51
|
Zhuang JJ, Liu Q, Wu DL, Tie L. Current strategies and progress for targeting the "undruggable" transcription factors. Acta Pharmacol Sin 2022; 43:2474-2481. [PMID: 35132191 PMCID: PMC9525275 DOI: 10.1038/s41401-021-00852-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
Transcription factors (TFs) specifically bind to DNA, recruit cofactor proteins and modulate target gene expression, rendering them essential roles in the regulation of numerous biological processes. Meanwhile, mutated or dysregulated TFs are involved in a variety of human diseases. As multiple signaling pathways ultimately converge at TFs, targeting these TFs directly may prove to be more specific and cause fewer side effects, than targeting the upfront conventional targets in these pathways. All these features together endue TFs with great potential and high selectivity as therapeutic drug targets. However, TFs have been historically considered "undruggable", mainly due to their lack of structural information, especially about the appropriate ligand-binding sites and protein-protein interactions, leading to relatively limited choices in the TF-targeting drug design. In this review, we summarize the recent progress of TF-targeting drugs and highlight certain strategies used for targeting TFs, with a number of representative drugs that have been approved or in the clinical trials as examples. Various approaches in targeting TFs directly or indirectly have been developed. Common direct strategies include aiming at defined binding pockets, proteolysis-targeting chimaera (PROTAC), and mutant protein reactivation. In contrast, the indirect ones comprise inhibition of protein-protein interactions between TF and other proteins, blockade of TF expression, targeting the post-translational modifications, and targeting the TF-DNA interactions. With more comprehensive structural information about TFs revealed by the powerful cryo-electron microscopy technology and predicted by machine-learning algorithms, plus more efficient compound screening platforms and a deeper understanding of TF-disease relationships, the development of TF-targeting drugs will certainly be accelerated in the near future.
Collapse
Affiliation(s)
- Jing-Jing Zhuang
- Marine College, Shandong University, Weihai, 264209, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Da-Lei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
52
|
Chatfield-Reed K, Marno Jones K, Shah F, Chua G. Genetic-interaction screens uncover novel biological roles and regulators of transcription factors in fission yeast. G3 GENES|GENOMES|GENETICS 2022; 12:6655692. [PMID: 35924983 PMCID: PMC9434175 DOI: 10.1093/g3journal/jkac194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022]
Abstract
In Schizosaccharomyces pombe, systematic analyses of single transcription factor deletion or overexpression strains have made substantial advances in determining the biological roles and target genes of transcription factors, yet these characteristics are still relatively unknown for over a quarter of them. Moreover, the comprehensive list of proteins that regulate transcription factors remains incomplete. To further characterize Schizosaccharomyces pombe transcription factors, we performed synthetic sick/lethality and synthetic dosage lethality screens by synthetic genetic array. Examination of 2,672 transcription factor double deletion strains revealed a sick/lethality interaction frequency of 1.72%. Phenotypic analysis of these sick/lethality strains revealed potential cell cycle roles for several poorly characterized transcription factors, including SPBC56F2.05, SPCC320.03, and SPAC3C7.04. In addition, we examined synthetic dosage lethality interactions between 14 transcription factors and a miniarray of 279 deletion strains, observing a synthetic dosage lethality frequency of 4.99%, which consisted of known and novel transcription factor regulators. The miniarray contained deletions of genes that encode primarily posttranslational-modifying enzymes to identify putative upstream regulators of the transcription factor query strains. We discovered that ubiquitin ligase Ubr1 and its E2/E3-interacting protein, Mub1, degrade the glucose-responsive transcriptional repressor Scr1. Loss of ubr1+ or mub1+ increased Scr1 protein expression, which resulted in enhanced repression of flocculation through Scr1. The synthetic dosage lethality screen also captured interactions between Scr1 and 2 of its known repressors, Sds23 and Amk2, each affecting flocculation through Scr1 by influencing its nuclear localization. Our study demonstrates that sick/lethality and synthetic dosage lethality screens can be effective in uncovering novel functions and regulators of Schizosaccharomyces pombe transcription factors.
Collapse
Affiliation(s)
- Kate Chatfield-Reed
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Kurtis Marno Jones
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Farah Shah
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
53
|
Galán-Vásquez E, Gómez-García MDC, Pérez-Rueda E. A landscape of gene regulation in the parasitic amoebozoa Entamoeba spp. PLoS One 2022; 17:e0271640. [PMID: 35913975 PMCID: PMC9342746 DOI: 10.1371/journal.pone.0271640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
Entamoeba are amoeboid extracellular parasites that represent an important group of organisms for which the regulatory networks must be examined to better understand how genes and functional processes are interrelated. In this work, we inferred the gene regulatory networks (GRNs) in four Entamoeba species, E. histolytica, E. dispar, E. nuttalli, and E. invadens, and the GRN topological properties and the corresponding biological functions were evaluated. From these analyses, we determined that transcription factors (TFs) of E. histolytica, E. dispar, and E. nuttalli are associated mainly with the LIM family, while the TFs in E. invadens are associated with the RRM_1 family. In addition, we identified that EHI_044890 regulates 121 genes in E. histolytica, EDI_297980 regulates 284 genes in E. dispar, ENU1_120230 regulates 195 genes in E. nuttalli, and EIN_249270 regulates 257 genes in E. invadens. Finally, we identified that three types of processes, Macromolecule metabolic process, Cellular macromolecule metabolic process, and Cellular nitrogen compound metabolic process, are the main biological processes for each network. The results described in this work can be used as a basis for the study of gene regulation in these organisms.
Collapse
Affiliation(s)
- Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
- * E-mail: (EG-V); (EP-R)
| | - María del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Unidad Académica Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
- * E-mail: (EG-V); (EP-R)
| |
Collapse
|
54
|
de Mello AH, Liu T, Garofalo RP, Casola A. Hydrogen Sulfide Donor GYY4137 Rescues NRF2 Activation in Respiratory Syncytial Virus Infection. Antioxidants (Basel) 2022; 11:1410. [PMID: 35883901 PMCID: PMC9311616 DOI: 10.3390/antiox11071410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) can cause severe respiratory illness in infants, immunocompromised, and older adults. Despite its burden, no vaccine or specific treatment is available. RSV infection is associated with increased reactive oxygen species (ROS) production, degradation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), and decreased antioxidant enzymes (AOEs), leading to oxidative damage and lung injury. Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays a physiological role in numerous cellular processes and a protective role in multiple pathological conditions, displaying vasoactive, cytoprotective, anti-inflammatory, and antioxidant activities. H2S can promote NRF2 activation through the sulfhydration of Kelch-like ECH-associated protein 1, the cytoplasmic repressor of NRF2. Here we investigated whether increasing cellular H2S levels could rescue NRF2 and NRF2-dependent gene expression in RSV-infected primary airway epithelial cells. We found that treatment with the H2S donor GYY4137 significantly increased NRF2 levels and AOEs gene expression by decreasing KEAP1 levels, and by modulating pathways involved in RSV-induced NRF2 degradation, such as NRF2 ubiquitination, and promyelocytic leukemia (PML) protein levels. These results suggest that the administration of exogenous H2S can positively impact the altered redox balance associated with RSV infection, which represents an important determinant of RSV-induced lung disease.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
55
|
Gomathi K, Rohini M, Vairamani M, Selvamurugan N. Identification and characterization of TGF-β1-responsive Runx2 acetylation sites for matrix Metalloproteinase-13 expression in osteoblastic cells. Biochimie 2022; 201:1-6. [PMID: 35779648 DOI: 10.1016/j.biochi.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022]
Abstract
In skeletal tissues, transforming growth factor-beta 1 (TGF-β1) serves a number of activities. For example, in osteoblastic cells, TGF-β1 stimulates the expression of matrix metalloproteinase-13 (MMP-13, a bone remodeling gene), which requires the bone transcription factor Runx2. Although TGF-β1 is known to stimulate Runx2 acetylation, the sites involved in MMP-13 gene activation remain unknown. Mass spectrometry analysis revealed that Runx2 was acetylated at one site (K134) and three sites (K24, K134, and K169) following control and TGF-β1-treatment, respectively, in osteoblastic cells. In addition, we mutated the lysine residues in the Runx2 construct into arginine and transfected the construct into mouse mesenchymal stem cells (C3H10T1/2). Wild-type Runx2 expression and acetylation were significantly increased by TGF-β1-treatment, whereas this effect was decreased in the presence of the Runx2 double mutant construct (K24 + K169) in C3H10T1/2 cells. TGF-β1 enhanced MMP-13 promoter activity in cells transfected with the wild-type Runx2 construct, but this effect was considerably reduced in cells transfected with the Runx2 double mutant construct (K24 + K169), according to a luciferase reporter test. Hence, the stability of Runx2 may be mediated by TGF-β1-induced acetylation at K24 and K169 and is required for MMP-13 expression in osteoblastic cells. These findings add to our knowledge of TGF-β1, Runx2, and MMP-13's physiological roles in bone metabolism.
Collapse
Affiliation(s)
- Kanagaraj Gomathi
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Muthukumar Rohini
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Mariappan Vairamani
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
56
|
Karimzadeh M, Hoffman MM. Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome. Genome Biol 2022; 23:126. [PMID: 35681170 PMCID: PMC9185870 DOI: 10.1186/s13059-022-02690-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Existing methods for computational prediction of transcription factor (TF) binding sites evaluate genomic regions with similarity to known TF sequence preferences. Most TF binding sites, however, do not resemble known TF sequence motifs, and many TFs are not sequence-specific. We developed Virtual ChIP-seq, which predicts binding of individual TFs in new cell types, integrating learned associations with gene expression and binding, TF binding sites from other cell types, and chromatin accessibility data in the new cell type. This approach outperforms methods that predict TF binding solely based on sequence preference, predicting binding for 36 TFs (MCC>0.3).
Collapse
Affiliation(s)
- Mehran Karimzadeh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Toronto, ON, Canada.,Vector Institute, Toronto, ON, Canada
| | - Michael M Hoffman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Princess Margaret Cancer Centre, Toronto, ON, Canada. .,Vector Institute, Toronto, ON, Canada. .,Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
57
|
Lam UTF, Tan BKY, Poh JJX, Chen ES. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin 2022; 15:17. [PMID: 35581654 PMCID: PMC9116022 DOI: 10.1186/s13072-022-00446-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.
Collapse
Affiliation(s)
- Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Kok Yan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Jia Xin Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
58
|
Lemma RB, Fleischer T, Martinsen E, Ledsaak M, Kristensen V, Eskeland R, Gabrielsen OS, Mathelier A. Pioneer transcription factors are associated with the modulation of DNA methylation patterns across cancers. Epigenetics Chromatin 2022; 15:13. [PMID: 35440061 PMCID: PMC9016969 DOI: 10.1186/s13072-022-00444-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Methylation of cytosines on DNA is a prominent modification associated with gene expression regulation. Aberrant DNA methylation patterns have recurrently been linked to dysregulation of the regulatory program in cancer cells. To shed light on the underlying molecular mechanism driving this process, we hypothesised that aberrant methylation patterns could be controlled by the binding of specific transcription factors (TFs) across cancer types. By combining DNA methylation arrays and gene expression data with TF binding sites (TFBSs), we explored the interplay between TF binding and DNA methylation in 19 cancer types. We performed emQTL (expression-methylation quantitative trait loci) analyses independently in each cancer type and identified 13 TFs whose expression levels are correlated with local DNA methylation patterns around their binding sites in at least 2 cancer types. The 13 TFs are mainly associated with local demethylation and are enriched for pioneer function, suggesting a specific role for these TFs in modulating chromatin structure and transcription in cancer patients. Furthermore, we confirmed that de novo methylation is precluded across cancers at CpGs lying in genomic regions enriched for TF binding signatures associated with SP1, CTCF, NRF1, GABPA, KLF9, and/or YY1. The modulation of DNA methylation associated with TF binding was observed at cis-regulatory regions controlling immune- and cancer-associated pathways, corroborating that the emQTL signals were derived from both cancer and tumor-infiltrating cells. As a case example, we experimentally confirmed that FOXA1 knock-down is associated with higher methylation in regions bound by FOXA1 in breast cancer MCF-7 cells. Finally, we reported physical interactions between FOXA1 with TET1 and TET2 both in an in vitro setup and in vivo at physiological levels in MCF-7 cells, adding further support for FOXA1 attracting TET1 and TET2 to induce local demethylation in cancer cells.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Emily Martinsen
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, Department of Molecular Medicine, and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marit Ledsaak
- Institute of Basic Medical Sciences, Department of Molecular Medicine, and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Vessela Kristensen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild Eskeland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway.
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
59
|
Liu Z, Wu A, Wu Z, Wang T, Pan Y, Li B, Zhang X, Yu M. TOX4 facilitates promoter-proximal pausing and C-terminal domain dephosphorylation of RNA polymerase II in human cells. Commun Biol 2022; 5:300. [PMID: 35365735 PMCID: PMC8975821 DOI: 10.1038/s42003-022-03214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
TOX4 is one of the regulatory factors of PP1 phosphatases with poorly understood functions. Here we show that chromatin occupancy pattern of TOX4 resembles that of RNA polymerase II (Pol II), and its loss increases cellular level of C-terminal domain (CTD) phosphorylated Pol II but mainly decreases Pol II occupancy on promoters. In addition, elongation rate analyses by 4sUDRB-seq suggest that TOX4 restricts pause release and early elongation but promotes late elongation. Moreover, TT-seq analyses indicate that TOX4 loss mainly decreases transcriptional output. Mechanistically, TOX4 may restrict pause release through facilitating CTD serine 2 and DSIF dephosphorylation, and promote Pol II recycling and reinitiation through facilitating CTD serines 2 and 5 dephosphorylation. Furthermore, among the PP1 phosphatases, TOX4 preferentially binds PP1α and is capable of facilitating Pol II CTD dephosphorylation in vitro. These results lay the foundation for a better understanding of the role of TOX4 in transcriptional regulation. As a role of TOX4, one of the regulatory proteins of PP1 phosphatases, in transcriptional regulation, authors here show that TOX4 restricts pause release and early productive elongation, and promotes Pol II recycling and transcriptional reinitiation.
Collapse
Affiliation(s)
- Ziling Liu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Aiwei Wu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhen Wu
- State key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Talang Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yixuan Pan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Bing Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Xumin Zhang
- State key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Ming Yu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China. .,Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
60
|
He L, Arnold C, Thoma J, Rohde C, Kholmatov M, Garg S, Hsiao CC, Viol L, Zhang K, Sun R, Schmidt C, Janssen M, MacRae T, Huber K, Thiede C, Hébert J, Sauvageau G, Spratte J, Fluhr H, Aust G, Müller-Tidow C, Niehrs C, Pereira G, Hamann J, Tanaka M, Zaugg JB, Pabst C. CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia. EMBO Mol Med 2022; 14:e14990. [PMID: 35253392 PMCID: PMC8988201 DOI: 10.15252/emmm.202114990] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
The heterogeneous response of acute myeloid leukemia (AML) to current anti‐leukemic therapies is only partially explained by mutational heterogeneity. We previously identified GPR56 as a surface marker associated with poor outcome across genetic groups, which characterizes two leukemia stem cell (LSC)‐enriched compartments with different self‐renewal capacities. How these compartments self‐renew remained unclear. Here, we show that GPR56+ LSC compartments are promoted in a complex network involving epithelial‐to‐mesenchymal transition (EMT) regulators besides Rho, Wnt, and Hedgehog (Hh) signaling. Unexpectedly, Wnt pathway inhibition increased the more immature, slowly cycling GPR56+CD34+ fraction and Hh/EMT gene expression, while Wnt activation caused opposite effects. Our data suggest that the crucial role of GPR56 lies in its ability to co‐activate these opposing signals, thus ensuring the constant supply of both LSC subsets. We show that CDK7 inhibitors suppress both LSC‐enriched subsets in vivo and synergize with the Bcl‐2 inhibitor venetoclax. Our data establish reciprocal transition between LSC compartments as a novel concept underlying the poor outcome in GPR56high AML and propose combined CDK7 and Bcl‐2 inhibition as LSC‐directed therapy in this disease.
Collapse
Affiliation(s)
- Lixiazi He
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christian Arnold
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Judith Thoma
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Christian Rohde
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Maksim Kholmatov
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Swati Garg
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Linda Viol
- Centre for Organismal Studies (COS)/Centre for Cell and Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Rui Sun
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christina Schmidt
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Maike Janssen
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tara MacRae
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Karin Huber
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital of Dresden Carl Gustav Carus, Dresden, Germany
| | - Josée Hébert
- The Quebec Leukemia Cell Bank and Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada.,Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Guy Sauvageau
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada.,Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Julia Spratte
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Herbert Fluhr
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Gabriela Aust
- Department of Surgery, Research Laboratories, Leipzig University, Leipzig, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS)/Centre for Cell and Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Judith B Zaugg
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Caroline Pabst
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
61
|
Soto L, Li Z, Santoso CS, Berenson A, Ho I, Shen VX, Yuan S, Bass JIF. Compendium of human transcription factor effector domains. Mol Cell 2022; 82:514-526. [PMID: 34863368 PMCID: PMC8818021 DOI: 10.1016/j.molcel.2021.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Transcription factors (TFs) regulate gene expression by binding to DNA sequences and modulating transcriptional activity through their effector domains. Despite the central role of effector domains in TF function, there is a current lack of a comprehensive resource and characterization of effector domains. Here, we provide a catalog of 924 effector domains across 594 human TFs. Using this catalog, we characterized the amino acid composition of effector domains, their conservation across species and across the human population, and their roles in human diseases. Furthermore, we provide a classification system for effector domains that constitutes a valuable resource and a blueprint for future experimental studies of TF effector domain function.
Collapse
Affiliation(s)
- Luis Soto
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Perú
| | - Zhaorong Li
- Bioinformatics Program, Boston University, Boston MA 02215
| | - Clarissa S Santoso
- Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215
| | - Anna Berenson
- Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215
| | - Isabella Ho
- Biology Department, Boston University, Boston MA 02215
| | - Vivian X Shen
- Biology Department, Boston University, Boston MA 02215
| | - Samson Yuan
- Biology Department, Boston University, Boston MA 02215
| | - Juan I Fuxman Bass
- Bioinformatics Program, Boston University, Boston MA 02215,Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215,correspondence:
| |
Collapse
|
62
|
Wang R, Wang Z, Li Z, Lee TY. Residue-Residue Contact Can Be a Potential Feature for the Prediction of Lysine Crotonylation Sites. Front Genet 2022; 12:788467. [PMID: 35058968 PMCID: PMC8764140 DOI: 10.3389/fgene.2021.788467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Lysine crotonylation (Kcr) is involved in plenty of activities in the human body. Various technologies have been developed for Kcr prediction. Sequence-based features are typically adopted in existing methods, in which only linearly neighboring amino acid composition was considered. However, modified Kcr sites are neighbored by not only the linear-neighboring amino acid but also those spatially surrounding residues around the target site. In this paper, we have used residue-residue contact as a new feature for Kcr prediction, in which features encoded with not only linearly surrounding residues but also those spatially nearby the target site. Then, the spatial-surrounding residue was used as a new scheme for feature encoding for the first time, named residue-residue composition (RRC) and residue-residue pair composition (RRPC), which were used in supervised learning classification for Kcr prediction. As the result suggests, RRC and RRPC have achieved the best performance of RRC at an accuracy of 0.77 and an area under curve (AUC) value of 0.78, RRPC at an accuracy of 0.74, and an AUC value of 0.80. In order to show that the spatial feature is of a competitively high significance as other sequence-based features, feature selection was carried on those sequence-based features together with feature RRPC. In addition, different ranges of the surrounding amino acid compositions' radii were used for comparison of the performance. After result assessment, RRC and RRPC features have shown competitively outstanding performance as others or in some cases even around 0.20 higher in accuracy or 0.3 higher in AUC values compared with sequence-based features.
Collapse
Affiliation(s)
- Rulan Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhongyan Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
63
|
Karr JP, Ferrie JJ, Tjian R, Darzacq X. The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer-promoter communication. Genes Dev 2022; 36:7-16. [PMID: 34969825 PMCID: PMC8763055 DOI: 10.1101/gad.349160.121] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
How distal cis-regulatory elements (e.g., enhancers) communicate with promoters remains an unresolved question of fundamental importance. Although transcription factors and cofactors are known to mediate this communication, the mechanism by which diffusible molecules relay regulatory information from one position to another along the chromosome is a biophysical puzzle-one that needs to be revisited in light of recent data that cannot easily fit into previous solutions. Here we propose a new model that diverges from the textbook enhancer-promoter looping paradigm and offer a synthesis of the literature to make a case for its plausibility, focusing on the coactivator p300.
Collapse
Affiliation(s)
- Jonathan P Karr
- University of California at Berkeley, Berkeley, California 94720, USA
| | - John J Ferrie
- University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Robert Tjian
- University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Xavier Darzacq
- University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
64
|
Jauregui-Lozano J, Hall H, Stanhope SC, Bakhle K, Marlin MM, Weake VM. The Clock:Cycle complex is a major transcriptional regulator of Drosophila photoreceptors that protects the eye from retinal degeneration and oxidative stress. PLoS Genet 2022; 18:e1010021. [PMID: 35100266 PMCID: PMC8830735 DOI: 10.1371/journal.pgen.1010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 01/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aging eye experiences physiological changes that include decreased visual function and increased risk of retinal degeneration. Although there are transcriptomic signatures in the aging retina that correlate with these physiological changes, the gene regulatory mechanisms that contribute to cellular homeostasis during aging remain to be determined. Here, we integrated ATAC-seq and RNA-seq data to identify 57 transcription factors that showed differential activity in aging Drosophila photoreceptors. These 57 age-regulated transcription factors include two circadian regulators, Clock and Cycle, that showed sustained increased activity during aging. When we disrupted the Clock:Cycle complex by expressing a dominant negative version of Clock (ClkDN) in adult photoreceptors, we observed changes in expression of 15-20% of genes including key components of the phototransduction machinery and many eye-specific transcription factors. Using ATAC-seq, we showed that expression of ClkDN in photoreceptors leads to changes in activity of 37 transcription factors and causes a progressive decrease in global levels of chromatin accessibility in photoreceptors. Supporting a key role for Clock-dependent transcription in the eye, expression of ClkDN in photoreceptors also induced light-dependent retinal degeneration and increased oxidative stress, independent of light exposure. Together, our data suggests that the circadian regulators Clock and Cycle act as neuroprotective factors in the aging eye by directing gene regulatory networks that maintain expression of the phototransduction machinery and counteract oxidative stress.
Collapse
Affiliation(s)
- Juan Jauregui-Lozano
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Hana Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Sarah C. Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Kimaya Bakhle
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Makayla M. Marlin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Vikki M. Weake
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
65
|
Chang P, Li H, Hu H, Li Y, Wang T. The Role of HDAC6 in Autophagy and NLRP3 Inflammasome. Front Immunol 2021; 12:763831. [PMID: 34777380 PMCID: PMC8578992 DOI: 10.3389/fimmu.2021.763831] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy fights against harmful stimuli and degrades cytosolic macromolecules, organelles, and intracellular pathogens. Autophagy dysfunction is associated with many diseases, including infectious and inflammatory diseases. Recent studies have identified the critical role of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasomes activation in the innate immune system, which mediates the secretion of proinflammatory cytokines IL-1β/IL-18 and cleaves Gasdermin D to induce pyroptosis in response to pathogenic and sterile stimuli. Accumulating evidence has highlighted the crosstalk between autophagy and NLRP3 inflammasome in multifaceted ways to influence host defense and inflammation. However, the underlying mechanisms require further clarification. Histone deacetylase 6 (HDAC6) is a class IIb deacetylase among the 18 mammalian HDACs, which mainly localizes in the cytoplasm. It is involved in two functional deacetylase domains and a ubiquitin-binding zinc finger domain (ZnF-BUZ). Due to its unique structure, HDAC6 regulates various physiological processes, including autophagy and NLRP3 inflammasome, and may play a role in the crosstalk between them. In this review, we provide insight into the mechanisms by which HDAC6 regulates autophagy and NLRP3 inflammasome and we explored the possibility and challenges of HDAC6 in the crosstalk between autophagy and NLRP3 inflammasome. Finally, we discuss HDAC6 inhibitors as a potential therapeutic approach targeting either autophagy or NLRP3 inflammasome as an anti-inflammatory strategy, although further clarification is required regarding their crosstalk.
Collapse
Affiliation(s)
- Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| | - Hao Li
- Department of Emergency, First Hospital of China Medical University, Shenyang, China
| | - Hui Hu
- Department of Traumatology, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
66
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
67
|
Lee JM, Kim H, Baek SH. Unraveling the physiological roles of retinoic acid receptor-related orphan receptor α. Exp Mol Med 2021; 53:1278-1286. [PMID: 34588606 PMCID: PMC8492739 DOI: 10.1038/s12276-021-00679-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Retinoic acid receptor-related orphan receptor-α (RORα) is a member of the orphan nuclear receptor family and functions as a transcriptional activator in response to circadian changes. Circadian rhythms are complex cellular mechanisms regulating diverse metabolic, inflammatory, and tumorigenic gene expression pathways that govern cyclic cellular physiology. Disruption of circadian regulators, including RORα, plays a critical role in tumorigenesis and facilitates the development of inflammatory hallmarks. Although RORα contributes to overall fitness among anticancer, anti-inflammatory, lipid homeostasis, and circadian clock mechanisms, the molecular mechanisms underlying the mode of transcriptional regulation by RORα remain unclear. Nonetheless, RORα has important implications for pharmacological prevention of cancer, inflammation, and metabolic diseases, and understanding context-dependent RORα regulation will provide an innovative approach for unraveling the functional link between cancer metabolism and rhythm changes.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea. .,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
68
|
Kotarba G, Taracha-Wisniewska A, Miller M, Dabrowski M, Wilanowski T. Transcription factors Krüppel-like factor 4 and paired box 5 regulate the expression of the Grainyhead-like genes. PLoS One 2021; 16:e0257977. [PMID: 34570823 PMCID: PMC8476022 DOI: 10.1371/journal.pone.0257977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Genes from the Grainyhead-like (GRHL) family code for transcription factors necessary for the development and maintenance of various epithelia. These genes are also very important in the development of many types of cancer. However, little is known about the regulation of expression of GRHL genes. Previously, there were no systematic analyses of the promoters of GRHL genes or transcription factors that bind to these promoters. Here we report that the Krüppel-like factor 4 (KLF4) and the paired box 5 factor (PAX5) bind to the regulatory regions of the GRHL genes and regulate their expression. Ectopic expression of KLF4 or PAX5 alters the expression of GRHL genes. In KLF4-overexpressing HEK293 cells, the expression of GRHL1 and GRHL3 genes was upregulated by 32% and 60%, respectively, whereas the mRNA level of GRHL2 gene was lowered by 28% when compared to the respective controls. The levels of GRHL1 and GRHL3 expression were decreased by 30% or 33% in PAX5-overexpressing HEK293 cells. The presence of minor frequency allele of single nucleotide polymorphism rs115898376 in the promoter of the GRHL1 gene affected the binding of KLF4 to this site. The evidence presented here suggests an important role of KLF4 and PAX5 in the regulation of expression of GRHL1-3 genes.
Collapse
Affiliation(s)
- Grzegorz Kotarba
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | | | - Michal Miller
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wilanowski
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
69
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
70
|
Chao T, Hsieh C, Kuo Y, Yu Y, Wan C, Hsieh S. Bracteanolide A abrogates oxidative stress-induced cellular damage and protects against hepatic ischemia and reperfusion injury in rats. Food Sci Nutr 2021; 9:4758-4769. [PMID: 34531989 PMCID: PMC8441430 DOI: 10.1002/fsn3.2374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Liver diseases, including viral hepatitis, liver cirrhosis, and liver cancer, mostly remain silent until the late stages and pose a continuing threat to millions of people worldwide. Liver transplantation is the most appropriate solution in the case of liver failure, but it is associated with hepatic ischemia and reperfusion (I/R) injury which severely reduces the prognosis of the patients. In order to ameliorate I/R injury, we investigated the potential of bracteanolide A, from the herb Tradescantia albiflora Kunth in protecting the liver from I/R injury. We first determined the protective effect of bracteanolide A against oxidative stress and DNA damage using HepG2 hepatocyte cell line and then assessed the levels of inflammatory cytokines and antioxidant proteins in response to hepatic insult using an animal model of hepatic I/R injury. The results showed bracteanolide A greatly enhanced cell survival and decreased reactive oxygen species (ROS) production under H2O2 induction. It also upregulated the expression of nuclear factor (erythroid-derived 2)-like2 (Nrf2) and its downstream cytoprotective proteins NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Bracteanolide A effectively reduced the severity of liver lesions in I/R-injured rats revealed by histological analysis and significantly decreased the levels of alanine transaminase (ALT), aspartate transaminase (AST), cyclooxygenase-2, and inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Bracteanolide A preconditioning effectively protected the liver from I/R damage in the animal model, and this easily applied procedure may provide a new means to ameliorate hepatic I/R injury during liver surgeries.
Collapse
Affiliation(s)
- Ting‐Yu Chao
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Cheng‐Chu Hsieh
- Biologics DivisionAnimal Health Research InstituteCouncil of AgricultureExecutive Yuan, New Taipei CityTaiwan
| | - Yueh‐Hsiung Kuo
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine ResourcesChina Medical UniversityTaichungTaiwan
- Department of BiotechnologyAsia UniversityTaichungTaiwan
- Chinese Medicine Research CenterChina Medical UniversityTaichungTaiwan
| | - Ya‐Ju Yu
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Cho‐Hua Wan
- Graduate Institute of Molecular and Comparative PathobiologySchool of Veterinary MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Shu‐Chen Hsieh
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
71
|
Post-translational modifications in tumor-associated carbonic anhydrases. Amino Acids 2021; 54:543-558. [PMID: 34436666 DOI: 10.1007/s00726-021-03063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Human carbonic anhydrases IX (hCA IX) and XII (hCA XII) are two proteins associated with tumor formation and development. These enzymes have been largely investigated both from a biochemical and a functional point of view. However, limited data are currently available on the characterization of their post-translational modifications (PTMs) and the functional implication of these structural changes in the tumor environment. In this review, we summarize existing literature data on PTMs of hCA IX and hCA XII, such as disulphide bond formation, phosphorylation, O-/N-linked glycosylation, acetylation and ubiquitination, highlighting, when possible, their specific role in cancer pathological processes.
Collapse
|
72
|
Casillas AL, Chauhan SS, Toth RK, Sainz AG, Clements AN, Jensen CC, Langlais PR, Miranti CK, Cress AE, Warfel NA. Direct phosphorylation and stabilization of HIF-1α by PIM1 kinase drives angiogenesis in solid tumors. Oncogene 2021; 40:5142-5152. [PMID: 34211090 PMCID: PMC8364516 DOI: 10.1038/s41388-021-01915-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Angiogenesis is essential for the sustained growth of solid tumors. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of angiogenesis and constitutive activation of HIF-1 is frequently observed in human cancers. Therefore, understanding the mechanisms governing the activation of HIF-1 is critical for successful therapeutic targeting of tumor angiogenesis. Herein, we establish a new regulatory mechanism responsible for the constitutive activation of HIF-1α in cancer, irrespective of oxygen tension. PIM1 kinase directly phosphorylates HIF-1α at threonine 455, a previously uncharacterized site within its oxygen-dependent degradation domain. This phosphorylation event disrupts the ability of prolyl hydroxylases to bind and hydroxylate HIF-1α, interrupting its canonical degradation pathway and promoting constitutive transcription of HIF-1 target genes. Moreover, phosphorylation of the analogous site in HIF-2α (S435) stabilizes the protein through the same mechanism, indicating post-translational modification within the oxygen-dependent degradation domain as a mechanism of regulating the HIF-α subunits. In vitro and in vivo models demonstrate that expression of PIM1 is sufficient to stabilize HIF-1α and HIF-2α in normoxia and stimulate angiogenesis in a HIF-1-dependent manner. CRISPR mutants of HIF-1α (Thr455D) promoted increased tumor growth, proliferation, and angiogenesis. Moreover, HIF-1α-T455D xenograft tumors were refractory to the anti-angiogenic and cytotoxic effects of PIM inhibitors. These data identify a new signaling axis responsible for hypoxia-independent activation of HIF-1 and expand our understanding of the tumorigenic role of PIM1 in solid tumors.
Collapse
Affiliation(s)
- Andrea L Casillas
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | | | - Rachel K Toth
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Alva G Sainz
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Amber N Clements
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Corbin C Jensen
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Paul R Langlais
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Cindy K Miranti
- The University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Anne E Cress
- The University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Noel A Warfel
- The University of Arizona Cancer Center, Tucson, AZ, USA.
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
73
|
Weidemüller P, Kholmatov M, Petsalaki E, Zaugg JB. Transcription factors: Bridge between cell signaling and gene regulation. Proteomics 2021; 21:e2000034. [PMID: 34314098 DOI: 10.1002/pmic.202000034] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 01/17/2023]
Abstract
Transcription factors (TFs) are key regulators of intrinsic cellular processes, such as differentiation and development, and of the cellular response to external perturbation through signaling pathways. In this review we focus on the role of TFs as a link between signaling pathways and gene regulation. Cell signaling tends to result in the modulation of a set of TFs that then lead to changes in the cell's transcriptional program. We highlight the molecular layers at which TF activity can be measured and the associated technical and conceptual challenges. These layers include post-translational modifications (PTMs) of the TF, regulation of TF binding to DNA through chromatin accessibility and epigenetics, and expression of target genes. We highlight that a large number of TFs are understudied in both signaling and gene regulation studies, and that our knowledge about known TF targets has a strong literature bias. We argue that TFs serve as a perfect bridge between the fields of gene regulation and signaling, and that separating these fields hinders our understanding of cell functions. Multi-omics approaches that measure multiple dimensions of TF activity are ideally suited to study the interplay of cell signaling and gene regulation using TFs as the anchor to link the two fields.
Collapse
Affiliation(s)
- Paula Weidemüller
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Maksim Kholmatov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Evangelia Petsalaki
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
| |
Collapse
|
74
|
Mazzocca M, Fillot T, Loffreda A, Gnani D, Mazza D. The needle and the haystack: single molecule tracking to probe the transcription factor search in eukaryotes. Biochem Soc Trans 2021; 49:1121-1132. [PMID: 34003257 PMCID: PMC8286828 DOI: 10.1042/bst20200709] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) regulate transcription of their target genes by identifying and binding to regulatory regions of the genome among billions of potential non-specific decoy sites, a task that is often presented as a 'needle in the haystack' challenge. The TF search process is now well understood in bacteria, but its characterization in eukaryotes needs to account for the complex organization of the nuclear environment. Here we review how live-cell single molecule tracking is starting to shed light on the TF search mechanism in the eukaryotic cell and we outline the future challenges to tackle in order to understand how nuclear organization modulates the TF search process in physiological and pathological conditions.
Collapse
Affiliation(s)
- Matteo Mazzocca
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Tom Fillot
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniela Gnani
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
75
|
Liu Y, Jin S, Song L, Han Y, Yu B. Prediction of protein ubiquitination sites via multi-view features based on eXtreme gradient boosting classifier. J Mol Graph Model 2021; 107:107962. [PMID: 34198216 DOI: 10.1016/j.jmgm.2021.107962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 01/29/2023]
Abstract
Ubiquitination is a common and reversible post-translational protein modification that regulates apoptosis and plays an important role in protein degradation and cell diseases. However, experimental identification of protein ubiquitination sites is usually time-consuming and labor-intensive, so it is necessary to establish effective predictors. In this study, we propose a ubiquitination sites prediction method based on multi-view features, namely UbiSite-XGBoost. Firstly, we use seven single-view features encoding methods to convert protein sequence fragments into digital information. Secondly, the least absolute shrinkage and selection operator (LASSO) is applied to remove the redundant information and get the optimal feature subsets. Finally, these features are inputted into the eXtreme gradient boosting (XGBoost) classifier to predict ubiquitination sites. Five-fold cross-validation shows that the AUC values of Set1-Set6 datasets are 0.8258, 0.7592, 0.7853, 0.8345, 0.8979 and 0.8901, respectively. The synthetic minority oversampling technique (SMOTE) is employed in Set4-Set6 unbalanced datasets, and the AUC values are 0.9777, 0.9782 and 0.9860, respectively. In addition, we have constructed three independent test datasets which the AUC values are 0.8007, 0.6897 and 0.7280, respectively. The results show that the proposed method UbiSite-XGBoost is superior to other ubiquitination prediction methods and it provides new guidance for the identification of ubiquitination sites. The source code and all datasets are available at https://github.com/QUST-AIBBDRC/UbiSite-XGBoost/.
Collapse
Affiliation(s)
- Yushuang Liu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Shuping Jin
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Lili Song
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Yu Han
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China; Key Laboratory of Computational Science and Application of Hainan Province, Haikou, 571158, China.
| |
Collapse
|
76
|
Onaolapo OJ, Onaolapo AY, Olowe OA, Udoh MO, Udoh DO, Nathaniel TI. Melatonin and Melatonergic Influence on Neuronal Transcription Factors: Implications for the Development of Novel Therapies for Neurodegenerative Disorders. Curr Neuropharmacol 2021; 18:563-577. [PMID: 31885352 PMCID: PMC7457420 DOI: 10.2174/1570159x18666191230114339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 01/04/2023] Open
Abstract
Melatonin is a multifunctional signalling molecule that is secreted by the mammalian pineal gland, and also found in a number of organisms including plants and bacteria. Research has continued to uncover an ever-increasing number of processes in which melatonin is known to play crucial roles in mammals. Amongst these functions is its contribution to cell multiplication, differentiation and survival in the brain. Experimental studies show that melatonin can achieve these functions by influencing transcription factors which control neuronal and glial gene expression. Since neuronal survival and differentiation are processes that are important determinants of the pathogenesis, course and outcome of neurodegenerative disorders; the known and potential influences of melatonin on neuronal and glial transcription factors are worthy of constant examination. In this review, relevant scientific literature on the role of melatonin in preventing or altering the course and outcome of neurodegenerative disorders, by focusing on melatonin's influence on transcription factors is examined. A number of transcription factors whose functions can be influenced by melatonin in neurodegenerative disease models have also been highlighted. Finally, the therapeutic implications of melatonin's influences have also been discussed and the potential limitations to its applications have been highlighted.
Collapse
Affiliation(s)
- Olakunle J. Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y. Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olugbenga A. Olowe
- Molecular Bacteriology and Immunology Unit, Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Mojisola O. Udoh
- Department of Pathology, University of Benin Teaching Hospital, Benin City, Nigeria
| | - David O. Udoh
- Division of Neurological Surgery, Department of Surgery, University of Benin Teaching Hospital, Benin City, Edo State, Nigeria
| | - Thomas I. Nathaniel
- University of South Carolina School of Medicine-Greenville, Greenville, South Carolina, 29605, United States
| |
Collapse
|
77
|
Identification of juvenile hormone-induced posttranslational modifications of methoprene tolerant and Krüppel homolog 1 in the yellow fever mosquito, Aedes aegypti. J Proteomics 2021; 242:104257. [PMID: 33957312 DOI: 10.1016/j.jprot.2021.104257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
Recent studies reported that JH-regulated phosphorylation status of the JH-receptor complex contributes to its transcription activity in Aedes aegypti. However, phosphorylation sites of these proteins have not yet been identified. In this study, we found that the fusion of an EGFP tag to Ae. aegypti Kr-h1 (AaKr-h1) and Met (AaMet) improved their stability in mosquito Aag-2 cells, which allowed their purification. The liquid chromatography and tandem mass spectrometry analysis of the purified AaKr-h1 showed that the phosphoserine residue at position 694, located in the evolutionarily conserved SVIQ motif, is dephosphorylated when the cells are exposed to JH. The AaKr-h1 dephosphorylation mutant (S694V) showed significantly higher activity in inducing the luciferase gene regulated by JH response elements. The phosphorylation profile of Met also changed after exposing Aag-2 cells to JH III. The Ser-77 and Ser-710 residues of Met were phosphorylated after JH III treatment. In contrast, the two phosphoserine residues at positions 73 and 747 were dephosphorylated after JH III treatment. JH exposure also induced transient and reversible phosphorylation of Thr-664 and Ser-723 residues. Overall, these data show that JH induces changes in post-translational modifications of AaMet and AaKr-h1. SIGNIFICANCE: Female Aedes aegypti mosquitoes are known to vector many disease agents, including Zika virus, dengue virus chikungunya virus, and Mayaro and yellow fever virus. In the present study, we developed an efficient method to prepare Ae. aegypti Met and Kr-h1, which are typically difficult to produce and purify, using a mosquito cell line expression system. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approaches were utilized to map the phosphorylation profiles of the isolated proteins. We then monitored the changes induced by JH activation in the phosphorylation profiles to check if the JH modulates post-translation modification of its key transcription factors. We found that the JH induced alterations in the phosphorylation profiles of the multiple residues of AaMet. In contrast, activation of the JH signaling pathway was accompanied by dephosphorylation of AaKr-h1 at phosphoserine-694, increasing its transcriptional activity. In addition, S694 of AaKr-h1 was located in the RMSSVIQYA motif highly conserved in orthologous proteins from other insect species. These results can help us further understand how JH modulates its key transcription factors and provide a basis for the development of novel insect control strategies.
Collapse
|
78
|
Ghosh S, Börsch A, Ghosh S, Zavolan M. The transcriptional landscape of a hepatoma cell line grown on scaffolds of extracellular matrix proteins. BMC Genomics 2021; 22:238. [PMID: 33823809 PMCID: PMC8025518 DOI: 10.1186/s12864-021-07532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background The behavior of cells in vivo is complex and highly dynamic, as it results from an interplay between intercellular matrix proteins with surface receptors and other microenvironmental cues. Although the effects of the cellular niche have been investigated for a number of cell types using different molecular approaches, comprehensive assessments of how the global transcriptome responds to 3D scaffolds composed of various extracellular matrix (ECM) constituents at different concentrations are still lacking. Results In this study, we explored the effects of two diverse extracellular matrix (ECM) components, Collagen I and Matrigel, on the transcriptional profile of cells in a cell culture system. Culturing Huh-7 cells on traditional cell culture plates (Control) or on the ECM components at different concentrations to modulate microenvironment properties, we have generated transcriptomics data that may be further explored to understand the differentiation and growth potential of this cell type for the development of 3D cultures. Our analysis infers transcription factors that are most responsible for the transcriptome response to the extracellular cues. Conclusion Our data indicates that the Collagen I substrate induces a robust transcriptional response in the Huh-7 cells, distinct from that induced by Matrigel. Enhanced hepatocyte markers (ALB and miR-122) reveal a potentially robust remodelling towards primary hepatocytes. Our results aid in defining the appropriate culture and transcription pathways while using hepatoma cell lines. As systems mimicking the in vivo structure and function of liver cells are still being developed, our study could potentially circumvent bottlenecks of limited availability of primary hepatocytes for preclinical studies of drug targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07532-2.
Collapse
Affiliation(s)
- Souvik Ghosh
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Anastasiya Börsch
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Mihaela Zavolan
- Biozentrum, University of Basel, Basel, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
79
|
Fujita H, Fujita T, Fujii H. Locus-Specific Genomic DNA Purification Using the CRISPR System: Methods and Applications. CRISPR J 2021; 4:290-300. [PMID: 33876963 DOI: 10.1089/crispr.2020.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A multitude of molecular interactions with chromatin governs various chromosomal functions in cells. Insights into the molecular compositions at specific genomic regions are pivotal to deepen our understanding of regulatory mechanisms and the pathogenesis of disorders caused by the abnormal regulation of genes. The locus-specific purification of genomic DNA using the clustered regularly interspaced short palindromic repeats (CRISPR) system enables the isolation of target genomic regions for identification of bound interacting molecules. This CRISPR-based DNA purification method has many applications. In this study, we present an overview of the CRISPR-based DNA purification methodologies as well as recent applications.
Collapse
Affiliation(s)
- Hirotaka Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| |
Collapse
|
80
|
Stabell M, Sæther T, Røhr ÅK, Gabrielsen OS, Myklebost O. Methylation-dependent SUMOylation of the architectural transcription factor HMGA2. Biochem Biophys Res Commun 2021; 552:91-97. [PMID: 33744765 DOI: 10.1016/j.bbrc.2021.02.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 11/26/2022]
Abstract
High mobility group A2 (HMGA2) is a chromatin-associated protein involved in the regulation of stem cell function, embryogenesis and cancer development. Although the protein does not contain a consensus SUMOylation site, it is shown to be SUMOylated. In this study, we demonstrate that the first lysine residue in the reported K66KAE SUMOylation motif in HMGA2 can be methylated in vitro and in vivo by the Set7/9 methyltransferase. By editing the lysine, the increased hydrophobicity of the resulting 6-N-methyl-lysine transforms the sequence into a consensus SUMO motif. This post-translational editing dramatically increases the subsequent SUMOylation of this site. Furthermore, similar putative methylation-dependent SUMO motifs are found in a number of other chromatin factors, and we confirm methylation-dependent SUMOylation of a site in one such protein, the Polyhomeotic complex 1 homolog (PHC1). Together, these results suggest that crosstalk between methylation and SUMOylation is a general mode for regulation of chromatin function.
Collapse
Affiliation(s)
- Marianne Stabell
- Department of Tumor Biology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, PO Box 4953 Nydalen, N-0424, Oslo, Norway; Department of Molecular Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Thomas Sæther
- Department of Molecular Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Åsmund K Røhr
- Department of Molecular Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Odd S Gabrielsen
- Department of Molecular Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, PO Box 4953 Nydalen, N-0424, Oslo, Norway; Department of Molecular Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway.
| |
Collapse
|
81
|
Reichlmeir M, Elias L, Schulte D. Posttranslational Modifications in Conserved Transcription Factors: A Survey of the TALE-Homeodomain Superclass in Human and Mouse. Front Cell Dev Biol 2021; 9:648765. [PMID: 33768097 PMCID: PMC7985065 DOI: 10.3389/fcell.2021.648765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) guide effector proteins like chromatin-modifying or -remodeling enzymes to distinct sites in the genome and thereby fulfill important early steps in translating the genome’s sequence information into the production of proteins or functional RNAs. TFs of the same family are often highly conserved in evolution, raising the question of how proteins with seemingly similar structure and DNA-binding properties can exert physiologically distinct functions or respond to context-specific extracellular cues. A good example is the TALE superclass of homeodomain-containing proteins. All TALE-homeodomain proteins share a characteristic, 63-amino acid long homeodomain and bind to similar sequence motifs. Yet, they frequently fulfill non-redundant functions even in domains of co-expression and are subject to regulation by different signaling pathways. Here we provide an overview of posttranslational modifications that are associated with murine and human TALE-homeodomain proteins and discuss their possible importance for the biology of these TFs.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Lena Elias
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
82
|
Parise D, Parise MTD, Kataka E, Kato RB, List M, Tauch A, Azevedo VADC, Baumbach J. On the Consistency between Gene Expression and the Gene Regulatory Network of Corynebacterium glutamicum. NETWORK AND SYSTEMS MEDICINE 2021; 4:51-59. [PMID: 33796877 PMCID: PMC8006670 DOI: 10.1089/nsm.2020.0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Transcriptional regulation of gene expression is crucial for the adaptation and survival of bacteria. Regulatory interactions are commonly modeled as Gene Regulatory Networks (GRNs) derived from experiments such as RNA-seq, microarray and ChIP-seq. While the reconstruction of GRNs is fundamental to decipher cellular function, even GRNs of economically important bacteria such as Corynebacterium glutamicum are incomplete. Materials and Methods: Here, we analyzed the predictive power of GRNs if used as in silico models for gene expression and investigated the consistency of the C. glutamicum GRN with gene expression data from the GEO database. Results: We assessed the consistency of the C. glutamicum GRN using real, as well as simulated, expression data and showed that GRNs alone cannot explain the expression profiles well. Conclusion: Our results suggest that more sophisticated mechanisms such as a combination of transcriptional, post-transcriptional regulation and signaling should be taken into consideration when analyzing and constructing GRNs.
Collapse
Affiliation(s)
- Doglas Parise
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Teixeira Dornelles Parise
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Evans Kataka
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Markus List
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | - Jan Baumbach
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
83
|
Patel K, Solomon PD, Walshe JL, Ford DJ, Wilkinson-White L, Payne RJ, Low JKK, Mackay JP. BET-Family Bromodomains Can Recognize Diacetylated Sequences from Transcription Factors Using a Conserved Mechanism. Biochemistry 2021; 60:648-662. [PMID: 33620209 DOI: 10.1021/acs.biochem.0c00816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Almost all eukaryotic proteins receive diverse post-translational modifications (PTMs) that modulate protein activity. Many histone PTMs are well characterized, heavily influence gene regulation, and are often predictors of distinct transcriptional programs. Although our understanding of the histone PTM network has matured, much is yet to be understood about the roles of transcription factor (TF) PTMs, which might well represent a similarly complex and dynamic network of functional regulation. Members of the bromodomain and extra-terminal domain (BET) family of proteins recognize acetyllysine residues and relay the signals encoded by these modifications. Here, we have investigated the acetylation dependence of several functionally relevant BET-TF interactions in vitro using surface plasmon resonance, nuclear magnetic resonance, and X-ray crystallography. We show that motifs known to be acetylated in TFs E2F1 and MyoD1 can interact with all bromodomains of BRD2, BRD3, and BRD4. The interactions are dependent on diacetylation of the motifs and show a preference for the first BET bromodomain. Structural mapping of the interactions confirms a conserved mode of binding for the two TFs to the acetyllysine binding pocket of the BET bromodomains, mimicking that of other already established functionally important histone- and TF-BET interactions. We also examined a motif from the TF RelA that is known to be acetylated but were unable to observe any interaction, regardless of the acetylation state of the sequence. Our findings overall advance our understanding of BET-TF interactions and suggest a physical link between the important diacetylated motifs found in E2F1 and MyoD1 and the BET-family proteins.
Collapse
Affiliation(s)
- Karishma Patel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Paul D Solomon
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - James L Walshe
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel J Ford
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Richard J Payne
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
84
|
Izzo NJ, Yuede CM, LaBarbera KM, Limegrover CS, Rehak C, Yurko R, Waybright L, Look G, Rishton G, Safferstein H, Hamby ME, Williams C, Sadlek K, Edwards HM, Davis CS, Grundman M, Schneider LS, DeKosky ST, Chelsky D, Pike I, Henstridge C, Blennow K, Zetterberg H, LeVine H, Spires-Jones TL, Cirrito JR, Catalano SM. Preclinical and clinical biomarker studies of CT1812: A novel approach to Alzheimer's disease modification. Alzheimers Dement 2021; 17:1365-1382. [PMID: 33559354 PMCID: PMC8349378 DOI: 10.1002/alz.12302] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Amyloid beta (Aβ) oligomers are one of the most toxic structural forms of the Aβ protein and are hypothesized to cause synaptotoxicity and memory failure as they build up in Alzheimer's disease (AD) patients' brain tissue. We previously demonstrated that antagonists of the sigma-2 receptor complex effectively block Aβ oligomer toxicity. CT1812 is an orally bioavailable, brain penetrant small molecule antagonist of the sigma-2 receptor complex that appears safe and well tolerated in healthy elderly volunteers. We tested CT1812's effect on Aβ oligomer pathobiology in preclinical AD models and evaluated CT1812's impact on cerebrospinal fluid (CSF) protein biomarkers in mild to moderate AD patients in a clinical trial (ClinicalTrials.gov NCT02907567). METHODS Experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer binding to synapses in vitro, to human AD patient post mortem brain tissue ex vivo, and in living APPSwe /PS1dE9 transgenic mice in vivo. Additional experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer-induced deficits in membrane trafficking rate, synapse number, and protein expression in mature hippocampal/cortical neurons in vitro. The impact of CT1812 on cognitive function was measured in transgenic Thy1 huAPPSwe/Lnd+ and wild-type littermates. A multicenter, double-blind, placebo-controlled parallel group trial was performed to evaluate the safety, tolerability, and impact on protein biomarker expression of CT1812 or placebo given once daily for 28 days to AD patients (Mini-Mental State Examination 18-26). CSF protein expression was measured by liquid chromatography with tandem mass spectrometry or enzyme-linked immunosorbent assay in samples drawn prior to dosing (Day 0) and at end of dosing (Day 28) and compared within each patient and between pooled treated versus placebo-treated dosing groups. RESULTS CT1812 significantly and dose-dependently displaced Aβ oligomers bound to synaptic receptors in three independent preclinical models of AD, facilitated oligomer clearance into the CSF, increased synaptic number and protein expression in neurons, and improved cognitive performance in transgenic mice. CT1812 significantly increased CSF concentrations of Aβ oligomers in AD patient CSF, reduced concentrations of synaptic proteins and phosphorylated tau fragments, and reversed expression of many AD-related proteins dysregulated in CSF. DISCUSSION These preclinical studies demonstrate the novel disease-modifying mechanism of action of CT1812 against AD and Aβ oligomers. The clinical results are consistent with preclinical data and provide evidence of target engagement and impact on fundamental disease-related signaling pathways in AD patients, supporting further development of CT1812.
Collapse
Affiliation(s)
| | | | | | | | - Courtney Rehak
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Raymond Yurko
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Lora Waybright
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Gary Look
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | | | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | - Kelsey Sadlek
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | | | - Michael Grundman
- Global R&D Partners, San Diego, California, USA.,University of California San Diego, San Diego, California, USA
| | - Lon S Schneider
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Steven T DeKosky
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Kaj Blennow
- University of Gothenburg, Mölndal, Sweden.,Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- University of Gothenburg, Mölndal, Sweden.,Sahlgrenska University Hospital, Mölndal, Sweden.,UCL Institute of Neurology, London, UK
| | - Harry LeVine
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
85
|
Zaborowski AB, Walther D. Determinants of correlated expression of transcription factors and their target genes. Nucleic Acids Res 2020; 48:11347-11369. [PMID: 33104784 PMCID: PMC7672440 DOI: 10.1093/nar/gkaa927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 11/14/2022] Open
Abstract
While transcription factors (TFs) are known to regulate the expression of their target genes (TGs), only a weak correlation of expression between TFs and their TGs has generally been observed. As lack of correlation could be caused by additional layers of regulation, the overall correlation distribution may hide the presence of a subset of regulatory TF-TG pairs with tight expression coupling. Using reported regulatory pairs in the plant Arabidopsis thaliana along with comprehensive gene expression information and testing a wide array of molecular features, we aimed to discern the molecular determinants of high expression correlation of TFs and their TGs. TF-family assignment, stress-response process involvement, short genomic distances of the TF-binding sites to the transcription start site of their TGs, few required protein-protein-interaction connections to establish physical interactions between the TF and polymerase-II, unambiguous TF-binding motifs, increased numbers of miRNA target-sites in TF-mRNAs, and a young evolutionary age of TGs were found particularly indicative of high TF-TG correlation. The modulating roles of post-transcriptional, post-translational processes, and epigenetic factors have been characterized as well. Our study reveals that regulatory pairs with high expression coupling are associated with specific molecular determinants.
Collapse
Affiliation(s)
- Adam B Zaborowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
86
|
Transcriptional network modulated by the prognostic signature transcription factors and their long noncoding RNA partners in primary prostate cancer. EBioMedicine 2020; 63:103150. [PMID: 33279858 PMCID: PMC7718452 DOI: 10.1016/j.ebiom.2020.103150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 12/02/2022] Open
Abstract
Background Transcriptional regulators are seminal players in the onset and progression of prostate cancer. However, clarification of their underlying regulatory circuits and mechanisms demands considerable effort. Methods Integrated analyses were performed on genomic, transcriptomic, and clinicopathological profiles of primary prostate cancer and transcription factor-binding profiles, which included estimating transcription factor activity, identifying transcription factors of prognostic values, and discovering cis- and trans-regulations by long noncoding RNAs. Interactions between transcription factors and long noncoding RNAs were validated by RNA immunoprecipitation quantitative PCR. RNA interference assays were performed to explore roles of the selected transcription regulators. Findings Sixteen transcription factors, namely, ETS1, ARID4B, KLF12, GMEB1, HBP1, MXI1, MYC, MAX, PGR, BCL11A, AR, KLF4, SRF, HIF1A, EHF, and ATOH1, were jointly identified as a prognostic signature. Candidate long noncoding RNAs interplaying with the prognostic signature constituent transcription factors were further discovered. Their interactions were randomly checked, and many of them were experimentally proved. Transcription regulation by MYC and its long noncoding RNA partner AL590617.2 was further validated on their candidate targets. Moreover, the regulatory network governed by the transcription factors and their interacting long noncoding RNA partners is illustrated and stored in our LNCTRN database (https://navy.shinyapps.io/lnctrn). Interpretation The prognostic signature constituent transcription factors and their interacting long noncoding RNAs may represent promising biomarkers and/or therapeutic targets for prostate cancer. Furthermore, the computational framework proposed in the present study can be utilized to explore critical transcriptional regulators in other types of cancer. Funding This work was supported by National Natural Science Foundation of China and Fudan University.
Collapse
|
87
|
Maniyadath B, Sandra US, Kolthur-Seetharam U. Metabolic choreography of gene expression: nutrient transactions with the epigenome. J Biosci 2020. [DOI: 10.1007/s12038-019-9987-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
88
|
Williams CAC, Soufi A, Pollard SM. Post-translational modification of SOX family proteins: Key biochemical targets in cancer? Semin Cancer Biol 2020; 67:30-38. [PMID: 31539559 PMCID: PMC7703692 DOI: 10.1016/j.semcancer.2019.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/23/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022]
Abstract
Sox proteins are a family of lineage-associated transcription factors. They regulate expression of genes involved in control of self-renewal and multipotency in both developmental and adult stem cells. Overexpression of Sox proteins is frequently observed in many different human cancers. Despite their importance as therapeutic targets, Sox proteins are difficult to 'drug' using structure-based design. However, Sox protein localisation, activity and interaction partners are regulated by a plethora of post-translational modifications (PTMs), such as: phosphorylation, acetylation, sumoylation, methylation, and ubiquitylation. Here we review the various reported post-translational modifications of Sox proteins and their potential functional importance in guiding cell fate processes. The enzymes that regulate these PTMs could be useful targets for anti-cancer drug discovery.
Collapse
Affiliation(s)
- Charles A C Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU, Edinburgh, United Kingdom
| | - Abdenour Soufi
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU, Edinburgh, United Kingdom
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU, Edinburgh, United Kingdom.
| |
Collapse
|
89
|
Wang R, Wang Z, Wang H, Pang Y, Lee TY. Characterization and identification of lysine crotonylation sites based on machine learning method on both plant and mammalian. Sci Rep 2020; 10:20447. [PMID: 33235255 PMCID: PMC7686339 DOI: 10.1038/s41598-020-77173-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Lysine crotonylation (Kcr) is a type of protein post-translational modification (PTM), which plays important roles in a variety of cellular regulation and processes. Several methods have been proposed for the identification of crotonylation. However, most of these methods can predict efficiently only on histone or non-histone protein. Therefore, this work aims to give a more balanced performance in different species, here plant (non-histone) and mammalian (histone) are involved. SVM (support vector machine) and RF (random forest) were employed in this study. According to the results of cross-validations, the RF classifier based on EGAAC attribute achieved the best predictive performance which performs competitively good as existed methods, meanwhile more robust when dealing with imbalanced datasets. Moreover, an independent test was carried out, which compared the performance of this study and existed methods based on the same features or the same classifier. The classifiers of SVM and RF could achieve best performances with 92% sensitivity, 88% specificity, 90% accuracy, and an MCC of 0.80 in the mammalian dataset, and 77% sensitivity, 83% specificity, 70% accuracy and 0.54 MCC in a relatively small dataset of mammalian and a large-scaled plant dataset respectively. Moreover, a cross-species independent testing was also carried out in this study, which has proved the species diversity in plant and mammalian.
Collapse
Affiliation(s)
- Rulan Wang
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, People's Republic of China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, People's Republic of China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Hongfei Wang
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yuxuan Pang
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, People's Republic of China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, People's Republic of China.
| |
Collapse
|
90
|
Ahmad A, Strohbuecker S, Scotti C, Tufarelli C, Sottile V. In Silico Identification of SOX1 Post-Translational Modifications Highlights a Shared Protein Motif. Cells 2020; 9:E2471. [PMID: 33202879 PMCID: PMC7696889 DOI: 10.3390/cells9112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/02/2022] Open
Abstract
The transcription factor SOX1 is a key regulator of neural stem cell development, acting to keep neural stem cells (NSCs) in an undifferentiated state. Postnatal expression of Sox1 is typically confined to the central nervous system (CNS), however, its expression in non-neural tissues has recently been implicated in tumorigenesis. The mechanism through which SOX1 may exert its function is not fully understood, and studies have mainly focused on changes in SOX1 expression at a transcriptional level, while its post-translational regulation remains undetermined. To investigate this, data were extracted from different publicly available databases and analysed to search for putative SOX1 post-translational modifications (PTMs). Results were compared to PTMs associated with SOX2 in order to identify potentially key PTM motifs common to these SOXB1 proteins, and mapped on SOX1 domain structural models. This approach identified several putative acetylation, phosphorylation, glycosylation and sumoylation sites within known functional domains of SOX1. In particular, a novel SOXB1 motif (xKSExSxxP) was identified within the SOX1 protein, which was also found in other unrelated proteins, most of which were transcription factors. These results also highlighted potential phospho-sumoyl switches within this SOXB1 motif identified in SOX1, which could regulate its transcriptional activity. This analysis indicates different types of PTMs within SOX1, which may influence its regulatory role as a transcription factor, by bringing changes to its DNA binding capacities and its interactions with partner proteins. These results provide new research avenues for future investigations on the mechanisms regulating SOX1 activity, which could inform its roles in the contexts of neural stem cell development and cancer.
Collapse
Affiliation(s)
- Azaz Ahmad
- School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK; (A.A.); (S.S.)
| | - Stephanie Strohbuecker
- School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK; (A.A.); (S.S.)
| | - Claudia Scotti
- Department of Molecular Medicine, The University of Pavia, 27100 Pavia, Italy;
| | - Cristina Tufarelli
- Department of Genetics and Genome Biology/Leicester Cancer Research Centre, The University of Leicester, Leicester LE2 7LX, UK;
| | - Virginie Sottile
- School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK; (A.A.); (S.S.)
- Department of Molecular Medicine, The University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
91
|
Martin PC, Zabet NR. Dissecting the binding mechanisms of transcription factors to DNA using a statistical thermodynamics framework. Comput Struct Biotechnol J 2020; 18:3590-3605. [PMID: 33304457 PMCID: PMC7708957 DOI: 10.1016/j.csbj.2020.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 01/22/2023] Open
Abstract
Transcription Factors (TFs) bind to DNA and control activity of target genes. Here, we present ChIPanalyser, a user-friendly, versatile and powerful R/Bioconductor package predicting and modelling the binding of TFs to DNA. ChIPanalyser performs similarly to state-of-the-art tools, but is an explainable model and provides biological insights into binding mechanisms of TFs. We focused on investigating the binding mechanisms of three TFs that are known architectural proteins CTCF, BEAF-32 and su(Hw) in three Drosophila cell lines (BG3, Kc167 and S2). While CTCF preferentially binds only to a subset of high affinity sites located mainly in open chromatin, BEAF-32 binds to most of its high affinity binding sites available in open chromatin. In contrast, su(Hw) binds to both open chromatin and also partially closed chromatin. Most importantly, differences in TF binding profiles between cell lines for these TFs are mainly driven by differences in DNA accessibility and not by differences in TF concentrations between cell lines. Finally, we investigated binding of Hox TFs in Drosophila and found that Ubx binds only in open chromatin, while Abd-B and Dfd are capable to bind in both open and partially closed chromatin. Overall, our results show that TFs display different binding mechanisms and that our model is able to recapitulate their specific binding behaviour.
Collapse
Affiliation(s)
- Patrick C.N. Martin
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
92
|
Bui K, Hong YK. Ras Pathways on Prox1 and Lymphangiogenesis: Insights for Therapeutics. Front Cardiovasc Med 2020; 7:597374. [PMID: 33263009 PMCID: PMC7688453 DOI: 10.3389/fcvm.2020.597374] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Over the past couple of decades, lymphatics research has accelerated and gained a much-needed recognition in pathophysiology. As the lymphatic system plays heavy roles in interstitial fluid drainage, immune surveillance and lipid absorption, the ablation or excessive growth of this vasculature could be associated with many complications, from lymphedema to metastasis. Despite their growing importance in cancer, few anti-lymphangiogenic therapies exist today, as they have yet to pass phase 3 clinical trials and acquire FDA approval. As such, many studies are being done to better define the signaling pathways that govern lymphangiogenesis, in hopes of developing new therapeutic approaches to inhibit or stimulate this process. This review will cover our current understanding of the Ras signaling pathways and their interactions with Prox1, the master transcriptional switch involved in specifying lymphatic endothelial cell fate and lymphangiogenesis, in hopes of providing insights to lymphangiogenesis-based therapies.
Collapse
Affiliation(s)
| | - Young-Kwon Hong
- Department of Surgery, Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
93
|
Jahantigh D, Ghazaey Zidanloo S, Forghani F, Doroudian M. IL-27 variants might be genetic risk factors for preeclampsia: based on genetic polymorphisms, haplotypes and in silico approach. Mol Biol Rep 2020; 47:7929-7940. [PMID: 33011926 DOI: 10.1007/s11033-020-05871-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Pre-eclampsia (PE) is a disorder that occurs only during pregnancy. PE is associated with neonate mortality and morbidity. Overexpression of IL-27 and its receptor have been reported frequently in the trophoblast cells of patients with PE. In this study, we aimed to evaluate the relationship between genetic polymorphisms of IL-27 rs153109, and rs17855750 in an Iranian cohort of 170 PE patients and 170 normal pregnant women using the PCR-RFLP method. In the total PE, the frequency of heterozygous and mutant homozygous genotypes of rs153109 was significantly higher, severe, and mild PE groups. The genotypes and alleles frequencies of rs17855750 gene polymorphism were associated with PE susceptibility in total, severe and early-onset sub-group patients. Haplotype analysis of IL-27 rs153109 and rs17855750 polymorphisms revealed that the mutant GG haplotype frequencies significantly increased the risk of preeclampsia in total PE and different sub-group patients, while the wild AT haplotypes were associated with decreased risk of pre-eclampsia in total and sub-group patients. The in-silico analysis showed the transition of allele A to allele G in rs153109 SNP, would lead to create a new binding site and consequently may lead to changes in IL-27 gene expression. We found that rs17855750 A>G polymorphism might be influence the function of IL-27 protein. The data attained in our study propose the incidence of IL-27rs153109 and rs17855750 SNPs might be capable to be utilized as indicators for the genetic susceptibility to PE.
Collapse
Affiliation(s)
- Danial Jahantigh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Forough Forghani
- Department of Obstetrics and Gynecology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran. .,Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mohammad Doroudian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
94
|
Targeting post-translational modification of transcription factors as cancer therapy. Drug Discov Today 2020; 25:1502-1512. [DOI: 10.1016/j.drudis.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
|
95
|
Sukumaran A, Choi K, Dasgupta B. Insight on Transcriptional Regulation of the Energy Sensing AMPK and Biosynthetic mTOR Pathway Genes. Front Cell Dev Biol 2020; 8:671. [PMID: 32903688 PMCID: PMC7438746 DOI: 10.3389/fcell.2020.00671] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
The Adenosine Monophosphate-activated Protein Kinase (AMPK) and the Mechanistic Target of Rapamycin (mTOR) are two evolutionarily conserved kinases that together regulate nearly every aspect of cellular and systemic metabolism. These two kinases sense cellular energy and nutrient levels that in turn are determined by environmental nutrient availability. Because AMPK and mTOR are kinases, the large majority of studies remained focused on downstream substrate phosphorylation by these two proteins, and how AMPK and mTOR regulate signaling and metabolism in normal and disease physiology through phosphorylation of their substrates. Compared to the wealth of information known about the signaling and metabolic pathways modulated by these two kinases, much less is known about how the transcription of AMPK and mTOR pathway genes themselves are regulated, and the extent to which AMPK and mTOR regulate gene expression to cause durable changes in phenotype. Acute modification of cellular systems can be achieved through phosphorylation, however, induction of chronic changes requires modulation of gene expression. In this review we will assemble evidence from published studies on transcriptional regulation by AMPK and mTOR and discuss about the putative transcription factors that regulate expression of AMPK and mTOR complex genes.
Collapse
Affiliation(s)
- Abitha Sukumaran
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
96
|
Jo K, Santos-Buitrago B, Kim M, Rhee S, Talcott C, Kim S. Logic-based analysis of gene expression data predicts association between TNF, TGFB1 and EGF pathways in basal-like breast cancer. Methods 2020; 179:89-100. [PMID: 32445696 DOI: 10.1016/j.ymeth.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
For breast cancer, clinically important subtypes are well characterized at the molecular level in terms of gene expression profiles. In addition, signaling pathways in breast cancer have been extensively studied as therapeutic targets due to their roles in tumor growth and metastasis. However, it is challenging to put signaling pathways and gene expression profiles together to characterize biological mechanisms of breast cancer subtypes since many signaling events result from post-translational modifications, rather than gene expression differences. We designed a logic-based computational framework to explain the differences in gene expression profiles among breast cancer subtypes using Pathway Logic and transcriptional network information. Pathway Logic is a rewriting-logic-based formal system for modeling biological pathways including post-translational modifications. Our method demonstrated its utility by constructing subtype-specific path from key receptors (TNFR, TGFBR1 and EGFR) to key transcription factor (TF) regulators (RELA, ATF2, SMAD3 and ELK1) and identifying potential association between pathways via TFs in basal-specific paths, which could provide a novel insight on aggressive breast cancer subtypes. Codes and results are available at http://epigenomics.snu.ac.kr/PL/.
Collapse
Affiliation(s)
- Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Beatriz Santos-Buitrago
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sungmin Rhee
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | | | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea; Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
97
|
Suter DM. Transcription Factors and DNA Play Hide and Seek. Trends Cell Biol 2020; 30:491-500. [PMID: 32413318 DOI: 10.1016/j.tcb.2020.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 01/12/2023]
Abstract
Transcription factors (TFs) bind to specific DNA motifs to regulate the expression of target genes. To reach their binding sites, TFs diffuse in 3D and perform local motions such as 1D sliding, hopping, or intersegmental transfer. TF-DNA interactions depend on multiple parameters, such as the chromatin environment, TF partitioning into distinct subcellular regions, and cooperativity with other DNA-binding proteins. In this review, how current understanding of the search process has initially been shaped by prokaryotic studies is discussed, as well as what is known about the parameters regulating TF search efficiency in the context of the complex eukaryotic chromatin landscape.
Collapse
Affiliation(s)
- David M Suter
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
98
|
Busch MA, Gröndahl B, Knoll RL, Pretsch L, Doganci A, Hoffmann I, Kullmer U, Bähner V, Zepp F, Meyer CU, Gehring S. Patterns of mucosal inflammation in pediatric inflammatory bowel disease: striking overexpression of IL-17A in children with ulcerative colitis. Pediatr Res 2020; 87:839-846. [PMID: 31261370 DOI: 10.1038/s41390-019-0486-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Aberrant immune responses play a key role in the pathogenesis of inflammatory bowel disease (IBD). Most studies conducted to delineate the underlying molecular mechanisms focus on adults; an understanding of these mechanisms in children remains to be determined. Here, cytokines and transcription factors produced by immune cells within the intestinal mucosa of pediatric patients stricken with ulcerative colitis (UC) and Crohn's disease (CD) are characterized; potential diagnostic and therapeutic targets are identified. METHODS Fifty-two pediatric IBD and non-IBD patients were enrolled in the study. Specimens were taken during ileocolonoscopy. Expression of 16 genes that encode cytokines or transcription molecules was determined by quantitative polymerase chain reaction. Clinical data were collected via retrospective chart review. RESULTS Overexpression of interleukin-17A (IL-17A) was evident in children with UC compared to both non-IBD and CD patients. IL-22 was strongly increased in UC patients only. Typical proinflammatory and immunoregulatory cytokines were pronounced in IBD patients, although to a lower extent in the latter case. Clustered gene expression enabled differentiation between UC and non-IBD patients. CONCLUSION Our findings highlight the crucial involvement of IL-17A immunity in the early course of IBD, particularly UC, and the potential value of gene panels in diagnosing pediatric IBD.
Collapse
Affiliation(s)
- Meike A Busch
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Britta Gröndahl
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Rebecca L Knoll
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Leah Pretsch
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Aysefa Doganci
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Isabell Hoffmann
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Ulrike Kullmer
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Viola Bähner
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Fred Zepp
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Claudius U Meyer
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
99
|
Moustaqil M, Gambin Y, Sierecki E. Biophysical Techniques for Target Validation and Drug Discovery in Transcription-Targeted Therapy. Int J Mol Sci 2020; 21:E2301. [PMID: 32225120 PMCID: PMC7178067 DOI: 10.3390/ijms21072301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
In the post-genome era, pathologies become associated with specific gene expression profiles and defined molecular lesions can be identified. The traditional therapeutic strategy is to block the identified aberrant biochemical activity. However, an attractive alternative could aim at antagonizing key transcriptional events underlying the pathogenesis, thereby blocking the consequences of a disorder, irrespective of the original biochemical nature. This approach, called transcription therapy, is now rendered possible by major advances in biophysical technologies. In the last two decades, techniques have evolved to become key components of drug discovery platforms, within pharmaceutical companies as well as academic laboratories. This review outlines the current biophysical strategies for transcription manipulation and provides examples of successful applications. It also provides insights into the future development of biophysical methods in drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, UNSW Sydney, NSW 2052, Australia;
| | | | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, UNSW Sydney, NSW 2052, Australia;
| |
Collapse
|
100
|
Cai WL, Greer CB, Chen JF, Arnal-Estapé A, Cao J, Yan Q, Nguyen DX. Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain. BMC Med Genomics 2020; 13:33. [PMID: 32143622 PMCID: PMC7060551 DOI: 10.1186/s12920-020-0695-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background Few somatic mutations have been linked to breast cancer metastasis, whereas transcriptomic differences among primary tumors correlate with incidence of metastasis, especially to the lungs and brain. However, the epigenomic alterations and transcription factors (TFs) which underlie these alterations remain unclear. Methods To identify these, we performed RNA-seq, Chromatin Immunoprecipitation and sequencing (ChIP-seq) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) of the MDA-MB-231 cell line and its brain (BrM2) and lung (LM2) metastatic sub-populations. We incorporated ATAC-seq data from TCGA to assess metastatic open chromatin signatures, and gene expression data from human metastatic datasets to nominate transcription factor biomarkers. Results Our integrated epigenomic analyses found that lung and brain metastatic cells exhibit both shared and distinctive signatures of active chromatin. Notably, metastatic sub-populations exhibit increased activation of both promoters and enhancers. We also integrated these data with chromosome conformation capture coupled with ChIP-seq (HiChIP) derived enhancer-promoter interactions to predict enhancer-controlled pathway alterations. We found that enhancer changes are associated with endothelial cell migration in LM2, and negative regulation of epithelial cell proliferation in BrM2. Promoter changes are associated with vasculature development in LM2 and homophilic cell adhesion in BrM2. Using ATAC-seq, we identified a metastasis open-chromatin signature that is elevated in basal-like and HER2-enriched breast cancer subtypes and associates with worse prognosis in human samples. We further uncovered TFs associated with the open chromatin landscapes of metastatic cells and whose expression correlates with risk for metastasis. While some of these TFs are associated with primary breast tumor subtypes, others more specifically correlate with lung or brain metastasis. Conclusions We identify distinctive epigenomic properties of breast cancer cells that metastasize to the lung and brain. We also demonstrate that signatures of active chromatin sites are partially linked to human breast cancer subtypes with poor prognosis, and that specific TFs can independently distinguish lung and brain relapse.
Collapse
Affiliation(s)
- Wesley L Cai
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Celeste B Greer
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Present address: Department of Pharmacology, Vanderbilt University School of Medicine, 2209 Garland Ave, Nashville, TN, 37240-0002, USA
| | - Jocelyn F Chen
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Anna Arnal-Estapé
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Jian Cao
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Present address: Rutgers Cancer Institute of New Jersey, Rutgers, 195 Little Albany St, New Brunswick, NJ, 08903-2681, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Stem Cell Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Department of Pathology, Yale School of Medicine, P.O. Box 208023, New Haven, CT, 06520-8023, USA.
| | - Don X Nguyen
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Stem Cell Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Department of Pathology, Yale School of Medicine, P.O. Box 208023, New Haven, CT, 06520-8023, USA. .,Department of Medicine (Medical Oncology), Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.
| |
Collapse
|