51
|
Akbarzadeh S, Khajehsharifi H, Hajihosseini S. Detection of Oxytetracycline Using an Electrochemical Label-Free Aptamer-Based Biosensor. BIOSENSORS 2022; 12:bios12070468. [PMID: 35884270 PMCID: PMC9313391 DOI: 10.3390/bios12070468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/01/2023]
Abstract
One of the most effective ways to detect and measure antibiotics is to detect their biomarkers. The best biomarker for the control and detection of oxytetracycline (OTC) is the OTC-specific aptamer. In this study, a novel, rapid, and label-free aptamer-based electrochemical biosensor (electrochemical aptasensor) was designed for OTC determination based on a newly synthesized nanocomposite including multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), reduced graphene oxide (rGO), and chitosan (CS), as well as nanosheets to modify a glassy carbon electrode, which extremely enhanced electrical conductivity and increased the electrode surface to bind well with the amine-terminated OTC-specific aptamer through self-assembly. The (MWCNTs-AuNPs/CS-AuNPs/rGO-AuNPs) nanocomposite modified electrode was synthesized using a layer- by-layer modification method which had the highest efficiency for better aptamer stabilization. Differential pulse voltammetry (DPV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) techniques were used to investigate and evaluate the electrochemical properties and importance of the synthesized nanocomposite in different steps. The designed aptasensor was very sensitive for measuring the OTC content of milk samples, and the results were compared with those of our previously published paper. Based on the calibration curve, the detection limit was 30.0 pM, and the linear range was 1.00-540 nM for OTC. The repeatability and reproducibility of the aptasensor were obtained for 10.0 nM of OTC with a relative standard deviation (RSD%) of 2.39% and 4.01%, respectively, which were not affected by the coexistence of similar derivatives. The measurement in real samples with the recovery range of 93.5% to 98.76% shows that this aptasensor with a low detection limit and wide linear range can be a good tool for detecting OTC.
Collapse
Affiliation(s)
- Sanaz Akbarzadeh
- Department of Chemistry, Faculty of Science, Yasouj University, Yasouj 75918-74831, Iran;
| | | | - Saeedeh Hajihosseini
- Medical Nanotechnology and Tissue Engineering Research Science Institute, Shahid Sadoughi University of Medical Science, Yazd 8919-5999, Iran;
| |
Collapse
|
52
|
Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules 2022; 27:molecules27123841. [PMID: 35744967 PMCID: PMC9229873 DOI: 10.3390/molecules27123841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
Nanoengineering biosensors have become more precise and sophisticated, raising the demand for highly sensitive architectures to monitor target analytes at extremely low concentrations often required, for example, for biomedical applications. We review recent advances in functional nanomaterials, mainly based on novel organic-inorganic hybrids with enhanced electro-physicochemical properties toward fulfilling this need. In this context, this review classifies some recently engineered organic-inorganic metallic-, silicon-, carbonaceous-, and polymeric-nanomaterials and describes their structural properties and features when incorporated into biosensing systems. It further shows the latest advances in ultrasensitive electrochemical biosensors engineered from such innovative nanomaterials highlighting their advantages concerning the concomitant constituents acting alone, fulfilling the gap from other reviews in the literature. Finally, it mentioned the limitations and opportunities of hybrid nanomaterials from the point of view of current nanotechnology and future considerations for advancing their use in enhanced electrochemical platforms.
Collapse
|
53
|
Salahandish R, Jalali P, Tabrizi HO, Hyun JE, Haghayegh F, Khalghollah M, Zare A, Berenger BM, Niu YD, Ghafar-Zadeh E, Sanati-Nezhad A. A compact, low-cost, and binary sensing (BiSense) platform for noise-free and self-validated impedimetric detection of COVID-19 infected patients. Biosens Bioelectron 2022; 213:114459. [PMID: 35728365 PMCID: PMC9195351 DOI: 10.1016/j.bios.2022.114459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
Electrochemical immuno-biosensors are one of the most promising approaches for accurate, rapid, and quantitative detection of protein biomarkers. The two-working electrode strip is employed for creating a self-supporting system, as a tool for self-validating the acquired results for added reliability. However, the realization of multiplex electrochemical point-of-care testing (ME-POCT) requires advancement in portable, rapid reading, easy-to-use, and low-cost multichannel potentiostat readers. The combined multiplex biosensor strips and multichannel readers allow for suppressing the possible complex matrix effect or ultra-sensitive detection of different protein biomarkers. Herein, a handheld binary-sensing (BiSense) bi-potentiostat was developed to perform electrochemical impedance spectroscopy (EIS)-based signal acquisition from a custom-designed dual-working-electrode immuno-biosensor. BiSense employs a commercially available microcontroller and out-of-shelf components, offering the cheapest yet accurate and reliable time-domain impedance analyzer. A specific electrical board design was developed and customized for impedance signal analysis of SARS-CoV-2 nucleocapsid (N)-protein biosensor in spiked samples and alpha variant clinical nasopharyngeal (NP) swab samples. BiSense showed limit-of-detection (LoD) down to 56 fg/mL for working electrode 1 (WE1) and 68 fg/mL for WE2 and reported with a dynamic detection range of 1 pg/mL to 10 ng/mL for detection of N-protein in spiked samples. The dual biosensing of N-protein in this work was used as a self-validation of the biosensor. The low-cost (∼USD$40) BiSense bi-potentiostat combined with the immuno-biosensors successfully detected COVID-19 infected patients in less than 10 min, with the BiSense reading period shorter than 1.5 min, demonstrating its potential for the realization of ME-POCTs for rapid and hand-held diagnosis of infections.
Collapse
Affiliation(s)
- Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Pezhman Jalali
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Hamed Osouli Tabrizi
- Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, M3J1P3, Canada
| | - Jae Eun Hyun
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Mahmood Khalghollah
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Azam Zare
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Byron M Berenger
- Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd. Calgary, Alberta, T2L 1Y1, Canada; Alberta Public Health Laboratory, Alberta Precision Laboratories, 3330 Hospital Drive, Calgary, Alberta, T2N 4W4, Canada
| | - Yan Dong Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, M3J1P3, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
54
|
Electrochemical Biosensors for Soluble Epidermal Growth Factor Receptor Detection. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
55
|
Salahandish R, Haghayegh F, Ayala-Charca G, Hyun JE, Khalghollah M, Zare A, Far B, Berenger BM, Niu YD, Ghafar-Zadeh E, Sanati-Nezhad A. Bi-ECDAQ: An electrochemical dual-immuno-biosensor accompanied by a customized bi-potentiostat for clinical detection of SARS-CoV-2 Nucleocapsid proteins. Biosens Bioelectron 2022; 203:114018. [PMID: 35114466 PMCID: PMC8786409 DOI: 10.1016/j.bios.2022.114018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 01/10/2023]
Abstract
Multiplex electrochemical biosensors have been used for eliminating the matrix effect in complex bodily fluids or enabling the detection of two or more bioanalytes, overall resulting in more sensitive assays and accurate diagnostics. Many electrochemical biosensors lack reliable and low-cost multiplexing to meet the requirements of point-of-care detection due to either limited functional biosensors for multi-electrode detection or incompatible readout systems. We developed a new dual electrochemical biosensing unit accompanied by a customized potentiostat to address the unmet need for point-of-care multi-electrode electrochemical biosensing. The two-working electrode system was developed using screen-printing of a carboxyl-rich nanomaterial containing ink, with both working electrodes offering active sites for recognition of bioanalytes. The low-cost bi-potentiostat system (∼$80) was developed and customized specifically to the bi-electrode design and used for rapid, repeatable, and accurate measurement of electrochemical impedance spectroscopy signals from the dual biosensor. This binary electrochemical data acquisition (Bi-ECDAQ) system accurately and selectively detected SARS-CoV-2 Nucleocapsid protein (N-protein) in both spiked samples and clinical nasopharyngeal swab samples of COVID-19 patients within 30 min. The two working electrodes offered the limit of detection of 116 fg/mL and 150 fg/mL, respectively, with the dynamic detection range of 1-10,000 pg/mL and the sensitivity range of 2744-2936 Ω mL/pg.mm2 for the detection of N-protein. The potentiostat performed comparable or better than commercial Autolab potentiostats while it is significantly lower cost. The open-source Bi-ECDAQ presents a customizable and flexible approach towards addressing the need for rapid and accurate point-of-care electrochemical biosensors for the rapid detection of various diseases.
Collapse
Affiliation(s)
- Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Giancarlo Ayala-Charca
- Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, M3J1P3, Canada
| | - Jae Eun Hyun
- Alberta Public Health Laboratory, Alberta Precision Laboratories, 3330 Hospital Drive, Calgary, Alberta, T2N 4W4, Canada
| | - Mahmood Khalghollah
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Azam Zare
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Behrouz Far
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Byron M Berenger
- Alberta Public Health Laboratory, Alberta Precision Laboratories, 3330 Hospital Drive, Calgary, Alberta, T2N 4W4, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd, Calgary, Alberta, T2L 1Y1, Canada
| | - Yan Dong Niu
- Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd, Calgary, Alberta, T2L 1Y1, Canada; Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, M3J1P3, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
56
|
Design, Elaboration, and Characterization of an Immunosensor for the Detection of a Fungal Toxin in Foodstuff Analyses. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work describes the complete elaboration of an immunosensor for the detection of the fungal B1 aflatoxin (AFB1). In a first step, a system made of three screen-printed electrodes (SPEs) was manufactured using gold, silver/silver chloride, and carbon pastes. Raman spectroscopy showed that the thermal treatment applied to the electrodes enabled a strong decrease in the amount of undesirable organic molecules for each paste. Atomic Force Microscopy was also used to reveal the morphology of the electrode surfaces. In a second step, an autonomous and cheap electronic system was designed for the control of the sensor and electrochemical measurements, showing current variations significantly higher than those observed with a commercial system. In a last step, the gold working electrode of this system was functionalized by a simple self-assembly method, optimized in a previous work, with a molecular architecture including an antibody recognizing specifically AFB1. The complete device was finally realized by combining the SPEs and the electronic platform. The resulting setup was able to detect AFB1 toxin in a buffer with an LOD of about 50 fg/mL. It was then applied to the detection of AFB1 in rice milk, a more realistic medium comparable with those met in an agrifood context. The electrochemical detection of AFB1 was possible in a range of concentration between 0.5 pg/mL and 2.5 pg/mL, with the sensor behaving linearly in this range.
Collapse
|
57
|
Zhang M, Cui X, Li N. Smartphone-based mobile biosensors for the point-of-care testing of human metabolites. Mater Today Bio 2022; 14:100254. [PMID: 35469257 PMCID: PMC9034388 DOI: 10.1016/j.mtbio.2022.100254] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Rapid, accurate, portable and quantitative profiling of metabolic biomarkers is of great importance for disease diagnosis and prognosis. The recent development in the optical and electric biosensors based on the smartphone is promising for profiling of metabolites with advantages of rapid, reliability, accuracy, low-cost and multi-analytes analysis capability. In this review, we introduced the optical biosensing platforms including colorimetric, fluorescent and chemiluminescent sensing, and electrochemical biosensing platforms including wired and wireless communication. Challenges and future perspectives desired for reliable, accurate, cost-effective, and multi-functions smartphone-based biosensing systems were also discussed. We envision that such smartphone-based biosensing platforms will allow daily and comprehensive metabolites monitoring in the future, thus unlocking the potential to transform clinical diagnostics into non-clinical self-testing. We also believed that this progress report will encourage future research to develop advanced, integrated and multi-functional smartphone-based Point-of-Care testing (POCT) biosensors for the monitoring and diagnosis as well as personalized treatments of a spectrum of metabolic-disorder related diseases.
Collapse
|
58
|
Sarakhman O, Benková A, Švorc Ľ. A modern and powerful electrochemical sensing platform for purines determination: Voltammetric determination of uric acid and caffeine in biological samples on miniaturized thick-film boron-doped diamond electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
59
|
Omage JI, Easterday E, Rumph JT, Brula I, Hill B, Kristensen J, Ha DT, Galindo CL, Danquah MK, Sims N, Nguyen VT. Cancer Diagnostics and Early Detection Using Electrochemical Aptasensors. MICROMACHINES 2022; 13:522. [PMID: 35457828 PMCID: PMC9026785 DOI: 10.3390/mi13040522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023]
Abstract
The detection of early-stage cancer offers patients the best chance of treatment and could help reduce cancer mortality rates. However, cancer cells or biomarkers are present in extremely small amounts in the early stages of cancer, requiring high-precision quantitative approaches with high sensitivity for accurate detection. With the advantages of simplicity, rapid response, reusability, and a low cost, aptamer-based electrochemical biosensors have received considerable attention as a promising approach for the clinical diagnosis of early-stage cancer. Various methods for developing highly sensitive aptasensors for the early detection of cancers in clinical samples are in progress. In this article, we discuss recent advances in the development of electrochemical aptasensors for the early detection of different cancer biomarkers and cells based on different detection strategies. Clinical applications of the aptasensors and future perspectives are also discussed.
Collapse
Affiliation(s)
- Joel Imoukhuede Omage
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Ethan Easterday
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA; (E.E.); (I.B.); (B.H.); (J.K.); (C.L.G.); (N.S.)
| | - Jelonia T. Rumph
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Imamulhaq Brula
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA; (E.E.); (I.B.); (B.H.); (J.K.); (C.L.G.); (N.S.)
| | - Braxton Hill
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA; (E.E.); (I.B.); (B.H.); (J.K.); (C.L.G.); (N.S.)
| | - Jeffrey Kristensen
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA; (E.E.); (I.B.); (B.H.); (J.K.); (C.L.G.); (N.S.)
| | - Dat Thinh Ha
- Center for Cancer Immunology and Cutaneous Biology Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; or
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Cristi L. Galindo
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA; (E.E.); (I.B.); (B.H.); (J.K.); (C.L.G.); (N.S.)
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403, USA;
| | - Naiya Sims
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA; (E.E.); (I.B.); (B.H.); (J.K.); (C.L.G.); (N.S.)
| | - Van Thuan Nguyen
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA; (E.E.); (I.B.); (B.H.); (J.K.); (C.L.G.); (N.S.)
| |
Collapse
|
60
|
Tyszczuk-Rotko K, Kozak J, Czech B. Screen-Printed Voltammetric Sensors-Tools for Environmental Water Monitoring of Painkillers. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072437. [PMID: 35408052 PMCID: PMC9003516 DOI: 10.3390/s22072437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 05/03/2023]
Abstract
The dynamic production and usage of pharmaceuticals, mainly painkillers, indicates the growing problem of environmental contamination. Therefore, the monitoring of pharmaceutical concentrations in environmental samples, mostly aquatic, is necessary. This article focuses on applying screen-printed voltammetric sensors for the voltammetric determination of painkillers residues, including non-steroidal anti-inflammatory drugs, paracetamol, and tramadol in environmental water samples. The main advantages of these electrodes are simplicity, reliability, portability, small instrumental setups comprising the three electrodes, and modest cost. Moreover, the electroconductivity, catalytic activity, and surface area can be easily improved by modifying the electrode surface with carbon nanomaterials, polymer films, or electrochemical activation.
Collapse
|
61
|
Pérez-Fernández B, Muñiz ADLE. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal Chim Acta 2022; 1212:339658. [DOI: 10.1016/j.aca.2022.339658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
62
|
Yun YR, Lee SY, Seo B, Kim H, Shin MG, Yang S. Sensitive electrochemical immunosensor to detect prohibitin 2, a potential blood cancer biomarker. Talanta 2022; 238:123053. [PMID: 34801909 DOI: 10.1016/j.talanta.2021.123053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
Blood cancers are difficult to cure completely and frequently show a poor prognosis. Recently, prohibitin 2 (PHB2) has been shown to be a potential biomarker for blood cancers. Sandwich ELISA can be used as a reference method for quantitative analysis of PHB2; however, ELISA can be challenging for early diagnosis and continuous monitoring method due to the need for large sample volumes (25 μL <), technical expertise, complex procedure, relative high cost, and non-portability. Thus, this study developed a sensitive and time efficient electrochemical immunosensor for detecting PHB2 from a blood cancer patient. It is a simple and portable platform consisting of a disposable electrode and blood sample volume of 4 μL. The sensor uses a gold nanostructured electrode and square wave voltammetry (SWV) measurement of a horseradish peroxidase (HRP) label to amplify the electrochemical signal. The immunosensor could quantitatively detect PHB2 with high sensitivity (limit of detection [LoD] = 0.04 ng/mL) and satisfactory reproducibility (relative standard deviation [RSD] <5.2%). The sensor achieved an LoD of 0.63 ng/mL with satisfactory recovery (89.1-104.7%) and reproducibility (RSD <6.4%) with PHB2 spiked into white blood cell (WBC) lysates. When the sensor was compared to a reference ELISA to determine the PHB2 concentrations in WBC lysate samples from healthy patients and those with blood cancer, the correlation coefficient (R2) was 0.996. A 3.3-fold difference was detected in the measured PHB2 concentration between blood cancer patients and healthy individuals. Accordingly, this study suggests a sensitive and accurate analytical method for quantitatively detecting the PHB2 in blood samples.
Collapse
Affiliation(s)
- Young-Ran Yun
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seung Yeob Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Bokyung Seo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital (CNUHH), Hwasun, Republic of Korea
| | - Sung Yang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; School of Mechanical Engineering, GIST, Gwangju, Republic of Korea.
| |
Collapse
|
63
|
Introducing Graphene–Indium Oxide Electrochemical Sensor for Detecting Ethanol in Aqueous Samples with CCD-RSM Optimization. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is significant demand for portable sensors that can deliver selective and sensitive measurement of ethanol on-site. Such sensors have application across many industries, including clinical and forensic work as well as agricultural and environmental analysis. Here, we report a new graphene–indium oxide electrochemical sensor for the determination of ethanol in aqueous samples. Graphene layers were functionalised by anchoring In2O3 to its surface and the developed composite was used as a selective electrochemical sensor for sensing ethanol through cyclic voltammetry. The detection limit of the sensor was 0.068 mol/L and it showed a linear response to increasing ethanol in the environment up to 1.2 mol/L. The most significant parameters involved and their interactions in the response of the sensor and optimization procedures were studied using a four-factor central composite design (CCD) combined with response surface modelling (RSM). The sensor was applied in the detection of ethanol in authentic samples.
Collapse
|
64
|
Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022; 27:508. [PMID: 35056823 PMCID: PMC8779822 DOI: 10.3390/molecules27020508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
65
|
Lin T, Xu Y, Zhao A, He W, Xiao F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Anal Chim Acta 2022; 1207:339461. [DOI: 10.1016/j.aca.2022.339461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
66
|
Baghbaderani SS, Mokarian P, Moazzam P. A Review on Electrochemical Sensing of Cancer Biomarkers Based on
Nanomaterial - Modified Systems. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200917161657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diagnosis of cancer in the early stages can help treat efficiently and reduce cancerrelated
death. Cancer biomarkers can respond to the presence of cancer in body fluids before the
appearance of any other symptoms of cancer. The integration of nanomaterials into biosensors as
electrochemical platforms offer rapid, sensitive detection for cancer biomarkers. The use of surface-
modified electrodes by carbon nanomaterials and metal nanoparticles enhances the performance
of electrochemical analysis in biosensing systems through the increase of bioreceptors loading
capacity on the surface. In this review, novel approaches based on nanomaterial-modified systems
in the point of care diagnostics are highlighted.
Collapse
Affiliation(s)
- Sorour Salehi Baghbaderani
- Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441,Iran
| | - Parastou Mokarian
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14676-86831,Iran
| | - Parisa Moazzam
- School of Chemistry, University of New South Wales, Sydney, 2052,Australia
| |
Collapse
|
67
|
Cancelliere R, Tinno AD, Cataldo A, Bellucci S, Micheli L. Powerful Electron-Transfer Screen-Printed Platforms as Biosensing Tools: The Case of Uric Acid Biosensor. BIOSENSORS 2021; 12:bios12010002. [PMID: 35049630 PMCID: PMC8773917 DOI: 10.3390/bios12010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 06/01/2023]
Abstract
The use of carbon nanomaterials (CNMs) in sensors and biosensor realization is one of the hottest topics today in analytical chemistry. In this work, a comparative in-depth study, exploiting different nanomaterial (MWNT-CO2H, -NH2, -OH and GNP) modified screen-printed electrodes (SPEs), is reported. In particular, the sensitivity, the heterogeneous electron transfer constant (k0), and the peak-to-peak separation (ΔE) have been calculated and analyzed. After which, an electrochemical amperometric sensor capable of determining uric acid (UA), based on the nano-modified platforms previously characterized, is presented. The disposable UA biosensor, fabricated modifying working electrode (WE) with Prussian Blue (PB), carbon nanotubes, and uricase enzyme, showed remarkable analytical performances toward UA with high sensitivity (CO2H 418 μA μM-1 cm-2 and bare SPE-based biosensor, 33 μA μM-1 cm-2), low detection limits (CO2H 0.5 nM and bare SPE-based biosensors, 280 nM), and good repeatability (CO2H and bare SPE-based biosensors, 5% and 10%, respectively). Moreover, the reproducibility (RSD%) of these platforms in tests conducted for UA determination in buffer and urine samples results are equal to 6% and 15%, respectively. These results demonstrate that the nanoengineered electrode exhibited good selectivity and sensitivity toward UA even in the presence of interfering species, thus paving the way for its application in other bio-fluids such as simple point-of-care (POC) devices.
Collapse
Affiliation(s)
- Rocco Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy; (R.C.); (A.D.T.)
| | - Alessio Di Tinno
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy; (R.C.); (A.D.T.)
| | - Antonino Cataldo
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy;
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy;
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy; (R.C.); (A.D.T.)
| |
Collapse
|
68
|
Adampourezare M, Saadati A, Hasanzadeh M, Dehghan G, Feizi MAH. Reliable recognition of DNA methylation using bioanalysis of hybridization on the surface of Ag/GQD nanocomposite stabilized on poly (β-cyclodextrin): A new platform for DNA damage studies using genosensor technology. J Mol Recognit 2021; 35:e2945. [PMID: 34904757 DOI: 10.1002/jmr.2945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/27/2022]
Abstract
Due to the role of DNA methylation in causing cancer in the present study, an innovative and inexpensive method was designed for the sensitive detection of DNA methylation. The silver-graphene quantum dots (Ag/GQDs) nano ink with high electrical conductivity was used as a substrate for genosensor fabrication toward identification of DNA hybridization. Also, poly (β-cyclodextrin) (p[β-CD]) has been used as a biointerface for the stabilization of Ag/GQD nano ink. The thiolated pDNA strand (5'-SH-TCCGCTTCCCGACCCGCACTCCGC-3') (as bioreceptor element) was fixed on the substrate and hybridized with methylated (5'-GC(M)GGAGTGC(M)GGGTC(M)GGGAAGC(M)GGA-3') and unmethylated (5'-GCGGAGTGCGGGTCGGGAAGCGGA-3') cDNAs, as target sequences were studied using electroanalysis methods. Under optimal conditions and using electrochemical techniques, the linear range was 1 am to 1 pm with LLOQ of 1aM. Finally, the designed DNA genosensor was used for detection of DNA methylation in human plasma samples and can be used to detect methylation in patient samples. It is expected that the designed DNA-based biodevice will be used to early stage diagnosis of cancer using monitoring of DNA methylation. Also, this type of genosensor can be used for epigenetic studies in the near future.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
69
|
Mohd Asri MA, Nordin AN, Ramli N. Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation. BIOMICROFLUIDICS 2021; 15:061502. [PMID: 34777677 PMCID: PMC8577868 DOI: 10.1063/5.0071176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 05/18/2023]
Abstract
Integrated microfluidic biosensors enable powerful microscale analyses in biology, physics, and chemistry. However, conventional methods for fabrication of biosensors are dependent on cleanroom-based approaches requiring facilities that are expensive and are limited in access. This is especially prohibitive toward researchers in low- and middle-income countries. In this topical review, we introduce a selection of state-of-the-art, low-cost prototyping approaches of microfluidics devices and miniature sensor electronics for the fabrication of sensor devices, with focus on electrochemical biosensors. Approaches explored include xurography, cleanroom-free soft lithography, paper analytical devices, screen-printing, inkjet printing, and direct ink writing. Also reviewed are selected surface modification strategies for bio-conjugates, as well as examples of applications of low-cost microfabrication in biosensors. We also highlight several factors for consideration when selecting microfabrication methods appropriate for a project. Finally, we share our outlook on the impact of these low-cost prototyping strategies on research and development. Our goal for this review is to provide a starting point for researchers seeking to explore microfluidics and biosensors with lower entry barriers and smaller starting investment, especially ones from low resource settings.
Collapse
Affiliation(s)
- Mohd Afiq Mohd Asri
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
- Author to whom correspondence should be addressed:
| | - Nabilah Ramli
- Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| |
Collapse
|
70
|
Barros Azeredo NF, Ferreira Santos MS, Sempionatto JR, Wang J, Angnes L. Screen-Printed Technologies Combined with Flow Analysis Techniques: Moving from Benchtop to Everywhere. Anal Chem 2021; 94:250-268. [PMID: 34851628 DOI: 10.1021/acs.analchem.1c02637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Screen-printed electrodes (SPEs) coupled with flow systems have been reported in recent decades for an ever-growing number of applications in modern electroanalysis, aiming for portable methodologies. The information acquired through this combination can be attractive for future users with basic knowledge, especially due to the increased measurement throughput, reduction in reagent consumption and minimal waste generation. The trends and possibilities of this set rely on the synergistic behavior that maximizes both SPE and flow analyses characteristics, allowing mass production and automation. This overview addresses an in-depth update about the scope of samples, target analytes, and analytical throughput (injections per hour, limits of detection, linear range, etc.) obtained by coupling injection techniques (FIA, SIA, and BIA) with SPE-based electrochemical detection.
Collapse
Affiliation(s)
- Nathália Florência Barros Azeredo
- Institute of Chemistry, University of São Paulo, São Paulo 05508-070, Brazil.,Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Juliane R Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lúcio Angnes
- Institute of Chemistry, University of São Paulo, São Paulo 05508-070, Brazil
| |
Collapse
|
71
|
Development of a New Screen-Printed Transducer for the Electrochemical Detection of Thiram. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new transducer based on a screen-printed carbon electrode has been developed for the quantification of thiram. Detection of this fungicide is based on the performance of two enzymes: (1) aldehyde dehydrogenase catalyzes the aldehyde oxidation using NAD+ as a cofactor and simultaneously, (2) diaphorase reoxidizes the NADH formed in the first enzymatic process due to the presence of hexacyanoferrate(III) which is reduced to hexacyanoferrate(II). Taking into account that aldehyde dehydrogenase is inhibited by thiram, the current decreases with pesticide concentration and thiram can be electrochemically quantified below legal limits. The transducer proposed in this work involves the modification of the carbon WE with the co-factors (NAD+ and hexacyanoferrate(III)) required in the enzymatic system. The new device employed in this work allows the detection of 0.09 ppm thiram, a concentration below legal limits (Maximum Residue Limits 0.1–10 ppm).
Collapse
|
72
|
Thakare S, Shaikh A, Bodas D, Gajbhiye V. Application of dendrimer-based nanosensors in immunodiagnosis. Colloids Surf B Biointerfaces 2021; 209:112174. [PMID: 34742022 DOI: 10.1016/j.colsurfb.2021.112174] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023]
Abstract
Conventional immunoassays such as ELISA and FLISA have been used for clinical diagnosis for a long time. These assays are complex, time-consuming, and uneconomical. They have been overwhelmed with newer and more efficient methods such as electrochemical and electrochemiluminescent immunosensors that are cost-effective and require less time. Immunosensor is a biosensor that consists of a signal transducer and a biologically interactive system such as antigen and antibody interaction. Recent advances in nanotechnology have seen numerous efforts towards the usage of nanoparticles such as dendrimers in immunoassays. Dendrimers are highly branched structures with a high density of active peripheral groups, expanding their wide range of applications in immunoassays. A vast number of peripheral groups enrich the sensitivity of the immunosensor by governing the orientation of the antibody on the sensor surface. The current review highlights recent progress and developments in applying dendrimers for different immunoassays and their applicability in analyzing various biomarkers in clinical disease diagnosis.
Collapse
Affiliation(s)
| | - Aazam Shaikh
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Dhananjay Bodas
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
73
|
Gilep A, Kuzikov A, Sushko T, Grabovec I, Masamrekh R, Sigolaeva LV, Pergushov DV, Schacher FH, Strushkevich N, Shumyantseva VV. Electrochemical characterization of mutant forms of rubredoxin B from Mycobacterium tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1870:140734. [PMID: 34662730 DOI: 10.1016/j.bbapap.2021.140734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022]
Abstract
Electron transfer in metalloproteins is a driving force for many biological processes and widely distributed in nature. Rubredoxin B (RubB) from Mycobacterium tuberculosis is a first example among [1Fe-0S] proteins that support catalytic activity of terminal sterol-monooxygenases enabling its application in metabolic engineering. To explore the tolerance of RubB to the specific amino acid changes we evaluated the effect of surface mutations on its electrochemical properties. Based on the RubB fold we also designed the mutant with a putative additional site for protein-protein interactions to further evaluate electron transfer and electrochemical properties. The investigation of redox properties of mutant variants of RubB was done using screen-printed graphite electrodes (SPEs) modified with stable dispersion of multi-walled carbon nanotubes (MWCNTs). The redox potentials (midpoint potentials, E0Ꞌ) of mutants did not significantly differ from the wild type protein and vary in the range of -264 to -231 mV vs. Ag/AgCl electrode. However, all mutations affect electron transfer rate between the protein and electrode. Notably, the modulation of the protein-protein interactions was observed for the insertion mutant suggesting the possibility of tailoring of rubredoxin for the selected redox-partner. Overall, RubB is tolerant to the significant modifications in its structure enabling rational engineering of novel redox proteins.
Collapse
Affiliation(s)
- Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus; Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexey Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Rami Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Larisa V Sigolaeva
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry V Pergushov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, D-07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, D-07743 Jena, Germany; Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, D-07743 Jena, Germany
| | | | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
74
|
Aydın EB, Aydın M, Sezgintürk MK. Highly selective and sensitive sandwich immunosensor platform modified with MUA-capped GNPs for detection of spike Receptor Binding Domain protein: A precious marker of COVID 19 infection. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 345:130355. [PMID: 34188361 PMCID: PMC8225300 DOI: 10.1016/j.snb.2021.130355] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 05/10/2023]
Abstract
A label-free electrochemical biosensing system as a suitable analysis technique for COVID 19 specific spike receptor-binding domain protein (RBD) was developed with an aim to facilitate the diagnosis of coronavirus. A novel production procedure for the fabrication of gold nanoparticles (GNPs)-capped 11-mercaptoundecanoic acid (MUA) modified bioelectrode was presented and its application potential for RBD biosensing was examined. The bioelectrode fabrication protocol was based on covalent ester linking formation between hydroxylated ITO electrode and GNPs-capped MUA (GNPs@MUA) with carboxyl ends. For this aim, spherical GNPs were prepared and characterized with scanning-transmission electron microscopy (S-TEM), UV-vis, and Raman spectroscopy. The synthesized GNPs were functionalized with MUA yielding Au-S bonds. Then, covalent immobilization of anti-RBD antibodies on the GNPs@MUA was performed with the help of carbodiimide coupling chemistry. The assembly processes of GNPs@MUA, anti-RBD antibodies and RBD antigens were characterized electrochemical, chemical and morphological techniques. GNPs@MUA was used as immobilization environment and provided the most effective surface design for target immunosensor. The resulting immunosensor is further applied to the impedimetric detection of RBD and it displayed a linear response to RBD antigen in the linear range of 0.002-100 pg mL-1 with a limit of detection of 0.577 fg mL-1 and sensitivity of 0.238 kohmpgmL-1 cm-2. The fabricated immunosensor had a good repeatability, long storage, stability and a reusable property after simple regeneration process. Furthermore, it was successfully employed for selective determination of RBD in artificial nasal secretion samples.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
75
|
In-situ redox-active hybrid graphene platform for label-free electrochemical biosensor: Insights from electrodeposition and electroless deposition. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
76
|
Richard I, Schyrr B, Aiassa S, Carrara S, Sorin F. All-in-Fiber Electrochemical Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43356-43363. [PMID: 34490779 DOI: 10.1021/acsami.1c11593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical sensors have found a wide range of applications in analytical chemistry thanks to the advent of high-throughput printing technologies. However, these techniques are usually limited to two-dimensional (2D) geometry with relatively large minimal feature sizes. Here, we report on the scalable fabrication of monolithically integrated electrochemical devices with novel and customizable fiber-based architectures. The multimaterial thermal drawing technique is employed to co-process polymer composites and metallic glass into uniform electroactive and pseudoreference electrodes embedded in an insulating polymer cladding fiber. To demonstrate the versatility of the process, we tailor the fiber microstructure to two configurations: a small-footprint fiber tip sensor and a high-surface-area capillary cell. We demonstrate the performance of our devices using cyclic voltammetry and chronoamperometry for the direct detection and quantification of paracetamol, a common anesthetic drug. Finally, we showcase a fully portable pipet-based analyzer using low-power electronics and an "electrochemical pipet tip" for direct sampling and analysis of microliter-range volumes. Our approach paves the way toward novel materials and architectures for efficient electrochemical sensing to be deployed in existing and novel personal care and surgical configurations.
Collapse
Affiliation(s)
- I Richard
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - B Schyrr
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - S Aiassa
- Integrated Systems Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - S Carrara
- Integrated Systems Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - F Sorin
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
77
|
Ivanov R, Czibula C, Teichert C, Bojinov M, Tsakova V. Carbon screen-printed electrodes for substrate-assisted electroless deposition of palladium. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
78
|
Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF. Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosens Bioelectron 2021; 185:113242. [PMID: 33915434 DOI: 10.1016/j.bios.2021.113242] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The urge to meet the ever-growing needs of sensing technology has spurred research to look for new alternatives to traditional analytical methods. In this scenario, the glucometer is the flagship of commercial electrochemical sensing platforms, combining selectivity, reliability and portability. However, other types of enzyme-based biosensors seldom achieve the market, in spite of the large and increasing number of publications. The reasons behind their commercial limitations concern enzyme denaturation, and the high costs associated with procedures for their extraction and purification. In this sense, biomimetic materials that seek to imitate the desired properties of natural enzymes and biological systems have come out as an appealing path for robust and sensitive electrochemical biosensors. We herein portray the historical background of these biomimicking materials, covering from their beginnings until the most impactful applications in the field of electrochemical sensing platforms. Throughout the discussion, we present and critically appraise the major benefits and the most significant drawbacks offered by the bioinspired systems categorized as Nanozymes, Synzymes, Molecularly Imprinted Polymers (MIPs), Nanochannels, and Metal Complexes. Innovative strategies of fabrication and challenging applications are further reviewed and evaluated. In the end, we ponder over the prospects of this emerging field, assessing the most critical issues that shall be faced in the coming decade.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Claudia A Razzino
- Instituto de Pesquisa e Desenvolvimento, Universidade Do Vale Do Paraíba, São José Dos Campos, SP, 12244-000, Brazil
| | | | - Thiago M Prado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
79
|
Biosensors for Deoxynivalenol and Zearalenone Determination in Feed Quality Control. Toxins (Basel) 2021; 13:toxins13070499. [PMID: 34357971 PMCID: PMC8310349 DOI: 10.3390/toxins13070499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022] Open
Abstract
Mycotoxin contamination of cereals used for feed can cause intoxication, especially in farm animals; therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current trends in food/feed analysis are focusing on the application of biosensor technologies that offer fast and highly selective and sensitive detection with minimal sample treatment and reagents required. The article presents an overview of the recent progress of the development of biosensors for deoxynivalenol and zearalenone determination in cereals and feed. Novel biosensitive materials and highly sensitive detection methods applied for the sensors and the application of these sensors to food/feed products, the limit, and the time of detection are discussed.
Collapse
|
80
|
Torul H, Yarali E, Eksin E, Ganguly A, Benson J, Tamer U, Papakonstantinou P, Erdem A. Paper-Based Electrochemical Biosensors for Voltammetric Detection of miRNA Biomarkers Using Reduced Graphene Oxide or MoS 2 Nanosheets Decorated with Gold Nanoparticle Electrodes. BIOSENSORS 2021; 11:236. [PMID: 34356708 PMCID: PMC8301884 DOI: 10.3390/bios11070236] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Paper-based biosensors are considered simple and cost-efficient sensing platforms for analytical tests and diagnostics. Here, a paper-based electrochemical biosensor was developed for the rapid and sensitive detection of microRNAs (miRNA-155 and miRNA-21) related to early diagnosis of lung cancer. Hydrophobic barriers to creating electrode areas were manufactured by wax printing, whereas a three-electrode system was fabricated by a simple stencil approach. A carbon-based working electrode was modified using either reduced graphene oxide or molybdenum disulfide nanosheets modified with gold nanoparticle (AuNPs/RGO, AuNPs/MoS2) hybrid structures. The resulting paper-based biosensors offered sensitive detection of miRNA-155 and miRNA-21 by differential pulse voltammetry (DPV) in only 5.0 µL sample. The duration in our assay from the point of electrode modification to the final detection of miRNA was completed within only 35 min. The detection limits for miRNA-21 and miRNA-155 were found to be 12.0 and 25.7 nM for AuNPs/RGO and 51.6 and 59.6 nM for AuNPs/MoS2 sensors in the case of perfectly matched probe-target hybrids. These biosensors were found to be selective enough to distinguish the target miRNA in the presence of single-base mismatch miRNA or noncomplementary miRNA sequences.
Collapse
Affiliation(s)
- Hilal Torul
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey; (H.T.); (U.T.)
| | - Ece Yarali
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova 35100, Turkey; (E.Y.); (E.E.)
| | - Ece Eksin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova 35100, Turkey; (E.Y.); (E.E.)
| | - Abhijit Ganguly
- School of Engineering, Engineering Research Institute, Ulster University, Newtownabbey BT37 0QB, UK;
| | - John Benson
- 2-DTech, Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK;
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey; (H.T.); (U.T.)
| | - Pagona Papakonstantinou
- School of Engineering, Engineering Research Institute, Ulster University, Newtownabbey BT37 0QB, UK;
| | - Arzum Erdem
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova 35100, Turkey; (E.Y.); (E.E.)
| |
Collapse
|
81
|
Öndeş B, Evli S, Uygun M, Aktaş Uygun D. Boron nitride nanosheet modified label-free electrochemical immunosensor for cancer antigen 125 detection. Biosens Bioelectron 2021; 191:113454. [PMID: 34171737 DOI: 10.1016/j.bios.2021.113454] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
In this presented study, a new boron nitride nanosheets modified label-free electrochemical immunosensors were prepared for early detection of cancer antigen 125 (CA125). To aim for, boron nitride (BN) nanosheets were synthesized by conventional sonication-assisted method and then characterized. BN nanosheets were used for the surface modification of the working electrode of the screen-printed electrode (SPE). Anti CA125 antibody was then directly immobilized onto the electrode surface due to its natural affinity towards BN nanosheets. Modified electrodes were blocked with BSA and finally protected with Nafion. The newly synthesized label-free immunosensor demonstrated good detection properties to CA125 with a linear range of 5-100 U and a detection limit of 1.18 U/mL. The developed immunosensor also showed excellent reproducibility, selectivity, and stability profiles. Additionally, this immunosensor was successfully used for the detection of CA125 in artificial human serum samples along with the interfering agents. Also, it is expected that the prepared immunosensor should carry the good potential for point-of-care diagnosis in real cases.
Collapse
Affiliation(s)
- Baha Öndeş
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey
| | - Sinem Evli
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey
| | - Murat Uygun
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey; Adnan Menderes University, Nanotechnology Application and Research Center, Aydın, Turkey
| | - Deniz Aktaş Uygun
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey; Adnan Menderes University, Nanotechnology Application and Research Center, Aydın, Turkey.
| |
Collapse
|
82
|
Takaloo S, Moghimi Zand M. Wearable electrochemical flexible biosensors: With the focus on affinity biosensors. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
83
|
Tajik S, Orooji Y, Ghazanfari Z, Karimi F, Beitollahi H, Varma RS, Jang HW, Shokouhimehr M. Nanomaterials modified electrodes for electrochemical detection of Sudan I in food. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00955-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
84
|
Kap Ö, Kılıç V, Hardy JG, Horzum N. Smartphone-based colorimetric detection systems for glucose monitoring in the diagnosis and management of diabetes. Analyst 2021; 146:2784-2806. [PMID: 33949379 DOI: 10.1039/d0an02031a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes is a group of metabolic conditions resulting in high blood sugar levels over prolonged periods that affects hundreds of millions of patients worldwide. Measuring glucose concentration enables patient-specific insulin therapy, and is essential to reduce the severity of the disease, potential complications, and related mortalities. Recent advances and developments in smartphone-based colorimetric glucose detection systems are discussed in this review. The importance of glucose monitoring, data collection, transfer, and analysis, via non-invasive/invasive methods is highlighted. The review also presents various approaches using 3D-printed materials, screen-printed electrodes, polymer templates, designs allowing multiple glucose analysis, bioanalytes and/or nanostructures for glucose detection. The positive effects of advances in improving the performance of smartphone-based platforms are introduced along with future directions and trends in the application of emerging technologies in smartphone-based diagnostics.
Collapse
Affiliation(s)
- Özlem Kap
- Department of Engineering Sciences, İzmir Katip Çelebi University, 35620 Turkey.
| | - Volkan Kılıç
- Department of Electrical and Electronics Engineering, İzmir Katip Çelebi University, 35620 Turkey
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, UK and Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
| | - Nesrin Horzum
- Department of Engineering Sciences, İzmir Katip Çelebi University, 35620 Turkey.
| |
Collapse
|
85
|
Fuentes-Chust C, Parolo C, Rosati G, Rivas L, Perez-Toralla K, Simon S, de Lecuona I, Junot C, Trebicka J, Merkoçi A. The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006104. [PMID: 33719117 DOI: 10.1002/adma.202006104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/26/2020] [Indexed: 05/15/2023]
Abstract
Monitoring of the human microbiome is an emerging area of diagnostics for personalized medicine. Here, the potential of different nanomaterials and nanobiosensing technologies is reviewed for the development of novel diagnostic devices for the detection and measurement of microbiome-related biomarkers. Moreover, the current and future landscape of microbiome-based diagnostics is defined by exploring the advantages and disadvantages of current nanotechnology-based approaches, especially in the context of developing point-of-care (PoC) devices that would meet the international guidelines known as REASSURED (Real-time connectivity; Ease of specimen collection; Affordability; Sensitivity; Specificity; User-friendliness; Rapid & robust operation; Equipment-free; and Deliverability). Finally, the strategies of the latest international scientific consortia working in this field are analyzed, the current microbiome diagnostics market are reported and the principal ethical, legal, and societal issues related to microbiome R&D and innovation are discussed.
Collapse
Affiliation(s)
- Celia Fuentes-Chust
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Claudio Parolo
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Giulio Rosati
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Lourdes Rivas
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Karla Perez-Toralla
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Stéphanie Simon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Itziar de Lecuona
- Bioethics and Law Observatory -UNESCO Chair in Bioethics-Department of Medicine, University of Barcelona, Barcelona, 08007, Spain
| | - Christophe Junot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- European Foundation for the Study of Chronic Liver Failure, Travesera de Gracia 11, Barcelona, 08021, Spain
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
86
|
Herrera-Chacón A, Cetó X, Del Valle M. Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues. Anal Bioanal Chem 2021; 413:6117-6140. [PMID: 33928404 PMCID: PMC8084593 DOI: 10.1007/s00216-021-03313-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Molecularly imprinted polymers (MIPs) are artificially synthesized materials to mimic the molecular recognition process of biological macromolecules such as substrate-enzyme or antigen-antibody. The combination of these biomimetic materials with electrochemical techniques has allowed the development of advanced sensing devices, which significantly improve the performance of bare or catalyst-modified sensors, being able to unleash new applications. However, despite the high selectivity that MIPs exhibit, those can still show some cross-response towards other compounds, especially with chemically analogous (bio)molecules. Thus, the combination of MIPs with chemometric methods opens the room for the development of what could be considered a new type of electronic tongues, i.e. sensor array systems, based on its usage. In this direction, this review provides an overview of the more common synthetic approaches, as well as the strategies that can be used to achieve the integration of MIPs and electrochemical sensors, followed by some recent examples over different areas in order to illustrate the potential of such combination in very diverse applications.
Collapse
Affiliation(s)
- Anna Herrera-Chacón
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Cetó
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - Manel Del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
87
|
Yoon J, Cho HY, Shin M, Choi HK, Lee T, Choi JW. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B 2021; 8:7303-7318. [PMID: 32647855 DOI: 10.1039/d0tb01325k] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the interest in wearable devices has increased recently, increasing biosensor flexibility has begun to attract considerable attention. Among the various types of biosensors, electrochemical biosensors are uniquely suited for the development of such flexible biosensors due to their many advantages, including their fast response, inherent miniaturization, convenient operation, and portability. Therefore, many studies on flexible electrochemical biosensors have been conducted in recent years to achieve non-invasive and real-time monitoring of body fluids such as tears, sweat, and saliva. To achieve this, various substrates, novel nanomaterials, and detection techniques have been utilized to develop conductive flexible platforms that can be applied to create flexible electrochemical biosensors. In this review, we discussed recently reported flexible electrochemical biosensors and divided them into specific categories including materials for flexible substrate, fabrication techniques for flexible biosensor development, and recently developed flexible electrochemical biosensors to externally monitor target molecules, thereby providing a means to noninvasively examine cells and body fluid samples. In conclusion, this review will discuss the materials, methods, recent studies, and perspectives on flexible electrochemical biosensors for healthcare monitoring and wearable biosensing systems.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
88
|
Ambaye AD, Kefeni KK, Mishra SB, Nxumalo EN, Ntsendwana B. Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors. Talanta 2021; 225:121951. [DOI: 10.1016/j.talanta.2020.121951] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023]
|
89
|
Sushko T, Kavaleuski A, Grabovec I, Kavaleuskaya A, Vakhrameev D, Bukhdruker S, Marin E, Kuzikov A, Masamrekh R, Shumyantseva V, Tsumoto K, Borshchevskiy V, Gilep A, Strushkevich N. A new twist of rubredoxin function in M. tuberculosis. Bioorg Chem 2021; 109:104721. [PMID: 33618255 DOI: 10.1016/j.bioorg.2021.104721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
Electron transfer mediated by metalloproteins drives many biological processes. Rubredoxins are a ubiquitous [1Fe-0S] class of electron carriers that play an important role in bacterial adaptation to changing environmental conditions. In Mycobacterium tuberculosis, oxidative and acidic stresses as well as iron starvation induce rubredoxins expression. However, their functions during M. tuberculosis infection are unknown. In the present work, we show that rubredoxin B (RubB) is able to efficiently shuttle electrons from cognate reductases, FprA and FdR to support catalytic activity of cytochrome P450s, CYP124, CYP125, and CYP142, which are important for bacterial viability and pathogenicity. We solved the crystal structure of RubB and characterized the interaction between RubB and CYPs using site-directed mutagenesis. Mutations that not only neutralize single charge but also change the specific residues on the surface of RubB did not dramatically decrease activity of studied CYPs. Together with isothermal calorimetry (ITC) experiments, the obtained results suggest that interactions are transient and not highly specific. The redox potential of RubB is -264 mV vs. Ag/AgCl and the measured extinction coefficients are 9931 M-1cm-1 and 8371 M-1cm-1 at 380 nm and 490 nm, respectively. Characteristic parameters of RubB along with the discovered function might be useful for biotechnological applications. Our findings suggest that a switch from ferredoxins to rubredoxins might be crucial for M. tuberculosis to support CYPs activity during the infection.
Collapse
Affiliation(s)
- Tatsiana Sushko
- The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Anton Kavaleuski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Anna Kavaleuskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Daniil Vakhrameev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; ESRF - The European Synchrotron, 38000 Grenoble, France
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Alexey Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Rami Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victoria Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Kouhei Tsumoto
- The Institute of Medical Science, the University of Tokyo, Tokyo, Japan; Department of Bioengineering, School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus; Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
90
|
Ionic liquid-multi-walled carbon nanotubes modified screen-printed electrodes for sensitive electrochemical sensing of uranium. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-020-07573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
91
|
Tajik S, Dourandish Z, Jahani PM, Sheikhshoaie I, Beitollahi H, Shahedi Asl M, Jang HW, Shokouhimehr M. Recent developments in voltammetric and amperometric sensors for cysteine detection. RSC Adv 2021; 11:5411-5425. [PMID: 35423079 PMCID: PMC8694840 DOI: 10.1039/d0ra07614g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/06/2020] [Indexed: 12/27/2022] Open
Abstract
This review article aims to provide an overview of the recent advances in the voltammetric and amperometric sensing of cysteine (Cys). The introduction summarizes the important role of Cys as an essential amino acid, techniques for its sensing, and the utilization of electrochemical methods and chemically modified electrodes for its determination. The main section covers voltammetric and amperometric sensing of Cys based on glassy carbon electrodes, screen printed electrodes, and carbon paste electrodes, modified with various electrocatalytic materials. The conclusion section discusses the current challenges of Cys determination and the future perspectives.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman Iran
| | - Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | | | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Mehdi Shahedi Asl
- Marine Additive Manufacturing Centre of Excellence (MAMCE), University of New Brunswick Fredericton NB E3B 5A1 Canada
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
92
|
Pesavento M, Merli D, Biesuz R, Alberti G, Marchetti S, Milanese C. A MIP-based low-cost electrochemical sensor for 2-furaldehyde detection in beverages. Anal Chim Acta 2021; 1142:201-210. [PMID: 33280698 DOI: 10.1016/j.aca.2020.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/03/2023]
Abstract
There is an increasing interest in determining the concentration of furanic compounds naturally formed in food aqueous matrices, by in situ, fast and low-cost methods. A sensor presenting such characteristics is here proposed, and characterized. It is based on a molecularly imprinted polymer (MIP) as a receptor with electrochemical transduction on a screen printed cell (SPC). The molecularly imprinted polymer has been developed for a particular furanic derivative, 2-furaldehyde (2-FAL). The detection bases on the reduction of 2-FAL selectively adsorbed on the polymer layer in contact with the working electrode. The polymer layer is simply formed by in situ polymerization, directly over the SPC and it was characterized by IR, SEM and electrochemical methods. Even if based on an easy and fast preparation procedure, the layer sufficiently adheres to the cell surface giving a reusable sensor. Square wave voltammetry (SWV) was applied as the signal acquisition method. The sensor performance in aqueous solution (NaCl 0.1 M) was tested, obtaining that the dose-response curve is fitted by the Langmuir adsorption isotherm. The sensitivity, and so the limit of detection, were noticeably improved by a chemometric approach based on the Design of experiment method. (optimized conditions: Estep = 0.03 V, Epulse = 0.066 V, f = 31 s-1). In water solution at pH around neutrality the dynamic range was from about 50 μM to 20 mM. Similar results were obtained for a white wine containing 12% ethanol, which has been considered as a typical example of beverage possibly containing furhaldehydes. The higher limit of quantification can be modulated by the amount of MIP deposited, while the lower detection limit by the conditions of the electrochemical measurement.
Collapse
Affiliation(s)
- M Pesavento
- Department of Chemistry, University of Pavia, Italy.
| | - D Merli
- Department of Chemistry, University of Pavia, Italy
| | - R Biesuz
- Department of Chemistry, University of Pavia, Italy
| | - G Alberti
- Department of Chemistry, University of Pavia, Italy
| | - S Marchetti
- Department of Chemistry, University of Pavia, Italy
| | - C Milanese
- Department of Chemistry, University of Pavia, Italy
| |
Collapse
|
93
|
Fabiani L, Saroglia M, Galatà G, De Santis R, Fillo S, Luca V, Faggioni G, D'Amore N, Regalbuto E, Salvatori P, Terova G, Moscone D, Lista F, Arduini F. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens Bioelectron 2021; 171:112686. [PMID: 33086175 PMCID: PMC7833515 DOI: 10.1016/j.bios.2020.112686] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
The diffusion of novel SARS-CoV-2 coronavirus over the world generated COVID-19 pandemic event as reported by World Health Organization on March 2020. The huge issue is the high infectivity and the absence of vaccine and customised drugs allowing for hard management of this outbreak, thus a rapid and on site analysis is a need to contain the spread of COVID-19. Herein, we developed an electrochemical immunoassay for rapid and smart detection of SARS-CoV-2 coronavirus in saliva. The electrochemical assay was conceived for Spike (S) protein or Nucleocapsid (N) protein detection using magnetic beads as support of immunological chain and secondary antibody with alkaline phosphatase as immunological label. The enzymatic by-product 1-naphtol was detected using screen-printed electrodes modified with carbon black nanomaterial. The analytical features of the electrochemical immunoassay were evaluated using the standard solution of S and N protein in buffer solution and untreated saliva with a detection limit equal to 19 ng/mL and 8 ng/mL in untreated saliva, respectively for S and N protein. Its effectiveness was assessed using cultured virus in biosafety level 3 and in saliva clinical samples comparing the data using the nasopharyngeal swab specimens tested with Real-Time PCR. The agreement of the data, the low detection limit achieved, the rapid analysis (30 min), the miniaturization, and portability of the instrument combined with the easiness to use and no-invasive sampling, confer to this analytical tool high potentiality for market entry as the first highly sensitive electrochemical immunoassay for SARS-CoV-2 detection in untreated saliva.
Collapse
Affiliation(s)
- Laura Fabiani
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Marco Saroglia
- University of Insubria, Department of Biotechnologies and Life Sciences, Varese, Italy
| | - Giuseppe Galatà
- GTS Consulting S.r.l., Via Consolare Pompea 1, 98168, Messina, Italy
| | | | - Silvia Fillo
- Scientific Department, Army Medical Center, Rome, Italy
| | - Vincenzo Luca
- Scientific Department, Army Medical Center, Rome, Italy
| | | | - Nino D'Amore
- Scientific Department, Army Medical Center, Rome, Italy
| | | | | | - Genciana Terova
- University of Insubria, Department of Biotechnologies and Life Sciences, Varese, Italy
| | - Danila Moscone
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | | | - Fabiana Arduini
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, Via Renato Rascel 30, 00128, Rome, Italy.
| |
Collapse
|
94
|
Tajik S, Beitollahi H, Jang HW, Shokouhimehr M. A simple and sensitive approach for the electrochemical determination of amaranth by a Pd/GO nanomaterial-modified screen-printed electrode. RSC Adv 2020; 11:278-287. [PMID: 35423012 PMCID: PMC8690309 DOI: 10.1039/d0ra08723h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/21/2020] [Indexed: 11/30/2022] Open
Abstract
It is essential to develop easy-to-use sensors towards a better monitoring of food additives so that human health can be positively influenced. A type of critical food additive that is widely used in making soft drinks and diverse foodstuff is called amaranth. This study aimed at presenting a novel Pd/GO nanomaterial-modified screen-printed electrode (Pd/GO/SPE), which is responsible for providing a sensing interface during the process of specifying the electrochemical features of amaranth. The morphology and structure of the Pd/GO nanomaterial was investigated by Fourier-transform infrared spectroscopy, thermal gravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning transmission electron microscopy, and high-resolution transmission electron microscopy. When the optimized conditions was adjusted, Pd/GO/SPE proved to be a capable sensor for conducting a very sensitive sensing towards the amaranth under a common working situation of 575 mV. In this regard, it was embarked on measuring some of the sensor features, including its sensitivity, linear dynamic range, and detection limit for amaranth with the values of 0.0948 μA μM-1, 0.08 μM-360.0 μM and 30.0 nM were obtained, respectively.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
95
|
Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci 2020; 266:118914. [PMID: 33340527 DOI: 10.1016/j.lfs.2020.118914] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
To overcome the drawbacks of conventional delivery, this review spotlights a number of nanoscale drug delivery systems, including nanoparticles, liposomes, nano micelles, branched dendrimers, nanocapsules, and nanostructured lipid formulations for the targeted therapy of ovarian cancer. These nanoformulations offer numerous advantages to promote therapeutic drug delivery such as nontoxicity, biocompatibility, good biodegradability, increased therapeutic impact than free drugs, and non-inflammatory effects. Importantly, the development of specific ligands functionalized nanoformulations enable preferential targeting of ovarian tumors and eventually amplify the therapeutic potential compared to nonfunctionalized counterparts. Ovarian cancer is typically identified by biomarker assessment such as CA125, HE4, Mucin 1, and prostatic. There is, nevertheless, a tremendous demand for less costly, faster, and compact medical tools, both for timely detection and ovarian cancer control. This paper explored multiple types of tumor marker-based on nanomaterial biosensors. Initially, we mention different forms of ovarian cancer biomarkers involving CA125, human epididymis protein 4 (HE4), mucin 1 (MUC1), and prostate. It is accompanied by a brief description of new nanotechnology methods for diagnosis. Nanobiosensors for evaluating ovarian cancer biomarkers can be categorized based on electrochemical, optical, paper-based, giant magnetoresistive, and lab-on-a-chip devices.
Collapse
|
96
|
Koç Y, Moralı U, Erol S, Avci H. Electrochemical Investigation of Gold Based Screen Printed Electrodes: An Application for a Seafood Toxin Detection. ELECTROANAL 2020. [DOI: 10.1002/elan.202060433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yücel Koç
- Department of Chemical Engineering Eskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research Group Eskisehir Osmangazi University Eskisehir Turkey
| | - Uğur Moralı
- Department of Chemical Engineering Eskisehir Osmangazi University Eskisehir Turkey
| | - Salim Erol
- Department of Chemical Engineering Eskisehir Osmangazi University Eskisehir Turkey
- College of Engineering and Technology American University of the Middle East Kuwait
| | - Huseyin Avci
- Department of Metallurgical and Materials Engineering Eskisehir Osmangazi University Eskisehir Turkey
- Cellular Therapy and Stem Cell Research Center (ESTEM) Eskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research Group Eskisehir Osmangazi University Eskisehir Turkey
| |
Collapse
|
97
|
Fernández I, González-Mora JL, Lorenzo-Luis P, Villalonga R, Salazar-Carballo PA. Nickel oxide nanoparticles-modified glassy carbon electrodes for non-enzymatic determination of total sugars in commercial beverages. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
98
|
Sonia J, Zanhal GM, Prasad KS. Low cost paper electrodes and the role of oxygen functionalities and edge-plane sites towards trolox sensing. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
99
|
Hernández-Rodríguez JF, Della Pelle F, Rojas D, Compagnone D, Escarpa A. Xurography-Enabled Thermally Transferred Carbon Nanomaterial-Based Electrochemical Sensors on Polyethylene Terephthalate-Ethylene Vinyl Acetate Films. Anal Chem 2020; 92:13565-13572. [PMID: 32869640 DOI: 10.1021/acs.analchem.0c03240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel benchtop approach to fabricate xurography-enabled thermally transferred (XTT) carbon nanomaterial-based electrochemical sensors is proposed. Filtered nanomaterial (NM) films were transferred from Teflon filters to polyethylene terephthalate-ethylene vinyl acetate (PET-EVA) substrates by a temperature-driven approach. Customized PET-EVA components were xurographically patterned by a cutting plotter. The smart design of PET-EVA films enabled us to selectively transfer the nanomaterial to the exposed EVA side of the substrate. Hence, the substrate played an active role in selectively controlling where nanomaterial transfer occurred allowing us to design different working electrode geometries. Counter and reference electrodes were integrated by a stencil-printing approach, and the whole device was assembled by thermal lamination. To prove the versatility of the technology, XTT materials were exclusively made of carbon black (XTT-CB), multiwalled carbon nanotubes (XTT-MWCNTs), and single-walled carbon nanotubes (XTT-SWCNTs). Their electrochemical behavior was carefully studied and was found to be highly dependent on the amount and type of NM employed. XTT-SWCNTs were demonstrated to be the best-performing sensors, and they were employed for the determination of l-tyrosine (l-Tyr) in human plasma from tyrosinemia-diagnosed patients. High analytical performance toward l-Tyr (linear range of 0.5-100 μM, LOD = 0.1 μM), interelectrode precision (RSD ip,a = 3%, n = 10; RSD calibration slope = 4%, n = 3), and accurate l-Tyr quantification in plasma samples with low relative errors (≤7%) compared to the clinical declared values were obtained. The proposed benchtop approach is cost-effective and straightforward, does not require sophisticated facilities, and can be potentially employed to develop pure or hybrid nanomaterial-based electrodes.
Collapse
Affiliation(s)
- Juan F Hernández-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Flavio Della Pelle
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100 Teramo, Italy
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100 Teramo, Italy
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100 Teramo, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Chemical Research Institute Andres M. del Rio, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
100
|
Torre R, Costa-Rama E, Nouws HPA, Delerue-Matos C. Screen-Printed Electrode-Based Sensors for Food Spoilage Control: Bacteria and Biogenic Amines Detection. BIOSENSORS 2020; 10:E139. [PMID: 33008005 PMCID: PMC7600659 DOI: 10.3390/bios10100139] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Food spoilage is caused by the development of microorganisms, biogenic amines, and other harmful substances, which, when consumed, can lead to different health problems. Foodborne diseases can be avoided by assessing the safety and freshness of food along the production and supply chains. The routine methods for food analysis usually involve long analysis times and complex instrumentation and are performed in centralized laboratories. In this context, sensors based on screen-printed electrodes (SPEs) have gained increasing importance because of their advantageous characteristics, such as ease of use and portability, which allow fast analysis in point-of-need scenarios. This review provides a comprehensive overview of SPE-based sensors for the evaluation of food safety and freshness, focusing on the determination of bacteria and biogenic amines. After discussing the characteristics of SPEs as transducers, the main bacteria, and biogenic amines responsible for important and common foodborne diseases are described. Then, SPE-based sensors for the analysis of these bacteria and biogenic amines in food samples are discussed, comparing several parameters, such as limit of detection, analysis time, and sample type.
Collapse
Affiliation(s)
- Ricarda Torre
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| | - Estefanía Costa-Rama
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain
| | - Henri P. A. Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| |
Collapse
|