51
|
Hosseindoust A, Choi Y, Ha S, Tajudeen H, Mun J, Kinara E, Kim Y, Kim J. Anti-Bordetella bronchiseptica effects of targeted bacteriophages via microbiome and metabolic mediated mechanisms. Sci Rep 2023; 13:21755. [PMID: 38066337 PMCID: PMC10709636 DOI: 10.1038/s41598-023-49248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Bordetella bronchiseptica poses a significant challenge in the context of respiratory infections, particularly in weanling pigs. In this study, we investigated the impact of a novel targeted bacteriophage in controlling B. bronchiseptica challenge (BBC) in an experimental design involving five distinct treatment groups: NC (no challenge), PC (BBC challenge), BF (108 pfu bacteriophage/kg diet + BBC), BN (2 × 107 pfu/day bacteriophage by nasal spray + BBC), and AT (antibiotic + BBC). The experiment was conducted for 2 weeks. The highest turbinate score was observed in the PC. The BF treatment showed higher plasma IL (interleukine)-1β and IL-6 compared with the BN and AT treatments. Plasma concentrations of IL-1β were increased in the BF pigs compared with the BN, AT, and NC. Among the BBC groups, the PC treatment exhibited a higher abundance of Staphylococcus. aureus and B. bronchiseptica in the lung. A lower S. aureus, Streptococcus. suis, and B. bronchiseptica colonization was detected in the AT compared with the BF and BN treatments. The BF showed lower plasma zonulin compared with the BN and AT. A higher plasma concentration of superoxide dismutase was observed in the BF and AT compared with PC and BN. The BN influenced the glycine, serine-threonine metabolism; glycerolipid metabolism; glyoxylate-dicarboxylate metabolism; and arachidonic acid metabolism compared with the NC. In conclusion, nasal-sprayed bacteriophage effectively controlled B. bronchiseptica infection, however, their efficiency was lower than the antibiotic.
Collapse
Affiliation(s)
- Abdolreza Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoHan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - SangHun Ha
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Habeeb Tajudeen
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - JunYoung Mun
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Elick Kinara
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoungIn Kim
- CTC Bio, Inc., Seoul, 138-858, Republic of Korea
| | - JinSoo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
52
|
Jin M, Liang S, Wang J, Zhang H, Zhang Y, Zhang W, Liu S, Xie F. Endopeptidase O promotes Streptococcus suis immune evasion by cleaving the host- defence peptide cathelicidins. Virulence 2023; 14:2283896. [PMID: 38010345 PMCID: PMC10732652 DOI: 10.1080/21505594.2023.2283896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Streptococcus suis is a zoonotic Gram-positive bacterium that causes invasive infections such as sepsis and meningitis, threatening public health worldwide. For successful establishment of infection, the bacterium should subvert the innate effectors of immune defence, including the cathelicidin family of host-defence peptides that combat pathogenic bacteria by directly disrupting cell membranes and coordinating immune responses. Here, our study shows that an extracellular endopeptidase O (PepO) of S. suis contributes to assisting the bacterium to resist cathelicidin-mediated killing, as the deletion of the pepO gene makes S. suis more sensitive to the human cathelicidin LL-37, as well as its mouse equivalent, mCRAMP. This protease targets and cleaves both LL-37 and mCRAMP, degrading them into shorter peptides with only a few amino acids, thereby abrogating their ability to kill S. suis. By cleaving LL-37 and mCRAMP, PepO impairs their chemotactic properties for neutrophil migration and undermines their anti-apoptosis activity, which is required for prolonging neutrophil lifespan. Also, PepO inhibits the ability of LL-37 and mCRAMP to promote lysosome development in macrophages. Moreover, the loss of PepO attenuates organ injury and decreases bacterial burdens in a murine model of S. suis bacteraemia. Taken together, these data provide novel insights into the role of the intrinsic proteolytic characteristics of PepO in S. suis-host interaction. Our findings demonstrate that S. suis utilizes the PepO protease to cleave cathelicidins, which is an immunosuppressive strategy adopted by this bacterium to facilitate pathogenesis.
Collapse
Affiliation(s)
- Mingjie Jin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siyu Liang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huihui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yueling Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
53
|
Yin F, Hu Y, Bu Z, Liu Y, Zhang H, Hu Y, Xue Y, Li S, Tan C, Chen X, Li L, Zhou R, Huang Q. Genome-wide identification of genes critical for in vivo fitness of multi-drug resistant porcine extraintestinal pathogenic Escherichia coli by transposon-directed insertion site sequencing using a mouse infection model. Virulence 2023; 14:2158708. [PMID: 36537189 PMCID: PMC9828833 DOI: 10.1080/21505594.2022.2158708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is an important zoonotic pathogen. Recently, ExPEC has been reported to be an emerging problem in pig farming. However, the mechanism of pathogenicity of porcine ExPEC remains to be revealed. In this study, we constructed a transposon (Tn) mutagenesis library covering Tn insertion in over 72% of the chromosome-encoded genes of a virulent and multi-drug resistant porcine ExPEC strain PCN033. By using a mouse infection model, a transposon-directed insertion site sequencing (TraDIS) assay was performed to identify in vivo fitness factors. By comparing the Tn insertion frequencies between the input Tn library and the recovered library from different organs, 64 genes were identified to be involved in fitness during systemic infection. 15 genes were selected and individual gene deletion mutants were constructed. The in vivo fitness was evaluated by using a competitive infection assay. Among them, ΔfimG was significantly outcompeted by the WT strain in vivo and showed defective adhesion to host cells. rfa which was involved in lipopolysaccharide biosynthesis was shown to be critical for in vivo fitness which may have resulted from its role in the resistance to serum killing. In addition, several metabolic genes including fepB, sdhC, fepG, gltS, dcuA, ccmH, ddpD, narU, glpD, malM, and yabL and two regulatory genes metJ and baeS were shown as important determinants of in vivo fitness of porcine ExPEC. Collectively, this study performed a genome-wide screening for in vivo fitness factors which will be important for understanding the pathogenicity of porcine ExPEC.
Collapse
Affiliation(s)
- Fan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Hu
- College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Zixuan Bu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuying Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yawen Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ying Xue
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Ministry of Science and Technology, International Research Center for Animal Disease, Wuhan, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Ministry of Science and Technology, International Research Center for Animal Disease, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Ministry of Science and Technology, International Research Center for Animal Disease, Wuhan, China,The HZAU-HVSEN Institute, Wuhan, China,CONTACT Rui Zhou
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Ministry of Science and Technology, International Research Center for Animal Disease, Wuhan, China,Qi Huang
| |
Collapse
|
54
|
Jiang X, Yu G, Zhu L, Siddique A, Zhan D, Zhou L, Yue M. Flanking N- and C-terminal domains of PrsA in Streptococcus suis type 2 are crucial for inducing cell death independent of TLR2 recognition. Virulence 2023; 14:2249779. [PMID: 37641974 PMCID: PMC10467536 DOI: 10.1080/21505594.2023.2249779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Streptococcus suis type 2 (SS2), a major emerging/re-emerging zoonotic pathogen found in humans and pigs, can cause severe clinical infections, and pose public health issues. Our previous studies recognized peptidyl-prolyl isomerase (PrsA) as a critical virulence factor promoting SS2 pathogenicity. PrsA contributed to cell death and operated as a pro-inflammatory effector. However, the molecular pathways through which PrsA contributes to cell death are poorly understood. Here in this study, we prepared the recombinant PrsA protein and found that pyroptosis and necroptosis were involved in cell death stimulated by PrsA. Specific pyroptosis and necroptosis signalling inhibitors could significantly alleviate the fatal effect. Cleaved caspase-1 and IL-1β in pyroptosis with phosphorylated MLKL proteins in necroptosis pathways, respectively, were activated after PrsA stimulation. Truncated protein fragments of enzymatic PPIase domain (PPI), N-terminal (NP), and C-terminal (PC) domains fused with PPIase, were expressed and purified. PrsA flanking N- or C-terminal but not enzymatic PPIase domain was found to be critical for PrsA function in inducing cell death and inflammation. Additionally, PrsA protein could be anchored on the cell surface to interact with host cells. However, Toll-like receptor 2 (TLR2) was not implicated in cell death and recognition of PrsA. PAMPs of PrsA could not promote TLR2 activation, and no rescued phenotypes of death were shown in cells blocking of TLR2 receptor or signal-transducing adaptor of MyD88. Overall, these data, for the first time, advanced our perspective on PrsA function and elucidated that PrsA-induced cell death requires its flanking N- or C-terminal domain but is dispensable for recognizing TLR2. Further efforts are still needed to explore the precise molecular mechanisms of PrsA-inducing cell death and, therefore, contribution to SS2 pathogenicity.
Collapse
Affiliation(s)
- Xiaowu Jiang
- College of Medicine, Yichun University, Yichun, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Active Component of Natural Drugs, Poster-Doctoral Research Center, Yichun, Jiangxi, China
| | - Guijun Yu
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Lexin Zhu
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Abubakar Siddique
- Hainan Institute of Zhejiang University, Sanya, China
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Dongbo Zhan
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Linhua Zhou
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
55
|
Sedano SA, Cantalejo MGCT, Lapitan CGAR, de Guzman AMES, Consignado JT, Tandang NA, Estacio MAC, Kerdsin A, Silva BBI. Epidemiology and genetic diversity of Streptococcus suis in smallhold swine farms in the Philippines. Sci Rep 2023; 13:21178. [PMID: 38040767 PMCID: PMC10692119 DOI: 10.1038/s41598-023-48406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023] Open
Abstract
This study aimed to determine the presence and characteristics of locally circulating strains of Streptococcus suis, the most important streptococcal pathogen in swine. Oral swab samples were collected from pigs from 664 representative smallhold farms across nine provinces in the Philippines. Isolates were identified and characterized using PCR assays. The study revealed an isolation rate of 15.8% (105/664, 95% CI: 13.0-18.6) among the sampled farms. Two hundred sixty-nine (269) S. suis isolates were recovered from 119 unique samples. Serotype 31 was the most prevalent (50/269, 95% CI: 13.9-23.2) among the other serotypes identified: 5, 6, 8, 9, 10, 11, 15, 16, 17, 21, 27, 28, and 29. The detection of the three 'classical' S. suis virulence-associated genes showed that 90.7% (244/269, 95% CI: 87.2-94.2) were mrp-/epf-/sly-. Multilocus sequence typing (MLST) analysis further revealed 70 novel sequence types (STs). Notably, several local isolates belonging to these novel STs formed clonal complexes (CC) with S. suis strains recovered from Spain and USA, which are major pork-exporting countries to the Philippines. This study functionally marks the national baseline knowledge of S. suis in Philippines.
Collapse
Affiliation(s)
- Susan A Sedano
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines.
| | - Mary Grace Concepcion T Cantalejo
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Christine Grace Angela R Lapitan
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
- Ecosystem Services and Environmental Policy Laboratory, School of Environmental Science and Management, University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Angelo Miguel Elijah S de Guzman
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
- Department of Agrarian Reform, Elliptical Road, Diliman, 1107, Quezon City, Philippines
| | - Jennielyn T Consignado
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Nancy A Tandang
- Institute of Statistics, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Maria Amelita C Estacio
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Benji Brayan Ilagan Silva
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines.
| |
Collapse
|
56
|
Murray GGR, Hossain ASMM, Miller EL, Bruchmann S, Balmer AJ, Matuszewska M, Herbert J, Hadjirin NF, Mugabi R, Li G, Ferrando ML, Fernandes de Oliveira IM, Nguyen T, Yen PLK, Phuc HD, Zaw Moe A, Su Wai T, Gottschalk M, Aragon V, Valentin-Weigand P, Heegaard PMH, Vrieling M, Thein Maw M, Thidar Myint H, Tun Win Y, Thi Hoa N, Bentley SD, Clavijo MJ, Wells JM, Tucker AW, Weinert LA. The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs. Proc Natl Acad Sci U S A 2023; 120:e2307773120. [PMID: 37963246 PMCID: PMC10666105 DOI: 10.1073/pnas.2307773120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.
Collapse
Affiliation(s)
- Gemma G. R. Murray
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | | | - Eric L. Miller
- Department of Biology, Haverford College, Haverford, PA19041
| | - Sebastian Bruchmann
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Andrew J. Balmer
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
- Department of Medicine, University of Cambridge, CambridgeCB2 2QQ, United Kingdom
| | - Josephine Herbert
- Centre for Enzyme Innovation, University of Portsmouth, PortsmouthPO1 2DD, United Kingdom
| | - Nazreen F. Hadjirin
- Nuffield Department of Population Health, University of Oxford, OxfordOX3 7LF, United Kingdom
| | - Robert Mugabi
- College of Veterinary Medicine, Iowa State University, Ames, IA50011
| | - Ganwu Li
- College of Veterinary Medicine, Iowa State University, Ames, IA50011
| | - Maria Laura Ferrando
- Animal Sciences Department, Wageningen University, 6700 AHWageningen, The Netherlands
| | | | - Thanh Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phung L. K. Yen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ho D. Phuc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Aung Zaw Moe
- Livestock Breeding and Veterinary Department, Yangon, Myanmar
| | - Thiri Su Wai
- Livestock Breeding and Veterinary Department, Yangon, Myanmar
| | - Marcelo Gottschalk
- Département de Pathologie et Microbiologie, Université de Montréal, QuébecJ2S 2M2, Canada
| | - Virginia Aragon
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Barcelona08193, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona08193, Spain
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover30559, Germany
| | - Peter M. H. Heegaard
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| | - Manouk Vrieling
- Wageningen Bioveterinary Research, 8221 RALelystad, The Netherlands
| | - Min Thein Maw
- Livestock Breeding and Veterinary Department, Yangon, Myanmar
| | | | - Ye Tun Win
- Livestock Breeding and Veterinary Department, Yangon, Myanmar
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7LG, United Kingdom
- Microbiology Department and Center for Tropical Medicine Research, Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, CambridgeCB10 1RQ, United Kingdom
| | - Maria J. Clavijo
- College of Veterinary Medicine, Iowa State University, Ames, IA50011
| | - Jerry M. Wells
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
- Animal Sciences Department, Wageningen University, 6700 AHWageningen, The Netherlands
| | - Alexander W. Tucker
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| |
Collapse
|
57
|
Payen S, Roy D, Okura M, Segura M, Gottschalk M. Study of the Role of Lipoprotein Maturation Enzymes in the Pathogenesis of the Infection Caused by the Streptococcus suis Serotype 2 Sequence Type 25 North American Prototype Strain. Pathogens 2023; 12:1325. [PMID: 38003790 PMCID: PMC10675726 DOI: 10.3390/pathogens12111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Streptococcus suis serotype 2 is an important swine bacterial pathogen causing sudden death, septic shock, and meningitis. However, serotype 2 strains are phenotypically and genotypically heterogeneous and composed of a multitude of sequence types (STs) whose distributions greatly vary worldwide. It has been previously shown that the lipoprotein (LPP) maturation enzymes diacylglyceryl transferase (Lgt) and signal peptidase (Lsp) significantly modulate the inflammatory host response and play a differential role in virulence depending on the genetic background of the strain. Differently from Eurasian ST1/ST7 strains, the capsular polysaccharide of a North American S. suis serotype 2 ST25 representative strain only partially masks sub-capsular domains and bacterial wall components. Thus, our hypothesis is that since LPPs would be more surface exposed in ST25 strains than in their ST1 or ST7 counterparts, the maturation enzymes would play a more important role in the pathogenesis of the infection caused by the North American strain. Using isogenic Δlgt and Δlsp mutants derived from the wild-type ST25 strain, our studies suggest that these enzymes do not seem to play a role in the interaction between S. suis and epithelial and endothelial cells, regardless of the genetics background of the strain used. However, a role in the formation of biofilms (also independently of the STs) has been demonstrated. Moreover, the involvement of LPP dendritic cell activation in vitro seems to be somehow more pronounced with the ST25 strain. Finally, the Lgt enzyme seems to play a more important role in the virulence of the ST25 strain. Although some differences between STs could be observed, our original hypothesis that LPPs would be significantly more important in ST25 strains due to a better bacterial surface exposition could not be confirmed.
Collapse
Affiliation(s)
- Servane Payen
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (M.S.)
| | - David Roy
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Masatoshi Okura
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima 891-0105, Japan;
| | - Mariela Segura
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (M.S.)
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (M.S.)
| |
Collapse
|
58
|
Liedel C, Rieckmann K, Baums CG. A critical review on experimental Streptococcus suis infection in pigs with a focus on clinical monitoring and refinement strategies. BMC Vet Res 2023; 19:188. [PMID: 37798634 PMCID: PMC10552360 DOI: 10.1186/s12917-023-03735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
Streptococcus suis (S. suis) is a major pig pathogen worldwide with zoonotic potential. Though different research groups have contributed to a better understanding of the pathogenesis of S. suis infections in recent years, there are still numerous neglected research topics requiring animal infection trials. Of note, animal experiments are crucial to develop a cross-protective vaccine which is highly needed in the field. Due to the severe clinical signs associated with S. suis pathologies such as meningitis and arthritis, implementation of refinement is very important to reduce pain and distress of experimentally infected pigs. This review highlights the great diversity of clinical signs and courses of disease after experimental S. suis pig infections. We review clinical read out parameters and refinement strategies in experimental S. suis pig infections published between 2000 and 2021. Currently, substantial differences exist in describing clinical monitoring and humane endpoints. Most of the reviewed studies set the body temperature threshold of fever as high as 40.5°C. Monitoring intervals vary mainly between daily, twice a day and three times a day. Only a few studies apply scoring systems. Published scoring systems are inconsistent in their inclusion of parameters such as body temperature, feeding behavior, and respiratory signs. Locomotion and central nervous system signs are more common clinical scoring parameters in different studies by various research groups. As the heterogenicity in clinical monitoring limits the comparability between studies we hope to initiate a discussion with this review leading to an agreement on clinical read out parameters and monitoring intervals among S. suis research groups.
Collapse
Affiliation(s)
- Carolin Liedel
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany
| | - Karoline Rieckmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany
| | - Christoph G Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany.
| |
Collapse
|
59
|
Nicholson TL, Kalalah AA, Eppinger M. Population structure and genetic diversity of Streptococcus suis isolates obtained from the United States. Front Microbiol 2023; 14:1250265. [PMID: 37808309 PMCID: PMC10551183 DOI: 10.3389/fmicb.2023.1250265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Diseases caused by the zoonotic pathogen Streptococcus suis are an extensive economic problem as well as an animal welfare concern for the global swine industry. Previous studies have evaluated the genomic diversity and population structure of S. suis isolates, however, the majority of these studies utilized isolates obtained from countries other than the U.S. This study applied whole genome sequencing and cgMLST-based typing to evaluate the population structure and genetic relatedness among S. suis isolates obtained within the U.S. The established high-resolution phylogenomic framework revealed extensive genomic variation and diversity among the sampled S. suis isolates, with isolates from the U.S. and from countries outside the U.S. found interspersed in the phylogeny. S. suis isolates obtained within the U.S. did not cluster by state or geographic location, however, isolates with similar serotypes, both obtained from within and outside the U.S., generally clustered together. Average nucleotide identity (ANI) values determined for the S. suis genomes were extensively broad, approaching the recommended species demarcation value, and correlated with the phylogenetic group distribution of the cgMLST-based tree. Numerous antimicrobial resistance (AMR) elements were identified among both U.S. and non-U.S. isolates with ble, tetO, and ermB genes identified as the most prevalent. The epf, mrp, and sly genes, historically used as markers for virulence potential, were also observed in the genomes of isolates that grouped together forming a subclade of clonal complex 1 (CC1) isolates. Collectively, the data in this report provides critical information needed to address potential biosurveillance needs and insights into the genetic diversity and population structure of S. suis isolates obtained within the U.S.
Collapse
Affiliation(s)
- Tracy L. Nicholson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Anwar A. Kalalah
- South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, TX, United States
- Department of Molecular Microbiology and Immunology (MMI), The University of Texas at San Antonio, San Antonio, TX, United States
| | - Mark Eppinger
- South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, TX, United States
- Department of Molecular Microbiology and Immunology (MMI), The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
60
|
Li J, Han N, Li Y, Zhao F, Xiong W, Zeng Z. Evaluating the Antibacterial and Antivirulence Activities of Floxuridine against Streptococcus suis. Int J Mol Sci 2023; 24:14211. [PMID: 37762514 PMCID: PMC10532271 DOI: 10.3390/ijms241814211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen that can cause fatal diseases such as meningitis and sepsis in pigs and human beings. The overuse of antibiotics is leading to an increased level of resistance in S. suis, and novel antimicrobial agents or anti-virulence agents for the treatment of infections caused by S. suis are urgently needed. In the present study, we investigated the antibacterial activity, mode of action and anti-virulence effects of floxuridine against S. suis. Floxuridine showed excessive antibacterial activity against S. suis both in vivo and in vitro; 4 × MIC of floxuridine could kill S. suis within 8 h in a time-kill assay. Meanwhile, floxuridine disrupted the membrane structure and permeability of the cytoplasmic membrane. Molecular docking revealed that floxuridine and SLY can be directly bind to each other. Moreover, floxuridine effectively inhibited the hemolytic capacity and expression levels of the virulence-related genes of S. suis. Collectively, these results indicate that the FDA-approved anticancer drug floxuridine is a promising agent and a potential virulence inhibitor against S. suis.
Collapse
Affiliation(s)
- Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yangyang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Feifei Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
61
|
Neila-Ibáñez C, Napp S, Pailler-García L, Franco-Martínez L, Cerón JJ, Aragon V, Casal J. Risk factors associated with Streptococcus suis cases on pig farms in Spain. Vet Rec 2023; 193:e3056. [PMID: 37269537 DOI: 10.1002/vetr.3056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Streptococcus suis can cause meningitis, polyarthritis and acute death in piglets. However, the risk factors associated with S. suis infection remain incompletely understood. Therefore, a longitudinal study was carried out, in which six batches from two Spanish pig farms with S. suis problems were repeatedly examined to determine possible risk factors. METHODS A prospective case-control study was conducted, and potential risk factors were evaluated using mixed-effects logistic regression models. The explanatory variables included: (a) concomitant pathogens; (b) biomarkers associated with stress, inflammation and oxidative status; (c) farm environmental factors; and (d) parity and S. suis presence in sows. Three models were built to study the effect of these variables, including two to assess the risk factors involved in the subsequent development of disease. RESULTS Risk factors for S. suis-associated disease included porcine reproductive and respiratory syndrome virus co-infection at weaning (odds ratio [OR] = 6.69), sow parity (OR = 0.71), haptoglobin level before weaning (OR = 1.01), relative humidity (OR = 1.11) and temperature (OR = 0.13). LIMITATIONS Laboratory diagnosis was done at the batch level, with individual diagnosis based on clinical signs only. CONCLUSIONS This study confirms the multifactorial nature of S. suis-associated disease, with both environmental factors and factors related to the host involved in disease development. Controlling these factors may, therefore, help prevent the appearance of disease.
Collapse
Affiliation(s)
- Carlos Neila-Ibáñez
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Sebastián Napp
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Lola Pailler-García
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Espinardo, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Espinardo, Spain
| | - Virginia Aragon
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Jordi Casal
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
62
|
Werinder A, Aspán A, Jacobson M, Backhans A, Sjölund M, Guss B, Söderlund R. Genome characteristics related to the virulence of Streptococcus suis in Swedish pigs. Vet Microbiol 2023; 284:109839. [PMID: 37531841 DOI: 10.1016/j.vetmic.2023.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
The impact of S. suis on Swedish pig production has increased in recent years, and characterization of the strains present in the pig population is needed to aid in surveillance and prevention. Therefore, the aim of this study was to identify and characterize differences in the genomes between Swedish S. suis isolates associated with disease and isolates from healthy animals. Isolates categorized as being pathogenic (n = 100) or non-pathogenic (n = 117) were whole-genome sequenced, serotyped in silico, and sequence-typed using traditional MLST and core-genome MLST, and a genome-wide association study was performed to identify virulence-associated genes. In decreasing order, serotypes 2, 1, and 7 were the most common in the pathogenic group, and serotypes 15 and 12 were the most common in the non-pathogenic group. Among the commonly disease-associated sequence types, ST28 and ST25 were identified, whereas ST1 was scarcely found. The majority of isolates belonged to novel sequence types, revealing differences between Swedish isolates and those reported from other countries. The genomes of the pathogenic isolates were on average smaller and less heterogenic as compared to those of the non-pathogenic isolates. Although a majority of the previously published virulence-associated genes included in the study were found in the genomes of both pathogenic and non-pathogenic isolates, several new, significantly virulence-associated genes were identified.
Collapse
Affiliation(s)
- Anna Werinder
- Swedish University of Agricultural Sciences (SLU), Department of Clinical Sciences, Box 7054, 750 07 Uppsala, Sweden.
| | - Anna Aspán
- National Veterinary Institute (SVA), Department of Microbiology, 751 89 Uppsala, Sweden
| | - Magdalena Jacobson
- Swedish University of Agricultural Sciences (SLU), Department of Clinical Sciences, Box 7054, 750 07 Uppsala, Sweden
| | - Annette Backhans
- National Veterinary Institute (SVA), Department of Animal Health and Antimicrobial Strategies, 751 89 Uppsala, Sweden
| | - Marie Sjölund
- Swedish University of Agricultural Sciences (SLU), Department of Clinical Sciences, Box 7054, 750 07 Uppsala, Sweden; National Veterinary Institute (SVA), Department of Animal Health and Antimicrobial Strategies, 751 89 Uppsala, Sweden
| | - Bengt Guss
- Swedish University of Agricultural Sciences (SLU), Department of Biomedical Science and Veterinary Public Health, Box 7036, 750 07 Uppsala, Sweden
| | - Robert Söderlund
- National Veterinary Institute (SVA), Department of Microbiology, 751 89 Uppsala, Sweden
| |
Collapse
|
63
|
Chaiden C, Jaresitthikunchai J, Phaonakrop N, Roytrakul S, Kerdsin A, Nuanualsuwan S. Unlocking the Secrets of Streptococcus suis: A peptidomics comparison of virulent and non-virulent serotypes 2, 14, 18, and 19. PLoS One 2023; 18:e0287639. [PMID: 37384746 PMCID: PMC10310009 DOI: 10.1371/journal.pone.0287639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023] Open
Abstract
Streptococcus suis (S. suis) is an important bacterial pathogen, that causes serious infections in humans and pigs. Although numerous virulence factors have been proposed, their particular role in pathogenesis is still inconclusive. The current study explored putative peptides responsible for the virulence of S. suis serotype 2 (SS2). Thus, the peptidome of highly virulent SS2, less prevalent SS14, and rarely reported serotypes SS18 and SS19 were comparatively analyzed using a high-performance liquid chromatography-mass spectrometry method (LC-MS/MS). Six serotype-specific peptides, 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-acetyltransferase (DapH), alanine racemase (Alr), CCA-adding enzyme (CCA), peptide chain release factor 3 (RF3), ATP synthase subunit delta (F0F1-ATPases) and aspartate carbamoyltransferase (ATCase), were expressed moderately to highly only in the SS2 peptidome with p-values of less than 0.05. Some of these proteins are responsible for bacterial cellular stability; especially, Alr was highly expressed in the SS2 peptidome and is associated with peptidoglycan biosynthesis and bacterial cell wall formation. This study indicated that these serotype-specific peptides, which were significantly expressed by virulent SS2, could serve as putative virulence factors to promote its competitiveness with other coexistences in a particular condition. Further in vivo studies of these peptides should be performed to confirm the virulence roles of these identified peptides.
Collapse
Affiliation(s)
- Chadaporn Chaiden
- Faculty of Veterinary Sciences, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Department of Veterinary Public Health, Center of Excellence for Food and Water Risk Analysis (FAWRA), Chulalongkorn University, Bangkok, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Suphachai Nuanualsuwan
- Faculty of Veterinary Sciences, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Department of Veterinary Public Health, Center of Excellence for Food and Water Risk Analysis (FAWRA), Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
64
|
Pageaut H, Lacouture S, Lehoux M, Marois-Créhan C, Segura M, Gottschalk M. Interactions of Mycoplasma hyopneumoniae and/or Mycoplasma hyorhinis with Streptococcus suis Serotype 2 Using In Vitro Co-Infection Models with Swine Cells. Pathogens 2023; 12:866. [PMID: 37513713 PMCID: PMC10383509 DOI: 10.3390/pathogens12070866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial and/or viral co-infections are very common in swine production and cause severe economic losses. Mycoplasma hyopneumoniae, Mycoplasma hyorhinis and Streptococcus suis are pathogenic bacteria that may be found simultaneously in the respiratory tracts of pigs. In the present study, the interactions of S. suis with epithelial and phagocytic cells in the presence or absence of a pre-infection with M. hyopneumoniae and/or M. hyorhinis were studied. Results showed relatively limited interactions between these pathogens. A previous infection with one or both mycoplasmas did not influence the adhesion or invasion properties of S. suis in epithelial cells or its resistance to phagocytosis (including intracellular survival) by macrophages and dendritic cells. The most important effect observed during the co-infection was a clear increment in toxicity for the cells. An increase in the relative expression of the pro-inflammatory cytokines IL-6 and CXCL8 was also observed; however, this was the consequence of an additive effect due to the presence of different pathogens rather than a synergic effect. It may be hypothesized that if one or both mycoplasmas are present along with S. suis in the lower respiratory tract at the same time, then increased damage to epithelial cells and phagocytes, as well as an increased release of pro-inflammatory cytokines, may eventually enhance the invasive properties of S. suis. However, more studies should be carried out to confirm this hypothesis.
Collapse
Affiliation(s)
- Héloïse Pageaut
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sonia Lacouture
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mélanie Lehoux
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Corinne Marois-Créhan
- Ploufragan-Plouzané-Niort Laboratory, Mycoplasmology Bacteriology and Antimicrobial Resistance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22 440 Ploufragan, France
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
65
|
Qu Q, Cui W, Huang X, Zhu Z, Dong Y, Yuan Z, Dong C, Zheng Y, Chen X, Yuan S, Li Y. Gallic Acid Restores the Sulfonamide Sensitivity of Multidrug-Resistant Streptococcus suis via Polypharmaceology Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6894-6907. [PMID: 37125728 DOI: 10.1021/acs.jafc.2c06991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Due to the large amount of antibiotics used for human therapy, agriculture, and even aquaculture, the emergence of multidrug-resistant Streptococcus suis (S. suis) led to serious public health threats. Antibiotic-assisted strategies have emerged as a promising approach to alleviate this crisis. Here, the polyphenolic compound gallic acid was found to enhance sulfonamides against multidrug-resistant S. suis. Mechanistic analysis revealed that gallic acid effectively disrupts the integrity and function of the cytoplasmic membrane by dissipating the proton motive force of bacteria. Moreover, we found that gallic acid regulates the expression of dihydrofolate reductase, which in turn inhibits tetrahydrofolate synthesis. As a result of polypharmacology, gallic acid can fully restore sulfadiazine sodium activity in the animal infection model without any drug resistances. Our findings provide an insightful view into the threats of antibiotic resistance. It could become a promising strategy to resolve this crisis.
Collapse
Affiliation(s)
- Qianwei Qu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wenqiang Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xingyu Huang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zhenxin Zhu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yue Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zhongwei Yuan
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Chunliu Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yadan Zheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xueying Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
66
|
Han N, Li J, Wan P, Pan Y, Xu T, Xiong W, Zeng Z. Co-Existence of Oxazolidinone Resistance Genes cfr(D) and optrA on Two Streptococcus parasuis Isolates from Swine. Antibiotics (Basel) 2023; 12:antibiotics12050825. [PMID: 37237728 DOI: 10.3390/antibiotics12050825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
This study was performed to investigate the presence and characteristics of the oxazolidinone resistance genes optrA and cfr(D) in Streptococcus parasuis. In total, 36 Streptococcus isolates (30 Streptococcus suis isolates, 6 Streptococcus parasuis isolates) were collected from pig farms in China in 2020-2021, using PCR to determine the presence of optrA and cfr. Then, 2 of the 36 Streptococcus isolates were further processed as follows. Whole-genome sequencing and de novo assembly were employed to analyze the genetic environment of the optrA and cfr(D) genes. Conjugation and inverse PCR were employed to verify the transferability of optrA and cfr(D). The optrA and cfr(D) genes were identified in two S. parasuis strains named SS17 and SS20, respectively. The optrA of the two isolates was located on chromosomes invariably associated with the araC gene and Tn554, which carry the resistance genes erm(A) and ant(9). The two plasmids that carry cfr(D), pSS17 (7550 bp) and pSS20-1 (7550 bp) have 100% nucleotide sequence identity. The cfr(D) was flanked by GMP synthase and IS1202. The findings of this study extend the current knowledge of the genetic background of optrA and cfr(D) and indicate that Tn554 and IS1202 may play an important role in the transmission of optrA and cfr(D), respectively.
Collapse
Affiliation(s)
- Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Peng Wan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
67
|
Ma M, Wang S, Zhu X, Li X, Bao Y, Chen X, Wu Z. The Identification of Streptococcus pasteurianus Obtained from Six Regions in China by Multiplex PCR Assay and the Characteristics of Pathogenicity and Antimicrobial Resistance of This Zoonotic Pathogen. Pathogens 2023; 12:pathogens12040615. [PMID: 37111501 PMCID: PMC10142533 DOI: 10.3390/pathogens12040615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Streptococcus pasteurianus is a zoonotic pathogen causing meningitis and bacteremia in animals and humans. A lack of accurate and convenient detection methods hinders preventing and controlling diseases caused by S. pasteurianus. Additionally, there is limited knowledge about its pathogenicity and antimicrobial resistance characteristics, as there are only three complete genome sequences available. In this study, we established a multiplex PCR assay for the detection of S. pasteurianus, which was applied to six fecal samples from cattle with diarrhea and 285 samples from healthy pigs. Out of the samples tested, 24 were positive, including 5 from pig tonsils, 18 from pig hilar lymph nodes, and 1 from cattle feces. Two strains were isolated from positive samples, and their complete genomes were sequenced. The two strains were non-virulent in mice and multidrug-resistant by the antimicrobial susceptibility test. We first found the presence of genes tet(O/W/32/O) and lsa(E) in S. pasteurianus, leading to resistance to lincosamides and tetracyclines. The convenient and specific multiplex PCR assay provides essential technical support for epidemiological research, and the complete genome sequence of two non-virulent strains contributes to understanding this zoonotic bacterium's genomic characteristics and pathogenesis.
Collapse
Affiliation(s)
- Miaohang Ma
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China
| | - Shuoyue Wang
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China
| | - Xinchi Zhu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China
| | - Xinchun Li
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China
| | - Yinli Bao
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Longyan University, Longyan 364012, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Zongfu Wu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China
| |
Collapse
|
68
|
Fredriksen S, Ruijten SDE, Murray GGR, Juanpere-Borràs M, van Baarlen P, Boekhorst J, Wells JM. Transcriptomics in serum and culture medium reveal shared and differential gene regulation in pathogenic and commensal Streptococcus suis. Microb Genom 2023; 9:mgen000992. [PMID: 37103997 PMCID: PMC10210958 DOI: 10.1099/mgen.0.000992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/22/2023] [Indexed: 04/28/2023] Open
Abstract
Streptococcus suis colonizes the upper respiratory tract of healthy pigs at high abundance but can also cause opportunistic respiratory and systemic disease. Disease-associated S. suis reference strains are well studied, but less is known about commensal lineages. It is not known what mechanisms enable some S. suis lineages to cause disease while others persist as commensal colonizers, or to what extent gene expression in disease-associated and commensal lineages diverge. In this study we compared the transcriptomes of 21 S. suis strains grown in active porcine serum and Todd-Hewitt yeast broth. These strains included both commensal and pathogenic strains, including several strains of sequence type (ST) 1, which is responsible for most cases of human disease and is considered to be the most pathogenic S. suis lineage. We sampled the strains during their exponential growth phase and mapped RNA sequencing reads to the corresponding strain genomes. We found that the transcriptomes of pathogenic and commensal strains with large genomic divergence were unexpectedly conserved when grown in active porcine serum, but that regulation and expression of key pathways varied. Notably, we observed strong variation of expression across media of genes involved in capsule production in pathogens, and of the agmatine deiminase system in commensals. ST1 strains displayed large differences in gene expression between the two media compared to strains from other clades. Their capacity to regulate gene expression across different environmental conditions may be key to their success as zoonotic pathogens.
Collapse
Affiliation(s)
- Simen Fredriksen
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Suzanne D. E. Ruijten
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Gemma G. R. Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Maria Juanpere-Borràs
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Peter van Baarlen
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Jos Boekhorst
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Jerry M. Wells
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
69
|
Niu K, Meng Y, Liu M, Ma Z, Lin H, Zhou H, Fan H. Phosphorylation of GntR reduces Streptococcus suis oxidative stress resistance and virulence by inhibiting NADH oxidase transcription. PLoS Pathog 2023; 19:e1011227. [PMID: 36913374 PMCID: PMC10010549 DOI: 10.1371/journal.ppat.1011227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
GntR transcription factor of Streptococcus suis serotype 2 (SS2) is a potential substrate protein of STK, but the regulation mechanisms of GntR phosphorylation are still unclear. This study confirmed that STK phosphorylated GntR in vivo, and in vitro phosphorylation experiments showed that STK phosphorylated GntR at Ser-41. The phosphomimetic strain (GntR-S41E) had significantly reduced lethality in mice and reduced bacterial load in the blood, lung, liver, spleen, and brain of infected mice compared to wild-type (WT) SS2. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments demonstrated that the promoter of nox was bound by GntR. The phosphomimetic protein GntR-S41E cannot bind to the promoter of nox, and the nox transcription levels were significantly reduced in the GntR-S41E mutant compared to WT SS2. The virulence in mice and the ability to resist oxidative stress of the GntR-S41E strain were restored by complementing transcript levels of nox. NOX is an NADH oxidase that catalyzes the oxidation of NADH to NAD+ with the reduction of oxygen to water. We found that NADH is likely accumulated under oxidative stress in the GntR-S41E strain, and higher NADH levels resulted in increased amplified ROS killing. In total, we report GntR phosphorylation could inhibit the transcription of nox, which impaired the ability of SS2 to resist oxidative stress and virulence.
Collapse
Affiliation(s)
- Kai Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingxing Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
70
|
Yang P, Yang L, Cao K, Hu Q, Hu Y, Shi J, Zhao D, Yu X. Novel virulence factor Cba induces antibody-dependent enhancement (ADE) of Streptococcus suis Serotype 9 infection in a mouse model. Front Cell Infect Microbiol 2023; 13:1027419. [PMID: 36896190 PMCID: PMC9989217 DOI: 10.3389/fcimb.2023.1027419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Streptococcus suis (SS) is a zoonotic pathogen that affects the health of humans and the development of the pig industry. The SS Cba protein is a collagen adhesin, and a few of its homologs are related to the enhancement of bacterial adhesion. We compared the phenotypes of SS9-P10, SS9-P10 cba knockout strains and its complementary strains in vitro and in vivo and found that knocking out the cba gene did not affect the growth characteristics of the strain, but it significantly reduced the ability of SS to form biofilms, adhesion to host cells, phagocytic resistance to macrophages and attenuated virulence in a mouse infection model. These results indicated that Cba was a virulence related factor of SS9. In addition, Mice immunized with the Cba protein had higher mortality and more serious organ lesions after challenge, and the same was observed in passive immunization experiments. This phenomenon is similar to the antibody-dependent enhancement of infection by bacteria such as Acinetobacter baumannii and Streptococcus pneumoniae. To our knowledge, this is the first demonstration of antibody-dependent enhancement of SS, and these observations highlight the complexity of antibody-based therapy for SS infection.
Collapse
|
71
|
Establishment and Application of an Indirect ELISA for the Detection of Antibodies to Porcine Streptococcus suis Based on a Recombinant GMD Protein. Animals (Basel) 2023; 13:ani13040719. [PMID: 36830506 PMCID: PMC9952749 DOI: 10.3390/ani13040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
S. suis is an important zoonotic pathogen from sick and recessive carrier pigs that poses a serious threat to animal husbandry production and public health. It usually causes horizontal transmission among pigs. The morbidity and mortality of this disease are very high. Human infection is caused through direct or indirect contact with sick pigs. The two large-scale outbreaks in China were due to the outbreak of S. suis on pig farms, which spread to human infection; thus, detecting S. suis in pig herds is crucial. At present, the commercial S. suis ELISA type 2 kits on the market can only detect single serotypes, high probabilities of interaction reactions, and biosafety risks when using inactivated S. suis as an antigen. Phosphate-3-glyceraldehyde dehydrogenase (GAPDH), muramidase-released protein (MRP), and dihydrolipoamide dehydrogenase (DLDH) are important S. suis type 2, S. suis type 7, and S. suis type 9 protective antigens. This study purified the GMD protein (B-cell-dominant epitopes of GAPDH, MRP, and DLDH antigens) and used a diverse combination of dominant epitopes of the multiple different antigens as coated antigens, improving the sensitivity and safety of the indirect ELISA experiments. An indirect ELISA method (GMD-ELISA) was developed for detecting S. suis antibodies. The antigen-antibody response was optimized using checkerboard titration. The results of testing using ELISA for Salmonella enterica (S. enterica), Escherichia coli (E. coli), Staphylococcus aureus (SA), and Streptococcus pyogenes (S. pyogenes) were all negative, indicating that this method had strong specificity. The results were still positive when the dilution ratio of S. suis-positive serum reached 1:6, 400, thus indicating that the method had high sensitivity. The results of the reproducibility assay for indirect ELISA showed that the intra-assay coefficient of variation and the inter-assay coefficient of variation were less than 10%, indicating that the method had good repeatability. We investigated the seroprevalence of S. suis in 167 serum samples collected in East China, and 33.5% of the samples were positive for antibodies against S. suis, indicating that the prevalence of S. suis is high in pig farms in Eastern China. The novel GMD-ELISA is a convenient, sensitive, and specific diagnostic method that provides technical support for rapid diagnosis and epidemiological investigation.
Collapse
|
72
|
Li Y, Ma B, Hua K, Gong H, He R, Luo R, Bi D, Zhou R, Langford PR, Jin H. PPNet: Identifying Functional Association Networks by Phylogenetic Profiling of Prokaryotic Genomes. Microbiol Spectr 2023; 11:e0387122. [PMID: 36602356 PMCID: PMC9927313 DOI: 10.1128/spectrum.03871-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Identification of microbial functional association networks allows interpretation of biological phenomena and a greater understanding of the molecular basis of pathogenicity and also underpins the formulation of control measures. Here, we describe PPNet, a tool that uses genome information and analysis of phylogenetic profiles with binary similarity and distance measures to derive large-scale bacterial gene association networks of a single species. As an exemplar, we have derived a functional association network in the pig pathogen Streptococcus suis using 81 binary similarity and dissimilarity measures which demonstrates excellent performance based on the area under the receiver operating characteristic (AUROC), the area under the precision-recall (AUPR), and a derived overall scoring method. Selected network associations were validated experimentally by using bacterial two-hybrid experiments. We conclude that PPNet, a publicly available (https://github.com/liyangjie/PPNet), can be used to construct microbial association networks from easily acquired genome-scale data. IMPORTANCE This study developed PPNet, the first tool that can be used to infer large-scale bacterial functional association networks of a single species. PPNet includes a method for assigning the uniqueness of a bacterial strain using the average nucleotide identity and the average nucleotide coverage. PPNet collected 81 binary similarity and distance measures for phylogenetic profiling and then evaluated and divided them into four groups. PPNet can effectively capture gene networks that are functionally related to phenotype from publicly prokaryotic genomes, as well as provide valuable results for downstream analysis and experiment testing.
Collapse
Affiliation(s)
- Yangjie Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kexin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huimin Gong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rongrong He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Paul R. Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
73
|
Yi L, Fan Q, Wang H, Fan H, Zuo J, Wang Y, Wang Y. Establishment of Streptococcus suis Biofilm Infection Model In Vivo and Comparative Analysis of Gene Expression Profiles between In Vivo and In Vitro Biofilms. Microbiol Spectr 2023; 11:e0268622. [PMID: 36507687 PMCID: PMC9927446 DOI: 10.1128/spectrum.02686-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen that continuously threatens animal husbandry and public health worldwide. Studies have shown that S. suis can cause persistent infection by forming biofilms. In this study, a model of S. suis biofilm-related infection was successfully constructed for the first time by simulating the natural infection of S. suis, and biofilm of S. suis in vivo was successfully observed in the lung tissue of infected pigs by a variety of detection methods. Subsequently, selective capture of transcribed sequences (SCOTS) was used to identify genes expressed by S. suis in vivo biofilms. Sixty-nine genes were captured in in vivo biofilms formed by S. suis for the first time by SCOTS; they were mainly involved in metabolism, cell replication, and division, transport, signal transduction, cell wall, etc. Genes related to S. suis in vitro biofilm formation were also identified by SCOTS and RNA sequencing. Approximately half of the genes captured by SCOTS in the in vivo and in vitro biofilms were found to be different. In summary, our study provides powerful clues for future exploration of the mechanisms of S. suis biofilm formation. IMPORTANCE Streptococcus suis is considered an important zoonotic pathogen, and persistent infection caused by biofilm is currently considered to be the reason why S. suis is difficult to control in swine. However, to date, a model of the biofilm of S. suis in vivo has not been successfully constructed. Here, we successfully detected biofilms of S. suis in vivo in lung tissues of piglets infected with S. suis. Selective capture of transcribed sequences and the transcriptome were used to obtain gene profiles of S. suis in vivo and in vitro biofilms, and the results showed large differences between them. Such data are of importance for future experimental studies exploring the mechanism of biofilm formation by S. suis in vivo.
Collapse
Affiliation(s)
- Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haoran Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Jing Zuo
- College of Life Science, Luoyang Normal University, Luoyang, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| |
Collapse
|
74
|
Yang R, Wang J, Wang F, Zhang H, Tan C, Chen H, Wang X. Blood-Brain Barrier Integrity Damage in Bacterial Meningitis: The Underlying Link, Mechanisms, and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24032852. [PMID: 36769171 PMCID: PMC9918147 DOI: 10.3390/ijms24032852] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Despite advances in supportive care and antimicrobial treatment, bacterial meningitis remains the most serious infection of the central nervous system (CNS) that poses a serious risk to life. This clinical dilemma is largely due to our insufficient knowledge of the pathology behind this disease. By controlling the entry of molecules into the CNS microenvironment, the blood-brain barrier (BBB), a highly selective cellular monolayer that is specific to the CNS's microvasculature, regulates communication between the CNS and the rest of the body. A defining feature of the pathogenesis of bacterial meningitis is the increase in BBB permeability. So far, several contributing factors for BBB disruption have been reported, including direct cellular damage brought on by bacterial virulence factors, as well as host-specific proteins or inflammatory pathways being activated. Recent studies have demonstrated that targeting pathological factors contributing to enhanced BBB permeability is an effective therapeutic complement to antimicrobial therapy for treating bacterial meningitis. Hence, understanding how these meningitis-causing pathogens affect the BBB permeability will provide novel perspectives for investigating bacterial meningitis's pathogenesis, prevention, and therapies. Here, we summarized the recent research progress on meningitis-causing pathogens disrupting the barrier function of BBB. This review provides handy information on BBB disruption by meningitis-causing pathogens, and helps design future research as well as develop potential combination therapies.
Collapse
Affiliation(s)
- Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jundan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Fen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huipeng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
75
|
Li S, Wang C, Tang YD, Qin L, Chen T, Wang S, Bai Y, Cai X, Wang S. Interaction between Porcine Alveolar Macrophage-Tang Cells and Streptococcus suis Strains of Different Virulence: Phagocytosis and Apoptosis. Microorganisms 2023; 11:microorganisms11010160. [PMID: 36677452 PMCID: PMC9863715 DOI: 10.3390/microorganisms11010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Streptococcus suis is an important swine bacterial pathogen that activates macrophages to secrete inflammatory cytokines. Primary porcine alveolar macrophages (PAMs) are inconvenient to obtain, but it is unknown whether immortalized PAM-Tang cells can replace them as a better cell model for the study of the interaction between S. suis and macrophages. In this study, the phagocytic integrity, polarization, and pro-inflammatory cytokine secretion of PAM-Tang cells were confirmed by live-cell imaging, electron microscopy, confocal microscopy, and ELISA. Interestingly, the S. suis serotype 9 avirulent strain W7119 induced higher levels of adhesion and pro-inflammatory cytokines in PAM-Tang cells than the S. suis serotype 2 virulent strain 700794. Prolonged incubation with S. suis caused more cytotoxic cell damage, and the virulent strain induced higher levels of cytotoxicity to PAM-Tang cells. The virulent strain also induced higher levels of apoptosis in PAM-Tang cells, as shown by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assay. In addition, it is the first report of virulent and avirulent S. suis inducing PAM-Tang polarization towards pro-inflammatory M1 macrophages and p53- and caspase-dependent apoptosis in PAMs. Taken together, this study contributes to a better understand of interactions between macrophages and S. suis isolates of different virulence, and confirms that PAM-Tang cells provide a long-term, renewable resource for investigating macrophage infections with bacteria.
Collapse
Affiliation(s)
- Siqi Li
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yan-Dong Tang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Qin
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Tianfeng Chen
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shanghui Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuanzhe Bai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xuehui Cai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Correspondence: (X.C.); (S.W.)
| | - Shujie Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence: (X.C.); (S.W.)
| |
Collapse
|
76
|
Payen S, Rrodriguez JA, Segura M, Gottschalk M. Laminin-binding protein of Streptococcus suis serotype 2 influences zinc acquisition and cytokine responses. Vet Res 2023; 54:1. [PMID: 36604750 PMCID: PMC9817373 DOI: 10.1186/s13567-022-01128-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 01/07/2023] Open
Abstract
Streptococcus suis serotype 2 is an important bacterial pathogen of swine, responsible for substantial economic losses to the swine industry worldwide. The knowledge on the pathogenesis of the infection caused by S. suis is still poorly known. It has been previously described that S. suis possesses at least one lipoprotein with double laminin and zinc (Zn)-binding properties, which was described in the literature as either laminin-binding protein (Lmb, as in the current study), lipoprotein 103, CDS 0330 or AdcAII. In the present study, the role of the Lmb in the pathogenesis of the infection caused by S. suis serotype 2 was dissected. Using isogenic mutants, results showed that Lmb does not play an important role in the laminin-binding activity of S. suis, even when clearly exposed at the bacterial surface. In addition, the presence of this lipoprotein does not influence bacterial adhesion to and invasion of porcine respiratory epithelial and brain endothelial cells and it does not increase the susceptibility of S. suis to phagocytosis. On the other hand, the Lmb was shown to play an important role as cytokine activator when tested in vitro with dendritic cells. Finally, this lipoprotein plays a critical role in Zn acquisition from the host environment allowing bacteria to grow in vivo. The significant lower virulence of the Lmb defective mutant may be related to a combination of a lower bacterial survival due to the incapacity to acquire Zn from their surrounding milieu and a reduced cytokine activation.
Collapse
Affiliation(s)
- Servane Payen
- grid.14848.310000 0001 2292 3357Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2 Canada
| | - Jesús Aranda Rrodriguez
- grid.7080.f0000 0001 2296 0625Department de Genètica I Microbiologia, Universitat Autónoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Mariela Segura
- grid.14848.310000 0001 2292 3357Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2 Canada
| | - Marcelo Gottschalk
- grid.14848.310000 0001 2292 3357Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2 Canada
| |
Collapse
|
77
|
Meng Y, Lin S, Niu K, Ma Z, Lin H, Fan H. Vimentin affects inflammation and neutrophil recruitment in airway epithelium during Streptococcus suis serotype 2 infection. Vet Res 2023; 54:7. [PMID: 36717839 PMCID: PMC9885403 DOI: 10.1186/s13567-023-01135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/19/2022] [Indexed: 01/31/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) frequently colonizes the swine upper respiratory tract and can cause Streptococcal disease in swine with clinical manifestations of pneumonia, meningitis, and septicemia. Previously, we have shown that vimentin, a kind of intermediate filament protein, is involved in the penetration of SS2 through the tracheal epithelial barrier. The initiation of invasive disease is closely related to SS2-induced excessive local inflammation; however, the role of vimentin in airway epithelial inflammation remains unclear. Here, we show that vimentin deficient mice exhibit attenuated lung injury, diminished production of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and the IL-8 homolog, keratinocyte-derived chemokine (KC), and substantially reduced neutrophils in the lungs following intranasal infection with SS2. We also found that swine tracheal epithelial cells (STEC) without vimentin show decreased transcription of IL-6, TNF-α, and IL-8. SS2 infection caused reassembly of vimentin in STEC, and pharmacological disruption of vimentin filaments prevented the transcription of those proinflammatory cytokines. Furthermore, deficiency of vimentin failed to increase the transcription of nucleotide oligomerization domain protein 2 (NOD2), which is known to interact with vimentin, and the phosphorylation of NF-κB protein p65. This study provides insights into how vimentin promotes excessive airway inflammation, thereby exacerbating airway injury and SS2-induced systemic infection.
Collapse
Affiliation(s)
- Yu Meng
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shaojie Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
78
|
Wang S, Wang G, Tang YD, Li S, Qin L, Wang M, Yang YB, Gottschalk M, Cai X. Streptococcus suis Serotype 2 Infection Induces Splenomegaly with Splenocyte Apoptosis. Microbiol Spectr 2022; 10:e0321022. [PMID: 36287014 PMCID: PMC9769541 DOI: 10.1128/spectrum.03210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/01/2022] [Indexed: 01/10/2023] Open
Abstract
Little is known about the damage to the important peripheral immune organ spleen caused by Streptococcus suis infection. In this study, we found that S. suis induced splenomegaly and lymphocyte disruption in spleens of mice. To explore the mechanism of splenic lesions induced by S. suis, we conducted further studies. The results showed that S. suis induced apoptosis in B cells, which is related to the cleavage of caspase-3 and caspase-8, but not the release of apoptosis-inducing factor (AIF). Thus, S. suis induced apoptosis in the spleen through caspase-dependent and AIF-independent pathways. Inflammation lesions induced in the spleen of infected mice were also investigated; we found macrophages increased in histopathological lesions of infected spleens from 12 h postinoculation to 7 days postinoculation (dpi), and the type of increased macrophages was M1 type by confocal microscopy, which can secrete proinflammatory cytokines. Meanwhile, inflammasome NLRP3 and caspase-1 were activated, and gasdermin D (GSDMD) was cleaved, which causes pyroptosis that may result in the release of numerous proinflammatory cytokines. What's more, the increase of p-JNK and p-p38 indicated that the MAPK pathway was also involved in the proinflammatory responses during S. suis infection, whereas anti-inflammatory responses in spleen were suppressed, with regulatory T cells (Tregs) upregulating at 1 dpi. Taken together, proinflammatory immune responses dominate in early infection, which induce splenomegaly and splenocyte apoptosis. This is the first report of mechanisms associated with S. suis-induced splenic lesions. IMPORTANCE Streptococcus suis serotype 2 is considered an emerging pathogen and represents a threat to humans and animals. The spleen is an important peripheral immune organ, and splenomegaly is a consequence of lesions and an important clinical indicator of S. suis infection. However, knowledge of the mechanisms underlying spleen lesions is still very limited. In the present work, we made the investigation to explain the phenomenon and the related immunomodulation in a mouse infection model. The obtained results show that inflammation contributes to splenomegaly, while apoptosis contributes to lymphocyte disruption in spleens. Related signaling pathways were discovered which have never been associated with S. suis-induced splenic injury. The new knowledge generated will help us better understand the mechanism of S. suis pathogenesis.
Collapse
Affiliation(s)
- Shujie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Gang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siqi Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Qin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Menghang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong-Bo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
79
|
Zhong X, Ma J, Bai Q, Zhu Y, Zhang Y, Gu Q, Pan Z, Liu G, Wu Z, Yao H. Identification of the RNA-binding domain-containing protein RbpA that acts as a global regulator of the pathogenicity of Streptococcus suis serotype 2. Virulence 2022; 13:1304-1314. [PMID: 35903019 PMCID: PMC9341378 DOI: 10.1080/21505594.2022.2103233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2), an emerging zoonotic pathogen, causes swine diseases and human cases of streptococcal toxic shock syndrome. RNA-binding proteins (RBPs) can modulate gene expression through post-transcriptional regulation. In this study, we identified an RBP harbouring an S1 domain, named RbpA, which facilitated SS2 adhesion to host epithelial cells and contributed to bacterial pathogenicity. Comparative proteomic analysis identified 145 proteins that were expressed differentially between ΔrbpA strain and wild-type strain, including several virulence-associated factors, such as the extracellular protein factor (EF), SrtF pilus, IgA1 protease, SBP2 pilus, and peptidoglycan-binding LysM’ proteins. The mechanisms underlying the regulatory effects of RbpA on their encoding genes were explored, and it was found that RbpA regulates gene expression through diverse mechanisms, including post-transcriptional regulation, and thus acts as a global regulator. These results partly reveal the pathogenic mechanism mediated by RbpA, improving our understanding of the regulatory systems of S. suis and providing new insights into bacterial pathogenicity.
Collapse
Affiliation(s)
- Xiaojun Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Jiale Ma
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiankun Bai
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yinchu Zhu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Zhang
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qibing Gu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zihao Pan
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangjin Liu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zongfu Wu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huochun Yao
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
80
|
Yang C, Deng X, Lund P, Liu H, Ding X, Fu Z, Zhang N, Li J, Dong L. Rumen microbiota-host transcriptome interaction mediates the protective effects of trans-10, cis-12 CLA on facilitating weaning transition of lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:345-359. [PMID: 36788929 PMCID: PMC9898626 DOI: 10.1016/j.aninu.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Developing alternatives to antibiotics for prevention of gastrointestinal dysbiosis in early-weaning farmed animals is urgently needed. This study was to explore the potential effects of trans-10, cis-12 conjugated linoleic acid (CLA) on maintaining ruminal homeostasis of young ruminants during the weaning transition period. Thirty neonatal lambs were selected (6 lambs per group) and euthanized for rumen microbial and epithelial analysis. The lambs were weaned at 28 d and experienced the following 5 treatments: euthanized on d 28 as the pre-weaning control (CON0), fed starter feed for 5 (CON5) or 21 (CON21) d, fed starter feed with 1% of CLA supplemented for 5 (CLA5) or 21 (CLA21) d. Results showed that the average daily weight gain and dry matter intake were significantly higher in CLA5 than CON5 group. As compared with the CON5 and CON21 group, the relative abundances of volatile fatty acid (VFA) producing bacteria including Bacteroides, Treponema, Parabacteroides and Anaerovibrio, as well as the concentrations of acetate, butyrate and total VFA were significantly increased in CLA5 and CLA21 group, respectively. Integrating microbial profiling and epithelial transcriptome results showed that 7 downregulated inflammatory signaling-related host genes IL2RA, CXCL9, CD4, CCR4, LTB, SPP1, and BCL2A1 with CLA supplementation were significantly negatively correlated with both VFA concentration and VFA producing bacteria, while 3 (GPX2, SLC27A2 and ALDH3A1) and 2 (GSTM3 and GSTA1) upregulated metabolism-related genes, significantly positively correlated with either VFA concentration or VFA producing bacteria, respectively. To confirm the effects of CLA on epithelial signal transduction, in vitro experiment was further conducted by treating rumen epithelial cells without or with IL-17A + TNF-α for 12 h after pretreatment of 100 μM CLA or not (6 replicates per treatment). The results demonstrated the anti-inflammatory effect of CLA via suppressing the protein expression of NF-кB p-p65/p65 with the activation of peroxisome proliferator-activated receptor gamma (PPARγ). In conclusion, CLA supplementation enhanced the ruminal microbiota-driven transcriptional regulation in healthy rumen epithelial development via rumen VFA production, and CLA may therefore serve as an alternative way to alleviate early-weaning stress and improve physiological and metabolic conditions of young ruminants.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangfei Deng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Peter Lund
- Department of Animal Science, Aarhus University, AU Foulum, DK-8830, Tjele, Denmark
| | - Haixia Liu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xingwang Ding
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Naifeng Zhang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, China
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China,Corresponding authors.
| | - Lifeng Dong
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, China,Corresponding authors.
| |
Collapse
|
81
|
Nicholson TL, Bayles DO. Comparative virulence and antimicrobial resistance distribution of Streptococcus suis isolates obtained from the United States. Front Microbiol 2022; 13:1043529. [PMID: 36439859 PMCID: PMC9687383 DOI: 10.3389/fmicb.2022.1043529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
Streptococcus suis is a zoonotic bacterial swine pathogen causing substantial economic and health burdens to the pork industry worldwide. Most S. suis genome sequences available in public databases are from isolates obtained outside the United States. We sequenced the genomes of 106 S. suis isolates from the U.S. and analyzed them to identify their potential to function as zoonotic agents and/or reservoirs for antimicrobial resistance (AMR) dissemination. The objective of this study was to evaluate the genetic diversity of S. suis isolates obtained within the U.S., for the purpose of screening for genomic elements encoding AMR and any factors that could increase or contribute to the capacity of S. suis to transmit, colonize, and/or cause disease in humans. Forty-six sequence types (STs) were identified with ST28 observed as the most prevalent, followed by ST87. Of the 23 different serotypes identified, serotype 2 was the most prevalent, followed by serotype 8 and 3. Of the virulence genes analyzed, the highest nucleotide diversity was observed in sadP, mrp, and ofs. Tetracycline resistance was the most prevalent phenotypic antimicrobial resistance observed followed by macrolide-lincosamide-streptogramin B (MLSB) resistance. Numerous AMR elements were identified, many located within MGE sequences, with the highest frequency observed for ble, tetO and ermB. No genes encoding factors known to contribute to the transmission, colonization, and/or causation of disease in humans were identified in any of the S. suis genomes in this study. This includes the 89 K pathogenicity island carried by the virulent S. suis isolates responsible for human infections. Collectively, the data reported here provide a comprehensive evaluation of the genetic diversity among U.S. S. suis isolates. This study also serves as a baseline for determining any potential risks associated with occupational exposure to these bacteria, while also providing data needed to address public health concerns.
Collapse
Affiliation(s)
- Tracy L. Nicholson
- National Animal Disease Center, Agricultural Research Service (USDA), Ames, IA, United States
| | | |
Collapse
|
82
|
Gemler BT, Mukherjee C, Howland CA, Huk D, Shank Z, Harbo LJ, Tabbaa OP, Bartling CM. Function-based classification of hazardous biological sequences: Demonstration of a new paradigm for biohazard assessments. Front Bioeng Biotechnol 2022; 10:979497. [PMID: 36277394 PMCID: PMC9585941 DOI: 10.3389/fbioe.2022.979497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Bioengineering applies analytical and engineering principles to identify functional biological building blocks for biotechnology applications. While these building blocks are leveraged to improve the human condition, the lack of simplistic, machine-readable definition of biohazards at the function level is creating a gap for biosafety practices. More specifically, traditional safety practices focus on the biohazards of known pathogens at the organism-level and may not accurately consider novel biodesigns with engineered functionalities at the genetic component-level. This gap is motivating the need for a paradigm shift from organism-centric procedures to function-centric biohazard identification and classification practices. To address this challenge, we present a novel methodology for classifying biohazards at the individual sequence level, which we then compiled to distinguish the biohazardous property of pathogenicity at the whole genome level. Our methodology is rooted in compilation of hazardous functions, defined as a set of sequences and associated metadata that describe coarse-level functions associated with pathogens (e.g., adherence, immune subversion). We demonstrate that the resulting database can be used to develop hazardous “fingerprints” based on the functional metadata categories. We verified that these hazardous functions are found at higher levels in pathogens compared to non-pathogens, and hierarchical clustering of the fingerprints can distinguish between these two groups. The methodology presented here defines the hazardous functions associated with bioengineering functional building blocks at the sequence level, which provide a foundational framework for classifying biological hazards at the organism level, thus leading to the improvement and standardization of current biosecurity and biosafety practices.
Collapse
|
83
|
Gao T, Ye F, Tan Y, Peng M, Yuan F, Liu Z, Zhou D, Yang K, Liu W, Guo R, Zhang T, Zheng L, Zhou R, Tian Y. Metabolomics and proteomics analyses revealed mechanistic insights on the antimicrobial activity of epigallocatechin gallate against Streptococcus suis. Front Cell Infect Microbiol 2022; 12:973282. [PMID: 36204637 PMCID: PMC9531131 DOI: 10.3389/fcimb.2022.973282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis (S. suis) is a highly virulent zoonotic pathogen and causes severe economic losses to the swine industry worldwide. Public health security is also threatened by the rapidly growing antimicrobial resistance in S. suis. Therefore, there is an urgent need to develop new and safe antibacterial alternatives against S. suis. The green tea polyphenol epigallocatechin gallate (EGCG) with a number of potential health benefits is known for its antibacterial effect; however, the mechanism of its bactericidal action remains unclear. In the present, EGCG at minimal inhibitory concentration (MIC) showed significant inhibitory effects on S. suis growth, hemolytic activity, and biofilm formation, and caused damage to S. suis cells in vitro. EGCG also reduced S. suis pathogenicity in Galleria mellonella larvae in vivo. Metabolomics and proteomics analyses were performed to investigate the underlying mechanism of antibacterial activity of EGCG at MIC. Many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and cell membrane, and virulence were down-regulated after the treatment of S. suis with EGCG. EGCG not only significantly reduced the hemolytic activity of S. suis but also down-regulated the expression of suilysin (Sly). The top three shared KEGG pathways between metabolomics and proteomics analysis were ABC transporters, glycolysis/gluconeogenesis, and aminoacyl-tRNA biosynthesis. Taken together, these data suggest that EGCG could be a potential phytochemical compound for treating S. suis infection.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fei Ye
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yiqing Tan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Pig disease prevention and control center, Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Mingzheng Peng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Pig disease prevention and control center, Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lin Zheng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Pig disease prevention and control center, Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- *Correspondence: Yongxiang Tian, ; Rui Zhou,
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Yongxiang Tian, ; Rui Zhou,
| |
Collapse
|
84
|
Osei EK, Mahony J, Kenny JG. From Farm to Fork: Streptococcus suis as a Model for the Development of Novel Phage-Based Biocontrol Agents. Viruses 2022; 14:1996. [PMID: 36146802 PMCID: PMC9501460 DOI: 10.3390/v14091996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Bacterial infections of livestock threaten the sustainability of agriculture and public health through production losses and contamination of food products. While prophylactic and therapeutic application of antibiotics has been successful in managing such infections, the evolution and spread of antibiotic-resistant strains along the food chain and in the environment necessitates the development of alternative or adjunct preventive and/or therapeutic strategies. Additionally, the growing consumer preference for "greener" antibiotic-free food products has reinforced the need for novel and safer approaches to controlling bacterial infections. The use of bacteriophages (phages), which can target and kill bacteria, are increasingly considered as a suitable measure to reduce bacterial infections and contamination in the food industry. This review primarily elaborates on the recent veterinary applications of phages and discusses their merits and limitations. Furthermore, using Streptococcus suis as a model, we describe the prevalence of prophages and the anti-viral defence arsenal in the genome of the pathogen as a means to define the genetic building blocks that are available for the (synthetic) development of phage-based treatments. The data and approach described herein may provide a framework for the development of therapeutics against an array of bacterial pathogens.
Collapse
Affiliation(s)
- Emmanuel Kuffour Osei
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - John G. Kenny
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, P61 C996 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
85
|
Dou BB, Yang X, Yang FM, Yan K, Peng W, Tang J, Peng MZ, He QY, Chen HC, Yuan FY, Bei WC. The VraSR two-component signal transduction system contributes to the damage of blood-brain barrier during Streptococcus suis meningitis. Microb Pathog 2022; 172:105766. [PMID: 36087689 DOI: 10.1016/j.micpath.2022.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 10/31/2022]
Abstract
Streptococcus suis (S. suis) is an important zoonotic pathogen that can cause high morbidity and mortality in both humans and swine. As the most important life-threatening infection of the central nervous system (CNS), meningitis is an important syndrome of S. suis infection. The vancomycin resistance associated sensor/regulator (VraSR) is a critical two-component signal transduction system that affects the ability of S. suis to resist the host innate immune system and promotes its ability to adhere to brain microvascular endothelial cells (BMECs). Prior work also found mice infected with ΔvraSR had no obvious neurological symptoms, unlike mice infected with wild-type SC19. Whether and how VraSR participates in the development of S. suis meningitis remains unknown. Here, we found ΔvraSR-infected mice did not show obvious meningitis, compared with wild-type SC19-infected mice. Moreover, the proinflammatory cytokines and chemokines in serum and brains of ΔvraSR-infected mice, including IL-6, TNF-α, MCP-1 and IFN-γ, were significantly lower than wild-type infected group. Besides, blood-brain barrier (BBB) permeability also confirmed that the mutant had lower ability to disrupt BBB. Furthermore, in vivo and in vitro experiments showed that SC19 could increase BBB permeability by downregulating tight junction (TJ) proteins such as ZO-1, β-Catenin, Occludin, and Clauidn-5, compared with mutant ΔvraSR. These findings provide new insight into the influence of S. suis VraSR on BBB disruption during the pathogenic process of streptococcal meningitis, thereby offering potential targets for future preventative and therapeutic strategies against this disease.
Collapse
Affiliation(s)
- Bei-Bei Dou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xia Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Feng-Ming Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jia Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ming-Zheng Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qi-Yun He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangxi Yangxiang Co., Ltd., Guangxi, 530015, China
| | - Fang-Yan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei-Cheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangxi Yangxiang Co., Ltd., Guangxi, 530015, China.
| |
Collapse
|
86
|
Shi Y, Zang N, Lou N, Xu Y, Sun J, Huang M, Zhang H, Lu H, Zhou C, Feng Y. Structure and mechanism for streptococcal fatty acid kinase (Fak) system dedicated to host fatty acid scavenging. SCIENCE ADVANCES 2022; 8:eabq3944. [PMID: 36054360 PMCID: PMC10848957 DOI: 10.1126/sciadv.abq3944] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Staphylococcus and Streptococcus, two groups of major human pathogens, are equipped with a fatty acid kinase (Fak) machinery to scavenge host fatty acids. The Fak complex is contains an ATP-binding subunit FakA, which interacts with varied FakB isoforms, and synthesizes acyl-phosphate from extracellular fatty acids. However, how FakA recognizes its FakB partners and then activates different fatty acids is poorly understood. Here, we systematically describe the Fak system from the zoonotic pathogen, Streptococcus suis. The crystal structure of SsFakA complexed with SsFakB2 was determined at 2.6 Å resolution. An in vitro system of Fak-PlsX (phosphate: acyl-ACP transacylase) was developed to track acyl-phosphate intermediate and its final product acyl-ACP. Structure-guided mutagenesis enabled us to characterize a mechanism for streptococcal FakA working with FakB partners engaged in host fatty acid scavenging. These findings offer a comprehensive description of the Fak kinase machinery, thus advancing the discovery of attractive targets against deadly infections with Streptococcus.
Collapse
Affiliation(s)
- Yu Shi
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ning Zang
- Department of Toxicology, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ningjie Lou
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yongchang Xu
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jingdu Sun
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Man Huang
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Huimin Zhang
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chun Zhou
- Department of Toxicology, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
87
|
Deletion of lacD gene affected stress tolerance and virulence of Streptococcus suis serotype 2. J Microbiol 2022; 60:948-959. [DOI: 10.1007/s12275-022-2146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
|
88
|
Genome Sequences of Streptococcus suis Isolates Obtained from Pigs in the United States between 2015 and 2017. Microbiol Resour Announc 2022; 11:e0106721. [PMID: 35913139 PMCID: PMC9387272 DOI: 10.1128/mra.01067-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Streptococcus suis is a zoonotic swine pathogen responsible for substantial health and economic burdens to the swine industry worldwide. Here, we report the draft genome sequences of 106 S. suis isolates obtained within the United States between 2015 and 2017.
Collapse
|
89
|
Yi L, Jin M, Gao M, Wang H, Fan Q, Grenier D, Sun L, Wang S, Wang Y. Specific quantitative detection of Streptococcus suis and Actinobacillus pleuropneumoniae in co-infection and mixed biofilms. Front Cell Infect Microbiol 2022; 12:898412. [PMID: 35992166 PMCID: PMC9381733 DOI: 10.3389/fcimb.2022.898412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory infections seriously affect the swine industry worldwide. Co-infections of two vital pathogenic bacteria Streptococcus suis (S. suis) and Actinobacillus pleuropneumoniae (A. pleuropneumoniae), colonizing the respiratory tract often occurs in veterinary clinical practice. Moreover, our previous research found that S. suis and A. pleuropneumoniae can form biofilm in vitro. The formation of a mixed biofilm not only causes persistent infections, but also increases the multiple drug resistance of bacteria, which brings difficulties to disease prevention and control. However, the methods for detecting S. suis and A. pleuropneumoniae in co-infection and biofilm are immature. Therefore, in this study, primers and probes were designed based on the conservative sequence of S. suis gdh gene and A. pleuropneumoniae apxIVA gene. Then, a TaqMan duplex real-time PCR method for simultaneous detection of S. suis and A. pleuropneumoniae was successfully established via optimizing the reaction system and conditions. The specificity analysis results showed that this TaqMan real-time PCR method had strong specificity and high reliability. The sensitivity test results showed that the minimum detection concentration of S. suis and A. pleuropneumoniae recombinant plasmid was 10 copies/μL, which is 100 times more sensitive than conventional PCR methods. The amplification efficiencies of S. suis and A. pleuropneumoniae were 95.9% and 104.4% with R2 value greater than 0.995, respectively. The slopes of the calibration curves of absolute cell abundance of S. suis and A. pleuropneumoniae were 1.02 and 1.09, respectively. The assays were applied to cultivated mixed biofilms and approximately 108 CFUs per biofilm were quantified when 108 CFUs planktonic bacteria of either S. suis or A. pleuropneumoniae were added to biofilms. In summary, this study developed a TaqMan real-time PCR assay for specific, accurate quantification of S. suis or A. pleuropneumoniae in mixed biofilms, which may help for the detection, prevention and control of diseases caused by a bacterial mixed infection involving S. suis and A. pleuropneumoniae.
Collapse
Affiliation(s)
- Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Manyu Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Mengxia Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yang Wang, ; Shaohui Wang,
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Yang Wang, ; Shaohui Wang,
| |
Collapse
|
90
|
Meng Y, Wang Q, Ma Z, Li W, Niu K, Zhu T, Lin H, Lu C, Fan H. Streptococcal autolysin promotes dysfunction of swine tracheal epithelium by interacting with vimentin. PLoS Pathog 2022; 18:e1010765. [PMID: 35921364 PMCID: PMC9377611 DOI: 10.1371/journal.ppat.1010765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/15/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a major zoonotic pathogen resulting in manifestations as pneumonia and septic shock. The upper respiratory tract is typically thought to be the main colonization and entry site of SS2 in pigs, but the mechanism through which it penetrates the respiratory barrier is still unclear. In this study, a mutant with low invasive potential to swine tracheal epithelial cells (STECs) was screened from the TnYLB-1 transposon insertion mutant library of SS2, and the interrupted gene was identified as autolysin (atl). Compared to wild-type (WT) SS2, Δatl mutant exhibited lower ability to penetrate the tracheal epithelial barrier in a mouse model. Purified Atl also enhanced SS2 translocation across STEC monolayers in Transwell inserts. Furthermore, Atl redistributed the tight junctions (TJs) in STECs through myosin light chain kinase (MLCK) signaling, which led to increased barrier permeability. Using mass spectrometry, co-immunoprecipitation (co-IP), pull-down, bacterial two-hybrid and saturation binding experiments, we showed that Atl binds directly to vimentin. CRISPR/Cas9-targeted deletion of vimentin in STECs (VIM KO STECs) abrogated the capacity of SS2 to translocate across the monolayers, SS2-induced phosphorylation of myosin II regulatory light chain (MLC) and MLCK transcription, indicating that vimentin is indispensable for MLCK activation. Consistently, vimentin null mice were protected from SS2 infection and exhibited reduced tracheal and lung injury. Thus, MLCK-mediated epithelial barrier opening caused by the Atl-vimentin interaction is found to be likely the key mechanism by which SS2 penetrates the tracheal epithelium. Streptococcus suis serotype 2 (SS2), an emerging zoonotic agent, can breach the respiratory barrier and cause invasive disease in pigs. Here, we identified the novel role of autolysin Atl in penetration of the respiratory barrier by SS2 and its systemic dissemination and identified its binding partner, vimentin, a type III intermediate filament protein. Atl contributed to the MLCK-triggered redistribution of tight junctions to open the tracheal epithelial barrier. Knockout of vimentin abolished the ability of SS2 to penetrate the monolayer barrier and the activation of MLCK. Furthermore, vimentin null mice were protected from infection by intranasally administered SS2. This study is the first to demonstrate that the interaction between the GBS Bsp-like domain of Atl and vimentin promotes MLCK-mediated dysfunction of the epithelial barrier, which may provide theoretical information for prophylactic and/or therapeutic treatments against diseases caused by similar respiratory pathogens.
Collapse
Affiliation(s)
- Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Weiyi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ting Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chengping Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- * E-mail:
| |
Collapse
|
91
|
Gao G, Wei D, Li G, Chen P, Wu L, Liu S, Zhang Y. Highly Effective Markerless Genetic Manipulation of Streptococcus suis Using a Mutated PheS-Based Counterselectable Marker. Front Microbiol 2022; 13:947821. [PMID: 35910605 PMCID: PMC9329067 DOI: 10.3389/fmicb.2022.947821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis is an important zoonotic pathogen, however, an efficient markerless genetic manipulation system is still lacking for further physiological and pathological studies on this bacterium. Several techniques have been developed for markerless genetic manipulation of S. suis utilizing either a temperature-sensitive vector or a counterselectable markers (CSMs), however, at present, the efficiency of these techniques is not very satisfactory. In this study, we developed a strategy for markerless genetic manipulation of S. suis employing a CSM based on a conditionally lethal mutant allele of pheS, which encodes the α-subunit of phenylalanyl-tRNA synthetase (PheS). This mutant pheS, mPheS, was constructed by introducing site-directed mutations for a T261S/A315G double-substitution and a number of silent mutations to decrease its similarity with the endogenous wild type pheS gene (wtPheS). Additionally, five potentially strong promoters from S. suis were screened for their ability to drive high-level expression of mPheS, thus endowing the carrier strain with sufficient sensitivity to the phenylalanine analog p-chloro-phenylalanine (p-Cl-phe). Insertion of these P-mPheS cassettes into a vector or into the chromosomal locus via a linked erythromycin resistance gene revealed that mPheS allele driven by promoters P0530 and P1503 renders S. suis sensitive to as low as 0.01% (or 0.5 mM) of p-Cl-phe. This offers two potential CSMs for S. suis with p-Cl-phe as a counterselective agent. P1503-mPheS was revealed to be 100% efficient for counter-selection in S. suis by application in a precise gene deletion. Using P1503-mPheS as a CSM, a two-step insertion and excision strategy for markerless genetic manipulation of S. suis were developed, supplying a powerful tool for markerless genetic manipulation of S. suis.
Collapse
|
92
|
Development and Application of Two Inducible Expression Systems for Streptococcus suis. Microbiol Spectr 2022; 10:e0036322. [PMID: 35758678 PMCID: PMC9430170 DOI: 10.1128/spectrum.00363-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important zoonotic bacterial pathogen posing a threat to the pig industry as well as public health, for which the mechanisms of growth and cell division remain largely unknown. Developing convenient genetic tools that can achieve strictly controlled gene expression is of great value for investigating these fundamental physiological processes of S. suis. In this study, we first identified three strong constitutive promoters, Pg, Pt, and Pe, in S. suis. Promoter Pg was used to drive the expression of repressor genes tetR and lacI, and the operator sequences were added within promoters Pt and Pe. By optimizing the insertion sites of the operator sequence, we successfully constructed an anhydrotetracycline (ATc)-inducible expression system and an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible expression system in S. suis. We showed that these two systems provided inducer-concentration- and induction-time-dependent expression of the reporter gene. By using these tools, we investigated the subcellular localization of a key cell division protein, FtsZ, which showed that it could be correctly localized to the midcell region. In addition, we constructed a conditional knockout strain for the glmS gene, which is an essential gene, and showed that our ATc-inducible promoter could provide strictly controlled expression of glmS in trans, suggesting that our inducible expression systems can be used for deletion of essential genes in S. suis. Therefore, for the first time we developed two inducible expression systems in S. suis and showed their applications in the study of an important cell division protein and an essential gene. These genetic tools will further facilitate the functional study of other important genes of S. suis. IMPORTANCE Streptococcus suis is an important zoonotic bacterial pathogen. Studying the mechanisms of cell growth and division is important for the identification of novel antimicrobial drug targets. Inducible expression systems can provide strictly controlled expression of the protein of interest and are useful tools to study the functions of physiologically important proteins. However, there is a lack of convenient genetic tools that can achieve inducible protein expression in S. suis. In this study, we developed two (ATc-inducible and IPTG-inducible) inducible expression systems and showed their applications in a subcellular localization study of a cell division protein and the construction of conditional knockout of essential genes in S. suis. These systems will be useful for functional studies of important proteins of S. suis.
Collapse
|
93
|
Zheng C, Qiu J, Zhao X, Yu S, Wang H, Wan M, Wei M, Jiao X. The AdcR-regulated AdcA and AdcAII contribute additively to zinc acquisition and virulence in Streptococcus suis. Vet Microbiol 2022; 269:109418. [PMID: 35430524 DOI: 10.1016/j.vetmic.2022.109418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022]
Abstract
Metals are necessary elements for bacteria. Typically, vertebrate hosts restrict invading bacterial pathogens from accessing metals. Therefore, bacteria have evolved high-affinity metal importers to acquire metals. Streptococcus suis is a major swine pathogen and an emerging zoonotic agent that endangers the swine industry and human health worldwide. Herein, we aimed to identify the zinc acquisition systems in S. suis and evaluate their roles in bacterial virulence. Bioinformatic analyses revealed that S. suis encodes homologues of AdcA and AdcAII, two well-characterised Zn-binding lipoproteins in certain streptococci. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that the expressions of adcA and adcAII were significantly upregulated in response to Zn limitation, with a higher expression level of adcAII than adcA. Gene deletion mutants and complementation strains were constructed; their growth characteristics under Zn-deficient and Zn-replete conditions indicated that AdcA and AdcAII have overlapping functionality in Zn acquisition. A mouse infection model was used to evaluate the roles of AdcA and AdcAII in S. suis virulence. Mice infected with the double mutant ΔadcAΔadcAII exhibited a significantly higher survival rate, decreased bacterial burden, and lower production of inflammatory cytokines compared to those infected with the wild type (WT) strain. Furthermore, ΔadcAΔadcAII showed reduced competitiveness in infection establishment compared with the WT strain. RNA sequencing, qRT-PCR, and electrophoretic mobility shift assays revealed that AdcR negatively regulates the expressions of adcA and adcAII. Collectively, our results demonstrated that AdcA and AdcAII, which are negatively regulated by AdcR, contribute additively to zinc acquisition and virulence in S. suis.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Jun Qiu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoxian Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Sijia Yu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Hong Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Mengyan Wan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
94
|
Savcheniuk MO, Tarasov OA, Zakharova OM, Korniienko LY, Zotsenko VM, Tsarenko TM. Detection of Streptococcus suis using the optimized real-time polymerase chain reaction protocol. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The article presents the results of studies on the detection of Streptococcus suis by real-time polymerase chain reaction. Isolation and species identification of the studied isolates of streptococci was carried out according to morphological, cultural, biochemical and biological properties by conventional methods. The study of cultural characteristics of growth was carried out using conventional bacteriological methods on the brain heart infusion broth (BHI) and BHI agar with the addition of 5% sheep blood (blood BHI agar). To confirm biochemical properties as a confirmatory method, API 20 STREP test kit (bioMerieux, France) was used. In addition, to differentiate S. suis from the non-pathogenic species of streptococci, the hemolysis test was used. As a result of the studies, it was found that the use of the real-time PCR (polymerase chain reaction) method makes it possible to detect S. suis in an amount of 1 x 104 genome copies in the sample. All described validation parameters for the qualitative detection of S. suis DNA by real-time PCR meet international requirements, which guarantees accurate and reliable results. In Ukraine only a diagnostic test kit for convential PCR has been developed for the detection of swine streptococcosis. This approach is more time consuming and complex in comparison with the real-time PCR approach. We recommend that diagnostic laboratories implement this method in their practice. This will increase the number of effective diagnostic tools available to veterinarians on pig farms when they order laboratory tests. The high analytical sensitivity limit of a test is an essential parameter when screening is the focus, and obtaining false negative results causes a risk of the development of infection process among pig populations within infected herds. Our study showed that microbiological diagnostic methods to determine morphological and cultural properties can identify S. suis at the genus level. Determination of biochemical properties using the API 20 STREP test kit can be used to identify S. suis 1 and 2 serotypes. The conventional method and real-time PCR have 100% specificity and can be used to identify S. suis of different serotypes. Real-time PCR is a 2 to 4 times more sensitive limit than conventional PCR depending on the serotype being studied, and can be used to more accurately identify streptococcal DNA. It was found that the use of the real-time PCR method makes it possible to detect S. suis in an amount of 1 x 104 copies of the genome in the sample. Additionally, it was found that all the studied validation parameters of the qualitative method for determining S. suis DNA by real-time PCR meet international requirements, which guarantees accurate and reliable results.
Collapse
|
95
|
Liang Z, Wu H, Bian C, Chen H, Shen Y, Gao X, Ma J, Yao H, Wang L, Wu Z. The antimicrobial systems of Streptococcus suis promote niche competition in pig tonsils. Virulence 2022; 13:781-793. [PMID: 35481413 PMCID: PMC9067509 DOI: 10.1080/21505594.2022.2069390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Streptococcus suis can cause severe infections in pigs and humans. The tonsils of pigs are major niches for S. suis, and different serotypes of S. suis can be found in the same tonsil. Pig tonsil colonization by S. suis is believed to be an important source of infection for humans and pigs. However, how S. suis competes for a stable tonsil niche is unknown. Here, we found that S. suis strain WUSS351, isolated from a healthy pig tonsil, is virulent and multidrug-resistant. The ABC transporter system SstFEG, conferring resistance to bacitracin, was reported to confer a competitive survival advantage in vivo. In addition, strain WUSS351 has several antimicrobial systems, including a novel type VII secretion system (T7SS), lantibiotic bacteriocin, and lactococcin972-like bacteriocin Lcn351. Bacterial competition experiments demonstrated T7SS-mediated cell contact-dependent antagonism of S. suis. Antibacterial activity analysis and 16S rRNA gene sequencing of the culture-independent and culture-dependent pig tonsillar microbiome revealed that Lcn351 mainly targets S. suis, one of the core microbiomes in pig tonsils. Taken together, our results revealed the mechanism of the stable persistence of S. suis in the tonsil niche, which might have important implications for S. suis epidemiology, potentially influencing strain prevalence and disease progression.
Collapse
Affiliation(s)
- Zijing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Huizhen Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Chen Bian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Hao Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Yanling Shen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Xueping Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
96
|
Fan J, Zhao L, Hu Q, Li S, Li H, Zhang Q, Zou G, Zhang L, Li L, Huang Q, Zhou R. Screening for Virulence-Related Genes via a Transposon Mutant Library of Streptococcus suis Serotype 2 Using a Galleria mellonella Larvae Infection Model. Microorganisms 2022; 10:microorganisms10050868. [PMID: 35630313 PMCID: PMC9143085 DOI: 10.3390/microorganisms10050868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
Streptococcus suis (S. suis) is a zoonotic bacterial pathogen causing lethal infections in pigs and humans. Identification of virulence-related genes (VRGs) is of great importance in understanding the pathobiology of a bacterial pathogen. To identify novel VRGs, a transposon (Tn) mutant library of S. suis strain SC19 was constructed in this study. The insertion sites of approximately 1700 mutants were identified by Tn-seq, which involved 417 different genes. A total of 32 attenuated strains were identified from the library by using a Galleria mellonella larvae infection model, and 30 novel VRGs were discovered, including transcription regulators, transporters, hypothetical proteins, etc. An isogenic deletion mutant of hxtR gene (ΔhxtR) and its complementary strain (CΔhxtR) were constructed, and their virulence was compared with the wild-type strain in G. mellonella larvae and mice, which showed that disruption of hxtR significantly attenuated the virulence. Moreover, the ΔhxtR strain displayed a reduced survival ability in whole blood, increased sensitivity to phagocytosis, increased chain length, and growth defect. Taken together, this study performed a high throughput screening for VRGs of S. suis using a G. mellonella larvae model and further characterized a novel critical virulence factor.
Collapse
Affiliation(s)
- Jingyan Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Lelin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Siqi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Qianqian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Liangsheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- The HZAU-HVSEN Research Institute, Wuhan 430042, China
- Correspondence: (Q.H.); (R.Z.)
| |
Collapse
|
97
|
Lunha K, Chumpol W, Samngamnim S, Jiemsup S, Assavacheep P, Yongkiettrakul S. Antimicrobial Susceptibility of Streptococcus suis Isolated from Diseased Pigs in Thailand, 2018–2020. Antibiotics (Basel) 2022; 11:antibiotics11030410. [PMID: 35326873 PMCID: PMC8944821 DOI: 10.3390/antibiotics11030410] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Streptococcus suis is a porcine and zoonotic pathogen that causes severe systemic infection in humans and pigs. The treatment of S. suis infection relies on antibiotics; however, antimicrobial resistance (AMR) is an urgent global problem, pushing research attention on the surveillance of antibiotic-resistant S. suis to the fore. This study investigated the antimicrobial susceptibility of 246 S. suis strains isolated from diseased pigs in Thailand from 2018–2020. The major sources of S. suis strains were lung and brain tissues. PCR-based serotyping demonstrated that the most abundant serotype was serotype 2 or ½, followed by serotypes 29, 8, 9, and 21. To the best of our knowledge, this is the first report describing the distribution of AMR S. suis serotype 29 in diseased pigs. The antimicrobial susceptibility test was performed to determine the minimum inhibitory concentrations of 35 antimicrobial agents. The results showed that important antimicrobial agents for human use, amoxicillin/clavulanic acid, daptomycin, ertapenem, meropenem, and vancomycin, were the most effective drugs. However, a slight decrease in the number of S. suis strains susceptible to amoxicillin/clavulanic acid and vancomycin raised awareness of the AMR problem in the future. The data indicated a tendency of reduced efficacy of available veterinary medicines, including ampicillin, cefepime, cefotaxime, ceftiofur, ceftriaxone, chloramphenicol, florfenicol, gentamicin, penicillin, and tiamulin, for the treatment of S. suis infection, thus emphasizing the importance of the prudent use of antibiotics. The widespread of multidrug-resistant S. suis strains was identified in all serotypes and from different time periods and different regions of the country, confirming the emergence of the AMR problem in the diseased pig-isolated S. suis population.
Collapse
Affiliation(s)
- Kamonwan Lunha
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (W.C.); (S.J.)
- Correspondence: (K.L.); (S.Y.)
| | - Wiyada Chumpol
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (W.C.); (S.J.)
| | - Sukuma Samngamnim
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.); (P.A.)
| | - Surasak Jiemsup
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (W.C.); (S.J.)
| | - Pornchalit Assavacheep
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.); (P.A.)
| | - Suganya Yongkiettrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (W.C.); (S.J.)
- Correspondence: (K.L.); (S.Y.)
| |
Collapse
|
98
|
Estrada AA, Gottschalk M, Gebhart CJ, Marthaler DG. Comparative analysis of Streptococcus suis genomes identifies novel candidate virulence-associated genes in North American isolates. Vet Res 2022; 53:23. [PMID: 35303917 PMCID: PMC8932342 DOI: 10.1186/s13567-022-01039-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
Streptococcus suis is a significant economic and welfare concern in the swine industry. Pan-genome analysis provides an in-silico approach for the discovery of genes involved in pathogenesis in bacterial pathogens. In this study, we performed pan-genome analysis of 208 S. suis isolates classified into the pathogenic, possibly opportunistic, and commensal pathotypes to identify novel candidate virulence-associated genes (VAGs) of S. suis. Using chi-square tests and LASSO regression models, three accessory pan-genes corresponding to S. suis strain P1/7 markers SSU_RS09525, SSU_RS09155, and SSU_RS03100 (>95% identity) were identified as having a significant association with the pathogenic pathotype. The proposed novel SSU_RS09525 + /SSU_RS09155 + /SSU_RS03100 + genotype identified 96% of the pathogenic pathotype strains, suggesting a novel genotyping scheme for predicting the pathogenicity of S. suis isolates in North America. In addition, mobile genetic elements carrying antimicrobial resistance genes (ARGs) and VAGs were identified but did not appear to play a major role in the spread of ARGs and VAGs.
Collapse
Affiliation(s)
- April A Estrada
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Connie J Gebhart
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | | |
Collapse
|
99
|
Gao T, Ye F, Yuan F, Liu Z, Liu W, Zhou D, Yang K, Guo R, Wang N, Zhang T, Zhou R, Tian Y. Green tea polyphenols inhibit growth, pathogenicity and metabolomics profiles of Streptococcus suis. Microb Pathog 2022; 164:105421. [PMID: 35114350 DOI: 10.1016/j.micpath.2022.105421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 11/19/2022]
Abstract
Streptococcus suis (SS) is an important pathogen in pigs and can also cause severe infection in humans. Currently, more and more drug resistance is reported, resulting in the search for new drugs being needed urgently. Green tea polyphenols (GTP) was reported to inhibit many bacteria. However, SS response to GTP has not been studied before. In this report, the effect of GTP on growth, cell integrity, pathogenicity and metabolic pathway of SS was examined. The GTP inhibited growth, led to cellular damage, and attenuated pathogenicity of SS. Finally, GTP affected many important metabolic pathways of SS, such as ABC transporters, pyrimidine metabolism, protein digestion and absorption. The results provide new insight into the prevention and control of SS infection.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fei Ye
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ningning Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
100
|
Cucco L, Paniccià M, Massacci FR, Morelli A, Ancora M, Mangone I, Di Pasquale A, Luppi A, Vio D, Cammà C, Magistrali CF. New Sequence Types and Antimicrobial Drug-Resistant Strains of Streptococcus suis in Diseased Pigs, Italy, 2017-2019. Emerg Infect Dis 2022; 28:139-147. [PMID: 34932464 PMCID: PMC8714200 DOI: 10.3201/eid2801.210816] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Streptococcus suis is a pathogen associated with severe diseases in pigs and humans. Human infections have a zoonotic origin in pigs. To assess circulating strains, we characterized the serotypes, sequence types, and antimicrobial susceptibility of 78 S. suis isolates from diseased farmed pigs in Italy during 2017-2019. Almost 60% of infections were caused by serotypes 1/2 and 9. All but 1 of the serotype 2 and 1/2 isolates were confined to a single cluster, and serotype 9 isolates were distributed along the phylogenetic tree. Besides sequence type (ST) 1, the serotype 2 cluster included ST7, which caused severe human infections in China in 1998 and 2005. A large proportion of serotype 9 isolates, assigned to ST123, were resistant to penicillin. The emergence of this clone threatens the successful treatment of S. suis infection. Characterizing S. suis isolates from pigs will promote earlier detection of emerging clones.
Collapse
|