51
|
Gong J, Zhang Z, Wang B, Shi J, Zhang W, Dong Q, Song L, Li Y, Liu Y. N addition rebalances the carbon and nitrogen metabolisms of Leymus chinensis through leaf N investment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:221-232. [PMID: 35714430 DOI: 10.1016/j.plaphy.2022.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Intensifying nitrogen (N) deposition disturbs the growth of grassland plants due to an imbalance between their carbon (C) and N metabolism. However, it's unclear how plant physiological strategies restore balance. We investigated the effects of multiple N addition levels (0-25 g N m-2 yr-1) on the coordination of C and N metabolism in a dominant grass (Leymus chinensis) in a semiarid grassland in northern China. To do so, we evaluated photosynthetic parameters, leaf N allocation, C- and N-based metabolites, and metabolic enzymes. We found that a moderate N level (10 g N m-2 yr-1) promoted carboxylation and electron transport by allocating more N to the photosynthetic apparatus and increasing ribulose bisphosphate carboxylase/oxygenase activity, thereby increasing photosynthetic capacity. The highest N level (25 g N m-2 yr-1) promoted N investment in nonphotosynthetic pathways and increased the free amino acids in the leaves. N addition stimulated the accumulation of C and N compounds across organs by activating sucrose phosphate synthase, nitrate reductase, and glutamine synthetase. This enhancement triggered a transformation of primary metabolites (nonstructural carbohydrates, proteins, amino acids) to secondary metabolites (flavonoids, phenols, and alkaloids) for temporary storage or as defense compounds. Citric acid, as the C skeleton for enhanced N metabolism, decreased significantly, and malic acid increased by catalysis of phosphoenolpyruvate carboxylase. Our findings show the adaptability of L. chinensis to different N-addition levels by adjusting its allocations of C and N metabolic compounds and confirm the roles of C and N coordination by grassland plants in these adaptations.
Collapse
Affiliation(s)
- Jirui Gong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Zihe Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Biao Wang
- College of Materials Science and Engineering, College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Jiayu Shi
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Weiyuan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Qi Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Liangyuan Song
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Ying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Yingying Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| |
Collapse
|
52
|
Sestari I, Campos ML. Into a dilemma of plants: the antagonism between chemical defenses and growth. PLANT MOLECULAR BIOLOGY 2022; 109:469-482. [PMID: 34843032 DOI: 10.1007/s11103-021-01213-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/28/2021] [Indexed: 05/21/2023]
Abstract
Chemical defenses are imperative for plant survival, but their production is often associated with growth restrictions. Here we review the most recent theories to explain this complex dilemma of plants. Plants are a nutritional source for a myriad of pests and pathogens that depend on green tissues to complete their life cycle. Rather than remaining passive victims, plants utilize an arsenal of chemical defenses to fend off biotic attack. While the deployment of such barriers is imperative for survival, the production of these chemical defenses is typically associated with negative impacts on plant growth. Here we discuss the most recent theories which explain this highly dynamic growth versus defense dilemma. Firstly, we discuss the hypothesis that the antagonism between the accumulation of chemical defenses and growth is rooted in the evolutionary history of plants and may be a consequence of terrestrialization. Then, we revise the different paradigms available to explain the growth versus chemical defense antagonism, including recent findings that update these into more comprehensive and plausible theories. Finally, we highlight state-of-the-art strategies that are now allowing the activation of growth and the concomitant production of chemical barriers in plants. Growth versus chemical defense antagonism imposes large ecological and economic costs, including increased crop susceptibility to pests and pathogens. In a world where these plant enemies are the main problem to increase food production, we believe that this review will summarize valuable information for future studies aiming to breed highly defensive plants without the typical accompanying penalties to growth.
Collapse
Affiliation(s)
- Ivan Sestari
- Coordenadoria Especial de Ciências Biológicas e Agronômicas, Universidade Federal de Santa Catarina, Curitibanos, SC, Brazil
| | - Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|
53
|
Zou C, Lu T, Wang R, Xu P, Jing Y, Wang R, Xu J, Wan J. Comparative physiological and metabolomic analyses reveal that Fe 3O 4 and ZnO nanoparticles alleviate Cd toxicity in tobacco. J Nanobiotechnology 2022; 20:302. [PMID: 35761340 PMCID: PMC9235244 DOI: 10.1186/s12951-022-01509-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Heavy metals repress tobacco growth and quality, and engineered nanomaterials have been used for sustainable agriculture. However, the underlying mechanism of nanoparticle-mediated cadmium (Cd) toxicity in tobacco remains elusive. RESULTS Herein, we investigated the effects of Fe3O4 and ZnO nanoparticles (NPs) on Cd stress in tobacco cultivar 'Yunyan 87' (Nicotiana tabacum). Cd severely repressed tobacco growth, whereas foliar spraying with Fe3O4 and ZnO NPs promoted plant growth, as indicated by enhancing plant height, root length, shoot and root fresh weight under Cd toxicity. Moreover, Fe3O4 and ZnO NPs increased, including Zn, K and Mn contents, in the roots and/or leaves and facilitated seedling growth under Cd stress. Metabolomics analysis showed that 150 and 76 metabolites were differentially accumulated in roots and leaves under Cd stress, respectively. These metabolites were significantly enriched in the biosynthesis of amino acids, nicotinate and nicotinamide metabolism, arginine and proline metabolism, and flavone and flavonol biosynthesis. Interestingly, Fe3O4 and ZnO NPs restored 50% and 47% in the roots, while they restored 70% and 63% in the leaves to normal levels, thereby facilitating plant growth. Correlation analysis further indicated that these metabolites, including proline, 6-hydroxynicotinic acid, farrerol and quercetin-3-O-sophoroside, were significantly correlated with plant growth. CONCLUSIONS These results collectively indicate that metal nanoparticles can serve as plant growth regulators and provide insights into using them for improving crops in heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Congming Zou
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Tianquan Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Center of Economic Botany, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruting Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Center of Economic Botany, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Yifen Jing
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Center of Economic Botany, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Ruling Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Center of Economic Botany, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jinpeng Wan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- Center of Economic Botany, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| |
Collapse
|
54
|
Fernández de Bobadilla M, Vitiello A, Erb M, Poelman EH. Plant defense strategies against attack by multiple herbivores. TRENDS IN PLANT SCIENCE 2022; 27:528-535. [PMID: 35027280 DOI: 10.1016/j.tplants.2021.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 05/21/2023]
Abstract
Plants may effectively tailor defenses by recognizing their attackers and reprogramming their physiology. Although most plants are under attack by a large diversity of herbivores, surprisingly little is known about the physiological capabilities of plants to deal with attack by multiple herbivores. Studies on dual herbivore attack identified that defense against one attacker may cause energetic and physiological constraints to deal with a second attacker. How these constraints shape plant plasticity in defense to their full community of attackers is a major knowledge gap in plant science. Here, we provide a framework for plant defense to multiherbivore attack by defining the repertoire of plastic defense strategies that may allow plants to optimize their defenses against a multitude of stressors.
Collapse
Affiliation(s)
| | - Alessia Vitiello
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
55
|
Santos P, Busta L, Yim WC, Cahoon EB, Kosma DK. Structural diversity, biosynthesis, and function of plant falcarin-type polyacetylenic lipids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2889-2904. [PMID: 35560192 DOI: 10.1093/jxb/erac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
The polyacetylenic lipids falcarinol, falcarindiol, and associated derivatives, termed falcarins, have a widespread taxonomical distribution in the plant kingdom and have received increasing interest for their demonstrated health-promoting properties as anti-cancer and anti-inflammatory agents. These fatty acid-derived compounds are also linked to plant pathogen resistance through their potent antimicrobial properties. Falcarin-type polyacetylenes, which contain two conjugated triple bonds, are derived from structural modifications of the common fatty acid oleic acid. In the past half century, much progress has been made in understanding the structural diversity of falcarins in the plant kingdom, whereas limited progress has been made on elucidating falcarin function in plant-pathogen interactions. More recently, an understanding of the biosynthetic machinery underlying falcarin biosynthesis has emerged. This review provides a concise summary of the current state of knowledge on falcarin structural diversity, biosynthesis, and plant defense properties. We also present major unanswered questions about falcarin biosynthesis and function.
Collapse
Affiliation(s)
- Patrícia Santos
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
56
|
Nascimento LBDS, Tattini M. Beyond Photoprotection: The Multifarious Roles of Flavonoids in Plant Terrestrialization. Int J Mol Sci 2022; 23:5284. [PMID: 35563675 PMCID: PMC9101737 DOI: 10.3390/ijms23095284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Plants evolved an impressive arsenal of multifunctional specialized metabolites to cope with the novel environmental pressures imposed by the terrestrial habitat when moving from water. Here we examine the multifarious roles of flavonoids in plant terrestrialization. We reason on the environmental drivers, other than the increase in UV-B radiation, that were mostly responsible for the rise of flavonoid metabolism and how flavonoids helped plants in land conquest. We are reasonably based on a nutrient-deficiency hypothesis for the replacement of mycosporine-like amino acids, typical of streptophytic algae, with the flavonoid metabolism during the water-to-land transition. We suggest that flavonoids modulated auxin transport and signaling and promoted the symbiosis between plants and fungi (e.g., arbuscular mycorrhizal, AM), a central event for the conquest of land by plants. AM improved the ability of early plants to take up nutrients and water from highly impoverished soils. We offer evidence that flavonoids equipped early land plants with highly versatile "defense compounds", essential for the new set of abiotic and biotic stressors imposed by the terrestrial environment. We conclude that flavonoids have been multifunctional since the appearance of plants on land, not only acting as UV filters but especially improving both nutrient acquisition and biotic stress defense.
Collapse
Affiliation(s)
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, 50019 Sesto Fiorentino, Florence, Italy;
| |
Collapse
|
57
|
Caccavo V, Forlano P, Mang SM, Fanti P, Nuzzaci M, Battaglia D, Trotta V. Effects of Trichoderma harzianum Strain T22 on the Arthropod Community Associated with Tomato Plants and on the Crop Performance in an Experimental Field. INSECTS 2022; 13:418. [PMID: 35621754 PMCID: PMC9147967 DOI: 10.3390/insects13050418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Fungi belonging to the genus Trichoderma have received much attention in recent years due to their beneficial effects on crop health and their use as pest control agents. Trichoderma activates direct plant defenses against phytophagous arthropods and reinforces indirect plant defense through the attraction of predators. Although the plant defenses against insect herbivores were demonstrated in laboratory experiments, little attention has been paid to the use of Trichoderma spp. in open field conditions. In the present study, we investigated the effects of the inoculation of the commercial Trichoderma harzianum strain T22 on the arthropod community associated with tomato plants and on the crop performance in an experimental field located in South Italy. Our results showed that inoculation with T. harzianum could alter the arthropod community and reduce the abundance of specific pests under field conditions with respect to the sampling period. The present study also confirmed the beneficial effect of T. harzianum against plant pathogens and on tomato fruit. The complex tomato-arthropod-microorganism interactions that occurred in the field are discussed to enrich our current information on the possibilities of using Trichoderma as a green alternative agent in agriculture.
Collapse
Affiliation(s)
- Vittoria Caccavo
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Pierluigi Forlano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Stefania Mirela Mang
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Paolo Fanti
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Donatella Battaglia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Vincenzo Trotta
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| |
Collapse
|
58
|
ACA pumps maintain leaf excitability during herbivore onslaught. Curr Biol 2022; 32:2517-2528.e6. [PMID: 35413240 DOI: 10.1016/j.cub.2022.03.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/09/2022] [Accepted: 03/21/2022] [Indexed: 01/07/2023]
Abstract
Recurrent damage by lepidopteran folivores triggers repeated leaf-to-leaf electrical signaling. We found that the ability to propagate electrical signals-called slow wave potentials-was unexpectedly robust and was maintained in plants that had experienced severe damage. We sought genes that maintain tissue excitability during group insect attack. When Arabidopsis thaliana P-Type II Ca2+-ATPase mutants were mechanically wounded, all mutants tested displayed leaf-to-leaf electrical signals. However, when the auto-inhibited Ca2+-ATPase double-mutant aca10 aca12 was attacked by Spodoptera littoralis caterpillars, electrical signaling failed catastrophically, and the insects consumed these plants rapidly. The attacked double mutant displayed petiole base deformation and chlorosis, which spread acropetally into laminas and led to senescence. A phloem-feeding aphid recapitulated these effects, implicating the vasculature in electrical signaling failure. Consistent with this, ACA10 expressed in phloem companion cells in an aca10 aca12 background rescued electrical signaling and defense during protracted S. littoralis attack. When expressed in xylem contact cells, ACA10 partially rescued these phenotypes. Extending our analyses, we found that prolonged darkness also caused wound-response electrical signaling failure in aca10 aca12 mutants. Our results lead to a model in which the plant vasculature acts as a capacitor that discharges temporarily when leaves are subjected to energy-depleting stresses. Under these conditions, ACA10 and ACA12 function allows the restoration of vein cell membrane potentials. In the absence of these gene functions, vascular cell excitability can no longer be restored efficiently. Additionally, this work demonstrates that non-invasive electrophysiology is a powerful tool for probing early events underlying senescence.
Collapse
|
59
|
Kaur S, Campbell BJ, Suseela V. Root metabolome of plant-arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. THE NEW PHYTOLOGIST 2022; 234:672-687. [PMID: 35088406 DOI: 10.1111/nph.17994] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The symbiosis of arbuscular mycorrhizal fungi (AMF) with plants, the most ancient and widespread association, exhibits phenotypes that range from mutualism to parasitism. However, we still lack an understanding of the cellular-level mechanisms that differentiate and regulate these phenotypes. We assessed the modulation in growth parameters and root metabolome of two sorghum accessions inoculated with two AMF species (Rhizophagus irregularis, Gigaspora gigantea), alone and in a mixture under phosphorus (P) limiting conditions. Rhizophagus irregularis exhibited a mutualistic phenotype with increased P uptake and plant growth. This positive outcome was associated with a facilitatory metabolic response including higher abundance of organic acids and specialized metabolites critical to maintaining a functional symbiosis. However, G. gigantea exhibited a parasitic phenotype that led to plant growth depression and resulted in inhibitory plant metabolic responses including the higher abundance of p-hydroxyphenylacetaldoxime with antifungal properties. These findings suggest that the differential outcome of plant-AMF symbiosis could be regulated by or reflected in changes in the root metabolome that arises from the interaction of the plant species with the specific AMF species. A mutualistic symbiotic association prevailed when the host plants were exposed to a mixture of AMF. Our results provide a metabolome-level landscape of plant-AMF symbiosis and highlight the importance of the identity of both AMF and crop genotypes in facilitating a mutualistic AMF symbiosis.
Collapse
Affiliation(s)
- Sukhmanpreet Kaur
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Barbara J Campbell
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Vidya Suseela
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
60
|
Feng YX, Lu XX, Du YS, Zheng Y, Zeng D, Du SS. Sesquiterpenoid-rich Essential Oils from Two Magnolia Plants: Contact and Repellent Activity to Three Stored-product Insects. J Oleo Sci 2022; 71:435-443. [PMID: 35236800 DOI: 10.5650/jos.ess21241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stored products have been damaged by insects. Multiple approaches for pest management are employed. Among these approaches, botanical insecticide is an emerging one. This work investigated the pest management potential of Magnolia coriacea and Magnolia macclurei essential oils (EOs) to three major stored-product insects, namely the red flour beetle, cigarette beetle and booklouse. Magnolia coriacea and M. macclurei EOs showed promising contact toxicity to the cigarette beetle, with LD50 values of 11.7 and 12.3 μg/adult. The contact toxicity of M. coriacea EOs to the booklouse (LC50 = 95.5 μg/cm2) was much stronger than that of M. macclurei EOs (LC50 = 245.4 μg/cm2). To explore the contribution of individual compounds to insecticidal activity of EOs, chemical analysis was performed by GC-MS. Results showed that nerolidol (27.84%), agarospirol (18.34%), elixene (15.84%) and helminthogermacrene (12.69%) were major compounds of M. coriacea EOs, β-guaiene (60.31%) and elixene (20.42%) dominated in M. macclurei EOs. Nerolidol and β-guaiene showed contact activity to three insect species. Nerolidol showed stronger contact toxicity to the red flour beetle and cigarette beetle than M. coriacea EOs did, both samples were similar to the booklouse. β-Guaiene was much stronger to the red flour beetle and booklouse, but weaker to the cigarette beetle than M. macclurei EOs did. The repellent effects of EOs and compounds were at various levels. Generally, results suggested that the contact toxic potential of samples could serve as management for the cigarette beetle and booklouse, while repellent effect would be used to control the red flour beetle.
Collapse
Affiliation(s)
- Yi-Xi Feng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University
| | - Xin-Xin Lu
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University
| | - Yue-Shen Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University
| | - Yu Zheng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University
| | - Ding Zeng
- Department of Burns and Plastic Surgery, PLA Rocket Force Characteristic Medical Center
| | - Shu-Shan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University
| |
Collapse
|
61
|
Sohail MN, Quinn AA, Blomstedt CK, Gleadow RM. Dhurrin increases but does not mitigate oxidative stress in droughted Sorghum bicolor. PLANTA 2022; 255:74. [PMID: 35226202 PMCID: PMC8885504 DOI: 10.1007/s00425-022-03844-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Droughted sorghum had higher concentrations of ROS in both wildtype and dhurrin-lacking mutants. Dhurrin increased in wildtype genotypes with drought. Dhurrin does not appear to mitigate oxidative stress in sorghum. Sorghum bicolor is tolerant of high temperatures and prolonged droughts. During droughts, concentrations of dhurrin, a cyanogenic glucoside, increase posing a risk to livestock of hydrogen cyanide poisoning. Dhurrin can also be recycled without the release of hydrogen cyanide presenting the possibility that it may have functions other than defence. It has been hypothesised that dhurrin may be able to mitigate oxidative stress by scavenging reactive oxygen species (ROS) during biosynthesis and recycling. To test this, we compared the growth and chemical composition of S. bicolor in total cyanide deficient sorghum mutants (tcd1) with wild-type plants that were either well-watered or left unwatered for 2 weeks. Plants from the adult cyanide deficient class of mutant (acdc1) were also included. Foliar dhurrin increased in response to drought in all lines except tcd1 and acdc1, but not in the roots or leaf sheaths. Foliar ROS concentration increased in drought-stressed plants in all genotypes. Phenolic concentrations were also measured but no differences were detected. The total amounts of dhurrin, ROS and phenolics on a whole plant basis were lower in droughted plants due to their smaller biomass, but there were no significant genotypic differences. Up until treatments began at the 3-leaf stage, tcd1 mutants grew more slowly than the other genotypes but after that they had higher relative growth rates, even when droughted. The findings presented here do not support the hypothesis that the increase in dhurrin commonly seen in drought-stressed sorghum plays a role in reducing oxidative stress by scavenging ROS.
Collapse
Affiliation(s)
- M N Sohail
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - A A Quinn
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - C K Blomstedt
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - R M Gleadow
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
62
|
Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010313. [PMID: 35011546 PMCID: PMC8746929 DOI: 10.3390/molecules27010313] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: "stress-affected plants," "plant secondary metabolites, "abiotic stress," "climatic influence," "pharmacological activities," "bioactive compounds," "drug discovery," and "medicinal plants" and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.
Collapse
|
63
|
Yang X, Gil MI, Yang Q, Tomás-Barberán FA. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr Rev Food Sci Food Saf 2022; 21:4-45. [PMID: 34935264 DOI: 10.1111/1541-4337.12877] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Lettuce is one of the most commonly consumed leafy vegetables worldwide and is available throughout the entire year. Lettuce is also a significant source of natural phytochemicals. These compounds, including glycosylated flavonoids, phenolic acids, carotenoids, the vitamin B groups, ascorbic acid, tocopherols, and sesquiterpene lactones, are essential nutritional bioactive compounds. This review aims to provide a comprehensive understanding of the composition of health-promoting compounds in different types of lettuce, the potential health benefits of lettuce in reducing the risks of chronic diseases, and the effect of preharvest and postharvest practices on the biosynthesis and accumulation of health-promoting compounds in lettuce.
Collapse
Affiliation(s)
- Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - María I Gil
- Centre for Applied Biology and Soil Science of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Francisco A Tomás-Barberán
- Centre for Applied Biology and Soil Science of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
64
|
Hartmann GF, Ricachenevsky FK, Silveira NM, Pita-Barbosa A. Phytotoxic effects of plastic pollution in crops: what is the size of the problem? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118420. [PMID: 34743967 DOI: 10.1016/j.envpol.2021.118420] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/28/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution is one of the most impactful human interferences in our planet. Fragmentation of plastic leads to nano- and microplastics (NP/MP) formation, which accumulate in agricultural lands, representing an increasing risk for crop production and food safety. It has been shown that MP promote damage in plant tissues by several direct and indirect ways, and that NP can enter the tissues/cells and accumulate in edible organs. Investigation of the phytotoxic effects of NP/MP in plants started only in 2016, with most of the studies performed with crops. Since contradictory results are often observed, it is important to review the literature in order to identify robust effects and their possible mechanisms. In this review, we discuss the potential of NP/MP in damaging crop species, with focus on the physiological changes described in the literature. We also performed scientometrics analyses on research papers in this field during 2016-2021, to reveal the research situation of phytotoxic effects of plastic pollution in crops. Our review is as a starting point to help identify gaps and future directions in this important, emerging field.
Collapse
Affiliation(s)
- Gustavo Führ Hartmann
- Programa de Pós-Graduação Em Botânica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Felipe Klein Ricachenevsky
- Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia; Departamento de Botânica, Instituto de Biociências; Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Neidiquele Maria Silveira
- Laboratório de Fisiologia Vegetal 'Coaracy M. Franco', Centro R&D Em Ecofisiologia e Biofísica, Instituto Agronômico de Campinas (IAC), P.O. Box 28, Campinas, SP, 13012-97, Brazil
| | - Alice Pita-Barbosa
- Programa de Pós-Graduação Em Botânica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 91501-970, Brazil; Centro de Estudos Limnológicos, Costeiros e Marinhos, Campus Litoral Norte, Universidade Federal Do Rio Grande Do Sul, Imbé, RS, 95625-000, Brazil; Departamento Interdisciplinar, Campus Litoral Norte, Universidade Federal Do Rio Grande Do Sul, Tramandaí, RS, 95590-000, Brazil.
| |
Collapse
|
65
|
Gleadow RM, McKinley BA, Blomstedt CK, Lamb AC, Møller BL, Mullet JE. Regulation of dhurrin pathway gene expression during Sorghum bicolor development. PLANTA 2021; 254:119. [PMID: 34762174 PMCID: PMC8585852 DOI: 10.1007/s00425-021-03774-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Developmental and organ-specific expression of genes in dhurrin biosynthesis, bio-activation, and recycling offers dynamic metabolic responses optimizing growth and defence responses in Sorghum. Plant defence models evaluate the costs and benefits of resource investments at different stages in the life cycle. Poor understanding of the molecular regulation of defence deployment and remobilization hampers accuracy of the predictions. Cyanogenic glucosides, such as dhurrin are phytoanticipins that release hydrogen cyanide upon bio-activation. In this study, RNA-seq was used to investigate the expression of genes involved in the biosynthesis, bio-activation and recycling of dhurrin in Sorghum bicolor. Genes involved in dhurrin biosynthesis were highly expressed in all young developing vegetative tissues (leaves, leaf sheath, roots, stems), tiller buds and imbibing seeds and showed gene specific peaks of expression in leaves during diel cycles. Genes involved in dhurrin bio-activation were expressed early in organ development with organ-specific expression patterns. Genes involved in recycling were expressed at similar levels in the different organ during development, although post-floral initiation when nutrients are remobilized for grain filling, expression of GSTL1 decreased > tenfold in leaves and NITB2 increased > tenfold in stems. Results are consistent with the establishment of a pre-emptive defence in young tissues and regulated recycling related to organ senescence and increased demand for nitrogen during grain filling. This detailed characterization of the transcriptional regulation of dhurrin biosynthesis, bioactivation and remobilization genes during organ and plant development will aid elucidation of gene regulatory networks and signalling pathways that modulate gene expression and dhurrin levels. In-depth knowledge of dhurrin metabolism could improve the yield, nitrogen use efficiency and stress resilience of Sorghum.
Collapse
Affiliation(s)
- Roslyn M Gleadow
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Brian A McKinley
- Department of Plant Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | | - Austin C Lamb
- Department of Plant Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John E Mullet
- Department of Plant Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
66
|
Liao Y, Tan H, Jian G, Zhou X, Huo L, Jia Y, Zeng L, Yang Z. Herbivore-Induced ( Z)-3-Hexen-1-ol is an Airborne Signal That Promotes Direct and Indirect Defenses in Tea ( Camellia sinensis) under Light. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12608-12620. [PMID: 34677960 DOI: 10.1021/acs.jafc.1c04290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tea (Camellia sinensis) is the most popular nonalcoholic beverage worldwide. During cultivation, tea plants are susceptible to herbivores and pathogens, which can seriously affect tea yield and quality. A previous report showed that (Z)-3-hexenol is a potentially efficient defensive substance. However, the molecular mechanism mediating (Z)-3-hexenol signaling in tea plants and the resulting effects on plant defenses remain uncharacterized. To clarify the signaling mechanisms in which (Z)-3-hexenol and light are involved, the gene transcription and metabolite levels were assessed, respectively. This study demonstrated that tea plants rapidly and continuously release (Z)-3-hexen-1-ol in response to an insect infestation. (Z)-3-Hexen-1-ol absorbed by adjacent healthy plants would be converted into three insect defensive compounds: (Z)-3-hexenyl-glucoside, (Z)-3-hexenyl-primeveroside, and (Z)-3-hexenyl-vicianoside identified with laboratory-synthesized standards. Moreover, (Z)-3-hexen-1-ol also activates the synthesis of jasmonic acid to enhance the insect resistance of tea plants. Additionally, a continuous light treatment induces the accumulation of (Z)-3-hexenyl-glycosides. Hence, (Z)-3-hexenol serves as a light-regulated signaling molecule that activates the systemic defenses of adjacent plants. Our study reveals the molecular mechanisms by which biotic and abiotic factors synergistically regulate the signaling functions of herbivore-induced plant volatiles in plants, providing valuable information for future comprehensive analyses of the systemic defense mechanisms in plants.
Collapse
Affiliation(s)
- Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Haibo Tan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guotai Jian
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Luqiong Huo
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
67
|
Hu L, Wu Z, Robert CAM, Ouyang X, Züst T, Mestrot A, Xu J, Erb M. Soil chemistry determines whether defensive plant secondary metabolites promote or suppress herbivore growth. Proc Natl Acad Sci U S A 2021; 118:e2109602118. [PMID: 34675080 PMCID: PMC8639379 DOI: 10.1073/pnas.2109602118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
Plant secondary (or specialized) metabolites mediate important interactions in both the rhizosphere and the phyllosphere. If and how such compartmentalized functions interact to determine plant-environment interactions is not well understood. Here, we investigated how the dual role of maize benzoxazinoids as leaf defenses and root siderophores shapes the interaction between maize and a major global insect pest, the fall armyworm. We find that benzoxazinoids suppress fall armyworm growth when plants are grown in soils with very low available iron but enhance growth in soils with higher available iron. Manipulation experiments confirm that benzoxazinoids suppress herbivore growth under iron-deficient conditions and in the presence of chelated iron but enhance herbivore growth in the presence of free iron in the growth medium. This reversal of the protective effect of benzoxazinoids is not associated with major changes in plant primary metabolism. Plant defense activation is modulated by the interplay between soil iron and benzoxazinoids but does not explain fall armyworm performance. Instead, increased iron supply to the fall armyworm by benzoxazinoids in the presence of free iron enhances larval performance. This work identifies soil chemistry as a decisive factor for the impact of plant secondary metabolites on herbivore growth. It also demonstrates how the multifunctionality of plant secondary metabolites drives interactions between abiotic and biotic factors, with potential consequences for plant resistance in variable environments.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Zhenwei Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | | | - Xiao Ouyang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Tobias Züst
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, 3012 Bern, Switzerland
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China;
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland;
| |
Collapse
|
68
|
Salatino A, Salatino MLF, Negri G. How diverse is the chemistry and plant origin of Brazilian propolis? APIDOLOGIE 2021; 52:1075-1097. [PMID: 34611369 PMCID: PMC8485119 DOI: 10.1007/s13592-021-00889-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 07/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Propolis is a honey bee product containing chiefly beeswax and resins originated from plant buds or exudates. Propolis resin exerts a diversity of biological activities, such as antitumoral, anti-inflammatory, antimicrobial, and defense of the hive against pathogens. Chemical standardization and identification of botanical sources is crucial for characterization of propolis. Types of Brazilian propolis are characteristic of geographical regions and respective biomes, such as savannas (Cerrado), mangroves, dry forest (Caatinga), rain forests (Amazon, Atlantic, and Interior forests), altitudinal fields ("Campos Rupestres"), Pantanal, and Araucaria forests. Despite the wide diversity of Brazilian biomes and flora, relatively few types of Brazilian propolis and corresponding resin plant sources have been reported. Factors accounting for the restricted number of known types of Brazilian propolis and plant sources are tentatively pointed out. Among them, the paper discusses constraints that honey bees must overcome to collect plant exudates, including the characteristics of the lapping-chewing mouthpart of honey bee, which limit their possibilities to cut and chew plant tissues, as well as chemical requirements that plant resins must fulfil, involving antimicrobial activity of its constituents and innocuity to the insects. Although much still needs to be done toward a more comprehensive picture of Brazilian propolis types and corresponding plant origins, the prospects indicate that the actual diversity of plant sources of honey bee propolis will remain relatively low.
Collapse
Affiliation(s)
- Antonio Salatino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP 05508-090 Brazil
| | - Maria Luiza Faria Salatino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP 05508-090 Brazil
| | - Giuseppina Negri
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP 05508-090 Brazil
| |
Collapse
|
69
|
Zareen S, Khan SN, Adnan M, Haleem S, Ali R, Alnomasy SF. Antiplasmodial potential of Eucalyptus obliqua leaf methanolic extract against Plasmodium vivax: An in vitro study. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Malaria is an intraerythrocytic parasitic disease caused by the genus Plasmodium of which Plasmodium vivax and Plasmodium falciparum are the major species. The high cost and associated side effects of antimalarial drugs triggered research about medicinal plants to develop alternative and low-cost drugs with lesser side effects. Therefore, this study was designed to investigate the antiplasmodial activity of the Eucalyptus obliqua L’Hér. leaf extract against P. vivax and its phytochemicals in in vitro. The methanolic extract of E. obliqua was prepared and different concentrations of the crude extract and phytochemicals were used against P. vivax. The methanolic extract of E. obliqua showed profound antiplasmodial activity (LD50 0.084 mg/mL; 80.04%) at 0.1 mg/mL concentration after 24 h. Alkaloids, flavonoids, saponins, and tannins were found in the E. obliqua methanolic extract. Only alkaloids at the concentration (0.1 mg/mL) exhibited 60.93% inhibition of P. vivax. The methanolic extract of E. obliqua exhibits antiplasmodial activity in vitro. However, in vivo efficacy is an important aspect in the testing of medicinal plants against parasitic infections and should be evaluated in future.
Collapse
Affiliation(s)
- Shehzad Zareen
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology , Kohat-26000 , Khyber Pakhtunkhwa , Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology , Kohat-26000 , Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology , Kohat-26000 , Khyber Pakhtunkhwa , Pakistan
| | - Sumbal Haleem
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology , Kohat-26000 , Khyber Pakhtunkhwa , Pakistan
| | - Rehman Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology , Kohat-26000 , Khyber Pakhtunkhwa , Pakistan
| | - Sultan F. Alnomasy
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences in Al-Quwayiyah, Shaqra University , Riyadh , Saudi Arabia
| |
Collapse
|
70
|
Enhancement of Phytosterol and Triterpenoid Production in Plant Hairy Root Cultures-Simultaneous Stimulation or Competition? PLANTS 2021; 10:plants10102028. [PMID: 34685836 PMCID: PMC8541584 DOI: 10.3390/plants10102028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022]
Abstract
Plant in vitro cultures, including hairy roots, can be applied for controlled production of valuable natural products, such as triterpenoids and sterols. These compounds originate from the common precursor squalene. Sterols and triterpenoids distinctly differ in their functions, and the 2,3-oxidosqualene cyclization step is often regarded as a branch point between primary and secondary (more aptly: general and specialized) metabolism. Considering the crucial role of phytosterols as membrane constituents, it has been postulated that unconstrained biosynthesis of triterpenoids can occur when sterol formation is already satisfied, and these compounds are no longer needed for cell growth and division. This hypothesis seems to follow directly the growth-defense trade-off plant dilemma. In this review, we present some examples illustrating the specific interplay between the two divergent pathways for sterol and triterpenoid biosynthesis appearing in root cultures. These studies were significant for revealing the steps of the biosynthetic pathway, understanding the role of particular enzymes, and discovering the possibility of gene regulation. Currently, hairy roots of many plant species can be considered not only as an efficient tool for production of phytochemicals, but also as suitable experimental models for investigations on regulatory mechanisms of plant metabolism.
Collapse
|
71
|
Koudounas K, Thomopoulou M, Rigakou A, Angeli E, Melliou E, Magiatis P, Hatzopoulos P. Silencing of Oleuropein β-Glucosidase Abolishes the Biosynthetic Capacity of Secoiridoids in Olives. FRONTIERS IN PLANT SCIENCE 2021; 12:671487. [PMID: 34539687 PMCID: PMC8446429 DOI: 10.3389/fpls.2021.671487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Specialized metabolism is an evolutionary answer that fortifies plants against a wide spectrum of (a) biotic challenges. A plethora of diversified compounds can be found in the plant kingdom and often constitute the basis of human pharmacopeia. Olive trees (Olea europaea) produce an unusual type of secoiridoids known as oleosides with promising pharmaceutical activities. Here, we transiently silenced oleuropein β-glucosidase (OeGLU), an enzyme engaged in the biosynthetic pathway of secoiridoids in the olive trees. Reduction of OeGLU transcripts resulted in the absence of both upstream and downstream secoiridoids in planta, revealing a regulatory loop mechanism that bypasses the flux of precursor compounds toward the branch of secoiridoid biosynthesis. Our findings highlight that OeGLU could serve as a molecular target to regulate the bioactive secoiridoids in olive oils.
Collapse
Affiliation(s)
- Konstantinos Koudounas
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Margarita Thomopoulou
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Aimilia Rigakou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisavet Angeli
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Polydefkis Hatzopoulos
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
72
|
Panda S, Kazachkova Y, Aharoni A. Catch-22 in specialized metabolism: balancing defense and growth. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6027-6041. [PMID: 34293097 DOI: 10.1093/jxb/erab348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/21/2021] [Indexed: 05/25/2023]
Abstract
Plants are unsurpassed biochemists that synthesize a plethora of molecules in response to an ever-changing environment. The majority of these molecules, considered as specialized metabolites, effectively protect the plant against pathogens and herbivores. However, this defense most probably comes at a great expense, leading to reduction of growth (known as the 'growth-defense trade-off'). Plants employ several strategies to reduce the high metabolic costs associated with chemical defense. Production of specialized metabolites is tightly regulated by a network of transcription factors facilitating its fine-tuning in time and space. Multifunctionality of specialized metabolites-their effective recycling system by re-using carbon, nitrogen, and sulfur, thus re-introducing them back to the primary metabolite pool-allows further cost reduction. Spatial separation of biosynthetic enzymes and their substrates, and sequestration of potentially toxic substances and conversion to less toxic metabolite forms are the plant's solutions to avoid the detrimental effects of metabolites they produce as well as to reduce production costs. Constant fitness pressure from herbivores, pathogens, and abiotic stressors leads to honing of specialized metabolite biosynthesis reactions to be timely, efficient, and metabolically cost-effective. In this review, we assess the costs of production of specialized metabolites for chemical defense and the different plant mechanisms to reduce the cost of such metabolic activity in terms of self-toxicity and growth.
Collapse
Affiliation(s)
- Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Gilat Research Center, Agricultural Research Organization, Negev, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
73
|
Messaili S, Qu Y, Fougère L, Colas C, Desneux N, Lavoir AV, Destandau E, Michel T. Untargeted metabolomic and molecular network approaches to reveal tomato root secondary metabolites. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:672-684. [PMID: 33225475 DOI: 10.1002/pca.3014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The tomato plant, Solanum lycopersicum L. (Solanaceae), is one of the most widely consumed vegetables in the world and plays an important role in human diet. Tomato cultivars are hosts for diverse types of pests, implying diverse chemical defence strategies. Glycoalkaloids are the main specialised metabolites produced by tomato leaves and fruits to protect against pests. However, the roots have received little attention, leading to limited knowledge about their phytochemical content. OBJECTIVE The main goal of the current study was the development of an untargeted ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) based metabolomic approach to study phytochemical variations in tomato roots at two different development stages (i.e. 34th and 62nd day after sowing). METHODS UHPLC-HRMS was used to establish the fingerprint of 24 batches of tomato roots. Statistical analyses were performed to highlight the compounds that discriminated between young and mature tomato roots. A dereplication strategy using molecular networking and HRMS/MS data was set up to identify the metabolites regulated during early root development. KEY FINDINGS The main biomarkers were guanidine and adenosine derivatives associated with tryptophan. Secondary metabolites such as glycoalkaloids and steroidal alkaloids were also characterised. Most of the metabolites were up-regulated in young tomato roots (34 days old) while tryptophan was up-regulated in the older roots (62 days old). CONCLUSION The metabolic changes observed in this work contribute to a deeper understanding of early-stage root development and may help our understanding of the complex processes involved in the tomato root defence arsenal.
Collapse
Affiliation(s)
- Souhila Messaili
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS, UMR 7311, BP 6759, Orléans, France
| | - Yanyan Qu
- Université Côte d'Azur, INRAe, CNRS, Institut Sophia Agrobiotech, UMR 1355-7254, 06903 Sophia Antipolis, France
| | - Laëtitia Fougère
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS, UMR 7311, BP 6759, Orléans, France
| | - Cyril Colas
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS, UMR 7311, BP 6759, Orléans, France
- Centre de Biophysique Moléculaire, CNRS, Université d'Orléans, UPR 4311, Orléans, France
| | - Nicolas Desneux
- Université Côte d'Azur, INRAe, CNRS, Institut Sophia Agrobiotech, UMR 1355-7254, 06903 Sophia Antipolis, France
| | - Anne-Violette Lavoir
- Université Côte d'Azur, INRAe, CNRS, Institut Sophia Agrobiotech, UMR 1355-7254, 06903 Sophia Antipolis, France
| | - Emilie Destandau
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS, UMR 7311, BP 6759, Orléans, France
| | - Thomas Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Nice, France
| |
Collapse
|
74
|
Sørensen M, Møller BL. Metabolic Engineering of Photosynthetic Cells – in Collaboration with Nature. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
75
|
Hahn PG, Keefover‐Ring K, Nguyen LMN, Maron JL. Intraspecific correlations between growth and defence vary with resource availability and differ within and among populations. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Philip G. Hahn
- Entomology and Nematology Department University of Florida Gainesville FL USA
| | - Ken Keefover‐Ring
- Department of Botany University of Wisconsin‐Madison Madison WI USA
- Department of Geography University of Wisconsin‐Madison Madison WI USA
| | | | - John L. Maron
- Division of Biological Sciences University of Montana Missoula MT USA
| |
Collapse
|
76
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Effects of Glucosinolate-Derived Isothiocyanates on Fungi: A Comprehensive Review on Direct Effects, Mechanisms, Structure-Activity Relationship Data and Possible Agricultural Applications. J Fungi (Basel) 2021; 7:539. [PMID: 34356918 PMCID: PMC8305656 DOI: 10.3390/jof7070539] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022] Open
Abstract
Plants heavily rely on chemical defense systems against a variety of stressors. The glucosinolates in the Brassicaceae and some allies are the core molecules of one of the most researched such pathways. These natural products are enzymatically converted into isothiocyanates (ITCs) and occasionally other defensive volatile organic constituents (VOCs) upon fungal challenge or tissue disruption to protect the host against the stressor. The current review provides a comprehensive insight on the effects of the isothiocyanates on fungi, including, but not limited to mycorrhizal fungi and pathogens of Brassicaceae. In the review, our current knowledge on the following topics are summarized: direct antifungal activity and the proposed mechanisms of antifungal action, QSAR (quantitative structure-activity relationships), synergistic activity of ITCs with other agents, effects of ITCs on soil microbial composition and allelopathic activity. A detailed insight into the possible applications is also provided: the literature of biofumigation studies, inhibition of post-harvest pathogenesis and protection of various products including grains and fruits is also reviewed herein.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| |
Collapse
|
77
|
Islam MJ, Ryu BR, Azad MOK, Rahman MH, Rana MS, Lim JD, Lim YS. Exogenous Putrescine Enhances Salt Tolerance and Ginsenosides Content in Korean Ginseng ( Panax ginseng Meyer) Sprouts. PLANTS (BASEL, SWITZERLAND) 2021; 10:1313. [PMID: 34203403 PMCID: PMC8309092 DOI: 10.3390/plants10071313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
The effect of exogenously applied putrescine (Put) on salt stress tolerance was investigated in Panax ginseng. Thirty-day-old ginseng sprouts were grown in salinized nutrient solution (150 mM NaCl) for five days, while the control sprouts were grown in nutrients solution. Putrescine (0.3, 0.6, and 0.9 mM) was sprayed on the plants once at the onset of salinity treatment, whereas control plants were sprayed with water only. Ginseng seedlings tested under salinity exhibited reduced plant growth and biomass production, which was directly interlinked with reduced chlorophyll and chlorophyll fluorescence due to higher reactive oxygen species (hydrogen peroxide; H2O2) and lipid peroxidation (malondialdehyde; MDA) production. Application of Put enhanced accumulation of proline, total soluble carbohydrate, total soluble sugar and total soluble protein. At the same time, activities of antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase in leaves, stems, and roots of ginseng seedlings were increased. Such modulation of physio-biochemical processes reduced the level of H2O2 and MDA, which indicates a successful adaptation of ginseng seedlings to salinity stress. Moreover, protopanaxadiol (PPD) ginsenosides enhanced by both salinity stress and exogenous Put treatment. On the other hand, protopanaxatriol (PPT) ginsenosides enhanced in roots and reduced in leaves and stems under salinity stress condition. In contrast, they enhanced by exogenous Put application in all parts of the plants for most cases, also evidenced by principal component analysis. Collectively, our findings provide an important prospect for the use of Put in modulating salinity tolerance and ginsenosides content in ginseng sprouts.
Collapse
Affiliation(s)
- Md. Jahirul Islam
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research Institute, Ishurdi 6620, Pabna, Bangladesh
| | - Byeong Ryeol Ryu
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Obyedul Kalam Azad
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Hafizur Rahman
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Soyel Rana
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Jung-Dae Lim
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Young-Seok Lim
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| |
Collapse
|
78
|
Kikuchi DW, Herberstein ME, Barfield M, Holt RD, Mappes J. Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biol Rev Camb Philos Soc 2021; 96:2446-2460. [PMID: 34128583 DOI: 10.1111/brv.12760] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Warning signals are a striking example of natural selection present in almost every ecological community - from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. Here, we explore factors likely to determine the prevalence of warning signals in prey assemblages. These factors include the nature of prey defences and any constraints upon them, the behavioural interactions of predators with different prey defences, the numerical responses of predators governed by movement and reproduction, the diversity and abundance of undefended alternative prey and Batesian mimics in the community, and variability in other ecological circumstances. We also discuss the macroevolution of warning signals. Our review finds that we have a basic understanding of how many species in some taxonomic groups have warning signals, but very little information on the interrelationships among population abundances across prey communities, the diversity of signal phenotypes, and prey defences. We also have detailed knowledge of how a few generalist predator species forage in artificial laboratory environments, but we know much less about how predators forage in complex natural communities with variable prey defences. We describe how empirical work to address each of these knowledge gaps can test specific hypotheses for why warning signals exhibit their particular patterns of distribution. This will help us to understand how behavioural interactions shape ecological communities.
Collapse
Affiliation(s)
- David W Kikuchi
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Evolutionary Biology, Universität Bielefeld, Konsequez 45, Bielefeld, 33615, Germany
| | - Marie E Herberstein
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, 2109, Australia
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, U.S.A
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, U.S.A
| | - Johanna Mappes
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
79
|
Whitehead SR, Schneider GF, Dybzinski R, Nelson AS, Gelambi M, Jos E, Beckman NG. Fruits, frugivores, and the evolution of phytochemical diversity. OIKOS 2021. [DOI: 10.1111/oik.08332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Susan R. Whitehead
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | | | - Ray Dybzinski
- School of Environmental Sustainability, Loyola Univ. Chicago IL USA
| | - Annika S. Nelson
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | - Mariana Gelambi
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | - Elsa Jos
- Dept of Biology and Ecology Center, Utah State Univ. Logan UT USA
| | | |
Collapse
|
80
|
Impact of the female and hermaphrodite forms of Opuntia robusta on the plant defence hypothesis. Sci Rep 2021; 11:12063. [PMID: 34103611 PMCID: PMC8187663 DOI: 10.1038/s41598-021-91524-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
The optimal defence hypothesis predicts that increased plant defence capabilities, lower levels of damage, and lower investment in vegetative biomass will occur more frequently in sexual forms with higher resource-demanding tissue production and/or younger plant parts. We aimed to examine the effects of sexual form, cladode, and flower age on growth rate, herbivore damage, and 4-hydroxybenzoic acid (4-HBA), chlorogenic acid, and quercetin (QUE) concentrations in Opuntia robusta plants in central Mexico. Our findings demonstrated that hermaphrodite flowers showed faster growth and lesser damage than female flowers. The effect of cladode sexual forms on 4-HBA and QUE occurrence was consistent with the predictions of the optimal defence hypothesis. However, chlorogenic acid occurrences were not significantly affected by sexual forms. Old cladodes exhibited higher QUE and 4-HBA occurrences than young cladodes, and hermaphrodites exhibited higher 4-HBA concentrations than females. Resource allocation for reproduction and secondary metabolite production, and growth was higher and lower, respectively, in females, compared to hermaphrodites, indicating a trade-off between investment in reproduction, growth, and secondary metabolite production. Secondary metabolite concentrations in O. robusta plants were not negatively correlated with herbivore damage, and the two traits were not accurate predictors of plant reproductive output.
Collapse
|
81
|
Bragagnolo FS, Funari CS, Ibáñez E, Cifuentes A. Metabolomics as a Tool to Study Underused Soy Parts: In Search of Bioactive Compounds. Foods 2021; 10:foods10061308. [PMID: 34200265 PMCID: PMC8230045 DOI: 10.3390/foods10061308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
The valorization of agri-food by-products is essential from both economic and sustainability perspectives. The large quantity of such materials causes problems for the environment; however, they can also generate new valuable ingredients and products which promote beneficial effects on human health. It is estimated that soybean production, the major oilseed crop worldwide, will leave about 597 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2020/21. An alternative for the use of soy-related by-products arises from the several bioactive compounds found in this plant. Metabolomics studies have already identified isoflavonoids, saponins, and organic and fatty acids, among other metabolites, in all soy organs. The present review aims to show the application of metabolomics for identifying high-added-value compounds in underused parts of the soy plant, listing the main bioactive metabolites identified up to now, as well as the factors affecting their production.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Cristiano Soleo Funari
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
- Correspondence:
| |
Collapse
|
82
|
Abstract
Specialized (secondary) metabolites have been largely considered bioactive “end” products synthesized from primary metabolites. We report biochemical evidence of a retrograde flow of sulfur atoms from specialized metabolites (glucosinolates) to primary metabolites (cysteine) in Arabidopsis thaliana. The reaction begins with glucosinolate breakdown by specific beta-glucosidases, which facilitates sulfur deficiency tolerance, demonstrating a physiological advantage of utilizing specialized metabolites as nutrient reservoirs. Our findings address the breadth of turnover systems in nature and enhance our understanding of how plants coordinate primary and specialized metabolism under different environmental conditions. Specialized (secondary) metabolic pathways in plants have long been considered one-way routes of leading primary metabolite precursors to bioactive end products. Conversely, endogenous degradation of such “end” products in plant tissues has been observed following environmental stimuli, including nutrition stress. Therefore, it is of general interest whether specialized metabolites can be reintegrated into primary metabolism to recover the invested resources, especially in the case of nitrogen- or sulfur-rich compounds. Here, we demonstrate that endogenous glucosinolates (GLs), a class of sulfur-rich plant metabolites, are exploited as a sulfur source by the reallocation of sulfur atoms to primary metabolites such as cysteine in Arabidopsis thaliana. Tracer experiments using 34S- or deuterium-labeled GLs depicted the catabolic processing of GL breakdown products in which sulfur is mobilized from the thioglucoside group in GL molecules, potentially accompanied by the release of the sulfate group. Moreover, we reveal that beta-glucosidases BGLU28 and BGLU30 are the major myrosinases that initiate sulfur reallocation by hydrolyzing particular GL species, conferring sulfur deficiency tolerance in A. thaliana, especially during early development. The results delineate the physiological function of GL as a sulfur reservoir, in addition to their well-known functions as defense chemicals. Overall, our findings demonstrate the bidirectional interaction between primary and specialized metabolism, which enhances our understanding of the underlying metabolic mechanisms via which plants adapt to their environments.
Collapse
|
83
|
López Navarrete MC, Peña-Valdivia CB, Trejo C, Padilla Chacón D, García N R, Martínez B E. Interaction among species, time-of-day, and soil water potential on biochemical and physiological characteristics of cladodes of Opuntia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:185-195. [PMID: 33684777 DOI: 10.1016/j.plaphy.2021.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The physiology and biochemistry of young Opuntia spp. cladodes relate with their Crassulacean acid metabolism, which extends over the day-night cycle in four phases, is species-dependent and is affected by water availability. This study aimed to assess the interaction among species, time-of-day, and the soil water potential (ΨW) on biochemical and physiological characteristics of cladodes of Opuntia species. Three-week-old cladodes were harvested at 7:00 a.m. and 3:00 p.m. from plants with or without irrigation for 30 d (-0.17 and -5.72 MPa soil ΨW), from O. albicarpa, O. ficus-indica, O. hyptiacantha, O. megacantha, and O. streptacantha. The experimental design was a factorial 5 x 2 x 2 (species, sampling time and soil ΨW). The experimental unit was one cladode per plant, and six repetitions were evaluated. Total acids, glucose, fructose, sucrose, starch, total phenolics, free amino acids, and soluble proteins concentrations were evaluated, as well as acid invertase and neutral invertase activities. The interaction among species x soil ΨW and species x time of the day was significant (P ≤ 0.05) in all variables evaluated. An exception was the species x soil ΨW on starch concentration (P = 0.1827). The biochemical and physiological characteristics of Opuntia cladodes were modified by the time of the day and soil ΨW interaction, but most of the characteristics were positively or inversely affected depending on the species, frequently displaying a descending trend following O. streptacantha, O. hyptiacantha, O. megacantha, O. albicarpa and O. ficus-indica. The total acids, glucose, fructose, starch, soluble proteins, and free amino acids concentrations revealed that domestication significantly modifies C and N metabolism in Opuntia.
Collapse
Affiliation(s)
| | - Cecilia Beatriz Peña-Valdivia
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 33.5, Montecillo, 56230, Mexico.
| | - Carlos Trejo
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 33.5, Montecillo, 56230, Mexico
| | - Daniel Padilla Chacón
- Cátedras CONACyT, Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 33.5, Montecillo, 56230, Mexico
| | - Rodolfo García N
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 33.5, Montecillo, 56230, Mexico
| | - Eleazar Martínez B
- Facultad de Química, Depto. de Bioquímica, Universidad Nacional Autónoma de México, México
| |
Collapse
|
84
|
Perkovich C, Ward D. Herbivore-induced defenses are not under phylogenetic constraints in the genus Quercus (oak): Phylogenetic patterns of growth, defense, and storage. Ecol Evol 2021; 11:5187-5203. [PMID: 34026000 PMCID: PMC8131805 DOI: 10.1002/ece3.7409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
The evolution of plant defenses is often constrained by phylogeny. Many of the differences between competing plant defense theories hinge upon the differences in the location of meristem damage (apical versus auxiliary) and the amount of tissue removed. We analyzed the growth and defense responses of 12 Quercus (oak) species from a well-resolved molecular phylogeny using phylogenetically independent contrasts. Access to light is paramount for forest-dwelling tree species, such as many members of the genus Quercus. We therefore predicted a greater investment in defense when apical meristem tissue was removed. We also predicted a greater investment in defense when large amounts of tissue were removed and a greater investment in growth when less tissues were removed. We conducted five simulated herbivory treatments including a control with no damage and alterations of the location of meristem damage (apical versus auxiliary shoots) and intensity (25% versus 75% tissue removal). We measured growth, defense, and nutrient re-allocation traits in response to simulated herbivory. Phylomorphospace models were used to demonstrate the phylogenetic nature of trade-offs between characteristics of growth, chemical defenses, and nutrient re-allocation. We found that growth-defense trade-offs in control treatments were under phylogenetic constraints, but phylogenetic constraints and growth-defense trade-offs were not common in the simulated herbivory treatments. Growth-defense constraints exist within the Quercus genus, although there are adaptations to herbivory that vary among species.
Collapse
Affiliation(s)
| | - David Ward
- Department of Biological SciencesKent State UniversityKentOHUSA
| |
Collapse
|
85
|
Rubio B, Fernandez O, Cosson P, Berton T, Caballero M, Lion R, Roux F, Bergelson J, Gibon Y, Schurdi-Levraud V. Metabolic Profile Discriminates and Predicts Arabidopsis Susceptibility to Virus under Field Conditions. Metabolites 2021; 11:metabo11040230. [PMID: 33918649 PMCID: PMC8069729 DOI: 10.3390/metabo11040230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
As obligatory parasites, plant viruses alter host cellular metabolism. There is a lack of information on the variability of virus-induced metabolic responses among genetically diverse plants in a natural context with daily changing conditions. To decipher the metabolic landscape of plant-virus interactions in a natural setting, twenty-six and ten accessions of Arabidopsis thaliana were inoculated with Turnip mosaic virus (TuMV), in two field experiments over 2 years. The accessions were measured for viral accumulation, above-ground biomass, targeted and untargeted metabolic profiles. The phenotypes of the accessions ranged from susceptibility to resistance. Susceptible and resistant accessions were shown to have different metabolic routes after inoculation. Susceptible genotypes accumulate primary and secondary metabolites upon infection, at the cost of hindered growth. Twenty-one metabolic signatures significantly accumulated in resistant accessions whereas they maintained their growth as mock-inoculated plants without biomass penalty. Metabolic content was demonstrated to discriminate and be highly predictive of the susceptibility of inoculated Arabidopsis. This study is the first to describe the metabolic landscape of plant-virus interactions in a natural setting and its predictive link to susceptibility. It provides new insights on plant-virus interactions. In this undomesticated species and in ecologically realistic conditions, growth and resistance are in a permanent conversation.
Collapse
Affiliation(s)
- Bernadette Rubio
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Olivier Fernandez
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Patrick Cosson
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Thierry Berton
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Mélodie Caballero
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Roxane Lion
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Fabrice Roux
- CNRS, INRAE, Université de Toulouse, LIPM, F-31320 Castanet-Tolosan, France;
| | - Joy Bergelson
- Ecology & Evolution, University of Chicago, 1101 E 57th St, Chicago, IL 60637, USA;
| | - Yves Gibon
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Valérie Schurdi-Levraud
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
- Correspondence:
| |
Collapse
|
86
|
Cowan MF, Blomstedt CK, Møller BL, Henry RJ, Gleadow RM. Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated sorghum. PHYTOCHEMISTRY 2021; 184:112645. [PMID: 33482417 DOI: 10.1016/j.phytochem.2020.112645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of domesticated sorghum (Sorghum bicolor), especially in younger plants, are cyanogenic and potentially toxic. Species of wild sorghum produce lower levels of the cyanogenic glucoside (CNglc) dhurrin than S. bicolor at maturity, but it is not known if this is also the case during germination and early growth. CNglcs play multiple roles in primary and specialised metabolism in domesticated sorghum and other crop plants. In this study, the temporal and spatial distribution of dhurrin in wild and domesticated sorghum at different growth stages was monitored in leaf, sheath and root tissues up to 35 days post germination using S. bicolor and the wild species S. brachypodum and S. macrospermum as the experimental systems. Growth parameters were also measured and allocation of plant total nitrogen (N%) to both dhurrin and nitrate (NO3-) was calculated. Negligible amounts of dhurrin were produced in the leaves of the two wild species compared to S. bicolor. The morphology of the two wild sorghums also differed from S. bicolor, with the greatest differences observed for the more distantly related S. brachypodum. S. bicolor had the highest leaf N% whilst the wild species had significantly higher root N%. Allocation of nitrogen to dhurrin in aboveground tissue was significantly higher in S. bicolor compared to the wild species but did not differ in the roots across the three species. The differences in plant morphology, dhurrin content and re-mobilisation, and nitrate/nitrogen allocation suggest that domestication has affected the functional roles of dhurrin in sorghum.
Collapse
Affiliation(s)
- Max F Cowan
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| | - Cecilia K Blomstedt
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center Plant Plasticity, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Roslyn M Gleadow
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
87
|
Chavana J, Singh S, Vazquez A, Christoffersen B, Racelis A, Kariyat RR. Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits. Sci Rep 2021; 11:6634. [PMID: 33758235 PMCID: PMC7988165 DOI: 10.1038/s41598-021-85789-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023] Open
Abstract
The role of disturbance in accelerating weed growth is well understood. While most studies have focused on soil mediated disturbance, mowing can also impact weed traits. Using silverleaf nightshade (Solanum elaeagnifolium), a noxious and invasive weed, through a series of field, laboratory, and greenhouse experiments, we asked whether continuous mowing influences growth and plant defense traits, expressed via different avenues, and whether they cascade into offspring. We found that mowed plants produced significantly less number of fruits, and less number of total seeds per plant, but had higher seed mass, and germinated more and faster. When three herbivores were allowed to feed, tobacco hornworm (Manduca sexta) caterpillars, gained more mass on seedlings from unmowed plants, while cow pea aphid (Aphis craccivora), a generalist, established better on mowed seedlings; however, leaf trichome density was higher on unmowed seedlings, suggesting possible negative cross talk in defense traits. Texas potato beetle (Leptinotarsa texana), a co-evolved specialist on S. elaeagnifolium, did not show any differential feeding effects. We also found that specific root length, an indicator of nutrient acquisition, was significantly higher in first generation seedlings from mowed plants. Taken together, we show that mowing is a selective pressure that enhances some fitness and defense traits and can contribute to producing superweeds.
Collapse
Affiliation(s)
- Jesus Chavana
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Sukhman Singh
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Alejandro Vazquez
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Bradley Christoffersen
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Alexis Racelis
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
- School of Earth, Environmental and Marine Sciences, Edinburg, TX, 78539, USA
| | - Rupesh R Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA.
- School of Earth, Environmental and Marine Sciences, Edinburg, TX, 78539, USA.
| |
Collapse
|
88
|
Manea A, Tabassum S, Leishman MR. Eucalyptus
species maintain secondary metabolite production under water stress conditions at the expense of growth. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Anthony Manea
- Department of Biological Sciences Macquarie University North Ryde New South Wales 2109 Australia
| | - Samiya Tabassum
- Department of Biological Sciences Macquarie University North Ryde New South Wales 2109 Australia
| | - Michelle R. Leishman
- Department of Biological Sciences Macquarie University North Ryde New South Wales 2109 Australia
| |
Collapse
|
89
|
Myrans H, Vandegeer RK, Henry RJ, Gleadow RM. Nitrogen availability and allocation in sorghum and its wild relatives: Divergent roles for cyanogenic glucosides. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153393. [PMID: 33667954 DOI: 10.1016/j.jplph.2021.153393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Crop plants are assumed to have become more susceptible to pests as a result of selection for high growth rates during the process of domestication, consistent with resource allocation theories. We compared the investment by domesticated sorghum into cyanogenic glucosides, nitrogen-based specialised metabolites that break down to release hydrogen cyanide, with five wild relatives native to Australia. Plants were grown in pots in a greenhouse and supplied with low and high concentrations of nitrogen and monitored for 9 weeks. The concentrations of nitrate, total phenolics and silicon were also measured. Domesticated Sorghum bicolor had the highest leaf and root cyanogenic glucoside concentrations, and among the lowest nitrate and silicon concentrations under both treatments. Despite partitioning a much higher proportion of its stored nitrogen to cyanogenic glucosides than the wild species, S. bicolor's nitrogen productivity levels were among the highest. Most of the wild sorghums had higher concentrations of silicon and phenolics, which may provide an alternative defence system. Cyanogenic glucosides appear to be integral to S. bicolor's physiology, having roles in both growth and defence. Sorghum macrospermum displayed consistently low cyanogenic glucoside concentrations, high growth rates and high nitrogen productivity and represents a particularly attractive genetic resource for sorghum improvement.
Collapse
Affiliation(s)
- Harry Myrans
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Rebecca K Vandegeer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Roslyn M Gleadow
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, VIC 3800, Australia; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
90
|
Thakur MP, Künne T, Unsicker SB, Biere A, Ferlian O, Pruschitzki U, Thouvenot L, Türke M, Eisenhauer N. Invasive earthworms reduce chemical defense and increase herbivory and pathogen infection in native trees. THE JOURNAL OF ECOLOGY 2021; 109:763-775. [PMID: 33664527 PMCID: PMC7891629 DOI: 10.1111/1365-2745.13504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/01/2020] [Indexed: 05/24/2023]
Abstract
Recent research shows that earthworms can alter defense traits of plants against herbivores and pathogens by affecting soil biochemistry. Yet, the effects of invasive earthworms on defense traits of native plants from previously earthworm-free ecosystems as well as the consequences for multitrophic interactions are virtually unknown.Here we use a combination of an observational study and a complementary experimental study to investigate the effects of invasive earthworms on leaf defense traits, herbivore damage and pathogen infection in two poplar tree species (Populus balsamifera and Populus tremuloides) native to North American boreal forests.Our observational study showed that earthworm invasion was associated with enhanced leaf herbivory (by leaf-chewing insects) in saplings of both tree species. However, we only detected significant shifts in the concentration of chemical defense compounds in response to earthworm invasion for P. balsamifera. Specifically, leaf phenolic concentrations, including salicinoids and catechin, were lower in P. balsamifera from earthworm-invaded sites.Our experimental study confirmed an earthworm-induced reduction in leaf defense levels in P. balsamifera for one of the defense compounds, tremulacin. The experimental study additionally showed that invasive earthworms reduced leaf dry matter content, potentially increasing leaf palatability, and enhanced susceptibility of trees to infection by a fungal pathogen, but not to aphid infestation, in the same tree species. Synthesis. Our results show that invasive earthworms can decrease the concentrations of some chemical defense compounds in P. balsamifera, which could make them susceptible to leaf-chewing insects. Such potential impacts of invasive earthworms are likely to have implications for tree survival and competition, native tree biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Madhav P. Thakur
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Terrestrial Ecology GroupInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Tom Künne
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Sybille B. Unsicker
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Arjen Biere
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Ulrich Pruschitzki
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Lise Thouvenot
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| |
Collapse
|
91
|
The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. Int J Mol Sci 2021; 22:ijms22031442. [PMID: 33535511 PMCID: PMC7867105 DOI: 10.3390/ijms22031442] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
There is no argument to the fact that insect herbivores cause significant losses to plant productivity in both natural and agricultural ecosystems. To counter this continuous onslaught, plants have evolved a suite of direct and indirect, constitutive and induced, chemical and physical defenses, and secondary metabolites are a key group that facilitates these defenses. Polyphenols—widely distributed in flowering plants—are the major group of such biologically active secondary metabolites. Recent advances in analytical chemistry and metabolomics have provided an opportunity to dig deep into extraction and quantification of plant-based natural products with insecticidal/insect deterrent activity, a potential sustainable pest management strategy. However, we currently lack an updated review of their multifunctional roles in insect-plant interactions, especially focusing on their insect deterrent or antifeedant properties. This review focuses on the role of polyphenols in plant-insect interactions and plant defenses including their structure, induction, regulation, and their anti-feeding and toxicity effects. Details on mechanisms underlying these interactions and localization of these compounds are discussed in the context of insect-plant interactions, current findings, and potential avenues for future research in this area.
Collapse
|
92
|
Torres-Fajardo RA, González-Pech PG, Sandoval-Castro CA, Torres-Acosta JFDJ. Small Ruminant Production Based on Rangelands to Optimize Animal Nutrition and Health: Building an Interdisciplinary Approach to Evaluate Nutraceutical Plants. Animals (Basel) 2020; 10:E1799. [PMID: 33023017 PMCID: PMC7601357 DOI: 10.3390/ani10101799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
The plant kingdom can influence the productivity and health of herbivores at different levels. However, demonstrating this process in a scientific manner entails substantial endeavors from different disciplines. In the present review, we will describe the features of a native vegetation system traditionally used by small ruminants and use its particularities to build an interdisciplinary approach to evaluate the nutraceutical properties of plants. Initially, we will establish the context of the low deciduous forest (LDF), considering some botanical and nutritional aspects, as well as the presence of plant secondary compounds (PSC) and gastrointestinal nematodes (GIN). Furthermore, we will focus on coevolutionary aspects that undoubtedly shaped the plants-nutrients-PSC-GIN-herbivore relationship. In addition, the concept of nutraceutical will be discussed to provide clarity and aspects to be considered for their evaluation. Then, ethological, agronomical, nutritional, PSC, parasitological and animal species issues are deepened placing emphasis on methodological approaches. Special focus is given to condensed tannins, as they are the fourth largest group of PSCs and the most studied in livestock sciences. Validation of the nutraceutical properties of plants from native vegetation systems should be seen as a process derived from many scientific disciplines that feed into each other in a cyclic manner.
Collapse
Affiliation(s)
| | | | - Carlos Alfredo Sandoval-Castro
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida 97000, Yucatán, Mexico; (R.A.T.-F.); (P.G.G.-P.); (J.F.d.J.T.-A.)
| | | |
Collapse
|
93
|
Detto M, Xu X. Optimal leaf life strategies determine V c,max dynamic during ontogeny. THE NEW PHYTOLOGIST 2020; 228:361-375. [PMID: 32473028 DOI: 10.1111/nph.16712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 05/26/2023]
Abstract
Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max , change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf-level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light). The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels. Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and Vc,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between Vc,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models. This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first-step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.
Collapse
Affiliation(s)
- Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
- Smithsonian Tropical Research Institute, Balboa, 0843-03092, Republic of Panama
| | - Xiangtao Xu
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
94
|
Phytochemical and Antioxidant Dynamics of the Soursop Fruit (Annona muricata L.) in response to Colletotrichum spp. J FOOD QUALITY 2020. [DOI: 10.1155/2020/3180634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work evaluates the effect of the pathogens Colletotrichum siamense and C. gloeosporioides on the response of soursop fruits. The bioactive compounds (total phenols, flavonoids, anthraquinones, coumarins, steroids, terpenoids, alkaloids, and saponins) were evaluated qualitatively in soursop pulp. Positive phytochemicals and antioxidant activity (DPPH•, ABTS•+, and FRAP) were quantified at day zero, one, three, and five. Fruits treated with C. gloeosporioides showed higher disease severity (P<0.05). Early fruit response (day one) was observed with both pathogens, increased the concentration of saponins and repressed the production of quercetin 3-O-glucoside (P<0.05). Likewise, C. siamense decreased total soluble phenols and flavonoids and increased antiradical activity DPPH•. Besides, C. gloeosporioides decreased the levels of kaempferol 3-O-rutinoside and ferulic acid (P<0.05). Regarding the late response (day three), both pathogens decreased the concentration of saponins and increased flavonoids and phytosterols (P<0.05). Nevertheless, C. siamense increased the levels of total soluble phenols, p-coumaric acid, kaempferol, and antiradical activity FRAP (P<0.05). Also, C. gloeosporioides repressed the production of quercetin 3-O-glucoside at day five (P<0.05). Soursop fruits had a response to the attack of Colletotrichum during ripening at physicochemical and oxidative levels, which is associated with the production of compounds related to the development inhibition of pathogens. Even so, soursop fruits showed higher susceptibility to C. gloeosporioides and higher sensitivity to the attack of C. siamense.
Collapse
|
95
|
Hajiboland R, Sadeghzadeh N, Moradtalab N, Aliasgharzad N, Schweikert K, Poschenrieder C. The arbuscular mycorrhizal mycelium from barley differentially influences various defense parameters in the non-host sugar beet under co-cultivation. MYCORRHIZA 2020; 30:647-661. [PMID: 32691151 DOI: 10.1007/s00572-020-00978-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The interactions between arbuscular mycorrhizal fungi (AMF) and non-host species are poorly studied. Particularly scarce is information on members of the Amaranthaceae/Chenopodiaceae family. Sugar beet (Beta vulgaris) plants were co-cultivated with a host species (Hordeum vulgare) in the presence (+AMF) or absence of Rhizophagus intraradices to explore the hypothesis that the presence of an active, pre-established AMF mycelium induces defense responses in the non-host species. Biomass of sugar beet did not respond to the +AMF treatment, while its root exudation of organic acids and phenolic acids was drastically decreased upon co-cultivation with +AMF barley. The most conspicuous effect was observed on a wide range of potential defense parameters being differentially influenced by the +AMF treatment in this non-host species. Antioxidant defense enzymes were activated and the level of endogenous jasmonic acid was elevated accompanied by nitric oxide accumulation and lignin deposition in the roots after long-term +AMF treatment. In contrast, significant reductions in the levels of endogenous salicylic acid and tissue concentration and exudation of phenolic acids indicated that AM fungus hyphae in the substrate did not induce a hypersensitive-type response in the sugar beet roots and downregulated certain chemical defenses. Our results imply that the fitness of this non-host species is not reduced when grown in the presence of an AMF mycelium because of balanced defense costs. Further studies should address the question of whether or not such modulation of defense pattern influences the pest resistance of sugar beet plants under field conditions.
Collapse
Affiliation(s)
- Roghieh Hajiboland
- Department of Plant Science, Faculty of Natural Science, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Noushin Sadeghzadeh
- Department of Plant Science, Faculty of Natural Science, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Narges Moradtalab
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | | | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
96
|
Piasecka A, Sawikowska A, Kuczyńska A, Ogrodowicz P, Mikołajczak K, Krajewski P, Kachlicki P. Phenolic Metabolites from Barley in Contribution to Phenome in soil Moisture Deficit. Int J Mol Sci 2020; 21:E6032. [PMID: 32825802 PMCID: PMC7503775 DOI: 10.3390/ijms21176032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
Eight barley varieties from Europe and Asia were subjected to moisture deficit at various development stages. At the seedling stage and the flag leaf stage combined stress was applied. The experiment was designed for visualization of the correlation between the dynamics of changes in phenolic compound profiles and the external phenome. The most significant increase of compound content in water deficiency was observed for chrysoeriol and apigenin glycoconjugates acylated with methoxylated hydroxycinnamic acids that enhanced the UV-protection effectiveness. Moreover, other good antioxidants such as derivatives of luteolin and hordatines were also induced by moisture deficit. The structural diversity of metabolites of the contents changed in response to water deficiency in barley indicates their multipath activities under stress. Plants exposed to moisture deficit at the seedling stage mobilized twice as many metabolites as plants exposed to this stress at the flag leaf stage. Specific metabolites such as methoxyhydroxycinnamic acids participated in the long-term acclimation. In addition, differences in phenolome mobilization in response to moisture deficit applied at the vegetative and generative phases were correlated with the phenotypical consequences. Observations of plant yield and biomass gave us the possibility to discuss the developmentally related consequences of moisture deficit for plants' fitness.
Collapse
Affiliation(s)
- Anna Piasecka
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | | | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Piotr Kachlicki
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| |
Collapse
|
97
|
Latif S, Weston PA, Barrow RA, Gurusinghe S, Piltz JW, Weston LA. Metabolic Profiling Provides Unique Insights to Accumulation and Biosynthesis of Key Secondary Metabolites in Annual Pasture Legumes of Mediterranean Origin. Metabolites 2020; 10:metabo10070267. [PMID: 32605241 PMCID: PMC7407162 DOI: 10.3390/metabo10070267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
Annual legumes from the Mediterranean region are receiving attention in Australia as alternatives to traditional pasture species. The current study employed novel metabolic profiling approaches to quantify key secondary metabolites including phytoestrogens to better understand their biosynthetic regulation in a range of field-grown annual pasture legumes. In addition, total polyphenol and proanthocyanidins were quantified using Folin-Ciocalteu and vanillin assays, respectively. Metabolic profiling coupled with biochemical assay results demonstrated marked differences in the abundance of coumestans, flavonoids, polyphenols, and proanthocyanidins in annual pasture legume species. Genetically related pasture legumes segregated similarly from a chemotaxonomic perspective. A strong and positive association was observed between the concentration of phytoestrogens and upregulation of the flavonoid biosynthetic pathway in annual pasture legumes. Our findings suggest that evolutionary differences in metabolic dynamics and biosynthetic regulation of secondary metabolites have logically occurred over time in various species of annual pasture legumes resulting in enhanced plant defense.
Collapse
Affiliation(s)
- Sajid Latif
- Graham Center for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (P.A.W.); (R.A.B.); (S.G.); (L.A.W.)
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Correspondence:
| | - Paul A. Weston
- Graham Center for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (P.A.W.); (R.A.B.); (S.G.); (L.A.W.)
- School of Agriculture and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Russell A. Barrow
- Graham Center for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (P.A.W.); (R.A.B.); (S.G.); (L.A.W.)
- Plus 3 Australia Pty Ltd., P.O. Box 4345, Hawker, ACT 2614, Australia
| | - Saliya Gurusinghe
- Graham Center for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (P.A.W.); (R.A.B.); (S.G.); (L.A.W.)
| | - John W. Piltz
- New South Wales Department of Primary Industries, Wagga Wagga, NSW 2678, Australia;
| | - Leslie A. Weston
- Graham Center for Agricultural Innovation, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (P.A.W.); (R.A.B.); (S.G.); (L.A.W.)
- School of Agriculture and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
98
|
Thapsigargins and induced chemical defence in Thapsia garganica. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
99
|
Ochoa-López S, Damián X, Rebollo R, Fornoni J, Domínguez CA, Boege K. Ontogenetic changes in the targets of natural selection in three plant defenses. THE NEW PHYTOLOGIST 2020; 226:1480-1491. [PMID: 31943211 DOI: 10.1111/nph.16422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
The evolution of plant defenses has traditionally been studied at single plant ontogenetic stages, overlooking the fact that natural selection acts continuously on organisms along their development, and that the adaptive value of phenotypes can change along ontogeny. We exposed 20 replicated genotypes of Turnera velutina to field conditions to evaluate whether the targets of natural selection on different defenses and their adaptative value change across plant development. We found that low chemical defense was favored in seedlings, which seems to be explained by the assimilation efficiency and the ability of the specialist herbivore to sequester cyanogenic glycosides. Whereas trichome density was unfavored in juvenile plants, it increased relative plant fitness in reproductive plants. At this stage we also found a positive correlative gradient between cyanogenic potential and sugar content in extrafloral nectar. We visualize this complex multi-trait combination as an ontogenetic defensive strategy. The inclusion of whole-plant ontogeny as a key source of variation in plant defense revealed that the targets and intensity of selection change along the development of plants, indicating that the influence of natural selection cannot be inferred without the assessment of ontogenetic strategies in the expression of multiple defenses.
Collapse
Affiliation(s)
- Sofía Ochoa-López
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, México
| | - Xóchitl Damián
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, México
| | - Roberto Rebollo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
| | - Juan Fornoni
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
| | - César A Domínguez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
| |
Collapse
|
100
|
Howe M, Mason CJ, Gratton C, Keefover‐Ring K, Wallin K, Yanchuk A, Zhu J, Raffa KF. Relationships between conifer constitutive and inducible defenses against bark beetles change across levels of biological and ecological scale. OIKOS 2020. [DOI: 10.1111/oik.07242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Michael Howe
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI 53706 USA
| | - Charles J. Mason
- Dept of Entomology, Pennsylvania State Univ., University Park PA USA
| | - Claudio Gratton
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI 53706 USA
| | - Ken Keefover‐Ring
- Depts of Botany and Geography, Univ. of Wisconsin‐Madison Madison WI USA
| | - Kimberly Wallin
- College of Science and Mathematics, North Dakota State Univ. Fargo ND USA
| | - Alvin Yanchuk
- Ministry of Forests, Lands, Natural Resource Operations & Rural Development, Government of British Columbia Victoria BC Canada
| | - Jun Zhu
- Dept of Statistics, Univ. of Wisconsin‐Madison Madison WI USA
| | - Kenneth F. Raffa
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI 53706 USA
| |
Collapse
|