51
|
Borensztejn A, Mascaro A, Wharton KA. JAK/STAT signaling prevents excessive apoptosis to ensure maintenance of the interfollicular stalk critical for Drosophila oogenesis. Dev Biol 2018; 438:1-9. [PMID: 29571611 DOI: 10.1016/j.ydbio.2018.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Apoptosis not only eliminates cells that are damaged or dangerous but also cells whose function during development in patterning or organogenesis is complete. The successful formation of germ cells is essential for the perpetuation of a species. The production of an oocyte often depends on signaling between germline and somatic cells, but also between specialized types of somatic cells. In Drosophila, each developing egg chamber is separated from the next by a single file of interfollicular somatic cells. Little is known about the function of the interfollicular stalk, although its presumed role in separating egg chambers is to ensure that patterning cues from one egg chamber do not impact or disrupt the development of adjacent egg chambers. We found that cells comprising the stalk undergo a progressive decrease in number during oogenesis through an apoptotic-dependent loss. The extent of programmed cell death is restricted by JAK/STAT signaling in a cell-autonomous manner to ensure that the stalk is maintained. Both a failure to undergo the normal reduction in stalk cell number, or to prevent excessive stalk cell apoptosis results in a decrease in fecundity. Thus, activation of JAK/STAT signaling in the Drosophila interfollicular stalk emerges as a model to study the tight regulation of signaling-dependent apoptosis.
Collapse
Affiliation(s)
- Antoine Borensztejn
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Alexandra Mascaro
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
52
|
A Mechanism Coupling Systemic Energy Sensing to Adipokine Secretion. Dev Cell 2017; 43:83-98.e6. [PMID: 29017032 DOI: 10.1016/j.devcel.2017.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/18/2017] [Accepted: 09/11/2017] [Indexed: 01/13/2023]
Abstract
Adipocytes sense systemic nutrient status and systemically communicate this information by releasing adipokines. The mechanisms that couple nutritional state to adipokine release are unknown. Here, we investigated how Unpaired 2 (Upd2), a structural and functional ortholog of the primary human adipokine leptin, is released from Drosophila fat cells. We find that Golgi reassembly stacking protein (GRASP), an unconventional secretion pathway component, is required for Upd2 secretion. In nutrient-rich fat cells, GRASP clusters in close proximity to the apical side of lipid droplets (LDs). During nutrient deprivation, glucagon-mediated increase in calcium (Ca2+) levels, via calmodulin kinase II (CaMKII) phosphorylation, inhibits proximal GRASP localization to LDs. Using a heterologous cell system, we show that human leptin secretion is also regulated by Ca2+ and CaMKII. In summary, we describe a mechanism by which increased cytosolic Ca2+ negatively regulates adipokine secretion and have uncovered an evolutionarily conserved molecular link between intracellular Ca2+ levels and energy homeostasis.
Collapse
|
53
|
Del Signore SJ, Biber SA, Lehmann KS, Heimler SR, Rosenfeld BH, Eskin TL, Sweeney ST, Rodal AA. dOCRL maintains immune cell quiescence by regulating endosomal traffic. PLoS Genet 2017; 13:e1007052. [PMID: 29028801 PMCID: PMC5656325 DOI: 10.1371/journal.pgen.1007052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/25/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023] Open
Abstract
Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome. Lowe syndrome is a developmental disorder characterized by severe kidney, eye, and neurological symptoms, and is caused by mutations in the gene OCRL. OCRL has been shown to control many steps of packaging and transport of materials within cells, though it remains unclear which of these disrupted transport steps cause each of the many symptoms in Lowe syndrome patients. We found that in fruit flies, loss of OCRL caused transport defects at specific internal compartments in innate immune cells, resulting in amplification of multiple critical inflammatory signals. Similar inflammatory signals have been implicated in forms of epilepsy, which is a primary symptom in Lowe syndrome patients. Thus, our work uncovers a new function for OCRL in animals, and opens an exciting new avenue of investigation into how loss of OCRL causes the symptoms of Lowe syndrome.
Collapse
Affiliation(s)
- Steven J. Del Signore
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Sarah A. Biber
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Katherine S. Lehmann
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Stephanie R. Heimler
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Benjamin H. Rosenfeld
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Tania L. Eskin
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Sean T. Sweeney
- Department of Biology, University of York, York, United Kingdom
| | - Avital A. Rodal
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
54
|
Vollmer J, Fried P, Aguilar-Hidalgo D, Sánchez-Aragón M, Iannini A, Casares F, Iber D. Growth control in the Drosophila eye disc by the cytokine Unpaired. Development 2017; 144:837-843. [PMID: 28246213 DOI: 10.1242/dev.141309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/10/2017] [Indexed: 01/14/2023]
Abstract
A fundamental question in developmental biology is how organ size is controlled. We have previously shown that the area growth rate in the Drosophila eye primordium declines inversely proportionally to the increase in its area. How the observed reduction in the growth rate is achieved is unknown. Here, we explore the dilution of the cytokine Unpaired (Upd) as a possible candidate mechanism. In the developing eye, upd expression is transient, ceasing at the time when the morphogenetic furrow first emerges. We confirm experimentally that the diffusion and stability of the JAK/STAT ligand Upd are sufficient to control eye disc growth via a dilution mechanism. We further show that sequestration of Upd by ectopic expression of an inactive form of the receptor Domeless (Dome) results in a substantially lower growth rate, but the area growth rate still declines inversely proportionally to the area increase. This growth rate-to-area relationship is no longer observed when Upd dilution is prevented by the continuous, ectopic expression of Upd. We conclude that a mechanism based on the dilution of the growth modulator Upd can explain how growth termination is controlled in the eye disc.
Collapse
Affiliation(s)
- Jannik Vollmer
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| | - Patrick Fried
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| | - Daniel Aguilar-Hidalgo
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Máximo Sánchez-Aragón
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Antonella Iannini
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Fernando Casares
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland .,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| |
Collapse
|
55
|
Khadilkar RJ, Vogl W, Goodwin K, Tanentzapf G. Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation. eLife 2017; 6:28081. [PMID: 28841136 PMCID: PMC5597334 DOI: 10.7554/elife.28081] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/24/2017] [Indexed: 12/04/2022] Open
Abstract
Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Wayne Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Katharine Goodwin
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
56
|
Abstract
While several large-scale resources are available for in vivo loss-of-function studies in Drosophila, an analogous resource for overexpressing genes from their endogenous loci does not exist. We describe a strategy for generating such a resource using Cas9 transcriptional activators (CRISPRa). First, we compare a panel of CRISPRa approaches and demonstrate that, for in vivo studies, dCas9-VPR is the most optimal activator. Next, we demonstrate that this approach is scalable and has a high success rate, as >75% of the lines tested activate their target gene. We show that CRISPRa leads to physiologically relevant levels of target gene expression capable of generating strong gain-of-function (GOF) phenotypes in multiple tissues and thus serves as a useful platform for genetic screening. Based on the success of this CRISRPa approach, we are generating a genome-wide collection of flies expressing single-guide RNAs (sgRNAs) for CRISPRa. We also present a collection of more than 30 Gal4 > UAS:dCas9-VPR lines to aid in using these sgRNA lines for GOF studies in vivo.
Collapse
|
57
|
Kucinski I, Dinan M, Kolahgar G, Piddini E. Chronic activation of JNK JAK/STAT and oxidative stress signalling causes the loser cell status. Nat Commun 2017; 8:136. [PMID: 28743877 PMCID: PMC5526992 DOI: 10.1038/s41467-017-00145-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/02/2017] [Indexed: 01/27/2023] Open
Abstract
Cell competition is a form of cell interaction that causes the elimination of less fit cells, or losers, by wild-type (WT) cells, influencing overall tissue health. Several mutations can cause cells to become losers; however, it is not known how. Here we show that Drosophila wing disc cells carrying functionally unrelated loser mutations (Minute and mahjong) display the common activation of multiple stress signalling pathways before cell competition and find that these pathways collectively account for the loser status. We find that JNK signalling inhibits the growth of losers, while JAK/STAT signalling promotes competition-induced winner cell proliferation. Furthermore, we show that losers display oxidative stress response activation and, strikingly, that activation of this pathway alone, by Nrf2 overexpression, is sufficient to prime cells for their elimination by WT neighbours. Since oxidative stress and Nrf2 are linked to several diseases, cell competition may occur in a number of pathological conditions.Cell competition causes the removal of less fit cells ('losers') but why some gene mutations turn cells into losers is unclear. Here, the authors show that Drosophila wing disc cells carrying some loser mutations activate Nrf2 and JNK signalling, which contribute to the loser status.
Collapse
Affiliation(s)
- Iwo Kucinski
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Haematology and Cambridge Institute of Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Michael Dinan
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Golnar Kolahgar
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Eugenia Piddini
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
58
|
Ferguson GB, Martinez-Agosto JA. The TEAD family transcription factor Scalloped regulates blood progenitor maintenance and proliferation in Drosophila through PDGF/VEGFR receptor (Pvr) signaling. Dev Biol 2017; 425:21-32. [DOI: 10.1016/j.ydbio.2017.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 11/08/2016] [Accepted: 03/13/2017] [Indexed: 11/29/2022]
|
59
|
Screening and Analysis of Janelia FlyLight Project Enhancer-Gal4 Strains Identifies Multiple Gene Enhancers Active During Hematopoiesis in Normal and Wasp-Challenged Drosophila Larvae. G3-GENES GENOMES GENETICS 2017; 7:437-448. [PMID: 27913635 PMCID: PMC5295592 DOI: 10.1534/g3.116.034439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A GFP expression screen has been conducted on >1000 Janelia FlyLight Project enhancer-Gal4 lines to identify transcriptional enhancers active in the larval hematopoietic system. A total of 190 enhancers associated with 87 distinct genes showed activity in cells of the third instar larval lymph gland and hemolymph. That is, gene enhancers were active in cells of the lymph gland posterior signaling center (PSC), medullary zone (MZ), and/or cortical zone (CZ), while certain of the transcriptional control regions were active in circulating hemocytes. Phenotypic analyses were undertaken on 81 of these hematopoietic-expressed genes, with nine genes characterized in detail as to gain- and loss-of-function phenotypes in larval hematopoietic tissues and blood cells. These studies demonstrated the functional requirement of the cut gene for proper PSC niche formation, the hairy, Btk29A, and E2F1 genes for blood cell progenitor production in the MZ domain, and the longitudinals lacking, dFOXO, kayak, cap-n-collar, and delilah genes for lamellocyte induction and/or differentiation in response to parasitic wasp challenge and infestation of larvae. Together, these findings contribute substantial information to our knowledge of genes expressed during the larval stage of Drosophila hematopoiesis and newly identify multiple genes required for this developmental process.
Collapse
|
60
|
Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S, Chakravarty P, Phillips D, Yunus AA, Rosen MK, Valente RS, Teixeira L, Thompson B, Dionne MS, Wood W, Reis e Sousa C. Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. eLife 2016; 5:e19662. [PMID: 27871362 PMCID: PMC5138034 DOI: 10.7554/elife.19662] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are molecules released by dead cells that trigger sterile inflammation and, in vertebrates, adaptive immunity. Actin is a DAMP detected in mammals by the receptor, DNGR-1, expressed by dendritic cells (DCs). DNGR-1 is phosphorylated by Src-family kinases and recruits the tyrosine kinase Syk to promote DC cross-presentation of dead cell-associated antigens. Here we report that actin is also a DAMP in invertebrates that lack DCs and adaptive immunity. Administration of actin to Drosophila melanogaster triggers a response characterised by selective induction of STAT target genes in the fat body through the cytokine Upd3 and its JAK/STAT-coupled receptor, Domeless. Notably, this response requires signalling via Shark, the Drosophila orthologue of Syk, and Src42A, a Drosophila Src-family kinase, and is dependent on Nox activity. Thus, extracellular actin detection via a Src-family kinase-dependent cascade is an ancient means of detecting cell injury that precedes the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Naren Srinivasan
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Oliver Gordon
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Susan Ahrens
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anna Franz
- Department of Biochemistry, Biomedical Sciences, University Walk, University of Bristol, Bristol, United Kingdom
| | - Safia Deddouche
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - David Phillips
- Genomics-Equipment Park, The Francis Crick Institute, London, United Kingdom
| | - Ali A Yunus
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael K Rosen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | | | | | - Barry Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Marc S Dionne
- Department of Life Sciences and MRC Centre for Molecular Bacteriology and Infection, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Will Wood
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
61
|
Baril C, Gavory G, Bidla G, Knævelsrud H, Sauvageau G, Therrien M. Human NUP98-HOXA9 promotes hyperplastic growth of hematopoietic tissues in Drosophila. Dev Biol 2016; 421:16-26. [PMID: 27838340 DOI: 10.1016/j.ydbio.2016.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a complex malignancy with poor prognosis. Several genetic lesions can lead to the disease. One of these corresponds to the NUP98-HOXA9 (NA9) translocation that fuses sequences encoding the N-terminal part of NUP98 to those encoding the DNA-binding domain of HOXA9. Despite several studies, the mechanism underlying NA9 ability to induce leukemia is still unclear. To bridge this gap, we sought to functionally dissect NA9 activity using Drosophila. For this, we generated transgenic NA9 fly lines and expressed the oncoprotein during larval hematopoiesis. This markedly enhanced cell proliferation and tissue growth, but did not alter cell fate specification. Moreover, reminiscent to NA9 activity in mammals, strong cooperation was observed between NA9 and the MEIS homolog HTH. Genetic characterization of NA9-induced phenotypes suggested interference with PVR (Flt1-4 RTK homolog) signaling, which is similar to functional interactions observed in mammals between Flt3 and HOXA9 in leukemia. Finally, NA9 expression was also found to induce non-cell autonomous effects, raising the possibility that its leukemia-inducing activity also relies on this property. Together, our work suggests that NA9 ability to induce blood cell expansion is evolutionarily conserved. The amenability of NA9 activity to a genetically-tractable system should facilitate unraveling its molecular underpinnings.
Collapse
Affiliation(s)
- Caroline Baril
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Gwenaëlle Gavory
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Gawa Bidla
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Helene Knævelsrud
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7; Département de médecine, Université de Montréal, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7; Département de pathologie et de biologie cellulaire, Université de Montréal, Canada.
| |
Collapse
|
62
|
Cattenoz PB, Giangrande A. Revisiting the role of the Gcm transcription factor, from master regulator to Swiss army knife. Fly (Austin) 2016; 10:210-8. [PMID: 27434165 DOI: 10.1080/19336934.2016.1212793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Master genes are known to induce the differentiation of a multipotent cell into a specific cell type. These molecules are often transcription factors that switch on the regulatory cascade that triggers cell specification. Gcm was first described as the master gene of the glial fate in Drosophila as it induces the differentiation of neuroblasts into glia in the developing nervous system. Later on, Gcm was also shown to regulate the differentiation of blood, tendon and peritracheal cells as well as that of neuronal subsets. Thus, the glial master gene is used in at least 4 additional systems to promote differentiation. To understand the numerous roles of Gcm, we recently reported a genome-wide screen of Gcm direct targets in the Drosophila embryo. This screen provided new insight into the role and mode of action of this powerful transcription factor, notably on the interactions between Gcm and major differentiation pathways such as the Hedgehog, Notch and JAK/STAT. Here, we discuss the mode of action of Gcm in the different systems, we present new tissues that require Gcm and we revise the concept of 'master gene'.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- a Department of Functional Genomics and Cancer , Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France
| | - Angela Giangrande
- a Department of Functional Genomics and Cancer , Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France
| |
Collapse
|
63
|
Chakrabarti S, Dudzic JP, Li X, Collas EJ, Boquete JP, Lemaitre B. Remote Control of Intestinal Stem Cell Activity by Haemocytes in Drosophila. PLoS Genet 2016; 12:e1006089. [PMID: 27231872 PMCID: PMC4883764 DOI: 10.1371/journal.pgen.1006089] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
The JAK/STAT pathway is a key signaling pathway in the regulation of development and immunity in metazoans. In contrast to the multiple combinatorial JAK/STAT pathways in mammals, only one canonical JAK/STAT pathway exists in Drosophila. It is activated by three secreted proteins of the Unpaired family (Upd): Upd1, Upd2 and Upd3. Although many studies have established a link between JAK/STAT activation and tissue damage, the mode of activation and the precise function of this pathway in the Drosophila systemic immune response remain unclear. In this study, we used mutations in upd2 and upd3 to investigate the role of the JAK/STAT pathway in the systemic immune response. Our study shows that haemocytes express the three upd genes and that injury markedly induces the expression of upd3 by the JNK pathway in haemocytes, which in turn activates the JAK/STAT pathway in the fat body and the gut. Surprisingly, release of Upd3 from haemocytes upon injury can remotely stimulate stem cell proliferation and the expression of Drosomycin-like genes in the intestine. Our results also suggest that a certain level of intestinal epithelium renewal is required for optimal survival to septic injury. While haemocyte-derived Upd promotes intestinal stem cell activation and survival upon septic injury, haemocytes are dispensable for epithelium renewal upon oral bacterial infection. Our study also indicates that intestinal epithelium renewal is sensitive to insults from both the lumen and the haemocoel. It also reveals that release of Upds by haemocytes coordinates the wound-healing program in multiple tissues, including the gut, an organ whose integrity is critical to fly survival.
Collapse
Affiliation(s)
- Sveta Chakrabarti
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail: (SC); (BL)
| | - Jan Paul Dudzic
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxue Li
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Jeanne Collas
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Phillipe Boquete
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail: (SC); (BL)
| |
Collapse
|
64
|
Vanha-Aho LM, Valanne S, Rämet M. Cytokines in Drosophila immunity. Immunol Lett 2015; 170:42-51. [PMID: 26730849 DOI: 10.1016/j.imlet.2015.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity.
Collapse
Affiliation(s)
- Leena-Maija Vanha-Aho
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland.
| | - Susanna Valanne
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland; PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
65
|
Fisher KH, Stec W, Brown S, Zeidler MP. Mechanisms of JAK/STAT pathway negative regulation by the short coreceptor Eye Transformer/Latran. Mol Biol Cell 2015; 27:434-41. [PMID: 26658615 PMCID: PMC4751595 DOI: 10.1091/mbc.e15-07-0546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022] Open
Abstract
The short receptor Et/Lat negatively regulates Drosophila JAK/STAT signaling. It binds to intracellular components and the Domeless receptor but cannot bind ligands, thus generating a signaling-incompetent complex. Et/Lat is also more stable than Dome. The study provides insights into how short receptors negatively regulate signaling. Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms.
Collapse
Affiliation(s)
- Katherine H Fisher
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Wojciech Stec
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Stephen Brown
- Sheffield RNAi Screening Facility, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin P Zeidler
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
66
|
Huang XD, Wei GJ, He MX. Cloning and gene expression of signal transducers and activators of transcription (STAT) homologue provide new insights into the immune response and nucleus graft of the pearl oyster Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2015; 47:847-854. [PMID: 26492994 DOI: 10.1016/j.fsi.2015.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
The signal transducers and activators of the transcription (STAT) family play an important role in regulatory and cellular functions by regulating the expression of a variety of genes, including cytokines and growth factors. In the present study, a Pinctada fucata STAT protein, termed PfSTAT, was described. The deduced amino acid sequence of PfSTAT contains the conserved STAT_bind domain and the SH2 domain, and the additional Bin/Amphiphysin/Rvs (BAR) domain, but does not have STAT_alpha and STAT_int domains. Multiple sequence alignments revealed that PfSTAT showed relatively low identity with vertebrate and other invertebrate STATs, and phylogenetic analysis indicated that the evolution of STAT may have been more complex and ancient. Gene expression analysis revealed that PfSTAT is involved in the immune response to polyinosinic-polycytidylic acid (poly I:C) stimulation and in the nucleus insertion operation. This study contributes to a better understanding of PfSTAT in protecting the pearl oyster from disease or injury caused by grafting.
Collapse
Affiliation(s)
- Xian-De Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guo-jian Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mao-xian He
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
67
|
Abstract
The embryonic gonad of Drosophila melanogaster begins to display sexually dimorphic traits soon after its formation. Here we demonstrate the involvement of a wnt family ligand, wnt-2, in the induction of these sex-specific differences. We show that wnt-2 contributes to the survival of a male-specific population of somatic gonadal precursor cells (SGPs), the male-specific SGPs that are located at the posterior of the male gonad. We also show that the Wnt-2 ligand synergizes with the JAK-STAT ligand Upd, which is produced by SGPs at the anterior of the gonad to activate the STAT pathway in male germ cells. We suggest that the use of two spatially separated signaling systems to initiate the JAK-STAT stem cell maintenance pathway in germ cells provides a mechanism for increasing the pool of potential progenitors of the germline stem cells in the adult testes. Finally, we present evidence indicating that, like the JAK-STAT pathway, wnt-2 stimulates germ cells in male embryos to re-enter the cell cycle.
Collapse
|
68
|
Yang H, Kronhamn J, Ekström JO, Korkut GG, Hultmark D. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection. EMBO Rep 2015; 16:1664-72. [PMID: 26412855 PMCID: PMC4687419 DOI: 10.15252/embr.201540277] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/28/2015] [Indexed: 11/09/2022] Open
Abstract
The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.
Collapse
Affiliation(s)
- Hairu Yang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jesper Kronhamn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jens-Ola Ekström
- Department of Molecular Biology, Umeå University, Umeå, Sweden Institute of Biomedical Technology BMT Tampere University, Tampere, Finland
| | | | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden Institute of Biomedical Technology BMT Tampere University, Tampere, Finland
| |
Collapse
|
69
|
Pinto PB, Espinosa-Vázquez JM, Rivas ML, Hombría JCG. JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade. PLoS Genet 2015; 11:e1005412. [PMID: 26230388 PMCID: PMC4521708 DOI: 10.1371/journal.pgen.1005412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/02/2015] [Indexed: 01/21/2023] Open
Abstract
Organogenesis is controlled by gene networks activated by upstream selector genes. During development the gene network is activated stepwise, with a sequential deployment of successive transcription factors and signalling molecules that modify the interaction of the elements of the network as the organ forms. Very little is known about the steps leading from the early specification of the cells that form the organ primordium to the moment when a robust gene network is in place. Here we study in detail how a Hox protein induces during early embryogenesis a simple organogenetic cascade that matures into a complex gene network through the activation of feedback and feed forward interaction loops. To address how the network organization changes during development and how the target genes integrate the genetic information it provides, we analyze in Drosophila the induction of posterior spiracle organogenesis by the Hox gene Abdominal-B (Abd-B). Initially, Abd-B activates in the spiracle primordium a cascade of transcription factors and signalling molecules including the JAK/STAT signalling pathway. We find that at later stages STAT activity feeds back directly into Abd-B, initiating the transformation of the Hox cascade into a gene-network. Focusing on crumbs, a spiracle downstream target gene of Abd-B, we analyze how a modular cis regulatory element integrates the dynamic network information set by Abd-B and the JAK/STAT signalling pathway during development. We describe how a Hox induced genetic cascade transforms into a robust gene network during organogenesis due to the repeated interaction of Abd-B and one of its targets, the JAK/STAT signalling cascade. Our results show that in this network STAT functions not just as a direct transcription factor, but also acts as a "counter-repressor", uncovering a novel mode for STAT directed transcriptional regulation. Organogenesis is controlled by gene networks activated by upstream selector genes. To address how the network organization changes during development and how the target genes integrate the genetic information it provides, we analyze in Drosophila the induction of posterior spiracle organogenesis by the Hox gene Abdominal-B (Abd-B). Initially, Abd-B activates in the spiracle primordium a cascade of transcription factors and signalling molecules including the JAK/STAT pathway. We find that at later stages STAT activity feeds back into Abd-B, initiating the transformation of the Hox cascade into a gene-network. Focusing on a spiracle downstream target gene of Abd-B, we analyze how its cis regulatory elements integrate the dynamic network information set by Abd-B and the JAK/STAT signalling pathway during development. Our results also show that the well known transcription factor STAT can control gene expression as a “counter-repressor”, uncovering an alternative novel mode for STAT directed transcriptional regulation.
Collapse
Affiliation(s)
- Pedro B. Pinto
- Centro Andaluz de Biología de Desarrollo, CSIC/JA, Universidad Pablo de Olivde, Seville, Spain
| | | | - María Luísa Rivas
- Centro Andaluz de Biología de Desarrollo, CSIC/JA, Universidad Pablo de Olivde, Seville, Spain
| | | |
Collapse
|
70
|
Tokusumi T, Tokusumi Y, Hopkins DW, Schulz RA. Bag of Marbles controls the size and organization of the Drosophila hematopoietic niche through interactions with the Insulin-like growth factor pathway and Retinoblastoma-family protein. Development 2015; 142:2261-7. [PMID: 26041767 DOI: 10.1242/dev.121798] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023]
Abstract
Bag of Marbles (Bam) is known to function as a positive regulator of hematopoietic progenitor maintenance in the lymph gland blood cell-forming organ during Drosophila hematopoiesis. Here, we demonstrate a key function for Bam in cells of the lymph gland posterior signaling center (PSC), a cellular domain proven to function as a hematopoietic niche. Bam is expressed in PSC cells, and gene loss-of-function results in PSC overgrowth and disorganization, indicating that Bam plays a crucial role in controlling the proper development of the niche. It was previously shown that Insulin receptor (InR) pathway signaling is essential for proper PSC cell proliferation. We analyzed PSC cell number in lymph glands double-mutant for bam and InR pathway genes, and observed that bam genetically interacts with pathway members in the formation of a normal PSC. The elF4A protein is a translation factor downstream of InR pathway signaling, and functional knockdown of this crucial regulator rescued the bam PSC overgrowth phenotype, further supporting the cooperative function of Bam with InR pathway members. Additionally, we documented that the Retinoblastoma-family protein (Rbf), a proven regulator of cell proliferation, was present in cells of the PSC, with a bam function-dependent expression. By contrast, perturbation of Decapentaplegic or Wingless signaling failed to affect Rbf niche cell expression. Together, these findings indicate that InR pathway-Bam-Rbf functional interactions represent a newly identified means to regulate the correct size and organization of the PSC hematopoietic niche.
Collapse
Affiliation(s)
- Tsuyoshi Tokusumi
- Department of Biological Sciences, University of Notre Dame, 147 Galvin Life Science Building, Notre Dame, IN 46556, USA
| | - Yumiko Tokusumi
- Department of Biological Sciences, University of Notre Dame, 147 Galvin Life Science Building, Notre Dame, IN 46556, USA
| | - Dawn W Hopkins
- Department of Biological Sciences, University of Notre Dame, 147 Galvin Life Science Building, Notre Dame, IN 46556, USA
| | - Robert A Schulz
- Department of Biological Sciences, University of Notre Dame, 147 Galvin Life Science Building, Notre Dame, IN 46556, USA
| |
Collapse
|
71
|
Shapiro-Kulnane L, Smolko AE, Salz HK. Maintenance of Drosophila germline stem cell sexual identity in oogenesis and tumorigenesis. Development 2015; 142:1073-82. [PMID: 25758221 DOI: 10.1242/dev.116590] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult stem cells maintain tissue homeostasis by balancing self-renewal and differentiation. In Drosophila females, germline stem cells (GSCs) require Sex lethal (Sxl) to exit the stem cell state and to enter the differentiation pathway. Without Sxl GSCs do not differentiate and instead form tumors. Previous studies have shown that these tumors are not caused by a failure in the self-renewal/differentiation switch. Here, we show that Sxl is also necessary for the cell-autonomous maintenance of germ cell female identity and demonstrate that tumors are caused by the acquisition of male characteristics. Germ cells without Sxl protein exhibit a global derepression of testis genes, including Phf7, a male germline sexual identity gene. Phf7 is a key effector of the tumor-forming pathway, as it is both necessary and sufficient for tumor formation. In the absence of Sxl protein, inappropriate Phf7 expression drives tumor formation through a cell-autonomous mechanism that includes sex-inappropriate activation of Jak/Stat signaling. Remarkably, tumor formation requires a novel response to external signals emanating from the GSC niche, highlighting the importance of interactions between mutant cells and the surrounding normal cells that make up the tumor microenvironment. Derepression of testis genes, and inappropriate Phf7 expression, is also observed in germ cell tumors arising from the loss of bag of marbles (bam), demonstrating that maintenance of female sexual identity requires the concerted actions of Sxl and bam. Our work reveals that GSCs must maintain their sexual identity as they are reprogrammed into a differentiated cell, or risk tumorigenesis.
Collapse
Affiliation(s)
- Laura Shapiro-Kulnane
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4955, USA
| | - Anne Elizabeth Smolko
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4955, USA
| | - Helen Karen Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4955, USA
| |
Collapse
|
72
|
Gao XJ, Riabinina O, Li J, Potter CJ, Clandinin TR, Luo L. A transcriptional reporter of intracellular Ca(2+) in Drosophila. Nat Neurosci 2015; 18:917-25. [PMID: 25961791 PMCID: PMC4446202 DOI: 10.1038/nn.4016] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022]
Abstract
Intracellular Ca2+ is a widely used neuronal activity indicator. Here we describe a transcriptional reporter of intracellular Ca2+ (TRIC) in Drosophila, which uses a binary expression system to report Ca2+-dependent interactions between calmodulin and its target peptide. We show that in vitro assays predict in vivo properties of TRIC, and that TRIC signals in sensory systems depend on neuronal activity. TRIC can quantitatively monitor neuronal responses that change slowly, such as those of neuropeptide F-expressing neurons to sexual deprivation and neuroendocrine pars intercerebralis (PI) cells to food and arousal. Furthermore, TRIC-induced expression of a neuronal silencer in nutrient activated cells enhanced stress resistance, providing proof-of-principle that TRIC can be used for circuit manipulation. Thus, TRIC facilitates the monitoring and manipulation of neuronal activity, especially those reflecting slow changes in physiological states that are poorly captured by existing methods. TRIC’s modular design should enable optimization and adaptation to other organisms.
Collapse
Affiliation(s)
- Xiaojing J Gao
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, USA
| | - Olena Riabinina
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiefu Li
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, California, USA
| | - Liqun Luo
- 1] Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, USA. [2] Department of Neurobiology, Stanford University, Stanford, California, USA
| |
Collapse
|
73
|
Yan M, Li C, Su Z, Liang Q, Li H, Liang S, Weng S, He J, Xu X. Identification of a JAK/STAT pathway receptor domeless from Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2015; 44:26-32. [PMID: 25659232 DOI: 10.1016/j.fsi.2015.01.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/15/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway was known to participate in dozens of immune responses in organisms. Domeless, first identified in Drosophila melanogaster, is a unique receptor involved in invertebrate JAK/STAT pathway. In this study, a cytokine receptor (LvDOME) was identified in Litopenaeus vannamei. The LvDOME cDNA was 5178bp in length with an Open Reading Frame (ORF) of 4191bp. LvDOME contained two cytokine binding modules (CBMs) and three fibronectin-type-III-like (FNIII) domains, similar to most vertebrate IL-6 receptors. LvDOME was expressed highest in shrimp muscle and could be up-regulated in the late stage of white spot syndrome virus (WSSV) infection. LvDOME could significantly enhance the activity of the WSSV wsv069 gene promoter through acting on the STAT-binding motif, suggesting LvDOME could activate the JAK/STAT pathway. Moreover, knockdown of LvDOME resulted in lower cumulative mortality of shrimps and less WSSV copies, suggesting LvDOME may be hijacked by WSSV to benefit virus replication. To our knowledge, this is the first report on the receptor of JAK/STAT pathway in shrimp.
Collapse
Affiliation(s)
- Muting Yan
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Ziqi Su
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Qianhui Liang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shizhong Liang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
74
|
Ren W, Zhang Y, Li M, Wu L, Wang G, Baeg GH, You J, Li Z, Lin X. Windpipe controls Drosophila intestinal homeostasis by regulating JAK/STAT pathway via promoting receptor endocytosis and lysosomal degradation. PLoS Genet 2015; 11:e1005180. [PMID: 25923769 PMCID: PMC4414558 DOI: 10.1371/journal.pgen.1005180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/27/2015] [Indexed: 01/12/2023] Open
Abstract
The adult intestinal homeostasis is tightly controlled by proper proliferation and differentiation of intestinal stem cells. The JAK/STAT (Janus Kinase/Signal Transducer and Activator of Transcription) signaling pathway is essential for the regulation of adult stem cell activities and maintenance of intestinal homeostasis. Currently, it remains largely unknown how JAK/STAT signaling activities are regulated in these processes. Here we have identified windpipe (wdp) as a novel component of the JAK/STAT pathway. We demonstrate that Wdp is positively regulated by JAK/STAT signaling in Drosophila adult intestines. Loss of wdp activity results in the disruption of midgut homeostasis under normal and regenerative conditions. Conversely, ectopic expression of Wdp inhibits JAK/STAT signaling activity. Importantly, we show that Wdp interacts with the receptor Domeless (Dome), and promotes its internalization for subsequent lysosomal degradation. Together, these data led us to propose that Wdp acts as a novel negative feedback regulator of the JAK/STAT pathway in regulating intestinal homeostasis. Effective tissue homeostasis requires a proper balance between the removal of dead cells and production of new cells. Due to environmental challenges, the Drosophila midgut epithelial cells are damaged from time to time and intestinal stem cells (ISC) can accelerate their proliferative rate to replace the lost midgut epithelium. The JAK/STAT pathway plays essential roles in these progresses. Upon damage, Upd ligands produced by dying enterocytes (ECs) activate JAK/STAT signaling in ISCs to promote their proliferation and differentiation. However, after damage how JAK/STAT signaling is switched from a highly active state to a homeostatic state is not yet fully understood. In this study, we identified the leucine rich repeats (LRR) protein Windpipe (Wdp) as a novel negative feedback regulator of JAK/STAT signaling during intestinal development. Wdp expression was induced by high levels of JAK/STAT signaling in intestines. And loss of Wdp leads to midgut homeostasis loss and increased ISC proliferation. Furthermore, we found Wdp in turn negatively regulates JAK/STAT signaling activity through promoting Domeless receptor endocytosis and lysosomal degradation. In this way, high levels of JAK/STAT signaling is switched off by Wdp, which ensure ISCs return to the homeostatic state after tissue damage.
Collapse
Affiliation(s)
- Wenyan Ren
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Min Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Longfei Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guolun Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gyeong-Hun Baeg
- Department of Anatomy, National University of Singapore, Singapore
| | - Jia You
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Zhouhua Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Capital Normal University, Beijing, China
- * E-mail: (ZL); (XL)
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (ZL); (XL)
| |
Collapse
|
75
|
IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16:448-57. [DOI: 10.1038/ni.3153] [Citation(s) in RCA: 1721] [Impact Index Per Article: 172.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
|
76
|
Fuwa TJ, Kinoshita T, Nishida H, Nishihara S. Reduction of T antigen causes loss of hematopoietic progenitors in Drosophila through the inhibition of filopodial extensions from the hematopoietic niche. Dev Biol 2015; 401:206-19. [PMID: 25779703 DOI: 10.1016/j.ydbio.2015.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 02/28/2015] [Accepted: 03/05/2015] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cells (HSCs) are present in hematopoietic organs and differentiate into mature blood cells as required. Defective HSCs have been implicated in the human autoimmune disease Tn syndrome, which results from the failure of the core 1 β1,3-galactosyltransferase 1 enzyme (C1β3GalT1) to synthesize T antigen. In both mice and humans, a reduced level of T antigen is associated with a reduction in blood cell numbers. However, the precise roles of T antigen in hematopoiesis are unknown. Here, we show that the Drosophila T antigen, supplied by plasmatocytes, is essential for the regulation of HSCs. T antigen appears to be an essential factor in maintaining the extracellular environment to support filopodial extensions from niches that are responsible for transmitting signaling molecules to maintain the HSCs. In addition, our results revealed that the clotting factor, hemolectin, disrupted the hemolymph environment of C1β3GalT1 mutants. This study identified a novel mucin function for the regulation of HSCs that may be conserved in other species.
Collapse
Affiliation(s)
- Takashi J Fuwa
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Takaaki Kinoshita
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Hiroshi Nishida
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
77
|
Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. Proc Natl Acad Sci U S A 2014; 112:E176-85. [PMID: 25548172 DOI: 10.1073/pnas.1412984112] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o'nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens.
Collapse
|
78
|
Pleiotropy of the Drosophila JAK pathway cytokine Unpaired 3 in development and aging. Dev Biol 2014; 395:218-31. [PMID: 25245869 DOI: 10.1016/j.ydbio.2014.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 12/22/2022]
Abstract
The Janus kinase (JAK) pathway is an essential, highly re-utilized developmental signaling cascade found in most metazoans. In vertebrates, the JAK intracellular cascade mediates signaling by dozens of cytokines and growth factors. In Drosophila, the Unpaired (Upd) family, encoded by three tandemly duplicated genes, is the only class of ligands associated with JAK stimulation. Unpaired has a central role in activation of JAK for most pathway functions, while Unpaired 2 regulates body size through insulin signaling. We show here that the third member of the family, unpaired 3 (upd3), overlaps upd in expression in some tissues and is essential for a subset of JAK-mediated developmental functions. First, consistent with the known requirements of JAK signaling in gametogenesis, we find that mutants of upd3 show an age-dependent impairment of fertility in both sexes. In oogenesis, graded JAK activity stimulated by Upd specifies the fates of the somatic follicle cells. As upd3 mutant females age, defects arise that can be attributed to perturbations of the terminal follicle cells, which require the highest levels of JAK activation. Therefore, in oogenesis, the activities of Upd and Upd3 both appear to quantitatively contribute to specification of those follicle cell fates. Furthermore, the sensitization of upd3 mutants to age-related decline in fertility can be used to investigate reproductive senescence. Second, loss of Upd3 during imaginal development results in defects of adult structures, including reduced eye size and abnormal wing and haltere posture. The outstretched wing and small eye phenotypes resemble classical alleles referred to as outstretched (os) mutations that have been previously ascribed to upd. However, we show that os alleles affect expression of both upd and upd3 and map to untranscribed regions, suggesting that they disrupt regulatory elements shared by both genes. Thus the upd region serves as a genetically tractable model for coordinate regulation of tandemly duplicated gene families that are commonly found in higher eukaryotes.
Collapse
|
79
|
Mondal BC, Shim J, Evans CJ, Banerjee U. Pvr expression regulators in equilibrium signal control and maintenance of Drosophila blood progenitors. eLife 2014; 3:e03626. [PMID: 25201876 PMCID: PMC4185420 DOI: 10.7554/elife.03626] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/05/2014] [Indexed: 12/18/2022] Open
Abstract
Blood progenitors within the lymph gland, a larval organ that supports hematopoiesis in Drosophila melanogaster, are maintained by integrating signals emanating from niche-like cells and those from differentiating blood cells. We term the signal from differentiating cells the 'equilibrium signal' in order to distinguish it from the 'niche signal'. Earlier we showed that equilibrium signaling utilizes Pvr (the Drosophila PDGF/VEGF receptor), STAT92E, and adenosine deaminase-related growth factor A (ADGF-A) (Mondal et al., 2011). Little is known about how this signal initiates during hematopoietic development. To identify new genes involved in lymph gland blood progenitor maintenance, particularly those involved in equilibrium signaling, we performed a genetic screen that identified bip1 (bric à brac interacting protein 1) and Nucleoporin 98 (Nup98) as additional regulators of the equilibrium signal. We show that the products of these genes along with the Bip1-interacting protein RpS8 (Ribosomal protein S8) are required for the proper expression of Pvr.
Collapse
Affiliation(s)
- Bama Charan Mondal
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Jiwon Shim
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Cory J Evans
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
80
|
Evans CJ, Liu T, Banerjee U. Drosophila hematopoiesis: Markers and methods for molecular genetic analysis. Methods 2014; 68:242-51. [PMID: 24613936 PMCID: PMC4051208 DOI: 10.1016/j.ymeth.2014.02.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 01/09/2023] Open
Abstract
Analyses of the Drosophila hematopoietic system are becoming more and more prevalent as developmental and functional parallels with vertebrate blood cells become more evident. Investigative work on the fly blood system has, out of necessity, led to the identification of new molecular markers for blood cell types and lineages and to the refinement of useful molecular genetic tools and analytical methods. This review briefly describes the Drosophila hematopoietic system at different developmental stages, summarizes the major useful cell markers and tools for each stage, and provides basic protocols for practical analysis of circulating blood cells and of the lymph gland, the larval hematopoietic organ.
Collapse
Affiliation(s)
- Cory J Evans
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ting Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
81
|
Chen Q, Giedt M, Tang L, Harrison DA. Tools and methods for studying the Drosophila JAK/STAT pathway. Methods 2014; 68:160-72. [DOI: 10.1016/j.ymeth.2014.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/29/2022] Open
|
82
|
Myllymäki H, Rämet M. JAK/STAT Pathway inDrosophilaImmunity. Scand J Immunol 2014; 79:377-85. [DOI: 10.1111/sji.12170] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/21/2014] [Indexed: 12/24/2022]
Affiliation(s)
- H. Myllymäki
- Laboratory of Experimental Immunology; BioMediTech; University of Tampere; Tampere Finland
| | - M. Rämet
- Laboratory of Experimental Immunology; BioMediTech; University of Tampere; Tampere Finland
- Department of Pediatrics; Tampere University Hospital; Tampere Finland
- Department of Pediatrics; Medical Research Center Oulu; University of Oulu; Oulu Finland
- Department of Children and Adolescents; Oulu University Hospital; Oulu Finland
| |
Collapse
|
83
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
84
|
Sánchez-Higueras C, Sotillos S, Castelli-Gair Hombría J. Common origin of insect trachea and endocrine organs from a segmentally repeated precursor. Curr Biol 2013; 24:76-81. [PMID: 24332544 DOI: 10.1016/j.cub.2013.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 11/19/2022]
Abstract
Segmented organisms have serially repeated structures [1] that become specialized in some segments [2]. We show here that the Drosophila corpora allata, prothoracic glands, and trachea have a homologous origin and can convert into each other. The tracheal epithelial tubes develop from ten trunk placodes [3, 4], and homologous ectodermal cells in the maxilla and labium form the corpora allata and the prothoracic glands. The early endocrine and trachea gene networks are similar, with STAT and Hox genes inducing their activation. The initial invagination of the trachea and the endocrine primordia is identical, but activation of Snail in the glands induces an epithelial-mesenchymal transition (EMT), after which the corpora allata and prothoracic gland primordia coalesce and migrate dorsally, joining the corpora cardiaca to form the ring gland. We propose that the arthropod ectodermal endocrine glands and respiratory organs arose through an extreme process of divergent evolution from a metameric repeated structure.
Collapse
Affiliation(s)
| | - Sol Sotillos
- CABD, CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | | |
Collapse
|
85
|
Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 2013; 425:4921-36. [PMID: 24120681 DOI: 10.1016/j.jmb.2013.10.006] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
Abstract
Insects are infected by a wide array of viruses some of which are insect restricted and pathogenic, and some of which are transmitted by biting insects to vertebrates. The medical and economic importance of these viruses heightens the need to understand the interaction between the infecting pathogen and the insect immune system in order to develop transmission interventions. The interaction of the virus with the insect host innate immune system plays a critical role in the outcome of infection. The major mechanism of antiviral defense is the small, interfering RNA pathway that responds through the detection of virus-derived double-stranded RNA to suppress virus replication. However, other innate antimicrobial pathways such as Imd, Toll, and Jak-STAT and the autophagy pathway have also been shown to play important roles in antiviral immunity. In this review, we provide an overview of the current understanding of the main insect antiviral pathways and examine recent findings that further our understanding of the roles of these pathways in facilitating a systemic and specific response to infecting viruses.
Collapse
|
86
|
Abstract
The evolutionarily conserved JAK/STAT pathway plays important roles in development and disease processes in humans. Although the signaling process has been well established, we know relatively little about what the relevant target genes are that mediate JAK/STAT activation during development. Here, we have used genome-wide microarrays to identify JAK/STAT targets in the optic lobes of the Drosophila brain and identified 47 genes that are positively regulated by JAK/STAT. About two-thirds of the genes encode proteins that have orthologs in humans. The STAT targets in the optic lobe appear to be different from the targets identified in other tissues, suggesting that JAK/STAT signaling may regulate different target genes in a tissue-specific manner. Functional analysis of Nop56, a cell-autonomous STAT target, revealed an essential role for this gene in the growth and proliferation of neuroepithelial stem cells in the optic lobe and an inhibitory role in lamina neurogenesis.
Collapse
|
87
|
Ayala-Camargo A, Anderson AM, Amoyel M, Rodrigues AB, Flaherty MS, Bach EA. JAK/STAT signaling is required for hinge growth and patterning in the Drosophila wing disc. Dev Biol 2013; 382:413-26. [PMID: 23978534 DOI: 10.1016/j.ydbio.2013.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 07/31/2013] [Accepted: 08/18/2013] [Indexed: 01/15/2023]
Abstract
JAK/STAT signaling is localized to the wing hinge, but its function there is not known. Here we show that the Drosophila STAT Stat92E is downstream of Homothorax and is required for hinge development by cell-autonomously regulating hinge-specific factors. Within the hinge, Stat92E activity becomes restricted to gap domain cells that lack Nubbin and Teashirt. While gap domain cells lacking Stat92E have significantly reduced proliferation, increased JAK/STAT signaling there does not expand this domain. Thus, this pathway is necessary but not sufficient for gap domain growth. We show that reduced Wingless (Wg) signaling dominantly inhibits Stat92E activity in the hinge. However, ectopic JAK/STAT signaling does not perturb Wg expression in the hinge. We report negative interactions between Stat92E and the notum factor Araucan, resulting in restriction of JAK/STAT signaling from the notum. In addition, we find that the distal factor Nub represses the ligand unpaired as well as Stat92E activity. These data suggest that distal expansion of JAK/STAT signaling is deleterious to wing blade development. Indeed, mis-expression of Unpaired within the presumptive wing blade causes small, stunted adult wings. We conclude that JAK/STAT signaling is critical for hinge fate specification and growth of the gap domain and that its restriction to the hinge is required for proper wing development.
Collapse
Affiliation(s)
- Aidee Ayala-Camargo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016-6402, USA
| | | | | | | | | | | |
Collapse
|
88
|
Wells RE, Barry JD, Warrington SJ, Cuhlmann S, Evans P, Huber W, Strutt D, Zeidler MP. Control of tissue morphology by Fasciclin III-mediated intercellular adhesion. Development 2013; 140:3858-68. [PMID: 23946443 PMCID: PMC3915571 DOI: 10.1242/dev.096214] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Morphogenesis is dependent on the orchestration of multiple developmental processes to generate mature functional organs. However, the signalling pathways that coordinate morphogenesis and the mechanisms that translate these signals into tissue shape changes are not well understood. Here, we demonstrate that changes in intercellular adhesion mediated by the transmembrane protein Fasciclin III (FasIII) represent a key mediator of morphogenesis. Using the embryonic Drosophila hindgut as an in vivo model for organogenesis, we show that the tightening of hindgut curvature that normally occurs between embryonic stage 12 and 15 to generate the characteristic shepherd’s crook shape is dependent on localised JAK/STAT pathway activation. This localised pathway activity drives the expression of FasIII leading to its subcellular lateralisation at a stage before formation of septate junctions. Additionally, we show that JAK/STAT- and FasIII-dependent morphogenesis also regulates folds within the third instar wing imaginal disc. We show that FasIII forms homophilic intercellular interactions that promote intercellular adhesion in vivo and in cultured cells. To explore these findings, we have developed a mathematical model of the developing hindgut, based on the differential interfacial tension hypothesis (DITH) linking intercellular adhesion and localised surface tension. Our model suggests that increased intercellular adhesion provided by FasIII can be sufficient to drive the tightening of tube curvature observed. Taken together, these results identify a conserved molecular mechanism that directly links JAK/STAT pathway signalling to intercellular adhesion and that sculpts both tubular and planar epithelial shape.
Collapse
Affiliation(s)
- Richard E Wells
- MRC Centre for Developmental and Biomedical Genetics, The University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Hombría JCG, Sotillos S. JAK-STAT pathway in Drosophila morphogenesis: From organ selector to cell behavior regulator. JAKSTAT 2013; 2:e26089. [PMID: 24069568 PMCID: PMC3772120 DOI: 10.4161/jkst.26089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
One of the main contributions of Drosophila to the JAK-STAT field is the study of morphogenesis. JAK-STAT signaling controls the formation of many different structures through surprisingly different morphogenetic behaviors that include induction of cell rearrangements, invagination, folding of tissues, modulation of cell shape, and migration. This variability may be explained by the many transcription factors and signaling molecules STAT regulates at early stages of development. But is STAT just acting as an upstream inducer of morphogenesis or does it have a more direct role in controlling cell behaviors? Here we review what is known about how the canonical phosphorylation of STAT contributes to shaping the embryonic and imaginal structures.
Collapse
|
90
|
Zeidler MP, Bausek N. The Drosophila JAK-STAT pathway. JAKSTAT 2013; 2:e25353. [PMID: 24069564 PMCID: PMC3772116 DOI: 10.4161/jkst.25353] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 02/03/2023] Open
Abstract
The conservation of signaling cascades between humans and Drosophila, over more than 500 million years of evolutionary time, means that the genetic tractability of the fly can be used to its full advantage to understand the functional requirements for JAK-STAT pathway signaling across species. Here we review the background to how the pathway was first identified and the first characterization of JAK-STAT pathway phenotypes in the Drosophila system, highlighting the molecular, functional, and disease-related conservation of the pathway.
Collapse
Affiliation(s)
- Martin P Zeidler
- MRC Centre for Development and Biomedical Genetics and the Department of Biomedical Science; The University of Sheffield; Sheffield, UK
| | | |
Collapse
|
91
|
Bausek N. JAK-STAT signaling in stem cells and their niches in Drosophila. JAKSTAT 2013; 2:e25686. [PMID: 24069566 PMCID: PMC3772118 DOI: 10.4161/jkst.25686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 12/30/2022] Open
Abstract
JAK-STAT signaling is a highly conserved regulator of stem cells and their niches. Aberrant activation in hematopoietic stem cells is the underlying cause of a majority of myeloproliferative diseases. This review will focus on the roles of JAK-STAT activity in three different adult stem cell systems in Drosophila. Tightly controlled levels of JAK-STAT signaling are required for stem cell maintenance and self-renewal, as hyperactivation of the pathway is associated with stem cell overproliferation. JAK-STAT activity is further essential for anchoring the stem cells in their respective niches by regulating different adhesion molecules.
Collapse
Affiliation(s)
- Nina Bausek
- MRC Centre for Development and Biomedical Genetics and The Department of Biomedical Science; The University of Sheffield; Sheffield, UK
| |
Collapse
|
92
|
Morin-Poulard I, Vincent A, Crozatier M. The Drosophila JAK-STAT pathway in blood cell formation and immunity. JAKSTAT 2013; 2:e25700. [PMID: 24069567 PMCID: PMC3772119 DOI: 10.4161/jkst.25700] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022] Open
Abstract
Genetic alterations affecting the JAK-STAT signaling pathway are linked to several malignancies and hematological disorders in humans. Despite being one of the most extensively studied pathways, there remain many gaps to fill. JAK-STAT components are widely conserved during evolution. Here, we review the known roles of the JAK-STAT pathway in Drosophila immunity: controlling the different steps of hematopoiesis, both under physiological conditions and in response to immune challenge, and contributing to antiviral responses. We then summarize what is currently known about JAK-STAT signaling in renewal of the adult intestine, under physiological conditions or in response to ingestion of pathogenic bacteria.
Collapse
Affiliation(s)
- Ismaël Morin-Poulard
- Centre de Biologie du Développement; UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse; Toulouse, France
| | | | | |
Collapse
|
93
|
Zoranovic T, Grmai L, Bach EA. Regulation of proliferation, cell competition, and cellular growth by the Drosophila JAK-STAT pathway. JAKSTAT 2013; 2:e25408. [PMID: 24069565 PMCID: PMC3772117 DOI: 10.4161/jkst.25408] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023] Open
Abstract
The JAK-STAT pathway is a key regulator of tissue size in Drosophila melanogaster. Here we provide an overview of its roles in processes that regulate the size of Drosophila imaginal discs, epithelia of diploid cells that proliferate and acquire specific fates in the larvae and that become functional in the adult. Drosophila has a single JAK and a single STAT gene, which has facilitated genetic dissection of this pathway. Moreover, the sophisticated genetic tools available in flies for clonal growth assays have made Drosophila an ideal organism in which to dissect the multiple roles of the JAK-STAT pathway in growth control. Studies in flies have revealed JAK-STAT pathway activity as a central node for diverse signals that control proliferation and mass accumulation. In addition, recent work has establish a new role for the pathway in cell competition, a process thought to be akin to the early stages of transformation in which more robust cells kill and take the place of less robust ones.
Collapse
Affiliation(s)
- Tamara Zoranovic
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York, NY USA
| | | | | |
Collapse
|
94
|
Localised JAK/STAT pathway activation is required for Drosophila wing hinge development. PLoS One 2013; 8:e65076. [PMID: 23741461 PMCID: PMC3669132 DOI: 10.1371/journal.pone.0065076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/22/2013] [Indexed: 01/02/2023] Open
Abstract
Extensive morphogenetic remodelling takes place during metamorphosis from a larval to an adult insect body plan. These changes are particularly intricate in the generation of the dipteran wing hinge, a complex structure that is derived from an apparently simple region of the wing imaginal disc. Using the characterisation of original outstretched alleles of the unpaired locus as a starting point, we demonstrate the role of JAK/STAT pathway signalling in the process of wing hinge development. We show that differences in JAK/STAT signalling within the proximal most of three lateral folds present in the wing imaginal disc is required for fold morphology and the subsequent differentiation of the first and second auxiliary sclerites as well as the posterior notal wing process. Changes in these domains are consistent with the established fate map of the wing disc. We show that outstretched wing posture phenotypes arise from the loss of a region of Unpaired expression in the proximal wing fold and demonstrate that this results in a decrease in JAK/STAT pathway activity. Finally we show that reduction of JAK/STAT pathway activity within the proximal wing fold is sufficient to phenocopy the outstretched phenotype. Taken together, we suggest that localised Unpaired expression and hence JAK/STAT pathway activity, is required for the morphogenesis of the adult wing hinge, providing new insights into the link between signal transduction pathways, patterning and development.
Collapse
|
95
|
Oldefest M, Nowinski J, Hung CW, Neelsen D, Trad A, Tholey A, Grötzinger J, Lorenzen I. Upd3--an ancestor of the four-helix bundle cytokines. Biochem Biophys Res Commun 2013; 436:66-72. [PMID: 23707937 DOI: 10.1016/j.bbrc.2013.04.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022]
Abstract
The unpaired-like protein 3 (Upd3) is one of the three cytokines of Drosophila melanogaster supposed to activate the JAK/STAT signaling pathway (Janus tyrosine kinases/signal transducer and activator of transcription). This activation occurs via the type-I cytokine receptor domeless, an orthologue of gp130, the common signal transducer of all four-helix bundle interleukin-6 (IL-6) type cytokines. Both receptors are known to exist as preformed dimers in the plasma membrane and initiate the acute-phase response. These facts indicate an evolutionary relation between vertebrate IL-6 and the Drosophila protein Upd3. Here we presented data which strengthen this notion. Upd3 was recombinantly expressed, a renaturation and purification protocol was established which allows to obtain high amounts of biological active protein. This protein is, like human IL-6, a monomeric-α helical cytokine, implicating that Upd3 is an "ancestor" of the four-helix bundle cytokines.
Collapse
Affiliation(s)
- Mirja Oldefest
- Biochemisches Institut der Christian-Albrechts-Universität Kiel, Olshausenstr. 40, 24118 Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Sotillos S, Krahn M, Espinosa-Vázquez JM, Hombría JCG. Src kinases mediate the interaction of the apical determinant Bazooka/PAR3 with STAT92E and increase signalling efficiency in Drosophila ectodermal cells. Development 2013; 140:1507-16. [DOI: 10.1242/dev.092320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intercellular communication depends on the correct organization of the signal transduction complexes. In many signalling pathways, the mechanisms controlling the overall cell polarity also localize components of these pathways to different domains of the plasma membrane. In the Drosophila ectoderm, the JAK/STAT pathway components are highly polarized with apical localization of the receptor, the associated kinase and the STAT92E protein itself. The apical localization of STAT92E is independent of the receptor complex and is due to its direct association with the apical determining protein Bazooka (Baz). Here, we find that Baz-STAT92E interaction depends on the presence of the Drosophila Src kinases. In the absence of Src, STAT92E cannot bind to Baz in cells or in whole embryos, and this correlates with an impairment of JAK/STAT signalling function. We believe that the requirement of Src proteins for STAT92E apical localization is mediated through Baz, as we can co-precipitate Src with Baz but not with STAT92E. This is the first time that a functional link between cell polarity, the JAK/STAT signalling pathway and the Src kinases has been established in a whole organism.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro Andaluz de Biología del Desarrollo, CSIC/JA/UPO, Ctra de Utrera Km1, 41013 Sevilla, Spain
| | - Michael Krahn
- Stem Cell Biology, Department of Anatomy and Cell Biology, University of Goettingen, Justus-von-Liebig-Weg 11, 37 077 Goettingen, Germany
| | | | | |
Collapse
|
97
|
Hayashi Y, Sexton TR, Dejima K, Perry DW, Takemura M, Kobayashi S, Nakato H, Harrison DA. Glypicans regulate JAK/STAT signaling and distribution of the Unpaired morphogen. Development 2013; 139:4162-71. [PMID: 23093424 DOI: 10.1242/dev.078055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Drosophila, ligands of the Unpaired (Upd) family activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. The JAK/STAT pathway controls many developmental events, including multiple functions in the ovary. These include an early role in the germarium for specification of stalk cells and a later role in the vitellarium to pattern the follicular epithelium surrounding each cyst. In this latter role, graded JAK/STAT activation specifies three distinct anterior follicular cell fates, suggesting that Upd is a morphogen in this system. Consistent with the JAK/STAT activation pattern in the vitellarium, Upd forms a concentration gradient on the apical surface of the follicular epithelium with a peak at its source, the polar cells. Like many morphogens, signaling and distribution of Upd are regulated by the heparan sulfate proteoglycans (HSPGs) Dally and Dally-like. Mutations in these glypican genes and in heparan sulfate biosynthetic genes result in disruption of JAK/STAT signaling, loss or abnormal formation of the stalk and significant reduction in the accumulation of extracellular Upd. Conversely, forced expression of Dally causes ectopic accumulation of Upd in follicular cells. Furthermore, biochemical studies reveal that Upd and Dally bind each other on the surface of the cell membrane. Our findings demonstrate that Drosophila glypicans regulate formation of the follicular gradient of the Upd morphogen, Upd. Furthermore, we establish the follicular epithelium as a new model for morphogen signaling in complex organ development.
Collapse
Affiliation(s)
- Yoshiki Hayashi
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Zhang Y, You J, Ren W, Lin X. Drosophila glypicans Dally and Dally-like are essential regulators for JAK/STAT signaling and Unpaired distribution in eye development. Dev Biol 2013; 375:23-32. [PMID: 23313126 DOI: 10.1016/j.ydbio.2012.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/22/2012] [Accepted: 12/31/2012] [Indexed: 11/19/2022]
Abstract
The highly conserved janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is a well-known signaling system that is involved in many biological processes. In Drosophila, this signaling cascade is activated by ligands of the Unpaired (Upd) family. Therefore, the regulation of Upd distribution is one of the key issues in controlling the JAK/STAT signaling activity and function. Heparan sulfate proteoglycans (HSPGs) are macromolecules that regulate the distribution of many ligand proteins including Wingless, Hedgehog and Decapentaplegic (Dpp). Here we show that during Drosophila eye development, HSPGs are also required in normal Upd distribution and JAK/STAT signaling activity. Loss of HSPG biosynthesis enzyme Brother of tout-velu (Botv), Sulfateless (Sfl), or glypicans Division abnormally delayed (Dally) and Dally-like protein (Dlp) led to reduced levels of extracellular Upd and reduction in JAK/STAT signaling activity. Overexpression of dally resulted in the accumulation of Upd and up-regulation of the signaling activity. Luciferase assay also showed that Dally promotes JAK/STAT signaling activity, and is dependent on its heparin sulfate chains. These data suggest that Dally and Dlp are essential for Upd distribution and JAK/STAT signaling activity.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
| | | | | | | |
Collapse
|
99
|
Rajan A, Perrimon N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 2012; 151:123-37. [PMID: 23021220 DOI: 10.1016/j.cell.2012.08.019] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/01/2012] [Accepted: 08/06/2012] [Indexed: 12/31/2022]
Abstract
In Drosophila, the fat body (FB), a functional analog of the vertebrate adipose tissue, is the nutrient sensor that conveys the nutrient status to the insulin-producing cells (IPCs) in the fly brain to release Drosophila insulin-like peptides (Dilps). Dilp secretion in turn regulates energy balance and promotes systemic growth. We identify Unpaired 2 (Upd2), a protein with similarities to type I cytokines, as a secreted factor produced by the FB in the fed state. When upd2 function is perturbed specifically in the FB, it results in a systemic reduction in growth and alters energy metabolism. Upd2 activates JAK/STAT signaling in a population of GABAergic neurons that project onto the IPCs. This activation relieves the inhibitory tone of the GABAergic neurons on the IPCs, resulting in the secretion of Dilps. Strikingly, we find that human Leptin can rescue the upd2 mutant phenotypes, suggesting that Upd2 is the functional homolog of Leptin.
Collapse
Affiliation(s)
- Akhila Rajan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
100
|
|