51
|
O’Sullivan JD, Knell RJ, Rossberg AG. Metacommunity‐scale biodiversity regulation and the self‐organised emergence of macroecological patterns. Ecol Lett 2019; 22:1428-1438. [DOI: 10.1111/ele.13294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/21/2019] [Accepted: 05/05/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jacob D. O’Sullivan
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road LondonE1 4NS UK
| | - Robert J. Knell
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road LondonE1 4NS UK
| | - Axel G. Rossberg
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road LondonE1 4NS UK
| |
Collapse
|
52
|
Burgess MG, Fredston-Hermann A, Tilman D, Loreau M, Gaines SD. Broadly inflicted stressors can cause ecosystem thinning. THEOR ECOL-NETH 2019; 12:207-223. [PMID: 31723368 PMCID: PMC6853792 DOI: 10.1007/s12080-019-0417-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/12/2019] [Indexed: 11/26/2022]
Abstract
Many anthropogenic stressors broadly inflict mortality or reduce fecundity, including habitat destruction, pollution, climate change, invasive species, and multispecies harvesting. Here, we show-in four analytical models of interspecies competition-that broadly inflicted stressors disproportionately cause competitive exclusions within groups of ecologically similar species. As a result, we predict that ecosystems become progressively thinner-that is, they have progressively less functional redundancy-as broadly inflicted stressors become progressively more intense. This may negatively affect the temporal stability of ecosystem functions, but it also buffers ecosystem productivity against stress by favoring species less sensitive to the stressors. Our main result follows from the weak limiting similarity principle: species with more similar ecological niches compete more strongly, and their coexistence can be upset by smaller perturbations. We show that stressors can cause indirect competitive exclusions at much lower stressor intensity than needed to directly cause species extinction, consistent with the finding of empirical studies that species interactions are often the proximal drivers of local extinctions. The excluded species are more sensitive to the stressor relative to their ecologically similar competitors. Moreover, broadly inflicted stressors may cause hydra effects-where higher stressor intensity results in higher abundance for a species with lower sensitivity to the stressor than its competitors. Correlations between stressor impacts and ecological niches reduce the potential for indirect competitive exclusions, but they consequently also reduce the buffering effect of ecosystem thinning on ecosystem productivity. Our findings suggest that ecosystems experiencing stress may continue to provision ecosystem services but lose functional redundancy and stability.
Collapse
Affiliation(s)
- Matthew G. Burgess
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, 216 UCB, Boulder, CO 80309, USA
- Environmental Studies Program, University of Colorado, Boulder, CO 80303, USA
| | - Alexa Fredston-Hermann
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - David Tilman
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 09200 Moulis, France
| | - Steven D. Gaines
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
53
|
Parasitic plasmid-host dynamics and host competition in flowing habitats. Math Biosci 2019; 311:109-124. [PMID: 30849409 DOI: 10.1016/j.mbs.2019.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 11/23/2022]
Abstract
Competition and coexistence were examined for two bacterial species, each potentially carrying a fitness-reducing, parasitic plasmid that was vertically transmitted with possible loss through segregation. Here, the fitness reduction of hosts was due to a toxin produced by plasmid-bearing cells and inhibiting plasmid-free cells. These populations were placed in a flow reactor habitat representing an idealized mammal gut. It was numerically shown that parasitic plasmids can mediate coexistence of competing host species, in conditions where plasmid-free hosts could not coexist. Numerical construction of a coexistence example suggests that it arises only for a narrow parameter range. In particular, both rates of segregation and the growth costs of plasmid carriage must be relatively low.
Collapse
|
54
|
McPeek MA. Limiting Similarity? The Ecological Dynamics of Natural Selection among Resources and Consumers Caused by Both Apparent and Resource Competition. Am Nat 2019; 193:E92-E115. [PMID: 30912964 DOI: 10.1086/701629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Much of ecological theory presumes that natural selection should foster species coexistence by phenotypically differentiating competitors so that the stability of the community is increased, but whether this will actually occur is a question of the ecological dynamics of natural selection. I develop an evolutionary model of consumer-resource interactions based on MacArthur's and Tilman's classic works, including both resource and apparent competition, to explore what fosters or retards the differentiation of resources and their consumers. Analyses of this model predict that consumers will differentiate only on specific ranges of environmental gradients (e.g., greater productivity, weaker stressors, lower structural complexity), and where it occurs, the magnitude of differentiation also depends on gradient position. In contrast to "limiting similarity" expectations, greater intraspecific phenotypic variance results in less differentiation among the consumers because of how phenotypic variation alters the fitness landscapes driving natural selection. In addition, the final structure of the community that results from the coevolution of these interacting species may be highly contingent on the initial properties of the species as the community is being assembled. These results highlight the fact that evolutionary conclusions about community structure cannot be based on ecological arguments of community stability or coexistence but rather must be explicitly based on the ecological dynamics of natural selection.
Collapse
|
55
|
Koffel T, Daufresne T, Massol F, Klausmeier CA. Plant Strategies along Resource Gradients. Am Nat 2018; 192:360-378. [DOI: 10.1086/698600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
56
|
Song C, Rohr RP, Saavedra S. A guideline to study the feasibility domain of multi-trophic and changing ecological communities. J Theor Biol 2018; 450:30-36. [DOI: 10.1016/j.jtbi.2018.04.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/30/2022]
|
57
|
Clark AT, Neuhauser C. Harnessing uncertainty to approximate mechanistic models of interspecific interactions. Theor Popul Biol 2018; 123:35-44. [PMID: 29859932 DOI: 10.1016/j.tpb.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
Because the Lotka-Volterra competitive equations posit no specific competitive mechanisms, they are exceedingly general, and can theoretically approximate any underlying mechanism of competition near equilibrium. In practice, however, these models rarely generate accurate predictions in diverse communities. We propose that this difference between theory and practice may be caused by how uncertainty propagates through Lotka-Volterra systems. In approximating mechanistic relationships with Lotka-Volterra models, associations among parameters are lost, and small variation can correspond to large and unrealistic changes in predictions. We demonstrate that constraining Lotka-Volterra models using correlations among parameters expected from hypothesized underlying mechanisms can reintroduce some of the underlying structure imposed by those mechanisms, thereby improving model predictions by both reducing bias and increasing precision. Our results suggest that this hybrid approach may combine some of the generality of phenomenological models with the broader applicability and meaningful interpretability of mechanistic approaches. These methods could be useful in poorly understood systems for identifying important coexistence mechanisms, or for making more accurate predictions.
Collapse
Affiliation(s)
- Adam Thomas Clark
- University of Minnesota, Department of Ecology, Evolution, and Behavior, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA; Department of Physiological Diversity, Helmholtz Center for Environmental Research (UFZ), Permoserstrasse 15, Leipzig 04318, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Synthesis Centre for Biodiversity Sciences (sDiv), Deutscher Platz 5e, 04103, Leipzig, Germany; Leipzig University, Ritterstrasse 26, 04109 Leipzig, Germany.
| | - Claudia Neuhauser
- University of Minnesota, Department of Ecology, Evolution, and Behavior, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA; University of Minnesota, University of Minnesota Informatics Institute, Minneapolis, MN, 55455, USA; Division of Research, University of Houston, Houston, TX 77204, United States
| |
Collapse
|
58
|
Rael RC, D'Andrea R, Barabás G, Ostling A. Emergent niche structuring leads to increased differences from neutrality in species abundance distributions. Ecology 2018; 99:1633-1643. [PMID: 29655259 DOI: 10.1002/ecy.2238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022]
Abstract
Species abundance distributions must reflect the dynamic processes involved in community assembly, but whether and when specific processes lead to distinguishable signals is not well understood. Biodiversity and species abundances may be shaped by a variety of influences, but particular attention has been paid to competition, which can involve neutral dynamics, where competitor abundances are governed only by demographic stochasticity and immigration, and dynamics driven by trait differences that enable stable coexistence through the formation of niches. Key recent studies of the species abundance patterns of communities with niches employ simple models with pre-imposed niche structure. These studies suggest that species abundance distributions are insensitive to the relative contributions of niche and neutral processes, especially when diversity is much higher than the number of niches. Here we analyze results from a stochastic population model with competition driven by trait differences. With this model, niche structure emerges as clumps of species that persist along the trait axis, and leads to more substantial differences from neutral species abundance distributions than have been previously shown. We show that heterogeneity in "between-niche" interaction strength (i.e., in the strength of competition between species in different niches) plays the dominant role in shaping the species abundances along the trait axis, acting as a biotic filter favoring species at the centers of niches. Furthermore, we show that heterogeneity in "within-niche" interactions (i.e., in the competition between species in the same niche) counteracts the influence of heterogeneity in "between-niche" interactions on the SAD to some degree. Our results suggest that competitive interactions that produce niches can also influence the shapes of SADs.
Collapse
Affiliation(s)
- Rosalyn C Rael
- Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109-1048, USA
| | - Rafael D'Andrea
- Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109-1048, USA
| | - György Barabás
- Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109-1048, USA
| | - Annette Ostling
- Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109-1048, USA
| |
Collapse
|
59
|
Affiliation(s)
- György Barabás
- Division of Theoretical Biology Department IFM Linköping University SE‐58183 Linköping Sweden
| | - Rafael D'Andrea
- Department of Plant Biology University of Illinois at Urbana‐Champaign Urbana Illinois 61801 USA
| | | |
Collapse
|
60
|
Argasinski K, Broom M. Evolutionary stability under limited population growth: Eco-evolutionary feedbacks and replicator dynamics. ECOLOGICAL COMPLEXITY 2018. [DOI: 10.1016/j.ecocom.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
Parvinen K, Dieckmann U. Environmental dimensionality. J Theor Biol 2018:S0022-5193(18)30122-X. [PMID: 29551543 DOI: 10.1016/j.jtbi.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 11/26/2022]
Abstract
The number of regulating variables n in a given system is an upper bound to the number of coexisting species at equilibrium according to the competitive exclusion principle. However, it may be possible to formulate the model with a lower number of regulating variables, the smallest number of which is the dimension of the environmental feedback. Here we investigate how that dimension can be determined by analysing the two parts of environmental feedback: The impact map describes how the extant species affect the regulating variables, and the sensitivity map describes how population growth depends on the regulating variables. For the equilibrium condition it is enough to know the sign of each population growth rate, and therefore as the sensitivity map, different measures of population growth can be chosen, such as the basic reproduction number. The dimension of the environmental feedback must not depend on that choice. Different sensitivity maps can have different global dimensions, on which the definition thus cannot be based. Here we show that the local sensitivity dimension is independent of the choice, so that the concept is well-defined. The impact dimension is lower than n when the feasible set of environments is of lower dimension than n, and sensitivity dimension is lower than n when not all environmental variables affect the sign of population growth independently. Their combined effect can result in even lower environmental dimension. We illustrate such situations with examples. In conclusion, the dimension of environmental feedback gives valuable information about the potential coexistence of species.
Collapse
Affiliation(s)
- Kalle Parvinen
- Department of Mathematics and Statistics, University of Turku, FIN-20014 Finland.
| | - Ulf Dieckmann
- Department of Mathematics and Statistics, University of Turku, FIN-20014 Finland
| |
Collapse
|
62
|
Which Coexistence Mechanisms Should Biogeographers Quantify? A Reply to Alexander et al. Trends Ecol Evol 2018; 33:145-147. [DOI: 10.1016/j.tree.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 11/18/2022]
|
63
|
Patel S, Cortez MH, Schreiber SJ. Partitioning the Effects of Eco-Evolutionary Feedbacks on Community Stability. Am Nat 2018. [DOI: 10.1086/695834] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
64
|
Affiliation(s)
- György Barabás
- Division of Theoretical Biology, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden.
| |
Collapse
|
65
|
Ehrlich E, Becks L, Gaedke U. Trait-fitness relationships determine how trade-off shapes affect species coexistence. Ecology 2017; 98:3188-3198. [DOI: 10.1002/ecy.2047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Elias Ehrlich
- Department of Ecology and Ecosystem Modelling; Institute for Biochemistry and Biology; University of Potsdam; Am Neuen Palais 10 Potsdam 14469 Germany
| | - Lutz Becks
- Community Dynamics Group; Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 Plön 24306 Germany
| | - Ursula Gaedke
- Department of Ecology and Ecosystem Modelling; Institute for Biochemistry and Biology; University of Potsdam; Am Neuen Palais 10 Potsdam 14469 Germany
| |
Collapse
|
66
|
Szilágyi A, Zachar I, Scheuring I, Kun Á, Könnyű B, Czárán T. Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems. Life (Basel) 2017; 7:E48. [PMID: 29186916 PMCID: PMC5745561 DOI: 10.3390/life7040048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future.
Collapse
Affiliation(s)
- András Szilágyi
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049 Pullach/Munich, Germany.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
| | - István Zachar
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049 Pullach/Munich, Germany.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
| | - István Scheuring
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
| | - Ádám Kun
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049 Pullach/Munich, Germany.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
| | - Balázs Könnyű
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
| | - Tamás Czárán
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
- Biocomplexity Group, Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, 2100 Copenhagen, Denmark.
| |
Collapse
|
67
|
Abstract
Most species have one or more natural enemies, e.g., predators, parasites, pathogens, and herbivores, among others. These species in turn typically attack multiple victim species. This leads to the possibility of indirect interactions among those victims, both positive and negative. The term apparent competition commonly denotes negative indirect interactions between victim species that arise because they share a natural enemy. This indirect interaction, which in principle can be reflected in many facets of the distribution and abundance of individual species and more broadly govern the structure of ecological communities in time and space, pervades many natural ecosystems. It also is a central theme in many applied ecological problems, including the control of agricultural pests, harvesting, the conservation of endangered species, and the dynamics of emerging diseases. At one end of the scale of life, apparent competition characterizes intriguing aspects of dynamics within individual organisms—for example, the immune system is akin in many ways to a predator that can induce negative indirect interactions among different pathogens. At intermediate scales of biological organization, the existence and strength of apparent competition depend upon many contingent details of individual behavior and life history, as well as the community and spatial context within which indirect interactions play out. At the broadest scale of macroecology and macroevolution, apparent competition may play a major, if poorly understood, role in the evolution of species’ geographical ranges and adaptive radiations.
Collapse
Affiliation(s)
- Robert D. Holt
- Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - Michael B. Bonsall
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
68
|
Ashby B, Watkins E, Lourenço J, Gupta S, Foster KR. Competing species leave many potential niches unfilled. Nat Ecol Evol 2017; 1:1495-1501. [PMID: 28983517 PMCID: PMC5624504 DOI: 10.1038/s41559-017-0295-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/26/2017] [Indexed: 11/29/2022]
Abstract
A cornerstone of biology is that coexisting species evolve to occupy separate ecological niches. Classical theory predicts that interspecific competition should lead to all potential niches being occupied, yet observational data suggest that many niches are unfilled. Here we show that theory can be reconciled with observational data by reconceptualising competition in the Hutchinsonian niche space to distinguish between substitutable and non-substitutable resources. When resources are substitutable (e.g. seeds of different size), the components of competition along the niche axes combine multiplicatively, leading to a densely packed niche space. However, when resources are non-substitutable (e.g. seeds and nest sites), we show that the components of competition combine additively. Disruptive selection therefore limits niche overlap between non-substitutable niche axes, leaving most potential niches unfilled. A key corollary is that increasing the number of niche axes may greatly increase the number of potential niches but does not necessarily increase diversity. We discuss observational data that are consistent with our model and consider implications for systems with invasive species. Our work reinforces the power of competition to drive major ecological patterns: while niche space informs on species that might exist, only a small and potentially arbitrary subset will coexist in sympatry.
Collapse
Affiliation(s)
- Ben Ashby
- Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eleanor Watkins
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| |
Collapse
|
69
|
Kremer CT, Klausmeier CA. Species packing in eco‐evolutionary models of seasonally fluctuating environments. Ecol Lett 2017; 20:1158-1168. [DOI: 10.1111/ele.12813] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/30/2017] [Accepted: 06/19/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Colin T. Kremer
- Kellogg Biological Station Michigan State University 3700 E Gull Lake Dr. Hickory Corners MI49060 USA
- Department of Plant Biology and Program in Ecology Evolutionary Biology and Behavior Michigan State University East Lansing MI USA
- Department of Ecology & Evolutionary Biology Yale University PO Box 208106 New Haven CT 06520 USA
| | - Christopher A. Klausmeier
- Kellogg Biological Station Michigan State University 3700 E Gull Lake Dr. Hickory Corners MI49060 USA
- Department of Plant Biology and Program in Ecology Evolutionary Biology and Behavior Michigan State University East Lansing MI USA
| |
Collapse
|
70
|
Calcagno V, Jarne P, Loreau M, Mouquet N, David P. Diversity spurs diversification in ecological communities. Nat Commun 2017; 8:15810. [PMID: 28598423 PMCID: PMC5494188 DOI: 10.1038/ncomms15810] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/05/2017] [Indexed: 11/19/2022] Open
Abstract
Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss. Diversification may be driven by diversity, a concept Calcagno et al. explore using models of intra- and inter-specific ecological interactions. A threshold number of species is sometimes required before adaptive radiations can occur; a phenomenon they term diversity-dependent adaptive radiation.
Collapse
Affiliation(s)
- Vincent Calcagno
- Université Côte d'Azur, CNRS, INRA, ISA, Sophia Antipolis 06900, France
| | - Philippe Jarne
- CEFE UMR 5175, CNRS-Univ. of Montpellier-Univ. P. Valery Montp.-EPHE, Montpellier 34090, France
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS-Univ. Paul Sabatier, Moulis 09200, France
| | - Nicolas Mouquet
- MARBEC, CNRS-IFREMER-IRD-Univ. of Montpellier, Montpellier 34095, France
| | - Patrice David
- CEFE UMR 5175, CNRS-Univ. of Montpellier-Univ. P. Valery Montp.-EPHE, Montpellier 34090, France
| |
Collapse
|
71
|
Cressman R, Halloway A, McNickle GG, Apaloo J, Brown JS, Vincent TL. Unlimited niche packing in a Lotka-Volterra competition game. Theor Popul Biol 2017; 116:1-17. [PMID: 28495494 DOI: 10.1016/j.tpb.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 02/10/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
A central question in the study of ecology and evolution is: "Why are there so many species?" It has been shown that certain forms of the Lotka-Volterra (L-V) competition equations lead to an unlimited number of species. Furthermore, these authors note how any change in the nature of competition (the competition kernel) leads to a finite or small number of coexisting species. Here we build upon these works by further investigating the L-V model of unlimited niche packing as a reference model and evolutionary game for understanding the environmental factors restricting biodiversity. We also examine the combined eco-evolutionary dynamics leading up to the species diversity and traits of the ESS community in both unlimited and finite niche-packing versions of the model. As an L-V game with symmetric competition, we let the strategies of individuals determine the strength of the competitive interaction (like competes most with like) and also the carrying capacity of the population. We use a mixture of analytic proofs (for one and two species systems) and numerical simulations. For the model of unlimited niche packing, we show that a finite number of species will evolve to specific convergent stable minima of the adaptive landscape (also known as species archetypes). Starting with a single species, faunal buildup can proceed either through species doubling as each diversity-specific set of minima are reached, or through the addition of species one-by-one by randomly assigning a speciation event to one of the species. Either way it is possible for an unlimited number or species to evolve and coexist. We examine two simple and biologically likely ways for breaking the unlimited niche-packing: (1) some minimum level of competition among species, and (2) constrain the fundamental niche of the trait space to a finite interval. When examined under both ecological and evolutionary dynamics, both modifications result in convergent stable ESSs with a finite number of species. When the number of species is held below the number of species in an ESS coalition, we see a diverse array of convergent stable niche archetypes that consist of some species at maxima and some at minima of the adaptive landscape. Our results support those of others and suggest that instead of focusing on why there are so many species we might just as usefully ask, why are there so few species?
Collapse
Affiliation(s)
- Ross Cressman
- Department of Mathematics, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.
| | - Abdel Halloway
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA.
| | - Gordon G McNickle
- Purdue University, Department of Botany and Plant Pathology and Purdue Center for Plant Biology, 915 W. State Street, West Lafayette, IN, 47907, USA.
| | - Joe Apaloo
- Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, P. O. Box 5000 Antigonish, Nova Scotia B2G 2W5 Canada.
| | - Joel S Brown
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA.
| | - Thomas L Vincent
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
72
|
Karisto P, Kisdi É. Evolution of dispersal under variable connectivity. J Theor Biol 2017; 419:52-65. [PMID: 27851903 DOI: 10.1016/j.jtbi.2016.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/31/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
The pattern of connectivity between local populations or between microsites supporting individuals within a population is a poorly understood factor affecting the evolution of dispersal. We modify the well-known Hamilton-May model of dispersal evolution to allow for variable connectivity between microsites. For simplicity, we assume that the microsites are either solitary, i.e., weakly connected through costly dispersal, or part of a well-connected cluster of sites with low-cost dispersal within the cluster. We use adaptive dynamics to investigate the evolution of dispersal, obtaining analytic results for monomorphic evolution and numerical results for the co-evolution of two dispersal strategies. A monomorphic population always evolves to a unique singular dispersal strategy, which may be an evolutionarily stable strategy or an evolutionary branching point. Evolutionary branching happens if the contrast between connectivities is sufficiently high and the solitary microsites are common. The dimorphic evolutionary singularity, when it exists, is always evolutionarily and convergence stable. The model exhibits both protected and unprotected dimorphisms of dispersal strategies, but the dimorphic singularity is always protected. Contrasting connectivities can thus maintain dispersal polymorphisms in temporally stable environments.
Collapse
Affiliation(s)
- Petteri Karisto
- Department of Mathematics and Statistics, University of Helsinki, Finland.
| | - Éva Kisdi
- Department of Mathematics and Statistics, University of Helsinki, Finland.
| |
Collapse
|
73
|
Gyllenberg M, Hanski I, Lindström T. Conditional Reproductive Strategies Under Variable Environmental Conditions. ANN ZOOL FENN 2017. [DOI: 10.5735/086.054.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mats Gyllenberg
- Department of Mathematics and Statistics, P.O. Box 68, FI-00014 University of Helsinki, Finland
| | - Ilkka Hanski
- Department of Biosciences P.O. Box 65, FI-00014 University of Helsinki, Finland
| | - Torsten Lindström
- Department of Mathematics, Linnæus University, SE-351 95 Växjö, Sweden
| |
Collapse
|
74
|
Feasibility and coexistence of large ecological communities. Nat Commun 2017; 8:ncomms14389. [PMID: 28233768 PMCID: PMC5333123 DOI: 10.1038/ncomms14389] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/22/2016] [Indexed: 11/30/2022] Open
Abstract
The role of species interactions in controlling the interplay between the stability of ecosystems and their biodiversity is still not well understood. The ability of ecological communities to recover after small perturbations of the species abundances (local asymptotic stability) has been well studied, whereas the likelihood of a community to persist when the conditions change (structural stability) has received much less attention. Our goal is to understand the effects of diversity, interaction strengths and ecological network structure on the volume of parameter space leading to feasible equilibria. We develop a geometrical framework to study the range of conditions necessary for feasible coexistence. We show that feasibility is determined by few quantities describing the interactions, yielding a nontrivial complexity–feasibility relationship. Analysing more than 100 empirical networks, we show that the range of coexistence conditions in mutualistic systems can be analytically predicted. Finally, we characterize the geometric shape of the feasibility domain, thereby identifying the direction of perturbations that are more likely to cause extinctions. A central question in theoretical ecology is how diverse species can coexist in communities, and how that coexistence depends on network properties. Here, Grilli et al. quantify the extent of feasible coexistence of empirical networks, showing that it is smaller for trophic than mutualism networks.
Collapse
|
75
|
Letten AD, Ke P, Fukami T. Linking modern coexistence theory and contemporary niche theory. ECOL MONOGR 2017. [DOI: 10.1002/ecm.1242] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew D. Letten
- Department of Biology Stanford University Stanford California 94305 USA
| | - Po‐Ju Ke
- Department of Biology Stanford University Stanford California 94305 USA
| | - Tadashi Fukami
- Department of Biology Stanford University Stanford California 94305 USA
| |
Collapse
|
76
|
|
77
|
Koffel T, Daufresne T, Massol F, Klausmeier CA. Geometrical envelopes: Extending graphical contemporary niche theory to communities and eco-evolutionary dynamics. J Theor Biol 2016; 407:271-289. [PMID: 27473767 DOI: 10.1016/j.jtbi.2016.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/10/2016] [Accepted: 07/20/2016] [Indexed: 01/09/2023]
Abstract
Contemporary niche theory is a powerful structuring framework in theoretical ecology. First developed in the context of resource competition, it has been extended to encompass other types of regulating factors such as shared predators, parasites or inhibitors. A central component of contemporary niche theory is a graphical approach popularized by Tilman that illustrates the different outcomes of competition along environmental gradients, like coexistence and competitive exclusion. These food web modules have been used to address species sorting in community ecology, as well as adaptation and coexistence on eco-evolutionary time scales in adaptive dynamics. Yet, the associated graphical approach has been underused so far in the evolutionary context. In this paper, we provide a rigorous approach to extend this graphical method to a continuum of interacting strategies, using the geometrical concept of the envelope. Not only does this approach provide community and eco-evolutionary bifurcation diagrams along environmental gradients, it also sheds light on the similarities and differences between those two perspectives. Adaptive dynamics naturally merges with this ecological framework, with a close correspondence between the classification of singular strategies and the geometrical properties of the envelope. Finally, this approach provides an integrative tool to study adaptation between levels of organization, from the individual to the ecosystem.
Collapse
Affiliation(s)
- Thomas Koffel
- UMR Eco&Sols, Campus Supagro, 2 place Viala, 34060 Montpellier, France; Kellogg Biological Station, Dept. of Plant Biology, & Program in Ecology, EvolutionaryBiol. & Behavior, Michigan State University, 3700 E Gull Lake Dr, Hickory Corners, MI 49060, United States.
| | - Tanguy Daufresne
- UMR Eco&Sols, Campus Supagro, 2 place Viala, 34060 Montpellier, France.
| | - François Massol
- CNRS, Université de Lille - Sciences et Technologies, UMR 8198 Evo-Eco-Paleo, SPICI group, F-59655 Villeneuve d'Ascq, France.
| | - Christopher A Klausmeier
- Kellogg Biological Station, Dept. of Plant Biology, & Program in Ecology, EvolutionaryBiol. & Behavior, Michigan State University, 3700 E Gull Lake Dr, Hickory Corners, MI 49060, United States.
| |
Collapse
|
78
|
Ito H, Sasaki A. Evolutionary branching under multi-dimensional evolutionary constraints. J Theor Biol 2016; 407:409-428. [DOI: 10.1016/j.jtbi.2016.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
|
79
|
Szabó P. Ideal free distribution of metabolic activity: Implications of seasonal metabolic-activity patterns on competitive coexistence. Theor Popul Biol 2016; 111:1-8. [DOI: 10.1016/j.tpb.2016.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 04/20/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
|
80
|
Barabás G, D'Andrea R. The effect of intraspecific variation and heritability on community pattern and robustness. Ecol Lett 2016; 19:977-86. [PMID: 27335262 DOI: 10.1111/ele.12636] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 02/05/2023]
Abstract
Intraspecific trait variation is widespread in nature, yet its effects on community dynamics are not well understood. Here we explore the consequences of intraspecific trait variation for coexistence in two- and multispecies competitive communities. For two species, the likelihood of coexistence is in general reduced by intraspecific variation, except when the species have almost equal trait means but different trait variances, such that one is a generalist and the other a specialist consumer. In multispecies communities, the only strong effect of non-heritable intraspecific variation is to reduce expected species richness. However, when intraspecific variation is heritable, allowing for the possibility of trait evolution, communities are much more resilient against environmental disturbance and exhibit far more predictable trait patterns. Our results are robust to varying model parameters and relaxing model assumptions.
Collapse
Affiliation(s)
- György Barabás
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, USA
| | - Rafael D'Andrea
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
81
|
Barabás G, J Michalska-Smith M, Allesina S. The Effect of Intra- and Interspecific Competition on Coexistence in Multispecies Communities. Am Nat 2016; 188:E1-E12. [PMID: 27322128 DOI: 10.1086/686901] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For two competing species, intraspecific competition must exceed interspecific competition for coexistence. To generalize this well-known criterion to multiple competing species, one must take into account both the distribution of interaction strengths and community structure. Here we derive a multispecies generalization of the two-species rule in the context of symmetric Lotka-Volterra competition and obtain explicit stability conditions for random competitive communities. We then explore the influence of community structure on coexistence. Results show that both the most and least stabilized cases have striking global structures, with a nested pattern emerging in both cases. The distribution of intraspecific coefficients leading to the most and least stabilized communities also follows a predictable pattern that can be justified analytically. In addition, we show that the size of the parameter space allowing for feasible communities always increases with the strength of intraspecific effects in a characteristic way that is independent of the interspecific interaction structure. We conclude by discussing possible extensions of our results to nonsymmetric competition.
Collapse
|
82
|
Bottin M, Soininen J, Alard D, Rosebery J. Diatom Cooccurrence Shows Less Segregation than Predicted from Niche Modeling. PLoS One 2016; 11:e0154581. [PMID: 27128737 PMCID: PMC4851409 DOI: 10.1371/journal.pone.0154581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 04/17/2016] [Indexed: 11/18/2022] Open
Abstract
Species cooccurrence patterns give significant insights into the processes shaping communities. While biotic interactions have been widely studied using cooccurrence analyses in animals and larger plants, studies about cooccurrences among micro-organisms are still relatively rare. We examined stream diatom cooccurrences in France through a national database of samples. In order to test the relative influence of environmental, biotic and spatial constraints on species’ incidence distribution, cooccurrence and nestedness patterns of real communities were compared with the patterns generated from a set of standard and environmentally constrained null models. Real communities showed a higher level of segregation than the most conservative standard null models, but a general aggregation of cooccurrences when compared to environmentally constrained null models. We did not find any evidence of limiting similarity between cooccurring species. Aggregations of species cooccurrences were associated with the high levels of nestedness. Altogether, these results suggested that biotic interactions were not structuring cooccurrences of diatom species at our study scale. Instead, the patterns were more likely to be related with colonization patterns, mass effect, and local temporal dynamics of diatom biofilms. We further highlight that the association of standard and environmentally constrained null models may give realistic insight into the cooccurrence patterns of microbial communities.
Collapse
Affiliation(s)
- Marius Bottin
- Irstea Bordeaux, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
- Univ. Bordeaux, INRA, BIOGECO, 33615, Pessac, France
- * E-mail:
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, PO Box 64, Helsinki, FIN-00014, Finland
| | - Didier Alard
- Univ. Bordeaux, INRA, BIOGECO, 33615, Pessac, France
| | - Juliette Rosebery
- Irstea Bordeaux, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| |
Collapse
|
83
|
Barabás G, Allesina S. Predicting global community properties from uncertain estimates of interaction strengths. J R Soc Interface 2016; 12:20150218. [PMID: 26246417 DOI: 10.1098/rsif.2015.0218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The community matrix measures the direct effect of species on each other in an ecological community. It can be used to determine whether a system is stable (returns to equilibrium after small perturbations of the population abundances), reactive (perturbations are initially amplified before damping out), and to determine the response of any individual species to perturbations of environmental parameters. However, several studies show that small errors in estimating the entries of the community matrix translate into large errors in predicting individual species responses. Here, we ask whether there are properties of complex communities one can still predict using only a crude, order-of-magnitude estimate of the community matrix entries. Using empirical data, randomly generated community matrices, and those generated by the Allometric Trophic Network model, we show that the stability and reactivity properties of systems can be predicted with good accuracy. We also provide theoretical insight into when and why our crude approximations are expected to yield an accurate description of communities. Our results indicate that even rough estimates of interaction strengths can be useful for assessing global properties of large systems.
Collapse
Affiliation(s)
- György Barabás
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th Street, Chicago, IL 60637, USA
| | - Stefano Allesina
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th Street, Chicago, IL 60637, USA Computational Institute, University of Chicago, 1101 E 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
84
|
Metz JAJ, Geritz SAH. Frequency dependence 3.0: an attempt at codifying the evolutionary ecology perspective. J Math Biol 2016; 72:1011-1037. [PMID: 26831873 PMCID: PMC4751200 DOI: 10.1007/s00285-015-0956-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 12/05/2015] [Indexed: 10/25/2022]
Abstract
The fitness concept and perforce the definition of frequency independent fitnesses from population genetics is closely tied to discrete time population models with non-overlapping generations. Evolutionary ecologists generally focus on trait evolution through repeated mutant substitutions in populations with complicated life histories. This goes with using the per capita invasion speed of mutants as their fitness. In this paper we develop a concept of frequency independence that attempts to capture the practical use of the term by ecologists, which although inspired by population genetics rarely fits its strict definition. We propose to call the invasion fitnesses of an eco-evolutionary model frequency independent when the phenotypes can be ranked by competitive strength, measured by who can invade whom. This is equivalent to the absence of weak priority effects, protected dimorphisms and rock-scissor-paper configurations. Our concept differs from that of Heino et al. (TREE 13:367-370, 1998) in that it is based only on the signs of the invasion fitnesses, whereas Heino et al. based their definitions on the structure of the feedback environment, summarising the effect of all direct and indirect interactions between individuals on fitness. As it turns out, according to our new definition an eco-evolutionary model has frequency independent fitnesses if and only if the effect of the feedback environment on the fitness signs can be summarised by a single scalar with monotonic effect. This may be compared with Heino et al.'s concept of trivial frequency dependence defined by the environmental feedback influencing fitness, and not just its sign, in a scalar manner, without any monotonicity restriction. As it turns out, absence of the latter restriction leaves room for rock-scissor-paper configurations. Since in 'realistic' (as opposed to toy) models frequency independence is exceedingly rare, we also define a concept of weak frequency dependence, which can be interpreted intuitively as almost frequency independence, and analyse in which sense and to what extent the restrictions on the potential model outcomes of the frequency independent case stay intact for models with weak frequency dependence.
Collapse
Affiliation(s)
- Johan A. J. Metz
- />Mathematical Institute and Institute of Biology, Leiden University, 2333 CA Leiden, The Netherlands
- />Evolution and Ecology Program, International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria
- />Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Stefan A. H. Geritz
- />Department of Mathematics and Statistics, University of Helsinki, PO Box 68, 00014 Helsinki, Finland
| |
Collapse
|
85
|
Dercole F. The ecology of asexual pairwise interactions: the generalized law of mass action. THEOR ECOL-NETH 2016. [DOI: 10.1007/s12080-015-0287-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
86
|
Kisdi E. Dispersal polymorphism in stable habitats. J Theor Biol 2015; 392:69-82. [PMID: 26739375 DOI: 10.1016/j.jtbi.2015.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/03/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022]
Abstract
In fragmented but temporally stable landscapes, kin competition selects for dispersal when habitat patches are small, whereas the loss of dispersal is favoured when dispersal is costly and local populations are large enough for kin interactions to be negligible. In heterogeneous landscapes with both small and large patches, contrasting levels of kin competition facilitate the coexistence of low-dispersal and high-dispersal strategies. In this paper, I use both adaptive dynamics and inclusive fitness to analyse the evolution of dispersal in a simple model assuming that each patch supports either a single individual or a large population. With this assumption, many results can be obtained analytically. If the fraction of individuals living in small patches is below a threshold, then evolutionary branching yields two coexisting dispersal strategies. An attracting and evolutionarily stable dimorphism always exists (also when the monomorphic population does not have a branching point), and contains a strategy with zero dispersal and a strategy with dispersal probability between one half and the ESS of the classic Hamilton-May model. The present model features surprisingly rich population dynamics with multiple equilibria and unprotected dimorphisms, but the evolutionarily stable dimorphism is always protected.
Collapse
Affiliation(s)
- Eva Kisdi
- Department of Mathematics and Statistics, University of Helsinki, PO Box 68, FIN-00014, Finland.
| |
Collapse
|
87
|
Abstract
We study the joint adaptive dynamics of n scalar-valued strategies in ecosystems where n is the maximum number of coexisting strategies permitted by the (generalized) competitive exclusion principle. The adaptive dynamics of such saturated systems exhibits special characteristics, which we first demonstrate in a simple example of a host-pathogen-predator model. The main part of the paper characterizes the adaptive dynamics of saturated polymorphisms in general. In order to investigate convergence stability, we give a new sufficient condition for absolute stability of an arbitrary (not necessarily saturated) polymorphic singularity and show that saturated evolutionarily stable polymorphisms satisfy it. For the case [Formula: see text], we also introduce a method to construct different pairwise invasibility plots of the monomorphic population without changing the selection gradients of the saturated dimorphism.
Collapse
|
88
|
Botta‐Dukát Z, Czúcz B. Testing the ability of functional diversity indices to detect trait convergence and divergence using individual‐based simulation. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12450] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zoltán Botta‐Dukát
- MTA Centre for Ecological Research Institute of Ecology and Botany Alkotmány 2‐4 Vácrátót H‐2163 Hungary
| | - Bálint Czúcz
- MTA Centre for Ecological Research Institute of Ecology and Botany Alkotmány 2‐4 Vácrátót H‐2163 Hungary
| |
Collapse
|
89
|
Czárán T, Könnyű B, Szathmáry E. Metabolically Coupled Replicator Systems: Overview of an RNA-world model concept of prebiotic evolution on mineral surfaces. J Theor Biol 2015; 381:39-54. [PMID: 26087284 DOI: 10.1016/j.jtbi.2015.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
Metabolically Coupled Replicator Systems (MCRS) are a family of models implementing a simple, physico-chemically and ecologically feasible scenario for the first steps of chemical evolution towards life. Evolution in an abiotically produced RNA-population sets in as soon as any one of the RNA molecules become autocatalytic by engaging in template directed self-replication from activated monomers, and starts increasing exponentially. Competition for the finite external supply of monomers ignites selection favouring RNA molecules with catalytic activity helping self-replication by any possible means. One way of providing such autocatalytic help is to become a replicase ribozyme. An additional way is through increasing monomer supply by contributing to monomer synthesis from external resources, i.e., by evolving metabolic enzyme activity. Retroevolution may build up an increasingly autotrophic, cooperating community of metabolic ribozymes running an increasingly complicated and ever more efficient metabolism. Maintaining such a cooperating community of metabolic replicators raises two serious ecological problems: one is keeping the system coexistent in spite of the different replicabilities of the cooperating replicators; the other is constraining parasitism, i.e., keeping "cheaters" in check. Surface-bound MCRS provide an automatic solution to both problems: coexistence and parasite resistance are the consequences of assuming the local nature of metabolic interactions. In this review we present an overview of results published in previous articles, showing that these effects are, indeed, robust in different MCRS implementations, by considering different environmental setups and realistic chemical details in a few different models. We argue that the MCRS model framework naturally offers a suitable starting point for the future modelling of membrane evolution and extending the theory to cover the emergence of the first protocell in a self-consistent manner. The coevolution of metabolic, genetic and membrane functions is hypothesized to follow the progressive sequestration scenario, the conceptual blueprint for the earliest steps of protocell evolution.
Collapse
Affiliation(s)
- Tamás Czárán
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary.
| | - Balázs Könnyű
- Eötvös Lorand University, Department of Plant Systematics, Ecology and Theoretical Biology, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary.
| | - Eörs Szathmáry
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary; Eötvös Lorand University, Department of Plant Systematics, Ecology and Theoretical Biology, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary; Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1,1, D-82049, Munich, Germany.
| |
Collapse
|
90
|
Berdahl A, Torney CJ, Schertzer E, Levin SA. On the evolutionary interplay between dispersal and local adaptation in heterogeneous environments. Evolution 2015; 69:1390-1405. [DOI: 10.1111/evo.12664] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew Berdahl
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton New Jersey 08544
- Santa Fe Institute; Santa Fe New Mexico 87501
| | - Colin J. Torney
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton New Jersey 08544
- Centre for Mathematics and the Environment; University of Exeter; Penryn Campus Cornwall United Kingdom
| | - Emmanuel Schertzer
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton New Jersey 08544
- Laboratoire de Probabilités et Modèles Aléatoires des Universités Pierre et Marie Curie et Denis Diderot; Paris France
- Collège de France; Center for Interdisciplinary Research in Biology CNRS UMR 7241; Paris France
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton New Jersey 08544
| |
Collapse
|
91
|
James A, Plank MJ, Rossberg AG, Beecham J, Emmerson M, Pitchford JW. Constructing Random Matrices to Represent Real Ecosystems. Am Nat 2015; 185:680-92. [DOI: 10.1086/680496] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
92
|
Biancalani T, DeVille L, Goldenfeld N. Framework for analyzing ecological trait-based models in multidimensional niche spaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052107. [PMID: 26066119 DOI: 10.1103/physreve.91.052107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Indexed: 06/04/2023]
Abstract
We develop a theoretical framework for analyzing ecological models with a multidimensional niche space. Our approach relies on the fact that ecological niches are described by sequences of symbols, which allows us to include multiple phenotypic traits. Ecological drivers, such as competitive exclusion, are modeled by introducing the Hamming distance between two sequences. We show that a suitable transform diagonalizes the community interaction matrix of these models, making it possible to predict the conditions for niche differentiation and, close to the instability onset, the asymptotically long time population distributions of niches. We exemplify our method using the Lotka-Volterra equations with an exponential competition kernel.
Collapse
Affiliation(s)
- Tommaso Biancalani
- Department of Physics and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
| | - Lee DeVille
- Department of Mathematics and Institute for Genomic Biology, 1409 West Green Street, Urbana, Illinois 61801, USA
| | - Nigel Goldenfeld
- Department of Physics and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
| |
Collapse
|
93
|
Kun Á, Szilágyi A, Könnyű B, Boza G, Zachar I, Szathmáry E. The dynamics of the RNA world: insights and challenges. Ann N Y Acad Sci 2015; 1341:75-95. [PMID: 25735569 DOI: 10.1111/nyas.12700] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The RNA world hypothesis of the origin of life, in which RNA emerged as both enzyme and information carrier, is receiving solid experimental support. The prebiotic synthesis of biomolecules, the catalytic aid offered by mineral surfaces, and the vast enzymatic repertoire of ribozymes are only pieces of the origin of life puzzle; the full picture can only emerge if the pieces fit together by either following from one another or coexisting with each other. Here, we review the theory of the origin, maintenance, and enhancement of the RNA world as an evolving population of dynamical systems. The dynamical view of the origin of life allows us to pinpoint the missing and the not fitting pieces: (1) How can the first self-replicating ribozyme emerge in the absence of template-directed information replication? (2) How can nucleotide replicators avoid competitive exclusion despite utilizing the very same resources (nucleobases)? (3) How can the information catastrophe be avoided? (4) How can enough genes integrate into a cohesive system in order to transition to a cellular stage? (5) How can the way information is stored and metabolic complexity coevolve to pave to road leading out of the RNA world to the present protein-DNA world?
Collapse
Affiliation(s)
- Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany; MTA-ELTE-MTMT Ecology Research Group, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
94
|
Freed LA, Cann RL. Diffuse competition can be reversed: a case history with birds in Hawaii. Ecosphere 2014. [DOI: 10.1890/es14-00289.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
95
|
Abstract
Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible-infected-recovered (SIR) model. However, there is growing evidence that the complexity of many host-pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity.
Collapse
Affiliation(s)
- Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois
| |
Collapse
|
96
|
Barabás G, Pásztor L, Meszéna G, Ostling A. Sensitivity analysis of coexistence in ecological communities: theory and application. Ecol Lett 2014; 17:1479-94. [DOI: 10.1111/ele.12350] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 08/01/2014] [Indexed: 11/29/2022]
Affiliation(s)
- György Barabás
- Department of Ecology and Evolution; University of Chicago; 1101 E 57th St Chicago IL 60637 USA
| | - Liz Pásztor
- Department of Genetics; Eötvös Loránd University; Pázmány Péter sétány 1C H-1117 Budapest Hungary
| | - Géza Meszéna
- Department of Biological Physics; Eötvös Loránd University; Pázmány Péter sétány 1A H-1117 Budapest Hungary
| | - Annette Ostling
- Department of Ecology and Evolutionary Biology; University of Michigan; 830 North University Ann Arbor MI 48109-1048 USA
| |
Collapse
|
97
|
|
98
|
Kisdi É. Construction of multiple trade-offs to obtain arbitrary singularities of adaptive dynamics. J Math Biol 2014; 70:1093-117. [DOI: 10.1007/s00285-014-0788-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/27/2014] [Indexed: 12/01/2022]
|
99
|
Fixed point sensitivity analysis of interacting structured populations. Theor Popul Biol 2014; 92:97-106. [DOI: 10.1016/j.tpb.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 11/15/2013] [Accepted: 12/04/2013] [Indexed: 11/17/2022]
|
100
|
Nathan J, von Hardenberg J, Meron E. Spatial instabilities untie the exclusion-principle constraint on species coexistence. J Theor Biol 2013; 335:198-204. [DOI: 10.1016/j.jtbi.2013.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 11/30/2022]
|