: PMC3417339 DOI: 10.3389/fcimb.2011.00001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/04/2011] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHI) is an opportunistic bacterial pathogen of the human respiratory tract and is a leading cause of respiratory infections in children and adults. NTHI is considered to be an extracellular pathogen, but has consistently been observed within and between human respiratory epithelial cells and macrophages, in vitro and ex vivo. Until recently, few studies have examined the internalization, trafficking, and fate of NTHI in host cells. It is important to clarify this interaction because of a possible correlation between intracellular NTHI and symptomatic infection, and because NTHI infections frequently persist and recur despite antibiotic therapy and the development of bactericidal antibodies, suggesting a possible intracellular state or reservoir for NTHI. How does NTHI enter host cells? Can NTHI survive intracellularly and, if so, for how long? Strides have been made in the identification of host receptors, signaling, endocytosis, and trafficking pathways involved in the entry and persistence of NTHI in the respiratory tract.
Collapse
Affiliation(s)
- Cara F Clementi
- Department of Microbiology and Immunology, University at Buffalo, State University of New York Buffalo, NY, USA
| | | |
Collapse
|
92
|
Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases. J Biomed Biotechnol 2011; 2012:769896. [PMID: 22131823 PMCID: PMC3205674 DOI: 10.1155/2012/769896] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/29/2011] [Indexed: 12/31/2022] Open
Abstract
Extracts of Echinacea purpurea (EP, purple coneflower) have been used traditionally in North America for the treatment of various types of infections and wounds, and they have become very popular herbal medicines globally. Recent studies have revealed that certain standardized preparations contain potent and selective antiviral and antimicrobial activities. In addition, they display multiple immune-modulatory activities, comprising stimulation of certain immune functions such as phagocytic activity of macrophages and suppression of the proinflammatory responses of epithelial cells to viruses and bacteria, which are manifested as alterations in secretion of various cytokines and chemokines. These immune modulations result from upregulation or downregulation of the relevant genes and their transcription factors. All these bioactivities can be demonstrated at noncytotoxic concentrations of extract and appear to be due to multiple components rather than the individual chemical compounds that characterize Echinacea extracts. Potential applications of the bioactive extracts may go beyond their traditional uses.
Collapse
|
93
|
Thornton RB, Rigby PJ, Wiertsema SP, Filion P, Langlands J, Coates HL, Vijayasekaran S, Keil AD, Richmond PC. Multi-species bacterial biofilm and intracellular infection in otitis media. BMC Pediatr 2011; 11:94. [PMID: 22018357 PMCID: PMC3224757 DOI: 10.1186/1471-2431-11-94] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022] Open
Abstract
Background Bacteria which are metabolically active yet unable to be cultured and eradicated by antibiotic treatment are present in the middle ear effusion of children with chronic otitis media with effusion (COME) and recurrent acute otitis media (rAOM). These observations are suggestive of biofilm presence or intracellular sequestration of bacteria and may play a role in OM pathogenesis. The aim of this project is to provide evidence for the presence of otopathogenic bacteria intracellularly or within biofilm in the middle ear mucosa of children with COME or rAOM. Methods Middle ear mucosal biopsies from 20 children with COME or rAOM were examined for otopathogenic bacteria (either in biofilm or located intracellularly) using transmission electron microscopy (TEM) or species specific fluorescent in situ hybridisation (FISH) and confocal laser scanning microscopy (CLSM). One healthy control biopsy from a child undergoing cochlear implant surgery was also examined. Results No bacteria were observed in the healthy control sample. In 2 of the 3 biopsies imaged using TEM, bacteria were observed in mucus containing vacuoles within epithelial cells. Bacterial species within these could not be identified and biofilm was not observed. Using FISH with CLSM, bacteria were seen in 15 of the 17 otitis media mucosal specimens. In this group, 11 (65%) of the 17 middle ear mucosal biopsies showed evidence of bacterial biofilm and 12 demonstrated intracellular bacteria. 52% of biopsies were positive for both biofilm and intracellular bacteria. At least one otopathogen was identified in 13 of the 15 samples where bacteria were present. No differences were observed between biopsies from children with COME and those with rAOM. Conclusion Using FISH and CLSM, bacterial biofilm and intracellular infection with known otopathogens are demonstrated on/in the middle ear mucosa of children with COME and/or rAOM. While their role in disease pathogenesis remains to be determined, this previously undescribed infection pattern may help explain the ineffectiveness of current treatment strategies at preventing or resolving COME or rAOM.
Collapse
Affiliation(s)
- Ruth B Thornton
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Armbruster CE, Pang B, Murrah K, Juneau RA, Perez AC, Weimer KED, Swords WE. RbsB (NTHI_0632) mediates quorum signal uptake in nontypeable Haemophilus influenzae strain 86-028NP. Mol Microbiol 2011; 82:836-50. [PMID: 21923771 DOI: 10.1111/j.1365-2958.2011.07831.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a respiratory commensal and opportunistic pathogen, which persists within biofilms on airway mucosal surfaces. For many species, biofilm formation is impacted by quorum signalling. Our prior work shows that production of autoinducer-2 (AI-2) promotes biofilm development and persistence for NTHI 86-028NP. NTHI 86-028NP encodes an ABC transporter annotated as a ribose transport system that includes a protein (RbsB) with similarity to the Escherichia coli LsrB and Aggregatibacter actinomycetemcomitans RbsB proteins that bind AI-2. In this study, inactivation of rbsB significantly reduced uptake of AI-2 and the AI-2 precursor dihydroxypentanedione (DPD) by NTHI 86-028NP. Moreover, DPD uptake was not competitively inhibited by ribose or other pentose sugars. Transcript levels of rbsB increased in response to DPD and as bacteria approached stationary-phase growth. The NTHI 86-028NP rbsB mutant also formed biofilms with significantly reduced thickness and total biomass and reduced surface phosphorylcholine, similar to a luxS mutant. Infection studies revealed that loss of rbsB impaired bacterial persistence in the chinchilla middle ear, similar to our previous results with luxS mutants. Based on these data, we conclude that in NTHI 86-028NP, RbsB is a LuxS/AI-2 regulated protein that is required for uptake of and response to AI-2.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Essilfie AT, Simpson JL, Horvat JC, Preston JA, Dunkley ML, Foster PS, Gibson PG, Hansbro PM. Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease. PLoS Pathog 2011; 7:e1002244. [PMID: 21998577 PMCID: PMC3188527 DOI: 10.1371/journal.ppat.1002244] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 07/13/2011] [Indexed: 12/20/2022] Open
Abstract
A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12-15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.
Collapse
Affiliation(s)
- Ama-Tawiah Essilfie
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jodie L. Simpson
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Jay C. Horvat
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Julie A. Preston
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Margaret L. Dunkley
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Immunology, Newcastle, Australia
| | - Paul S. Foster
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter G. Gibson
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Philip M. Hansbro
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
96
|
Martí-Lliteras P, López-Gómez A, Mauro S, Hood DW, Viadas C, Calatayud L, Morey P, Servin A, Liñares J, Oliver A, Bengoechea JA, Garmendia J. Nontypable Haemophilus influenzae displays a prevalent surface structure molecular pattern in clinical isolates. PLoS One 2011; 6:e21133. [PMID: 21698169 PMCID: PMC3116884 DOI: 10.1371/journal.pone.0021133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/20/2011] [Indexed: 11/22/2022] Open
Abstract
Non-typable Haemophilus influenzae (NTHi) is a Gram negative pathogen that causes acute respiratory infections and is associated with the progression of chronic respiratory diseases. Previous studies have established the existence of a remarkable genetic variability among NTHi strains. In this study we show that, in spite of a high level of genetic heterogeneity, NTHi clinical isolates display a prevalent molecular feature, which could confer fitness during infectious processes. A total of 111 non-isogenic NTHi strains from an identical number of patients, isolated in two distinct geographical locations in the same period of time, were used to analyse nine genes encoding bacterial surface molecules, and revealed the existence of one highly prevalent molecular pattern (lgtF+, lic2A+, lic1D+, lic3A+, lic3B+, siaA−, lic2C+, ompP5+, oapA+) displayed by 94.6% of isolates. Such a genetic profile was associated with a higher bacterial resistance to serum mediated killing and enhanced adherence to human respiratory epithelial cells.
Collapse
Affiliation(s)
- Pau Martí-Lliteras
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
| | - Antonio López-Gómez
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
| | - Silvia Mauro
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
| | - Derek W. Hood
- Molecular Infectious Diseases Group, Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom
| | - Cristina Viadas
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
| | - Laura Calatayud
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Servicio de Microbiología, Hospital Universitario Bellvitge, Barcelona, Spain
- Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
- Universidad de Barcelona, Barcelona, Spain
| | - Pau Morey
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
| | - Alain Servin
- INSERM, UMR 756, Signalisation and Physiopathology of Epithelial cells, Paris, France
| | - Josefina Liñares
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Servicio de Microbiología, Hospital Universitario Bellvitge, Barcelona, Spain
- Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
- Universidad de Barcelona, Barcelona, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Palma Mallorca, Spain
| | - José Antonio Bengoechea
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Consejo Superior de Investigaciones Científicas-CSIC, Madrid, Spain
| | - Junkal Garmendia
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Instituto de Agrobiotecnología, CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Mutilva, Spain
- * E-mail:
| |
Collapse
|
97
|
Salcedo SP, Cid VJ. Nontypable Haemophilus influenzae: an intracellular phase within epithelial cells might contribute to persistence. MICROBIOLOGY-SGM 2011; 157:1-2. [PMID: 21186322 DOI: 10.1099/mic.0.046722-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Suzana P Salcedo
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, F-13288, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U631, F-13288, France.,Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, F-13288, France
| | - Víctor J Cid
- Dpto de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRyCIS), Madrid-28040, Spain
| |
Collapse
|
98
|
Döring G, Parameswaran IG, Murphy TF. Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. FEMS Microbiol Rev 2011; 35:124-46. [PMID: 20584083 DOI: 10.1111/j.1574-6976.2010.00237.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cystic fibrosis (CF), the most common autosomal recessive disorder in Caucasians, and chronic obstructive pulmonary disease (COPD), a disease of adults, are characterized by chronic lung inflammation, airflow obstruction and extensive tissue remodelling, which have a major impact on patients' morbidity and mortality. Airway inflammation is stimulated in CF by chronic bacterial infections and in COPD by environmental stimuli, particularly from smoking. Pseudomonas aeruginosa is the major bacterial pathogen in CF, while in COPD, Haemophilus influenzae is most frequently observed. Molecular studies indicate that during chronic pulmonary infection, P. aeruginosa clones genotypically and phenotypically adapt to the CF niche, resulting in a highly diverse bacterial community that is difficult to eradicate therapeutically. Pseudomonas aeruginosa clones from COPD patients remain within the airways only for limited time periods, do not adapt and are easily eradicated. However, in a subgroup of severely ill COPD patients, P. aeruginosa clones similar to those in CF persist. In this review, we will discuss the pathophysiology of lung disease in CF and COPD, the complex genotypic and phenotypic adaptation processes of the opportunistic bacterial pathogens and novel treatment options.
Collapse
Affiliation(s)
- Gerd Döring
- Institute of Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany.
| | | | | |
Collapse
|
99
|
SUNAKAWA K, TAKEUCHI Y, IWATA S. Nontypeable Haemophilus influenzae (NTHi) Epidemiology. ACTA ACUST UNITED AC 2011; 85:227-37. [DOI: 10.11150/kansenshogakuzasshi.85.227] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Satoshi IWATA
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine
| |
Collapse
|
100
|
Abrogation of nontypeable Haemophilus influenzae protein D function reduces phosphorylcholine decoration, adherence to airway epithelial cells, and fitness in a chinchilla model of otitis media. Vaccine 2010; 29:1211-21. [PMID: 21167861 DOI: 10.1016/j.vaccine.2010.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 11/03/2010] [Accepted: 12/01/2010] [Indexed: 11/20/2022]
Abstract
The pneumococcal polysaccharide conjugate vaccine which includes a nonacylated protein D carrier from Haemophilus influenzae has been recently licensed for use in many countries. While this vaccine is protective against nontypeable Haemophilus influenzae (NTHI)-induced acute otitis media (OM), the mechanism underlying this protective efficacy is not yet fully understood. Protein D/glycerophosphodiester phosphodiesterase (PD/GlpQ) is an outer membrane lipoprotein expressed by NTHI that has been ascribed several functions, including host cell adherence and phosphorylcholine (PCho) acquisition. We found that a pd/glpQ NTHI mutant exhibited reduced adherence to airway epithelial cells, diminished phosphorylcholine (PCho) decoration of biofilms, and compromised fitness during experimental acute OM compared to the parent strain. We also found that exposure of NTHI to antibodies directed against the vaccine formulation recapitulated the PCho decoration and NTHI adherence phenotypes exhibited by PD/GlpQ-deficient NTHI, providing at least two likely mechanisms by which the pneumococcal polysaccharide-PD/GlpQ conjugate vaccine induces protection from NTHI-induced OM.
Collapse
|