51
|
Pathogenicity Island Cross Talk Mediated by Recombination Directionality Factors Facilitates Excision from the Chromosome. J Bacteriol 2015; 198:766-76. [PMID: 26668266 DOI: 10.1128/jb.00704-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Pathogenicity islands (PAIs) are mobile integrated genetic elements (MIGEs) that contain a diverse range of virulence factors and are essential in the evolution of pathogenic bacteria. PAIs are widespread among bacteria and integrate into the host genome, commonly at a tRNA locus, via integrase-mediated site-specific recombination. The excision of PAIs is the first step in the horizontal transfer of these elements and is not well understood. In this study, we examined the role of recombination directionality factors (RDFs) and their relationship with integrases in the excision of two PAIs essential for Vibrio cholerae host colonization: Vibrio pathogenicity island 1 (VPI-1) and VPI-2. VPI-1 does not contain an RDF, which allowed us to answer the question of whether RDFs are an absolute requirement for excision. We found that an RDF was required for efficient excision of VPI-2 but not VPI-1 and that RDFs can induce excision of both islands. Expression data revealed that the RDFs act as transcriptional repressors to both VPI-1- and VPI-2-encoded integrases. We demonstrated that the RDFs Vibrio excision factor A (VefA) and VefB bind at the attachment sites (overlapping the int promoter region) of VPI-1 and VPI-2, thus supporting this mode of integrase repression. In addition, V. cholerae RDFs are promiscuous due to their dual functions of promoting excision of both VPI-1 and VPI-2 and acting as negative transcriptional regulators of the integrases. This is the first demonstration of cross talk between PAIs mediated via RDFs which reveals the complex interactions that occur between separately acquired MIGEs. IMPORTANCE Deciphering the mechanisms of pathogenicity island excision is necessary for understanding the evolution and spread of these elements to their nonpathogenic counterparts. Such mechanistic insight would assist in predicting the mobility of uncharacterized genetic elements. This study identified extensive RDF-mediated cross talk between two nonhomologous VPIs and demonstrated the dual functionality of RDF proteins: (i) inducing PAI excision and (ii) acting as transcriptional regulators. Findings from this study may be implicated in determining the mobilome contribution of other bacteria with multiple MIGEs.
Collapse
|
52
|
Teh BS, Lau NS, Ng FL, Abdul Rahman AY, Wan X, Saito JA, Hou S, Teh AH, Najimudin N, Alam M. Complete genome sequence of the thermophilic Thermus sp. CCB_US3_UF1 from a hot spring in Malaysia. Stand Genomic Sci 2015; 10:76. [PMID: 26457128 PMCID: PMC4599208 DOI: 10.1186/s40793-015-0053-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 07/28/2015] [Indexed: 02/08/2023] Open
Abstract
Thermus sp. strain CCB_US3_UF1 is a thermophilic bacterium of the genus Thermus, a member of the family Thermaceae. Members of the genus Thermus have been widely used as a biological model for structural biology studies and to understand the mechanism of microbial adaptation under thermal environments. Here, we present the complete genome sequence of Thermus sp. CCB_US3_UF1 isolated from a hot spring in Malaysia, which is the fifth member of the genus Thermus with a completely sequenced and publicly available genome (Genbank date of release: December 2, 2011). Thermus sp. CCB_US3_UF1 has the third largest genome within the genus. The complete genome comprises of a chromosome of 2.26 Mb and a plasmid of 19.7 kb. The genome contains 2279 protein-coding and 54 RNA genes. In addition, its genome revealed potential pathways for the synthesis of secondary metabolites (isoprenoid) and pigments (carotenoid).
Collapse
Affiliation(s)
- Beng Soon Teh
- />Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- />Present address: Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nyok-Sean Lau
- />Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Fui Ling Ng
- />School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Xuehua Wan
- />Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii USA
| | - Jennifer A. Saito
- />Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii USA
| | - Shaobin Hou
- />Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii USA
| | - Aik-Hong Teh
- />Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Nazalan Najimudin
- />School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Maqsudul Alam
- />Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii USA
- />Department of Microbiology, University of Hawaii, Honolulu, Hawaii USA
| |
Collapse
|
53
|
De Maayer P, Chan WY, Martin DAJ, Blom J, Venter SN, Duffy B, Cowan DA, Smits THM, Coutinho TA. Integrative conjugative elements of the ICEPan family play a potential role in Pantoea ananatis ecological diversification and antibiosis. Front Microbiol 2015; 6:576. [PMID: 26106378 PMCID: PMC4458695 DOI: 10.3389/fmicb.2015.00576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/25/2015] [Indexed: 12/31/2022] Open
Abstract
Pantoea ananatis is a highly versatile enterobacterium isolated from diverse environmental sources. The ecological diversity of this species may be attributed, in part, to the acquisition of mobile genetic elements. One such element is an Integrative and Conjugative Element (ICE). By means of in silico analyses the ICE elements belonging to a novel family, ICEPan, were identified in the genome sequences of five P. ananatis strains and characterized. PCR screening showed that ICEPan is prevalent among P. ananatis strains isolated from different environmental sources and geographic locations. Members of the ICEPan family share a common origin with ICEs of other enterobacteria, as well as conjugative plasmids of Erwinia spp. Aside from core modules for ICEPan integration, maintenance and dissemination, the ICEPan contain extensive non-conserved islands coding for proteins that may contribute toward various phenotypes such as stress response and antibiosis, and the highly diverse ICEPan thus plays a major role in the diversification of P. ananatis. An island is furthermore integrated within an ICEPan DNA repair-encoding locus umuDC and we postulate its role in stress-induced dissemination and/or expression of the genes on this island.
Collapse
Affiliation(s)
- Pieter De Maayer
- Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa ; Department of Microbiology, University of Pretoria Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| | - Douglas A J Martin
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen Giessen, Germany
| | - Stephanus N Venter
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| | - Brion Duffy
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zürich University of Applied Sciences Wädenswil, Switzerland
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa ; Department of Genetics, University of Pretoria Pretoria, South Africa
| | - Theo H M Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zürich University of Applied Sciences Wädenswil, Switzerland
| | - Teresa A Coutinho
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| |
Collapse
|
54
|
Identification of a gene cluster associated with triclosan catabolism. Biodegradation 2015; 26:235-46. [DOI: 10.1007/s10532-015-9730-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/16/2015] [Indexed: 11/26/2022]
|
55
|
Farrugia DN, Elbourne LDH, Mabbutt BC, Paulsen IT. A novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene. Nucleic Acids Res 2015; 43:4547-57. [PMID: 25883135 PMCID: PMC4482086 DOI: 10.1093/nar/gkv337] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/01/2015] [Indexed: 12/12/2022] Open
Abstract
Genomic islands play a key role in prokaryotic genome plasticity. Genomic islands integrate into chromosomal loci such as transfer RNA genes and protein coding genes, whilst retaining various cargo genes that potentially bestow novel functions on the host organism. A gene encoding a putative integrase was identified at a single site within the 5′ end of the dusA gene in the genomes of over 200 bacteria. This integrase was discovered to be a component of numerous genomic islands, which appear to share a target site within the dusA gene. dusA encodes the tRNA-dihydrouridine synthase A enzyme, which catalyses the post-transcriptional reduction of uridine to dihydrouridine in tRNA. Genomic islands encoding homologous dusA-associated integrases were found at a much lower frequency within the related dusB and dusC genes, and non-dus genes. Excision of these dusA-associated islands from the chromosome as circularized intermediates was confirmed by polymerase chain reaction. Analysis of the dusA-associated islands indicated that they were highly diverse, with the integrase gene representing the only universal common feature.
Collapse
Affiliation(s)
- Daniel N Farrugia
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Liam D H Elbourne
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Bridget C Mabbutt
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
56
|
The dnd operon for DNA phosphorothioation modification system in Escherichia coli is located in diverse genomic islands. BMC Genomics 2015; 16:199. [PMID: 25879448 PMCID: PMC4373003 DOI: 10.1186/s12864-015-1421-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/28/2015] [Indexed: 11/29/2022] Open
Abstract
Background Strains of Escherichia coli that are non-typeable by pulsed-field gel electrophoresis (PFGE) due to in-gel degradation can influence their molecular epidemiological data. The DNA degradation phenotype (Dnd+) is mediated by the dnd operon that encode enzymes catalyzing the phosphorothioation of DNA, rendering the modified DNA susceptible to oxidative cleavage during a PFGE run. In this study, a PCR assay was developed to detect the presence of the dnd operon in Dnd+E. coli strains and to improve their typeability. Investigations into the genetic environments of the dnd operon in various E. coli strains led to the discovery that the dnd operon is harboured in various diverse genomic islands. Results The dndBCDE genes (dnd operon) were detected in all Dnd+E. coli strains by PCR. The addition of thiourea improved the typeability of Dnd+E. coli strains to 100% using PFGE and the Dnd+ phenotype can be observed in both clonal and genetically diverse E. coli strains. Genomic analysis of 101 dnd operons from genome sequences of Enterobacteriaceae revealed that the dnd operons of the same bacterial species were generally clustered together in the phylogenetic tree. Further analysis of dnd operons of 52 E. coli genomes together with their respective immediate genetic environments revealed a total of 7 types of genetic organizations, all of which were found to be associated with genomic islands designated dnd-encoding GIs. The dnd-encoding GIs displayed mosaic structure and the genomic context of the 7 islands (with 1 representative genome from each type of genetic organization) were also highly variable, suggesting multiple recombination events. This is also the first report where two dnd operons were found within a strain although the biological implication is unknown. Surprisingly, dnd operons were frequently found in pathogenic E. coli although their link with virulence has not been explored. Conclusion Genomic islands likely play an important role in facilitating the horizontal gene transfer of the dnd operons in E. coli with 7 different types of islands discovered so far. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1421-8) contains supplementary material, which is available to authorized users.
Collapse
|
57
|
Brown-Jaque M, Calero-Cáceres W, Muniesa M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid 2015; 79:1-7. [PMID: 25597519 DOI: 10.1016/j.plasmid.2015.01.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/29/2022]
Abstract
Antibiotic resistance is a major concern for society because it threatens the effective prevention of infectious diseases. While some bacterial strains display intrinsic resistance, others achieve antibiotic resistance by mutation, by the recombination of foreign DNA into the chromosome or by horizontal gene acquisition. In many cases, these three mechanisms operate together. Several mobile genetic elements (MGEs) have been reported to mobilize different types of resistance genes and despite sharing common features, they are often considered and studied separately. Bacteriophages and phage-related particles have recently been highlighted as MGEs that transfer antibiotic resistance. This review focuses on phages, phage-related elements and on composite MGEs (phages-MGEs) involved in antibiotic resistance mobility. We review common features of these elements, rather than differences, and provide a broad overview of the antibiotic resistance transfer mechanisms observed in nature, which is a necessary first step to controlling them.
Collapse
Affiliation(s)
- Maryury Brown-Jaque
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - William Calero-Cáceres
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
58
|
Hudson CM, Lau BY, Williams KP. Islander: a database of precisely mapped genomic islands in tRNA and tmRNA genes. Nucleic Acids Res 2014; 43:D48-53. [PMID: 25378302 PMCID: PMC4383910 DOI: 10.1093/nar/gku1072] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Genomic islands are mobile DNAs that are major agents of bacterial and archaeal evolution. Integration into prokaryotic chromosomes usually occurs site-specifically at tRNA or tmRNA gene (together, tDNA) targets, catalyzed by tyrosine integrases. This splits the target gene, yet sequences within the island restore the disrupted gene; the regenerated target and its displaced fragment precisely mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm identifies tDNAs, finds fragments of those tDNAs in the same replicon and removes unlikely candidate islands through a series of filters. A search for islands in 2168 whole prokaryotic genomes produced 3919 candidates. The website Islander (recently moved to http://bioinformatics.sandia.gov/islander/) presents these precisely mapped candidate islands, the gene content and the island sequence. The algorithm further insists that each island encode an integrase, and attachment site sequence identity is carefully noted; therefore, the database also serves in the study of integrase site-specificity and its evolution.
Collapse
Affiliation(s)
- Corey M Hudson
- Sandia National Laboratories, Department of Systems Biology, Livermore, CA 94550, USA
| | - Britney Y Lau
- Sandia National Laboratories, Department of Systems Biology, Livermore, CA 94550, USA
| | - Kelly P Williams
- Sandia National Laboratories, Department of Systems Biology, Livermore, CA 94550, USA
| |
Collapse
|
59
|
Domingues S, da Silva GJ, Nielsen KM. Integrons: Vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elements 2014; 2:211-223. [PMID: 23550063 PMCID: PMC3575428 DOI: 10.4161/mge.22967] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrons are genetic elements first described at the end of the 1980s. Although most integrons were initially described in human clinical isolates, they have now been identified in many non-clinical environments, such as water and soil. Integrons are present in ≈10% of the sequenced bacterial genomes and are frequently linked to mobile genetic elements (MGEs); particularly the class 1 integrons. Genetic linkage to a diverse set of MGEs facilitates horizontal transfer of class 1 integrons within and between bacterial populations and species. The mechanistic aspects limiting transfer of MGEs will therefore limit the transfer of class 1 integrons. However, horizontal movement due to genes provided in trans and homologous recombination can result in class 1 integron dynamics independent of MGEs. A key determinant for continued dissemination of class 1 integrons is the probability that transferred MGEs will be vertically inherited in the recipient bacterial population. Heritability depends both on genetic stability as well as the fitness costs conferred to the host. Here we review the factors known to govern the dissemination of class 1 integrons in bacteria.
Collapse
Affiliation(s)
- Sara Domingues
- Centre of Pharmaceutical Studies; Faculty of Pharmacy; University of Coimbra; Coimbra, Portugal ; Department of Pharmacy; Faculty of Health Sciences; University of Tromsø; Tromsø, Norway
| | | | | |
Collapse
|
60
|
Abstract
Bacteriophage genomes found in a range of bacterial pathogens encode a diverse array of virulence factors ranging from superantigens or pore forming lysins to numerous exotoxins. Recent studies have uncovered an entirely new class of bacterial virulence factors, called effector proteins or effector toxins, which are encoded within phage genomes that reside among several pathovars of Escherichia coli and Salmonella enterica. These effector proteins have multiple domains resulting in proteins that can be multifunctional. The effector proteins encoded within phage genomes are translocated directly from the bacterial cytosol into their eukaryotic target cells by specialized bacterial type three secretion systems (T3SSs). In this review, we will give an overview of the different types of effector proteins encoded within phage genomes and examine their roles in bacterial pathogenesis.
Collapse
Affiliation(s)
- E Fidelma Boyd
- Department of Biological Sciences; University of Delaware; Newark, DE USA
| | | | | |
Collapse
|
61
|
Xie J, Zhou F, Xu G, Mai G, Hu J, Wang G, Li F. Genome-wide screening of pathogenicity islands in Mycobacterium tuberculosis based on the genomic barcode visualization. Mol Biol Rep 2014; 41:5883-9. [PMID: 25108673 DOI: 10.1007/s11033-014-3463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/13/2014] [Indexed: 10/24/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is one of the most widely spread human pathogenic bacteria, and it frequently exchanges pathogenesis genes among its strains or with other pathogenic microbes. The purpose of this study was to screen the pathogenicity islands (PAIs) in M. tuberculosis using the genomic barcode visualization technique and to characterize the functions of the detected PAIs. By visually screening the barcode image of the M. tuberculosis chromosomes, three candidate PAIs were detected as MPI-1, MPI-2 and MPI-3, among which MPI-2 and MPI-3 were known to harbor pathogenesis genes, and MPI-1 represents a novel candidate. Based on the functional annotations of Pfam domains and GO categories, both MPI-2 and MPI-3 carry genes encoding PE/PPE family proteins, MPI-2 encodes the type VII secretion system, and MPI-3 encodes genes for mycolic acid synthesis in the cell wall. Some of these genes were already widely used in early diagnosis or treatment of M. tuberculosis. The novel candidate PAI MPI-1 encodes CRISPR-C as family proteins, which are known to be associated with persistent infection of M. tuberculosis. Our data represents a molecular basis and protocol for comprehensive annotating the pathogenic systems of M. tuberculosis, and will also facilitate the development of diagnosis and vaccination techniques of M. tuberculosis.
Collapse
Affiliation(s)
- Jiao Xie
- Norman Bethune Medical College of Jilin University, Changchun, 130021, Jilin, China
| | | | | | | | | | | | | |
Collapse
|
62
|
Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720-60. [DOI: 10.1111/1574-6976.12058] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/15/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022] Open
|
63
|
Rapa RA, Islam A, Monahan LG, Mutreja A, Thomson N, Charles IG, Stokes HW, Labbate M. A genomic island integrated into recA of Vibrio cholerae contains a divergent recA and provides multi-pathway protection from DNA damage. Environ Microbiol 2014; 17:1090-102. [PMID: 24889424 PMCID: PMC4405046 DOI: 10.1111/1462-2920.12512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
Lateral gene transfer (LGT) has been crucial in the evolution of the cholera pathogen, Vibrio cholerae. The two major virulence factors are present on two different mobile genetic elements, a bacteriophage containing the cholera toxin genes and a genomic island (GI) containing the intestinal adhesin genes. Non-toxigenic V. cholerae in the aquatic environment are a major source of novel DNA that allows the pathogen to morph via LGT. In this study, we report a novel GI from a non-toxigenic V. cholerae strain containing multiple genes involved in DNA repair including the recombination repair gene recA that is 23% divergent from the indigenous recA and genes involved in the translesion synthesis pathway. This is the first report of a GI containing the critical gene recA and the first report of a GI that targets insertion into a specific site within recA. We show that possession of the island in Escherichia coli is protective against DNA damage induced by UV-irradiation and DNA targeting antibiotics. This study highlights the importance of genetic elements such as GIs in the evolution of V. cholerae and emphasizes the importance of environmental strains as a source of novel DNA that can influence the pathogenicity of toxigenic strains.
Collapse
Affiliation(s)
- Rita A Rapa
- ithree Institute, University of Technology, PO Box 123 Broadway, Sydney, NSW, 2007, Australia; Department of Medical and Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Lindner AC, Lang D, Seifert M, Podlešáková K, Novák O, Strnad M, Reski R, von Schwartzenberg K. Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2533-43. [PMID: 24692654 PMCID: PMC4036517 DOI: 10.1093/jxb/eru142] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The moss Physcomitrella patens is part of an early divergent clade of land plants utilizing the plant hormone cytokinin for growth control. The rate-limiting step of cytokinin biosynthesis is mediated by isopentenyltransferases (IPTs), found in land plants either as adenylate-IPTs or as tRNA-IPTs. Although a dominant part of cytokinins in flowering plants are synthesized by adenylate-IPTs, the Physcomitrella genome only encodes homologues of tRNA-IPTs. This study therefore looked into the question of whether cytokinins in moss derive from tRNA exclusively. Targeted gene knockout of ipt1 (d|ipt1) along with localization studies revealed that the chloroplast-bound IPT1 was almost exclusively responsible for the A37 prenylation of tRNA in Physcomitrella. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based cytokinin profiling demonstrated that the total amount of all free cytokinins in tissue was almost unaffected. However, the knockout plants showed increased levels of the N (6) -isopentenyladenine (iP)- and trans-zeatin (tZ)-type cytokinins, considered to provide active forms, while cis-zeatin (cZ)-type cytokinins were reduced. The data provide evidence for an additional and unexpected tRNA-independent cytokinin biosynthetic pathway in moss. Comprehensive phylogenetic analysis indicates a diversification of tRNA-IPT-like genes in bryophytes probably related to additional functions.
Collapse
Affiliation(s)
- Ann-Cathrin Lindner
- University of Hamburg, Biocenter Klein Flottbek, Ohnhorststraße 18, D-22609 Hamburg, Germany
| | - Daniel Lang
- University of Freiburg, Faculty of Biology, Plant Biotechnology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Maike Seifert
- University of Hamburg, Biocenter Klein Flottbek, Ohnhorststraße 18, D-22609 Hamburg, Germany
| | - Kateřina Podlešáková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic Palacký University, Department of Biochemistry, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Ralf Reski
- University of Freiburg, Faculty of Biology, Plant Biotechnology, Schaenzlestr. 1, D-79104 Freiburg, Germany FRIAS-Freiburg Institute for Advanced Studies, Freiburg, Germany BIOSS-Centre for Biological Signalling Studies, Freiburg, Germany
| | | |
Collapse
|
65
|
Paliwal V, Raju SC, Modak A, Phale PS, Purohit HJ. Pseudomonas putida CSV86: a candidate genome for genetic bioaugmentation. PLoS One 2014; 9:e84000. [PMID: 24475028 PMCID: PMC3901652 DOI: 10.1371/journal.pone.0084000] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas putida CSV86, a plasmid-free strain possessing capability to transfer the naphthalene degradation property, has been explored for its metabolic diversity through genome sequencing. The analysis of draft genome sequence of CSV86 (6.4 Mb) revealed the presence of genes involved in the degradation of naphthalene, salicylate, benzoate, benzylalcohol, p-hydroxybenzoate, phenylacetate and p-hydroxyphenylacetate on the chromosome thus ensuring the stability of the catabolic potential. Moreover, genes involved in the metabolism of phenylpropanoid and homogentisate, as well as heavy metal resistance, were additionally identified. Ability to grow on vanillin, veratraldehyde and ferulic acid, detection of inducible homogentisate dioxygenase and growth on aromatic compounds in the presence of heavy metals like copper, cadmium, cobalt and arsenic confirm in silico observations reflecting the metabolic versatility. In silico analysis revealed the arrangement of genes in the order: tRNAGly, integrase followed by nah operon, supporting earlier hypothesis of existence of a genomic island (GI) for naphthalene degradation. Deciphering the genomic architecture of CSV86 for aromatic degradation pathways and identification of elements responsible for horizontal gene transfer (HGT) suggests that genetic bioaugmentation strategies could be planned using CSV86 for effective bioremediation.
Collapse
Affiliation(s)
- Vasundhara Paliwal
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Sajan C Raju
- MEM-Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Arnab Modak
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, India
| | - Hemant J Purohit
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| |
Collapse
|
66
|
Identifying pathogenicity islands in bacterial pathogenomics using computational approaches. Pathogens 2014; 3:36-56. [PMID: 25437607 PMCID: PMC4235732 DOI: 10.3390/pathogens3010036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 12/22/2022] Open
Abstract
High-throughput sequencing technologies have made it possible to study bacteria through analyzing their genome sequences. For instance, comparative genome sequence analyses can reveal the phenomenon such as gene loss, gene gain, or gene exchange in a genome. By analyzing pathogenic bacterial genomes, we can discover that pathogenic genomic regions in many pathogenic bacteria are horizontally transferred from other bacteria, and these regions are also known as pathogenicity islands (PAIs). PAIs have some detectable properties, such as having different genomic signatures than the rest of the host genomes, and containing mobility genes so that they can be integrated into the host genome. In this review, we will discuss various pathogenicity island-associated features and current computational approaches for the identification of PAIs. Existing pathogenicity island databases and related computational resources will also be discussed, so that researchers may find it to be useful for the studies of bacterial evolution and pathogenicity mechanisms.
Collapse
|
67
|
Transcription termination controls prophage maintenance in Escherichia coli genomes. Proc Natl Acad Sci U S A 2013; 110:14414-9. [PMID: 23940369 DOI: 10.1073/pnas.1303400110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prophages represent a large fraction of prokaryotic genomes and often provide new functions to their hosts, in particular virulence and fitness. How prokaryotic cells maintain such gene providers is central for understanding bacterial genome evolution by horizontal transfer. Prophage excision occurs through site-specific recombination mediated by a prophage-encoded integrase. In addition, a recombination directionality factor (or excisionase) directs the reaction toward excision and prevents the phage genome from being reintegrated. In this work, we describe the role of the transcription termination factor Rho in prophage maintenance through control of the synthesis of transcripts that mediate recombination directionality factor expression and, thus, excisive recombination. We show that Rho inhibition by bicyclomycin allows for the expression of prophage genes that lead to excisive recombination. Thus, besides its role in the silencing of horizontally acquired genes, Rho also maintains lysogeny of defective and functional prophages.
Collapse
|
68
|
Juhas M, Dimopoulou I, Robinson E, Elamin A, Harding R, Hood D, Crook D. Identification of another module involved in the horizontal transfer of the Haemophilus genomic island ICEHin1056. Plasmid 2013; 70:277-83. [PMID: 23764277 PMCID: PMC3739013 DOI: 10.1016/j.plasmid.2013.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 12/04/2022]
Abstract
The investigated module on the 5′ extremity of ICEHin1056 consists of 15 genes. Genes of this module are homologues of DNA replication and stabilization genes. This module is well conserved in a number of genomic islands. This module is important for the conjugal transfer of ICEHin1056.
A significant part of horizontal gene transfer is facilitated by genomic islands. Haemophilus influenzae genomic island ICEHin1056 is an archetype of a genomic island that accounts for pandemic spread of antibiotics resistance. ICEHin1056 has modular structure and harbors modules involved in type IV secretion and integration. Previous studies have shown that ICEHin1056 encodes a functional type IV secretion system; however, other modules have not been characterized yet. Here we show that the module on the 5′ extremity of ICEHin1056 consists of 15 genes that are well conserved in a number of related genomic islands. Furthermore by disrupting six genes of the investigated module of ICEHin1056 by site-specific mutagenesis we demonstrate that in addition to type IV secretion system module, the investigated module is also important for the successful conjugal transfer of ICEHin1056 from donor to recipient cells.
Collapse
Affiliation(s)
- Mario Juhas
- Clinical Microbiology and Infectious Diseases, NDCLS, University of Oxford, OX3 9DU, UK.
| | | | | | | | | | | | | |
Collapse
|
69
|
Bustamante P, Covarrubias PC, Levicán G, Katz A, Tapia P, Holmes D, Quatrini R, Orellana O. ICE Afe1, an Actively Excising Genetic Element from the Biomining Bacterium Acidithiobacillus ferrooxidans. J Mol Microbiol Biotechnol 2013; 22:399-407. [DOI: 10.1159/000346669] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
70
|
Regulation, integrase-dependent excision, and horizontal transfer of genomic islands in Legionella pneumophila. J Bacteriol 2013; 195:1583-97. [PMID: 23354744 DOI: 10.1128/jb.01739-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Legionella pneumophila is a Gram-negative freshwater agent which multiplies in specialized nutrient-rich vacuoles of amoebae. When replicating in human alveolar macrophages, Legionella can cause Legionnaires' disease. Recently, we identified a new type of conjugation/type IVA secretion system (T4ASS) in L. pneumophila Corby (named trb-tra). Analogous versions of trb-tra are localized on the genomic islands Trb-1 and Trb-2. Both can exist as an episomal circular form, and Trb-1 can be transferred horizontally to other Legionella strains by conjugation. In our current work, we discovered the importance of a site-specific integrase (Int-1, lpc2818) for the excision and conjugation process of Trb-1. Furthermore, we identified the genes lvrRABC (lpc2813 to lpc2816) to be involved in the regulation of Trb-1 excision. In addition, we demonstrated for the first time that a Legionella genomic island (LGI) of L. pneumophila Corby (LpcGI-2) encodes a functional type IV secretion system. The island can be transferred horizontally by conjugation and is integrated site specifically into the genome of the transconjugants. LpcGI-2 generates three different episomal forms. The predominant episomal form, form A, is generated integrase dependently (Lpc1833) and transferred by conjugation in a pilT-dependent manner. Therefore, the genomic islands Trb-1 and LpcGI-2 should be classified as integrative and conjugative elements (ICEs). Coculture studies of L. pneumophila wild-type and mutant strains revealed that the int-1 and lvrRABC genes (located on Trb-1) as well as lpc1833 and pilT (located on LpcGI-2) do not influence the in vivo fitness of L. pneumophila in Acanthamoeba castellanii.
Collapse
|
71
|
Mitra A, Nagaraja V. Under-representation of intrinsic terminators across bacterial genomic islands: Rho as a principal regulator of xenogenic DNA expression. Gene 2012; 508:221-8. [DOI: 10.1016/j.gene.2012.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/30/2012] [Indexed: 11/16/2022]
|
72
|
Yurkiw MA, Voordouw J, Voordouw G. Contribution of rubredoxin:oxygen oxidoreductases and hybrid cluster proteins of Desulfovibrio vulgaris Hildenborough to survival under oxygen and nitrite stress. Environ Microbiol 2012; 14:2711-25. [PMID: 22947039 DOI: 10.1111/j.1462-2920.2012.02859.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 11/28/2022]
Abstract
A genomic island (GEI) of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, found to be able to migrate between two tRNA-Met loci of the genome, contains genes for rubredoxin:oxygen oxidoreductase-1 (roo1) and hybrid cluster protein-1 (hcp1) with additional copies for these genes (roo2 and hcp2) being found elsewhere on the chromosome. A suite of mutants was created in which roo2 and/or hcp2 and/or the GEI were either present or missing. The GEI and roo2 increased survival under microaerobic conditions and allowed growth in closer proximity to the air-water interface of soft agar tubes, two properties which appeared to be closely linked. When Hcp2(+) GEI(+) or Hcp2(-) GEI(+) cells, harbouring cytochrome c nitrite reductase (NrfHA) and growing on lactate and sulfate, were amended with 10 mM nitrite at mid-log phase (8-10 mM sulfide), all nitrite was reduced within 30 h with a rate of 3.0 mmol (g biomass)(-1) h(-1) after which sulfate reduction resumed. However, Hcp2(+) GEI(-) or Hcp2(-) GEI(-) cells were unable to use lactate, causing sulfide to be used as electron donor for nitrite reduction at a sixfold lower rate. Complementation studies indicated that hcp1, not roo1, enhanced the rate of nitrite reduction under these conditions. Hcp2 enhanced the rate of nitrite reduction when, in addition to lactate, hydrogen was also present as an electron donor. These results indicate a critical role of Hcps in alleviating nitrite stress in D. vulgaris Hildenborough by maintaining the integrity of electron transport chains from lactate or H(2) to NrfHA through removal of reactive nitrogen species. It thus appears that the GEI contributes considerably to the fitness of the organism, allowing improved growth in microaerobic environments found in sulfide-oxygen gradients and in environments, containing both sulfide and nitrite, through the action of Roo1 and Hcp1 respectively.
Collapse
Affiliation(s)
- Marcy A Yurkiw
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | | | | |
Collapse
|
73
|
Dynamics of the SetCD-regulated integration and excision of genomic islands mobilized by integrating conjugative elements of the SXT/R391 family. J Bacteriol 2012; 194:5794-802. [PMID: 22923590 DOI: 10.1128/jb.01093-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobilizable genomic islands (MGIs) are small genomic islands that are mobilizable by SXT/R391 integrating conjugative elements (ICEs) due to similar origins of transfer. Their site-specific integration and excision are catalyzed by the integrase that they encode, but their conjugative transfer entirely depends upon the conjugative machinery of SXT/R391 ICEs. In this study, we report the mechanisms that control the excision and integration processes of MGIs. We found that while the MGI-encoded integrase Int(MGI) is sufficient to promote MGI integration, efficient excision from the host chromosome requires the combined action of Int(MGI) and of a novel recombination directionality factor, RdfM. We determined that the genes encoding these proteins are activated by SetCD, the main transcriptional activators of SXT/R391 ICEs. Although they share the same regulators, we found that unlike rdfM, int(MGI) has a basal level of expression in the absence of SetCD. These findings explain how an MGI can integrate into the chromosome of a new host in the absence of a coresident ICE and shed new light on the cross talk that can occur between mobilizable and mobilizing elements that mobilize them, helping us to understand part of the rules that dictate horizontal transfer mechanisms.
Collapse
|
74
|
Gennari M, Ghidini V, Caburlotto G, Lleo MM. Virulence genes and pathogenicity islands in environmentalVibriostrains nonpathogenic to humans. FEMS Microbiol Ecol 2012; 82:563-73. [DOI: 10.1111/j.1574-6941.2012.01427.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/23/2012] [Accepted: 05/27/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Micol Gennari
- Dipartimento di Patologia e Diagnostica; Sezione di Microbiologia; Università di Verona; Verona; Italy
| | - Valentina Ghidini
- Dipartimento di Patologia e Diagnostica; Sezione di Microbiologia; Università di Verona; Verona; Italy
| | - Greta Caburlotto
- Dipartimento di Patologia e Diagnostica; Sezione di Microbiologia; Università di Verona; Verona; Italy
| | - Maria M. Lleo
- Dipartimento di Patologia e Diagnostica; Sezione di Microbiologia; Università di Verona; Verona; Italy
| |
Collapse
|
75
|
Taviani E, Spagnoletti M, Ceccarelli D, Haley BJ, Hasan NA, Chen A, Colombo MM, Huq A, Colwell RR. Genomic analysis of ICEVchBan8: An atypical genetic element in Vibrio cholerae. FEBS Lett 2012; 586:1617-21. [PMID: 22673571 DOI: 10.1016/j.febslet.2012.03.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 11/20/2022]
Abstract
Genomic islands (GIs) and integrative conjugative elements (ICEs) are major players in bacterial evolution since they encode genes involved in adaptive functions of medical or environmental importance. Here we performed the genomic analysis of ICEVchBan8, an unusual ICE found in the genome of a clinical non-toxigenic Vibrio cholerae O37 isolate. ICEVchBan8 shares most of its genetic structure with SXT/R391 ICEs. However, this ICE codes for a different integration/excision module is located at a different insertion site, and part of its genetic cargo shows homology to other pathogenicity islands of V. cholerae.
Collapse
Affiliation(s)
- Elisa Taviani
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Van Houdt R, Leplae R, Lima-Mendez G, Mergeay M, Toussaint A. Towards a more accurate annotation of tyrosine-based site-specific recombinases in bacterial genomes. Mob DNA 2012; 3:6. [PMID: 22502997 PMCID: PMC3414803 DOI: 10.1186/1759-8753-3-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 04/13/2012] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Tyrosine-based site-specific recombinases (TBSSRs) are DNA breaking-rejoining enzymes. In bacterial genomes, they play a major role in the comings and goings of mobile genetic elements (MGEs), such as temperate phage genomes, integrated conjugative elements (ICEs) or integron cassettes. TBSSRs are also involved in the segregation of plasmids and chromosomes, the resolution of plasmid dimers and of co-integrates resulting from the replicative transposition of transposons. With the aim of improving the annotation of TBSSR genes in genomic sequences and databases, which so far is far from robust, we built a set of over 1,300 TBSSR protein sequences tagged with their genome of origin. We organized them in families to investigate: i) whether TBSSRs tend to be more conserved within than between classes of MGE types and ii) whether the (sub)families may help in understanding more about the function of TBSSRs associated in tandem or trios on plasmids and chromosomes. RESULTS A total of 67% of the TBSSRs in our set are MGE type specific. We define a new class of actinobacterial transposons, related to Tn554, containing one abnormally long TBSSR and one of typical size, and we further characterize numerous TBSSRs trios present in plasmids and chromosomes of α- and β-proteobacteria. CONCLUSIONS The simple in silico procedure described here, which uses a set of reference TBSSRs from defined MGE types, could contribute to greatly improve the annotation of tyrosine-based site-specific recombinases in plasmid, (pro)phage and other integrated MGE genomes. It also reveals TBSSRs families whose distribution among bacterial taxa suggests they mediate lateral gene transfer.
Collapse
Affiliation(s)
- Rob Van Houdt
- Unit of Microbiology (MIC), Belgian Nuclear Research Centre, SCK•CEN, Boeretang 200 Mol B-2400, Belgium
| | - Raphael Leplae
- Department of Informatics, Campus du Solbosch - CP197, 50 avenue F.D. Roosevelt, Bruxelles 1050, Belgium
| | - Gipsi Lima-Mendez
- Research Group of Bioinformatics and (Eco-)systems Biology, Department of Structural Biology, VIB, Pleinlaan 2, Brussels 1050, Belgium and Research Group of Bioinformatics and (Eco-)systems Biology, Microbiology Unit (MICR), Department of Applied Biological Sciences (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Max Mergeay
- Unit of Microbiology (MIC), Belgian Nuclear Research Centre, SCK•CEN, Boeretang 200 Mol B-2400, Belgium
| | - Ariane Toussaint
- Laboratoire Bioinformatique des Génomes et Réseaux (BiGRe), Université Libre de Bruxelles, Bvd du Triomphe, Bruxelles 1050, Belgium
| |
Collapse
|
77
|
Abstract
The role of bacteriophages as natural vectors for some of the most potent bacterial toxins is well recognized and includes classical type I membrane-acting superantigens, type II pore-forming lysins, and type III exotoxins, such as diphtheria and botulinum toxins. Among Gram-negative pathogens, a novel class of bacterial virulence factors called effector proteins (EPs) are phage encoded among pathovars of Escherichia coli, Shigella spp., and Salmonella enterica. This chapter gives an overview of the different types of virulence factors encoded within phage genomes based on their role in bacterial pathogenesis. It also discusses phage-pathogenicity island interactions uncovered from studies of phage-encoded EPs. A detailed examination of the filamentous phage CTXφ that encodes cholera toxin is given as the sole example to date of a single-stranded DNA phage that encodes a bacterial toxin.
Collapse
|
78
|
Chronology and pattern of integration of tandem genomic islands associated with the tmRNA gene in Escherichia coli and Salmonella enterica. CHINESE SCIENCE BULLETIN-CHINESE 2011. [DOI: 10.1007/s11434-011-4749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
79
|
A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 2011; 194:376-94. [PMID: 22056929 DOI: 10.1128/jb.06244-11] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We present the draft genome for the Rickettsia endosymbiont of Ixodes scapularis (REIS), a symbiont of the deer tick vector of Lyme disease in North America. Among Rickettsia species (Alphaproteobacteria: Rickettsiales), REIS has the largest genome sequenced to date (>2 Mb) and contains 2,309 genes across the chromosome and four plasmids (pREIS1 to pREIS4). The most remarkable finding within the REIS genome is the extraordinary proliferation of mobile genetic elements (MGEs), which contributes to a limited synteny with other Rickettsia genomes. In particular, an integrative conjugative element named RAGE (for Rickettsiales amplified genetic element), previously identified in scrub typhus rickettsiae (Orientia tsutsugamushi) genomes, is present on both the REIS chromosome and plasmids. Unlike the pseudogene-laden RAGEs of O. tsutsugamushi, REIS encodes nine conserved RAGEs that include F-like type IV secretion systems similar to that of the tra genes encoded in the Rickettsia bellii and R. massiliae genomes. An unparalleled abundance of encoded transposases (>650) relative to genome size, together with the RAGEs and other MGEs, comprise ~35% of the total genome, making REIS one of the most plastic and repetitive bacterial genomes sequenced to date. We present evidence that conserved rickettsial genes associated with an intracellular lifestyle were acquired via MGEs, especially the RAGE, through a continuum of genomic invasions. Robust phylogeny estimation suggests REIS is ancestral to the virulent spotted fever group of rickettsiae. As REIS is not known to invade vertebrate cells and has no known pathogenic effects on I. scapularis, its genome sequence provides insight on the origin of mechanisms of rickettsial pathogenicity.
Collapse
|
80
|
Bi D, Xu Z, Harrison EM, Tai C, Wei Y, He X, Jia S, Deng Z, Rajakumar K, Ou HY. ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res 2011; 40:D621-6. [PMID: 22009673 PMCID: PMC3244999 DOI: 10.1093/nar/gkr846] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ICEberg (http://db-mml.sjtu.edu.cn/ICEberg/) is an integrated database that provides comprehensive information about integrative and conjugative elements (ICEs) found in bacteria. ICEs are conjugative self-transmissible elements that can integrate into and excise from a host chromosome. An ICE contains three typical modules, integration and excision, conjugation, and regulation modules, that collectively promote vertical inheritance and periodic lateral gene flow. Many ICEs carry likely virulence determinants, antibiotic-resistant factors and/or genes coding for other beneficial traits. ICEberg offers a unique, highly organized, readily explorable archive of both predicted and experimentally supported ICE-relevant data. It currently contains details of 428 ICEs found in representatives of 124 bacterial species, and a collection of >400 directly related references. A broad range of similarity search, sequence alignment, genome context browser, phylogenetic and other functional analysis tools are readily accessible via ICEberg. We propose that ICEberg will facilitate efficient, multi-disciplinary and innovative exploration of bacterial ICEs and be of particular interest to researchers in the broad fields of prokaryotic evolution, pathogenesis, biotechnology and metabolism. The ICEberg database will be maintained, updated and improved regularly to ensure its ongoing maximum utility to the research community.
Collapse
Affiliation(s)
- Dexi Bi
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Integrative analysis of transcriptome and genome indicates two potential genomic islands are associated with pathogenesis of Mycobacterium tuberculosis. Gene 2011; 489:21-9. [PMID: 21924330 DOI: 10.1016/j.gene.2011.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/20/2011] [Accepted: 08/26/2011] [Indexed: 11/20/2022]
Abstract
Mycobacterium tuberculosis (M.tb) is a successful human pathogen and widely prevalent throughout the world. Genomic islands (GIs) are thought to be related to pathogenicity. In this study, we predicted two potential genomic islands in M.tb genome, respectively named as GI-1 and GI-2. It is indicated that the genes belong to PE_PGRS family in GI-1 and genes involved in sulfolipid-1 (SL-1) synthesis in GI-2 are strongly associated with M.tb pathogenesis. Sequence analysis revealed that the five PGRS genes are more polymorphic than other PGRS members in full virulence M.tb complex strains at significance level 0.01 but not in attenuated strains. Expression analysis of microarrays collected from literatures displayed that GI-1 genes, especially Rv3508 might be correlated with the response to the inhibition of aerobic respiration. Microarray analysis also showed that SL-1 cluster genes are drastically down-expressed in attenuated strains relative to full virulence strains. We speculated that the effect of SL-1 on M.tb pathogenicity could be associated with long-term survival and persistence establishment during infection. Additionally, the gene Rv3508 in GI-1 was under positive selection. Rv3508 may involve the response of M.tb to the inhibition of aerobic respiration by low oxygen or drug PA-824, and it may be a common feature of genes in GI-1. These findings may provide some novel insights into M.tb physiology and pathogenesis.
Collapse
|
82
|
Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 2011; 35:707-35. [DOI: 10.1111/j.1574-6976.2010.00261.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
83
|
Antimicrobial resistance and virulence determinants in European Salmonella genomic island 1-positive Salmonella enterica isolates from different origins. Appl Environ Microbiol 2011; 77:5655-64. [PMID: 21705546 DOI: 10.1128/aem.00425-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella genomic island 1 (SGI1) contains a multidrug resistance region conferring the ampicillin-chloramphenicol-streptomycin-sulfamethoxazole-tetracycline resistance phenotype encoded by bla(PSE-1), floR, aadA2, sul1, and tet(G). Its increasing spread via interbacterial transfer and the emergence of new variants are important public health concerns. We investigated the molecular properties of SGI1-carrying Salmonella enterica serovars selected from a European strain collection. A total of 38 strains belonging to S. enterica serovar Agona, S. enterica serovar Albany, S. enterica serovar Derby, S. enterica serovar Kentucky, S. enterica serovar Newport, S. enterica serovar Paratyphi B dT+, and S. enterica serovar Typhimurium, isolated between 2002 and 2006 in eight European countries from humans, animals, and food, were subjected to antimicrobial susceptibility testing, molecular typing methods (XbaI pulsed-field gel electrophoresis [PFGE], plasmid analysis, and multilocus variable-number tandem-repeat analysis [MLVA]), as well as detection of resistance and virulence determinants (PCR/sequencing and DNA microarray analysis). Typing experiments revealed wide heterogeneity inside the strain collection and even within serovars. PFGE analysis distinguished a total of 26 different patterns. In contrast, the characterization of the phenotypic and genotypic antimicrobial resistance revealed serovar-specific features. Apart from the classical SGI1 organization found in 61% of the strains, seven different variants were identified with antimicrobial resistance properties associated with SGI1-A (S. Derby), SGI1-C (S. Derby), SGI1-F (S. Albany), SGI1-L (S. Newport), SGI1-K (S. Kentucky), SGI1-M (S. Typhimurium), and, eventually, a novel variant similar to SGI1-C with additional gentamicin resistance encoded by aadB. Only minor serovar-specific differences among virulence patterns were detected. In conclusion, the SGI1 carriers exhibited pathogenetic backgrounds comparable to the ones published for susceptible isolates. However, because of their multidrug resistance, they may be more relevant in clinical settings.
Collapse
|
84
|
Du P, Yang Y, Wang H, Liu D, Gao GF, Chen C. A large scale comparative genomic analysis reveals insertion sites for newly acquired genomic islands in bacterial genomes. BMC Microbiol 2011; 11:135. [PMID: 21672261 PMCID: PMC3148964 DOI: 10.1186/1471-2180-11-135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 06/15/2011] [Indexed: 01/15/2023] Open
Abstract
Background Bacterial virulence enhancement and drug resistance are major threats to public health worldwide. Interestingly, newly acquired genomic islands (GIs) from horizontal transfer between different bacteria strains were found in Vibrio cholerae, Streptococcus suis, and Mycobacterium tuberculosis, which caused outbreak of epidemic diseases in recently years. Results Using a large-scale comparative genomic analysis of 1088 complete genomes from all available bacteria (1009) and Archaea (79), we found that newly acquired GIs are often anchored around switch sites of GC-skew (sGCS). After calculating correlations between relative genomic distances of genomic islands to sGCSs and the evolutionary distances of the genomic islands themselves, we found that newly acquired genomic islands are closer to sGCSs than the old ones, indicating that regions around sGCSs are hotspots for genomic island insertion. Conclusions Based on our results, we believe that genomic regions near sGCSs are hotspots for horizontal transfer of genomic islands, which may significantly affect key properties of epidemic disease-causing pathogens, such as virulence and adaption to new environments.
Collapse
Affiliation(s)
- Pengcheng Du
- National Institute for Communicable Disease Control and Prevention, Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, Beijing 102206, China
| | | | | | | | | | | |
Collapse
|
85
|
Sitkiewicz I, Green NM, Guo N, Mereghetti L, Musser JM. Lateral gene transfer of streptococcal ICE element RD2 (region of difference 2) encoding secreted proteins. BMC Microbiol 2011; 11:65. [PMID: 21457552 PMCID: PMC3083328 DOI: 10.1186/1471-2180-11-65] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 04/01/2011] [Indexed: 11/10/2022] Open
Abstract
Background The genome of serotype M28 group A Streptococcus (GAS) strain MGAS6180 contains a novel genetic element named Region of Difference 2 (RD2) that encodes seven putative secreted extracellular proteins. RD2 is present in all serotype M28 strains and strains of several other GAS serotypes associated with female urogenital infections. We show here that the GAS RD2 element is present in strain MGAS6180 both as an integrative chromosomal form and a circular extrachromosomal element. RD2-like regions were identified in publicly available genome sequences of strains representing three of the five major group B streptococcal serotypes causing human disease. Ten RD2-encoded proteins have significant similarity to proteins involved in conjugative transfer of Streptococcus thermophilus integrative chromosomal elements (ICEs). Results We transferred RD2 from GAS strain MGAS6180 (serotype M28) to serotype M1 and M4 GAS strains by filter mating. The copy number of the RD2 element was rapidly and significantly increased following treatment of strain MGAS6180 with mitomycin C, a DNA damaging agent. Using a PCR-based method, we also identified RD2-like regions in multiple group C and G strains of Streptococcus dysgalactiae subsp.equisimilis cultured from invasive human infections. Conclusions Taken together, the data indicate that the RD2 element has disseminated by lateral gene transfer to genetically diverse strains of human-pathogenic streptococci.
Collapse
Affiliation(s)
- Izabela Sitkiewicz
- Department of Pathology, The Methodist Hospital, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
86
|
Hazen TH, Pan L, Gu JD, Sobecky PA. The contribution of mobile genetic elements to the evolution and ecology of Vibrios. FEMS Microbiol Ecol 2011; 74:485-99. [PMID: 20662928 DOI: 10.1111/j.1574-6941.2010.00937.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An increase in the frequency of seafood-borne gastroenteritis in humans and Vibrio-related disease of fish and invertebrates has generated interest in the ecology of disease-causing Vibrios and the mechanisms driving their evolution. Genome sequencing studies have indicated a substantial contribution of horizontal gene transfer (HGT) to the evolution of Vibrios. Of particular interest is the contribution of HGT to the evolution of Vibrios pathogens and the adaptation of disease-causing Vibrios for survival in diverse environments. In this review, we discuss the diversity and distribution of mobile genetic elements (MGEs) isolated from Vibrios and the contribution of these elements to the expansion of the ecological and pathogenic niches of the host strain. Much of the research on Vibrio MGEs has focused on understanding phages and plasmids and we will primarily discuss the evolution of these elements and also briefly highlight the other diverse elements characterized from Vibrios, which includes genomic islands and conjugative elements.
Collapse
Affiliation(s)
- Tracy H Hazen
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | |
Collapse
|
87
|
Napolitano MG, Almagro-Moreno S, Boyd EF. Dichotomy in the evolution of pathogenicity island and bacteriophage encoded integrases from pathogenic Escherichia coli strains. INFECTION GENETICS AND EVOLUTION 2011; 11:423-36. [DOI: 10.1016/j.meegid.2010.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 11/29/2022]
|
88
|
Abstract
Many bacterial chromosomes contain genomic islands, large DNA segments that became incorporated into the chromosome following their horizontal transmission. However, the mechanisms that mediate the lateral transfer of genomic islands are for the most part unknown. In this issue of Molecular Microbiology, Daccord et al. describe a new type of transmissible genomic island that can be mobilized by co-resident integrating conjugative elements (ICEs). These 'mobilizable genomic islands' (MGIs) require many ICE-encoded factors for their transmission, including transcription activators to induce MGI excision, the relaxase to initiate transfer at the MGI oriT and the conjugation machinery to transport MGI DNA to recipient cells. However, MGIs encode their own integrases, which enable their recombination with the chromosome of a new host, as well as a variety of other genes that do not have functions related to mobility. The MGI oriT, which resembles the ICE oriT, can also serve as a site for initiation of ICE-mediated conjugative transfer of large regions of chromosomal DNA. Overall, these findings raise the possibility that mobilization of chromosomal DNA from cyptic oriTs within genomic islands or elsewhere on the chromosome could be more common place than has been previously appreciated.
Collapse
Affiliation(s)
- Matthew K Waldor
- Channing Laboratory/Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
89
|
Affiliation(s)
- Guillaume Cambray,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Anne-Marie Guerout,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| |
Collapse
|
90
|
Panis G, Duverger Y, Courvoisier-Dezord E, Champ S, Talla E, Ansaldi M. Tight regulation of the intS gene of the KplE1 prophage: a new paradigm for integrase gene regulation. PLoS Genet 2010; 6. [PMID: 20949106 PMCID: PMC2951348 DOI: 10.1371/journal.pgen.1001149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 09/02/2010] [Indexed: 11/18/2022] Open
Abstract
Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host's chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF). We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excessive recombination are discussed.
Collapse
Affiliation(s)
- Gaël Panis
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Yohann Duverger
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Elise Courvoisier-Dezord
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Stéphanie Champ
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Emmanuel Talla
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
- Aix-Marseille Université, Marseille, France
- * E-mail: (MA); (ET)
| | - Mireille Ansaldi
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
- Aix-Marseille Université, Marseille, France
- * E-mail: (MA); (ET)
| |
Collapse
|
91
|
Daccord A, Ceccarelli D, Burrus V. Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands. Mol Microbiol 2010; 78:576-88. [PMID: 20807202 DOI: 10.1111/j.1365-2958.2010.07364.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In vibrios and enterobacteria lateral gene transfer is often facilitated by integrating conjugative elements (ICEs) of the SXT/R391 family. SXT/R391 ICEs integrate by site-specific recombination into prfC and transfer by conjugation, a process that is initiated at a specific locus called the origin of transfer (oriT(SXT) ). We identified genomic islands (GIs) harbouring a sequence that shares >63% identity with oriT(SXT) in three species of Vibrio. Unlike SXT/R391 ICEs, these GIs are integrated into a gene coding for a putative stress-induced protein and do not appear to carry any gene coding for a conjugative machinery or for mobilization proteins. Our results show that SXT/R391 ICEs trigger the excision and mediate the conjugative transfer in trans of the three Vibrio GIs at high frequency. GIs' excision is independent of the ICE-encoded recombinase and is controlled by the ICE-encoded transcriptional activator SetCD, which is expressed during the host SOS response. Both mobI and traI, two ICE-borne genes involved in oriT recognition, are essential for GIs' transfer. We also found that SXT/R391 ICEs mobilize in trans over 1 Mb of chromosomal DNA located 5' of the GIs' integration site. Together these results support a novel mechanism of mobilization of GIs by ICEs of the SXT/R391 family.
Collapse
Affiliation(s)
- Aurélie Daccord
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
92
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
93
|
ICEEc2, a new integrative and conjugative element belonging to the pKLC102/PAGI-2 family, identified in Escherichia coli strain BEN374. J Bacteriol 2010; 192:5026-36. [PMID: 20675467 DOI: 10.1128/jb.00609-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of the Escherichia coli species is in part due to the large number of mobile genetic elements that are exchanged between strains. We report here the identification of a new integrative and conjugative element (ICE) of the pKLC102/PAGI-2 family located downstream of the tRNA gene pheU in the E. coli strain BEN374. Indeed, this new region, which we called ICEEc2, can be transferred by conjugation from strain BEN374 to the E. coli strain C600. We were also able to transfer this region into a Salmonella enterica serovar Typhimurium strain and into a Yersinia pseudotuberculosis strain. This transfer was then followed by the integration of ICEEc2 into the host chromosome downstream of a phe tRNA gene. Our data indicated that this transfer involved a set of three genes encoding DNA mobility enzymes and a type IV pilus encoded by genes present on ICEEc2. Given the wide distribution of members of this family, these mobile genetic elements are likely to play an important role in the diversification of bacteria.
Collapse
|
94
|
Haley BJ, Grim CJ, Hasan NA, Choi SY, Chun J, Brettin TS, Bruce DC, Challacombe JF, Detter JC, Han CS, Huq A, Colwell RR. Comparative genomic analysis reveals evidence of two novel Vibrio species closely related to V. cholerae. BMC Microbiol 2010; 10:154. [PMID: 20507608 PMCID: PMC2889950 DOI: 10.1186/1471-2180-10-154] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 05/27/2010] [Indexed: 11/17/2022] Open
Abstract
Background In recent years genome sequencing has been used to characterize new bacterial species, a method of analysis available as a result of improved methodology and reduced cost. Included in a constantly expanding list of Vibrio species are several that have been reclassified as novel members of the Vibrionaceae. The description of two putative new Vibrio species, Vibrio sp. RC341 and Vibrio sp. RC586 for which we propose the names V. metecus and V. parilis, respectively, previously characterized as non-toxigenic environmental variants of V. cholerae is presented in this study. Results Based on results of whole-genome average nucleotide identity (ANI), average amino acid identity (AAI), rpoB similarity, MLSA, and phylogenetic analysis, the new species are concluded to be phylogenetically closely related to V. cholerae and V. mimicus. Vibrio sp. RC341 and Vibrio sp. RC586 demonstrate features characteristic of V. cholerae and V. mimicus, respectively, on differential and selective media, but their genomes show a 12 to 15% divergence (88 to 85% ANI and 92 to 91% AAI) compared to the sequences of V. cholerae and V. mimicus genomes (ANI <95% and AAI <96% indicative of separate species). Vibrio sp. RC341 and Vibrio sp. RC586 share 2104 ORFs (59%) and 2058 ORFs (56%) with the published core genome of V. cholerae and 2956 (82%) and 3048 ORFs (84%) with V. mimicus MB-451, respectively. The novel species share 2926 ORFs with each other (81% Vibrio sp. RC341 and 81% Vibrio sp. RC586). Virulence-associated factors and genomic islands of V. cholerae and V. mimicus, including VSP-I and II, were found in these environmental Vibrio spp. Conclusions Results of this analysis demonstrate these two environmental vibrios, previously characterized as variant V. cholerae strains, are new species which have evolved from ancestral lineages of the V. cholerae and V. mimicus clade. The presence of conserved integration loci for genomic islands as well as evidence of horizontal gene transfer between these two new species, V. cholerae, and V. mimicus suggests genomic islands and virulence factors are transferred between these species.
Collapse
Affiliation(s)
- Bradd J Haley
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Fischer W, Windhager L, Rohrer S, Zeiller M, Karnholz A, Hoffmann R, Zimmer R, Haas R. Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res 2010; 38:6089-101. [PMID: 20478826 PMCID: PMC2952849 DOI: 10.1093/nar/gkq378] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The availability of multiple bacterial genome sequences has revealed a surprising extent of variability among strains of the same species. The human gastric pathogen Helicobacter pylori is known as one of the most genetically diverse species. We have compared the genome sequence of the duodenal ulcer strain P12 and six other H. pylori genomes to elucidate the genetic repertoire and genome evolution mechanisms of this species. In agreement with previous findings, we estimate that the core genome comprises about 1200 genes and that H. pylori possesses an open pan-genome. Strain-specific genes are preferentially located at potential genome rearrangement sites or in distinct plasticity zones, suggesting two different mechanisms of genome evolution. The P12 genome contains three plasticity zones, two of which encode type IV secretion systems and have typical features of genomic islands. We demonstrate for the first time that one of these islands is capable of self-excision and horizontal transfer by a conjugative process. We also show that excision is mediated by a protein of the XerD family of tyrosine recombinases. Thus, in addition to its natural transformation competence, conjugative transfer of genomic islands has to be considered as an important source of genetic diversity in H. pylori.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, Pettenkoferstr. 9a, D-80336 München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Genome dynamics and its impact on evolution of Escherichia coli. Med Microbiol Immunol 2010; 199:145-54. [PMID: 20445988 DOI: 10.1007/s00430-010-0161-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Indexed: 02/08/2023]
Abstract
The Escherichia coli genome consists of a conserved part, the so-called core genome, which encodes essential cellular functions and of a flexible, strain-specific part. Genes that belong to the flexible genome code for factors involved in bacterial fitness and adaptation to different environments. Adaptation includes increase in fitness and colonization capacity. Pathogenic as well as non-pathogenic bacteria carry mobile and accessory genetic elements such as plasmids, bacteriophages, genomic islands and others, which code for functions required for proper adaptation. Escherichia coli is a very good example to study the interdependency of genome architecture and lifestyle of bacteria. Thus, these species include pathogenic variants as well as commensal bacteria adapted to different host organisms. In Escherichia coli, various genetic elements encode for pathogenicity factors as well as factors, which increase the fitness of non-pathogenic bacteria. The processes of genome dynamics, such as gene transfer, genome reduction, rearrangements as well as point mutations contribute to the adaptation of the bacteria into particular environments. Using Escherichia coli model organisms, such as uropathogenic strain 536 or commensal strain Nissle 1917, we studied mechanisms of genome dynamics and discuss these processes in the light of the evolution of microbes.
Collapse
|
97
|
|
98
|
Szwagierczak A, Antonenka U, Popowicz GM, Sitar T, Holak TA, Rakin A. Structures of the arm-type binding domains of HPI and HAI7 integrases. J Biol Chem 2009; 284:31664-71. [PMID: 19737930 DOI: 10.1074/jbc.m109.059261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structures of the N-terminal domains of two integrases of closely related but not identical asn tDNA-associated genomic islands, Yersinia HPI (high pathogenicity island; encoding siderophore yersiniabactin biosynthesis and transport) and an Erwinia carotovora genomic island with yet unknown function, HAI7, have been resolved. Both integrases utilize a novel four-stranded beta-sheet DNA-binding motif, in contrast to the known proteins that bind their DNA targets by means of three-stranded beta-sheets. Moreover, the beta-sheets in Int(HPI) and Int(HAI7) are longer than those in other integrases, and the structured helical N terminus is positioned perpendicularly to the large C-terminal helix. These differences strongly support the proposal that the integrases of the genomic islands make up a distinct evolutionary branch of the site-specific recombinases that utilize a unique DNA-binding mechanism.
Collapse
|
99
|
Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 2009; 77:4696-703. [PMID: 19720753 DOI: 10.1128/iai.00522-09] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A genomic island encoding the biosynthesis and secretion pathway of putative hybrid nonribosomal peptide-polyketide colibactin has been recently described in Escherichia coli. Colibactin acts as a cyclomodulin and blocks the eukaryotic cell cycle. The origin and prevalence of the colibactin island among enterobacteria are unknown. We therefore screened 1,565 isolates of different genera and species related to the Enterobacteriaceae by PCR for the presence of this DNA element. The island was detected not only in E. coli but also in Klebsiella pneumoniae, Enterobacter aerogenes, and Citrobacter koseri isolates. It was highly conserved among these species and was always associated with the yersiniabactin determinant. Structural variations between individual strains were only observed in an intergenic region containing variable numbers of tandem repeats. In E. coli, the colibactin island was usually restricted to isolates of phylogenetic group B2 and inserted at the asnW tRNA locus. Interestingly, in K. pneumoniae, E. aerogenes, C. koseri, and three E. coli strains of phylogenetic group B1, the functional colibactin determinant was associated with a genetic element similar to the integrative and conjugative elements ICEEc1 and ICEKp1 and to several enterobacterial plasmids. Different asn tRNA genes served as chromosomal insertion sites of the ICE-associated colibactin determinant: asnU in the three E. coli strains of ECOR group B1, and different asn tRNA loci in K. pneumoniae. The detection of the colibactin genes associated with an ICE-like element in several enterobacteria provides new insights into the spread of this gene cluster and its putative mode of transfer. Our results shed light on the mechanisms of genetic exchange between members of the family Enterobacteriaceae.
Collapse
|