51
|
Berasain C, Avila MA. Regulation of hepatocyte identity and quiescence. Cell Mol Life Sci 2015; 72:3831-51. [PMID: 26089250 PMCID: PMC11114060 DOI: 10.1007/s00018-015-1970-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/23/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Abstract
The liver is a highly differentiated organ with a central role in metabolism, detoxification and systemic homeostasis. To perform its multiple tasks, liver parenchymal cells, the hepatocytes, express a large complement of enabling genes defining their complex phenotype. This phenotype is progressively acquired during fetal development and needs to be maintained in adulthood to guarantee the individual's survival. Upon injury or loss of functional mass, the liver displays an extraordinary regenerative response, mainly based on the proliferation of hepatocytes which otherwise are long-lived quiescent cells. Increasing observations suggest that loss of hepatocellular differentiation and quiescence underlie liver malfunction in chronic liver disease and pave the way for hepatocellular carcinoma development. Here, we briefly review the essential mechanisms leading to the acquisition of liver maturity. We also identify the key molecular factors involved in the preservation of hepatocellular homeostasis and finally discuss potential strategies to preserve liver identity and function.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| |
Collapse
|
52
|
Abstract
The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.
Collapse
Affiliation(s)
- Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
53
|
Onecut1 and Onecut2 transcription factors operate downstream of Pax6 to regulate horizontal cell development. Dev Biol 2015; 402:48-60. [PMID: 25794677 DOI: 10.1016/j.ydbio.2015.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 11/22/2022]
Abstract
Genetic studies of the last decades strongly indicated that generation of particular retinal cell types is governed by gene regulatory networks of transcription factors and their target genes. The paired and homeodomain transcription factor Pax6 plays a pivotal role in retinal development as its inactivation in the retinal progenitor cell population leads to abolished differentiation of all retinal cell types. However, until now, only a few transcription factors operating downstream of Pax6 responsible for generation of individual retinal cell types have been identified. In this study, we identified two transcription factors of the Onecut family, Onecut1 and Onecut2, as Pax6 downstream-acting factors. Onecut1 and Onecut2 were previously shown to be expressed in developing horizontal cells, retinal ganglion cells and cone photoreceptors; however, their role in differentiation of these cell types is poorly understood. In this study, we show that the horizontal cell genesis is severely disturbed in Onecut-deficient retinae. In single Onecut1 and Onecut2 mutants, the number of horizontal cells is dramatically reduced while horizontal cells are completely missing in the Onecut1/Onecut2 compound mutant. Analysis of genes involved in the horizontal cell genesis such as Foxn4, Ptf1a, Prox1 and Lim1 showed that although horizontal cells are initially formed, they are not maintained in Onecut-deficient retinae. Taken together, this study suggests the model in which Pax6 regulates the maintenance of horizontal cells through the activation of Onecut1 and Onecut2 transcription factors.
Collapse
|
54
|
Ikonomou L, Kotton DN. Derivation of Endodermal Progenitors From Pluripotent Stem Cells. J Cell Physiol 2015; 230:246-58. [PMID: 25160562 PMCID: PMC4344429 DOI: 10.1002/jcp.24771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 01/18/2023]
Abstract
Stem and progenitor cells play important roles in organogenesis during development and in tissue homeostasis and response to injury postnatally. As the regenerative capacity of many human tissues is limited, cell replacement therapies hold great promise for human disease management. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are prime candidates for the derivation of unlimited quantities of clinically relevant cell types through development of directed differentiation protocols, that is, the recapitulation of developmental milestones in in vitro cell culture. Tissue-specific progenitors, including progenitors of endodermal origin, are important intermediates in such protocols since they give rise to all mature parenchymal cells. In this review, we focus on the in vivo biology of embryonic endodermal progenitors in terms of key transcription factors and signaling pathways. We critically review the emerging literature aiming to apply this basic knowledge to achieve the efficient and reproducible in vitro derivation of endodermal progenitors such as pancreas, liver and lung precursor cells.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston
Medical Center, Boston, MA, USA
- Boston University Pulmonary Center, Boston University School of
Medicine, Boston, MA, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston
Medical Center, Boston, MA, USA
- Boston University Pulmonary Center, Boston University School of
Medicine, Boston, MA, USA
| |
Collapse
|
55
|
Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development. Proc Natl Acad Sci U S A 2014; 111:E4086-95. [PMID: 25228773 DOI: 10.1073/pnas.1405354111] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previously, we have shown that Onecut1 (Oc1) and Onecut2 (Oc2) are expressed in retinal progenitor cells, developing retinal ganglion cells (RGCs), and horizontal cells (HCs). However, in Oc1-null mice, we only observed an 80% reduction in HCs, but no defects in other cell types. We postulated that the lack of defects in other cell types in Oc1-null retinas was a result of redundancy with Oc2. To test this theory, we have generated Oc2-null mice and now show that their retinas also only have defects in HCs, with a 50% reduction in their numbers. However, when both Oc1 and Oc2 are knocked out, the retinas exhibit more profound defects in the development of all early retinal cell types, including completely failed genesis of HCs, compromised generation of cones, reduced production (by 30%) of RGCs, and absence of starburst amacrine cells. Cone subtype diversification and RGC subtype composition also were affected in the double-null retina. Using RNA-Seq expression profiling, we have identified downstream genes of Oc1 and Oc2, which not only confirms the redundancy between the two factors and renders a molecular explanation for the defects in the double-null retinas, but also shows that the onecut factors suppress the production of the late cell type, rods, indicating that the two factors contribute to the competence of retinal progenitor cells for the early retinal cell fates. Our results provide insight into how onecut factors regulate the creation of cellular diversity in the retina and, by extension, in the central nervous system in general.
Collapse
|
56
|
Chen Y, Verfaillie CM. MicroRNAs: the fine modulators of liver development and function. Liver Int 2014; 34:976-90. [PMID: 24517588 DOI: 10.1111/liv.12496] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
MicroRNAs are a class of small non-coding RNAs involved in the transcriptional and post-transcriptional regulation of gene expression. The function of miRNAs in liver disease including hepatocellular carcinoma (HCC), hepatitis, and alcoholic liver disease, have been widely studied and extensively reviewed. Increasing evidence demonstrates that miRNAs also play a critical role in normal liver development and in the fine-tuning of fundamental biological liver processes. In this review, we highlight the most recent findings on the role of miRNAs in liver specification and differentiation, liver cell development, as well as in the many metabolic functions of the liver, including glucose, lipid, iron and drug metabolism. These findings demonstrate an important role of miRNAs in normal liver development and function. Further researches will be needed to fully understand how miRNAs regulate liver generation and metabolic function, which should then lead to greater insights in liver biology and perhaps open up the possibility to correct errors that cause liver diseases or metabolic disorders.
Collapse
Affiliation(s)
- Yemiao Chen
- Southwest Hospital, and Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Institute of Pathology and Southwest Cancer Center, Third Military Medical University, Chongqing, China; Department of Development and Regeneration, Stem Cell Institute Leuven, Cluster Stem Cell Biology and Embryology, KU Leuven Medical School, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
57
|
Koike H, Ueno Y, Naito T, Shiina T, Nakata S, Ouchi R, Obana Y, Sekine K, Zheng YW, Takebe T, Isono KI, Koseki H, Taniguchi H. Ring1B promotes hepatic stem/progenitor cell expansion through simultaneous suppression of Cdkn1a and Cdkn2a in mice. Hepatology 2014; 60:323-333. [PMID: 24497168 DOI: 10.1002/hep.27046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/08/2014] [Accepted: 01/31/2014] [Indexed: 01/08/2023]
Abstract
UNLABELLED Polycomb-group (PcG) proteins play crucial roles in self-renewal of stem cells by suppressing a host of genes through histone modifications. Identification of the downstream genes of PcG proteins is essential for elucidation of the molecular mechanisms of stem cell self-renewal. However, little is known about the PcG target genes in tissue stem cells. We found that the PcG protein, Ring1B, which regulates expression of various genes through monoubiquitination of histone H2AK119, is essential for expansion of hepatic stem/progenitor cells. In mouse embryos with a conditional knockout of Ring1B, we found that the lack of Ring1B inhibited proliferation and differentiation of hepatic stem/progenitor cells and thereby inhibited hepatic organogenesis. These events were characterized by derepression of cyclin-dependent kinase inhibitors (CDKIs) Cdkn1a and Cdkn2a, known negative regulators of cell proliferation. We conducted clonal culture experiments with hepatic stem/progenitor cells to investigate the individual genetic functions of Ring1B, Cdkn1a, and Cdkn2a. The data showed that the cell-cycle inhibition caused by Ring1B depletion was reversed when Cdkn1a and Cdkn2a were suppressed simultaneously, but not when they were suppressed individually. CONCLUSION Our results show that expansion of hepatic stem/progenitor cells requires Ring1B-mediated epigenetic silencing of Cdkn1a and Cdkn2a, demonstrating that Ring1B simultaneously regulates multiple CDKIs in tissue stem/progenitor cells.
Collapse
Affiliation(s)
- Hiroyuki Koike
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Francius C, Clotman F. Generating spinal motor neuron diversity: a long quest for neuronal identity. Cell Mol Life Sci 2014; 71:813-29. [PMID: 23765105 PMCID: PMC11113339 DOI: 10.1007/s00018-013-1398-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 03/26/2023]
Abstract
Understanding how thousands of different neuronal types are generated in the CNS constitutes a major challenge for developmental neurobiologists and is a prerequisite before considering cell or gene therapies of nervous lesions or pathologies. During embryonic development, spinal motor neurons (MNs) segregate into distinct subpopulations that display specific characteristics and properties including molecular identity, migration pattern, allocation to specific motor columns, and innervation of defined target. Because of the facility to correlate these different characteristics, the diversification of spinal MNs has become the model of choice for studying the molecular and cellular mechanisms underlying the generation of multiple neuronal populations in the developing CNS. Therefore, how spinal motor neuron subpopulations are produced during development has been extensively studied during the last two decades. In this review article, we will provide a comprehensive overview of the genetic and molecular mechanisms that contribute to the diversification of spinal MNs.
Collapse
Affiliation(s)
- Cédric Francius
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, 55 Avenue Hippocrate, Box (B1.55.11), 1200 Brussels, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, 55 Avenue Hippocrate, Box (B1.55.11), 1200 Brussels, Belgium
| |
Collapse
|
59
|
Arterbery AS, Bogue CW. Endodermal and mesenchymal cross talk: a crossroad for the maturation of foregut organs. Pediatr Res 2014; 75:120-6. [PMID: 24192700 DOI: 10.1038/pr.2013.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/27/2013] [Indexed: 01/30/2023]
Abstract
The developmental stages of each foregut organ are intimately linked to the development of the other foregut organs such that the ultimate function of any one foregut organ, such as the metabolic function of the liver, depends on organizational changes associated with the maturation of multiple foregut organs. These changes include: (i) proliferation of the intrahepatic bile ducts and hepatoblasts within the liver coinciding with parenchymal expansion, (ii) elongation of extrahepatic bile ducts, which allows for proper gallbladder (GB) formation, and (iii) duodenal elongation and rotation, which coincides with all of the above to connect the intrahepatic, extrahepatic, and pancreatic ductal systems with the intestine. It is well established that cross talk between endodermal and mesenchymal components of the foregut occurs, particularly regarding the vascularization of developing organs. Furthermore, genetic mutations in mesenchymal and hepatic compartments of the developing foregut result in similar foregut pathologies: hypoplastic liver, absence of GB, biliary atresia (intrahepatic and/or extrahepatic), and failure of gut elongation and rotation. Finally, these shared pathologies can be linked to deficiencies in genes specific to the septum transversum mesenchyme (Hes1, Hlx, and Foxf1) or liver (Hhex and Hnf6), illustrating the complexity of such cross talk.
Collapse
Affiliation(s)
- Adam S Arterbery
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Clifford W Bogue
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
60
|
Wu F, Li R, Umino Y, Kaczynski TJ, Sapkota D, Li S, Xiang M, Fliesler SJ, Sherry DM, Gannon M, Solessio E, Mu X. Onecut1 is essential for horizontal cell genesis and retinal integrity. J Neurosci 2013; 33:13053-65, 13065a. [PMID: 23926259 PMCID: PMC3735885 DOI: 10.1523/jneurosci.0116-13.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 01/03/2023] Open
Abstract
Horizontal cells are interneurons that synapse with photoreceptors in the outer retina. Their genesis during development is subject to regulation by transcription factors in a hierarchical manner. Previously, we showed that Onecut 1 (Oc1), an atypical homeodomain transcription factor, is expressed in developing horizontal cells (HCs) and retinal ganglion cells (RGCs) in the mouse retina. Herein, by knocking out Oc1 specifically in the developing retina, we show that the majority (∼80%) of HCs fail to form during early retinal development, implying that Oc1 is essential for HC genesis. However, no other retinal cell types, including RGCs, were affected in the Oc1 knock-out. Analysis of the genetic relationship between Oc1 and other transcription factor genes required for HC development revealed that Oc1 functions downstream of FoxN4, in parallel with Ptf1a, but upstream of Lim1 and Prox1. By in utero electroporation, we found that Oc1 and Ptf1a together are not only essential, but also sufficient for determination of HC fate. In addition, the synaptic connections in the outer plexiform layer are defective in Oc1-null mice, and photoreceptors undergo age-dependent degeneration, indicating that HCs are not only an integral part of the retinal circuitry, but also are essential for the survival of photoreceptors. In sum, these results demonstrate that Oc1 is a critical determinant of HC fate, and reveal that HCs are essential for photoreceptor viability, retinal integrity, and normal visual function.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute and
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- SUNY Eye Institute, Buffalo, New York 14203
| | - Renzhong Li
- Department of Ophthalmology/Ross Eye Institute and
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- SUNY Eye Institute, Buffalo, New York 14203
| | - Yumiko Umino
- SUNY Eye Institute, Buffalo, New York 14203
- Department of Ophthalmology, Upstate Medical University, Syracuse, New York 13210
| | - Tadeusz J. Kaczynski
- Department of Ophthalmology/Ross Eye Institute and
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- SUNY Eye Institute, Buffalo, New York 14203
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute and
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- SUNY Eye Institute, Buffalo, New York 14203
| | - Shengguo Li
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Mengqing Xiang
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Steven J. Fliesler
- Department of Ophthalmology/Ross Eye Institute and
- SUNY Eye Institute, Buffalo, New York 14203
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, New York 14215
| | - David M. Sherry
- Department of Cell Biology, Oklahoma Center for Neurosciences and Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, and
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Eduardo Solessio
- SUNY Eye Institute, Buffalo, New York 14203
- Department of Ophthalmology, Upstate Medical University, Syracuse, New York 13210
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute and
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- SUNY Eye Institute, Buffalo, New York 14203
- CCSG Genetics Program, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
61
|
Wang G, Li B, Hao Y, Zhi J, He C, Xu C. Correlation analysis between gene expression profile of high-fat emulsion-induced non-alcoholic fatty liver and liver regeneration in rat. Cell Biol Int 2013; 37:917-28. [PMID: 23619824 DOI: 10.1002/cbin.10118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/29/2013] [Indexed: 12/21/2022]
Abstract
To explore the relevance of non-alcoholic fatty liver disease (NAFLD) to liver regeneration (LR), rat models of non-alcoholic steatohepatitis (NASH) and LR were established, respectively, then Rat Genome 230 2.0 Array was used to detect the gene expression abundance of them, and the reliabilities of the array data were confirmed by real-time RT-PCR. As a result, the expression of 93 genes was significantly changed during NAFLD occurrence and 948 genes in LR. Hierarchical clustering indicated that the expression profiles of the above two events were quite different. K-means cluster classified their expression patterns into four clusters, and gene expression trends of clusters 1, 2 were similar in NAFLD and LR, while clusters 3, 4 were contrary with the gene expression changes of LR more abundant. DAVID classifications and functional enrichment analysis found that lipid metabolism and carbohydrate metabolism were stronger in NAFLD than in LR, but some other physiological activities including inflammation/immune response, cell adhesion, and migration, cell proliferation and differentiation in NAFLD were weaker than in LR. IPA further indicated that lipid metabolism, inflammation response, and cellular development were highly associated with NAFLD, and thus identified some potential biomarkers for NAFLD.
Collapse
Affiliation(s)
- Gaiping Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan Province, China
| | | | | | | | | | | |
Collapse
|
62
|
Buyl K, De Kock J, Najar M, Lagneaux L, Branson S, Rogiers V, Vanhaecke T. Characterization of hepatic markers in human Wharton's Jelly-derived mesenchymal stem cells. Toxicol In Vitro 2013; 28:113-9. [PMID: 23820183 DOI: 10.1016/j.tiv.2013.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 05/17/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Stem cell technology could offer a unique tool to develop human-based in vitro liver models that are applicable for testing of potential liver toxicity early during drug development. In this context, recent research has indicated that human Wharton's Jelly-derived mesenchymal stem cells (hWJs) represent an interesting stem cell population to develop human hepatocyte-like cells. Here, an in-depth analysis of the expression of liver-specific transcription factors and other key hepatic markers in hWJs is evaluated at both the mRNA and protein level. Our results reveal that transcription factors that are mandatory to acquire and maintain an adult hepatic phenotype (HNF4A and HNF1A), as well as adult hepatic markers (ALB, CX32, CYP1A1, CYP1A2, CYP2B6 and CYP3A4) are not expressed in hWJs with the exception of K18. On the contrary, transcription factors involved in liver development (GATA4, GATA6, SOX9 and SOX17) and liver progenitor markers (DKK1, DPP4, DSG2, CX43 and K19) were found to be highly expressed in hWJs. These findings provide additional indication that hWJs could be a promising stem cell source to generate hepatocyte-like cells necessary for the development of a functional human-based in vitro liver model.
Collapse
Affiliation(s)
- Karolien Buyl
- Department of Toxicology, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
63
|
Audouard E, Schakman O, Ginion A, Bertrand L, Gailly P, Clotman F. The Onecut transcription factor HNF-6 contributes to proper reorganization of Purkinje cells during postnatal cerebellum development. Mol Cell Neurosci 2013; 56:159-68. [PMID: 23669529 DOI: 10.1016/j.mcn.2013.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/18/2013] [Accepted: 05/02/2013] [Indexed: 01/05/2023] Open
Abstract
The Onecut (OC) family of transcription factors comprises three members in mammals, namely HNF-6 (or OC-1), OC-2 and OC-3. During embryonic development, these transcriptional activators control cell differentiation in pancreas, in liver and in the nervous system. Adult Hnf6 mutant mice exhibit locomotion defects characterized by hindlimb muscle weakness, abnormal gait and defective balance and coordination. Indeed, HNF-6 is required in spinal motor neurons for proper formation of the hindlimb neuromuscular junctions, which likely explain muscle weakness observed in corresponding mutant animals. The goal of the present study was to determine the cause of the balance and coordination defects in Hnf6 mutant mice. Coordination and balance deficits were quantified by rotarod and runway tests. Hnf6 mutant animals showed an increase in the fall frequency from the beam and were unable to stay on the rotarod even at low speed, indicating a severe balance and coordination deficit. To identify the origin of this abnormality, we assessed whether the development of the main CNS structure involved in the control of balance and coordination, namely the cerebellum, was affected by the absence of HNF-6. Firstly, we observed that Hnf6 was expressed transiently during the first week after birth in the Purkinje cells of wild type newborn mice. Secondly, we showed that, in Hnf6-/- mice, the organization of Purkinje cells became abnormal during a second phase of their development. Indeed, Purkinje cells were produced normally but part of them failed to reorganize as a regular continuous monolayer at the interface between the molecular and the granular layer of the cerebellum. Thus, the Onecut factor HNF-6 contributes to the reorganization of Purkinje cells during a late phase of cerebellar development.
Collapse
Affiliation(s)
- Emilie Audouard
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
Liver is a prime organ responsible for synthesis, metabolism, and detoxification. The organ is endodermal in origin and its development is regulated by temporal, complex, and finely balanced cellular and molecular interactions that dictate its origin, growth, and maturation. We discuss the relevance of endoderm patterning, which truly is the first step toward mapping of domains that will give rise to specific organs. Once foregut patterning is completed, certain cells within the foregut endoderm gain competence in the form of expression of certain transcription factors that allow them to respond to certain inductive signals. Hepatic specification is then a result of such inductive signals, which often emanate from the surrounding mesenchyme. During hepatic specification bipotential hepatic stem cells or hepatoblasts become apparent and undergo expansion, which results in a visible liver primordium during the stage of hepatic morphogenesis. Hepatoblasts next differentiate into either hepatocytes or cholangiocytes. The expansion and differentiation is regulated by cellular and molecular interactions between hepatoblasts and mesenchymal cells including sinusoidal endothelial cells, stellate cells, and also innate hematopoietic elements. Further maturation of hepatocytes and cholangiocytes continues during late hepatic development as a function of various growth factors. At this time, liver gains architectural novelty in the form of zonality and at cellular level acquires polarity. A comprehensive elucidation of such finely tuned developmental cues have been the basis of transdifferentiation of various types of stem cells to hepatocyte-like cells for purposes of understanding health and disease and for therapeutic applications.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
65
|
Sasaki T, Takahashi S, Numata Y, Narita M, Tanaka Y, Kumagai T, Kondo Y, Matsunaga T, Ohmori S, Nagata K. Hepatocyte Nuclear Factor 6 Activates the Transcription of CYP3A4 in Hepatocyte-like Cells Differentiated from Human Induced Pluripotent Stem Cells. Drug Metab Pharmacokinet 2013; 28:250-9. [DOI: 10.2133/dmpk.dmpk-12-rg-132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Liver Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
67
|
The Onecut transcription factor HNF-6 regulates in motor neurons the formation of the neuromuscular junctions. PLoS One 2012; 7:e50509. [PMID: 23227180 PMCID: PMC3515622 DOI: 10.1371/journal.pone.0050509] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023] Open
Abstract
The neuromuscular junctions are the specialized synapses whereby spinal motor neurons control the contraction of skeletal muscles. The formation of the neuromuscular junctions is controlled by a complex interplay of multiple mechanisms coordinately activated in motor nerve terminals and in their target myotubes. However, the transcriptional regulators that control in motor neurons the genetic programs involved in neuromuscular junction development remain unknown. Here, we provide evidence that the Onecut transcription factor HNF-6 regulates in motor neurons the formation of the neuromuscular junctions. Indeed, adult Hnf6 mutant mice exhibit hindlimb muscle weakness and abnormal locomotion. This results from defects of hindlimb neuromuscular junctions characterized by an abnormal morphology and defective localization of the synaptic vesicle protein synaptophysin at the motor nerve terminals. These defects are consequences of altered and delayed formation of the neuromuscular junctions in newborn mutant animals. Furthermore, we show that the expression level of numerous regulators of neuromuscular junction formation, namely agrin, neuregulin-2 and TGF-ß receptor II, is downregulated in the spinal motor neurons of Hnf6 mutant newborn animals. Finally, altered formation of neuromuscular junction-like structures in a co-culture model of wildtype myotubes with mutant embryonic spinal cord slices is rescued by recombinant agrin and neuregulin, indicating that depletion in these factors contributes to defective neuromuscular junction development in the absence of HNF-6. Thus, HNF-6 controls in spinal motor neurons a genetic program that coordinates the formation of hindlimb neuromuscular junctions.
Collapse
|
68
|
Conforto TL, Zhang Y, Sherman J, Waxman DJ. Impact of CUX2 on the female mouse liver transcriptome: activation of female-biased genes and repression of male-biased genes. Mol Cell Biol 2012; 32:4611-27. [PMID: 22966202 PMCID: PMC3486175 DOI: 10.1128/mcb.00886-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/31/2012] [Indexed: 01/19/2023] Open
Abstract
The growth hormone-regulated transcription factors STAT5 and BCL6 coordinately regulate sex differences in mouse liver, primarily through effects in male liver, where male-biased genes are upregulated and many female-biased genes are actively repressed. Here we investigated whether CUX2, a highly female-specific liver transcription factor, contributes to an analogous regulatory network in female liver. Adenoviral overexpression of CUX2 in male liver induced 36% of female-biased genes and repressed 35% of male-biased genes. In female liver, CUX2 small interfering RNA (siRNA) preferentially induced genes repressed by adenovirus expressing CUX2 (adeno-CUX2) in male liver, and it preferentially repressed genes induced by adeno-CUX2 in male liver. CUX2 binding in female liver chromatin was enriched at sites of male-biased DNase hypersensitivity and at genomic regions showing male-enriched STAT5 binding. CUX2 binding was also enriched near genes repressed by adeno-CUX2 in male liver or induced by CUX2 siRNA in female liver but not at genes induced by adeno-CUX2, indicating that CUX2 binding is preferentially associated with gene repression. Nevertheless, direct CUX2 binding was seen at several highly female-specific genes that were positively regulated by CUX2, including A1bg, Cyp2b9, Cyp3a44, Tox, and Trim24. CUX2 expression and chromatin binding were high in immature male liver, where repression of adult male-biased genes and expression of adult female-biased genes are common, suggesting that the downregulation of CUX2 in male liver at puberty contributes to the developmental changes establishing adult patterns of sex-specific gene expression.
Collapse
Affiliation(s)
- Tara L Conforto
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
69
|
Zhao D, Chen S, Duo S, Xiang C, Jia J, Guo M, Lai W, Lu S, Deng H. Promotion of the efficient metabolic maturation of human pluripotent stem cell-derived hepatocytes by correcting specification defects. Cell Res 2012; 23:157-61. [PMID: 23070301 DOI: 10.1038/cr.2012.144] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
70
|
Espana A, Clotman F. Onecut transcription factors are required for the second phase of development of the A13 dopaminergic nucleus in the mouse. J Comp Neurol 2012; 520:1424-41. [PMID: 22102297 DOI: 10.1002/cne.22803] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The A13 dopaminergic nucleus belongs to the incerto-hypothalamic area. It is thought to exert autonomous roles by integrating sensory input to autonomic, neuroendocrine, and motor output. Although its early development has been well characterized, the factors that contribute to later steps of its formation remain unknown. Transcription factors of the Onecut family have been detected in the A13 nucleus, raising the question of possible roles of these factors during A13 development. Using a combination of immunofluorescence analyses on sections and after whole-mount labeling followed by 3D reconstructions, we further characterized the second phase of development of the A13 nucleus in the mouse, described the distribution of the Onecut proteins throughout A13 development, and analyzed the phenotype of this nucleus in single or compound mutant embryos for the Onecut factors. Here we show that A13 development can be divided into two successive phases. First, during radial migration toward the pial surface the A13 cells differentiate into dopaminergic neurons. Second, these cells gather in the vicinity of the third ventricle. Onecut factors are dynamically and differentially expressed in the A13 nucleus during these two phases of development. In Onecut mutant embryos, the A13 neurons differentiate normally but scatter in the diencephalon and fail to properly gather close to the third ventricle. Hence, Onecut factors are markers of the A13 nucleus throughout embryonic development. They are dispensable for the first phase of A13 development but are required for the second phase of development and for maintenance of this nucleus.
Collapse
Affiliation(s)
- Agnès Espana
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, B-1200, Belgium
| | | |
Collapse
|
71
|
Mishra PK, Teale JM. Transcriptome analysis of the ependymal barrier during murine neurocysticercosis. J Neuroinflammation 2012; 9:141. [PMID: 22731103 PMCID: PMC3527296 DOI: 10.1186/1742-2094-9-141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/23/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) barriers play a pivotal role in the protection and homeostasis of the CNS by enabling the exchange of metabolites while restricting the entry of xenobiotics, blood cells and blood-borne macromolecules. While the blood-brain barrier and blood-cerebrospinal fluid barrier (CSF) control the interface between the blood and CNS, the ependyma acts as a barrier between the CSF and parenchyma, and regulates hydrocephalic pressure and metabolic toxicity. Neurocysticercosis (NCC) is an infection of the CNS caused by the metacestode (larva) of Taenia solium and a major cause of acquired epilepsy worldwide. The common clinical manifestations of NCC are seizures, hydrocephalus and symptoms due to increased intracranial pressure. The majority of the associated pathogenesis is attributed to the immune response against the parasite. The properties of the CNS barriers, including the ependyma, are affected during infection, resulting in disrupted homeostasis and infiltration of leukocytes, which correlates with the pathology and disease symptoms of NCC patients. RESULTS In order to characterize the role of the ependymal barrier in the immunopathogenesis of NCC, we isolated ependymal cells using laser capture microdissection from mice infected or mock-infected with the closely related parasite Mesocestoides corti, and analyzed the genes that were differentially expressed using microarray analysis. The expression of 382 genes was altered. Immune response-related genes were verified by real-time RT-PCR. Ingenuity Pathway Analysis (IPA) software was used to analyze the biological significance of the differentially expressed genes, and revealed that genes known to participate in innate immune responses, antigen presentation and leukocyte infiltration were affected along with the genes involved in carbohydrate, lipid and small molecule biochemistry. Further, MHC class II molecules and chemokines, including CCL12, were found to be upregulated at the protein level using immunofluorescence microscopy. This is important, because these molecules are members of the most significant pathways by IPA analyses. CONCLUSION Thus, our study indicates that ependymal cells actively express immune mediators and likely contribute to the observed immunopathogenesis during infection. Of particular interest is the major upregulation of antigen presentation pathway-related genes and chemokines/cytokines. This could explain how the ependyma is a prominent source of leukocyte infiltration into ventricles through the disrupted ependymal lining by way of pial vessels present in the internal leptomeninges in murine NCC.
Collapse
Affiliation(s)
- Pramod Kumar Mishra
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX, USA
| | | |
Collapse
|
72
|
Espana A, Clotman F. Onecut factors control development of the Locus Coeruleus and of the mesencephalic trigeminal nucleus. Mol Cell Neurosci 2012; 50:93-102. [PMID: 22534286 DOI: 10.1016/j.mcn.2012.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/22/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022] Open
Abstract
The Locus Coeruleus (LC), the main noradrenergic nucleus in the vertebrate CNS, contributes to the regulation of several processes including arousal, sleep, adaptative behaviors and stress. Regulators controlling the formation of the LC have been identified but factors involved in its maintenance remain unknown. Here, we show that members of the Onecut (OC) family of transcription factors, namely HNF-6, OC-2 and OC-3, are required for maintenance of the LC phenotype. Indeed, in embryos lacking any OC proteins, LC neurons properly differentiate but abnormally migrate and eventually lose their noradrenergic characteristics. Surprisingly, the expression of Oc genes in these neurons is restricted to the earliest differentiation stages, suggesting that OC factors may regulate maintenance of the LC in a non cell-autonomous manner. Accordingly, the OC factors are present throughout development in a population directly adjacent to the LC, the rhombencephalic portion of the mesencephalic trigeminal nucleus (MTN). In the absence of OC factors, rhombencephalic MTN neurons fail to be generated, suggesting that OC proteins cell-autonomously control their production. Hence, we propose that OC factors are required at early developmental stages for differentiation of the MTN neurons that are in turn necessary for maintenance of the LC.
Collapse
Affiliation(s)
- A Espana
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, avenue Hippocrate 55 box B1.55.11, Brussels B-1200, Belgium.
| | | |
Collapse
|
73
|
Zong Y, Stanger BZ. Molecular mechanisms of liver and bile duct development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:643-55. [DOI: 10.1002/wdev.47] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
74
|
Wu F, Sapkota D, Li R, Mu X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J Comp Neurol 2012; 520:952-69. [PMID: 21830221 PMCID: PMC3898336 DOI: 10.1002/cne.22741] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our current study focuses on the expression of two members of the onecut transcription factor family, Onecut1 (Oc1) and Onecut2 (Oc2), in the developing mouse retina. By immunofluorescence staining, we found that Oc1 and Oc2 had very similar expression patterns throughout retinal development. Both factors started to be expressed in the retina at around embryonic day (E) 11.5. At early stages (E11.5 and E12.5), they were expressed in both the neuroblast layer (NBL) and ganglion cell layer (GCL). As development progressed (from E14.5 to postnatal day [P] 0), expression diminished in the retinal progenitor cells and became more restricted to the GCL. By P5, Oc1 and Oc2 were expressed at very low levels in the GCL. By co-labeling with transcription factors known to be involved in retinal ganglion cell (RGC) development, we found that Oc1 and Oc2 had extensive overlap with Math5 in the NBL, and that they completely overlapped with Pou4f2 and Isl1 in the GCL, but only partially in the NBL. Co-labeling of Oc1 with cell cycle markers confirmed that Oc1 was expressed in both proliferating retinal progenitors and postmitotic retinal cells. In addition, we demonstrated that expression of Oc1 and Oc2 did not require Math5, Isl1, or Pou4f2. Thus, Oc1 and Oc2 may regulate the formation of RGCs in a pathway independent of Math5, Pou4f2, and Isl1. Furthermore, we showed that Oc1 and Oc2 were expressed in both developing and mature horizontal cells (HCs). Therefore the two factors may also function in the genesis and maintenance of HCs.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
| | - Renzhong Li
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- State University of New York (SUNY) Eye Institute, University at Buffalo, Buffalo, New York 14203
- Cancer Center Support Grant (CCSG) Molecular Epidemiology and Functional Genomics (MEFG) Program, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
75
|
Stam FJ, Hendricks TJ, Zhang J, Geiman EJ, Francius C, Labosky PA, Clotman F, Goulding M. Renshaw cell interneuron specialization is controlled by a temporally restricted transcription factor program. Development 2011; 139:179-90. [PMID: 22115757 DOI: 10.1242/dev.071134] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The spinal cord contains a diverse array of physiologically distinct interneuron cell types that subserve specialized roles in somatosensory perception and motor control. The mechanisms that generate these specialized interneuronal cell types from multipotential spinal progenitors are not known. In this study, we describe a temporally regulated transcriptional program that controls the differentiation of Renshaw cells (RCs), an anatomically and functionally discrete spinal interneuron subtype. We show that the selective activation of the Onecut transcription factors Oc1 and Oc2 during the first wave of V1 interneuron neurogenesis is a key step in the RC differentiation program. The development of RCs is additionally dependent on the forkhead transcription factor Foxd3, which is more broadly expressed in postmitotic V1 interneurons. Our demonstration that RCs are born, and activate Oc1 and Oc2 expression, in a narrow temporal window leads us to posit that neuronal diversity in the developing spinal cord is established by the composite actions of early spatial and temporal determinants.
Collapse
Affiliation(s)
- Floor J Stam
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
New approaches in the differentiation of human embryonic stem cells and induced pluripotent stem cells toward hepatocytes. Stem Cell Rev Rep 2011; 7:748-59. [PMID: 21336836 PMCID: PMC3137783 DOI: 10.1007/s12015-010-9216-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orthotropic liver transplantation is the only established treatment for end-stage liver diseases. Utilization of hepatocyte transplantation and bio-artificial liver devices as alternative therapeutic approaches requires an unlimited source of hepatocytes. Stem cells, especially embryonic stem cells, possessing the ability to produce functional hepatocytes for clinical applications and drug development, may provide the answer to this problem. New discoveries in the mechanisms of liver development and the emergence of induced pluripotent stem cells in 2006 have provided novel insights into hepatocyte differentiation and the use of stem cells for therapeutic applications. This review is aimed towards providing scientists and physicians with the latest advancements in this rapidly progressing field.
Collapse
|
77
|
Wang K, Holterman AX. Pathophysiologic role of hepatocyte nuclear factor 6. Cell Signal 2011; 24:9-16. [PMID: 21893194 DOI: 10.1016/j.cellsig.2011.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/20/2011] [Indexed: 01/03/2023]
Abstract
Hepatocyte nuclear factor 6 (HNF6) is one of liver-enriched transcription factors. HNF6 utilizes the bipartite onecut-homeodomain sequence to localize the HNF6 protein to the nuclear compartment and binds to specific DNA sequences of numerous target gene promoters. HNF6 regulates an intricate network and mediates complex biological processes that are best known in the liver and pancreas. The function of HNF6 is correlated to cell proliferation, cell cycle regulation, cell differentiation and organogenesis, cell migration and cell-matrix adhesion, glucose metabolism, bile homeostasis, inflammation and so on. HNF6 controls the transcription of its target genes in different ways. The details of the regulatory pathways and their mechanisms are still under investigation. Future study will explore HNF6 novel functions associated with apoptosis, oncogenesis, and modulation of the inflammatory response. This review highlights recent progression pertaining to the pathophysiologic role of HNF6 and summarizes the potential mechanisms in preclinical animal models. HNF6-mediated pathways represent attractive therapeutic targets for the treatment of the relative diseases such as cholestasis.
Collapse
Affiliation(s)
- Kewei Wang
- Department of Pediatrics and Surgery/Section of Pediatric Surgery, Rush University Medical Center, Chicago, IL 60612, United States.
| | | |
Collapse
|
78
|
Correlation analysis between gene expression profile of rat liver tissues and high-fat emulsion-induced nonalcoholic fatty liver. Dig Dis Sci 2011; 56:2299-308. [PMID: 21327921 DOI: 10.1007/s10620-011-1599-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/27/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is caused by fat metabolism disorders and thereby abnormal or excessive accumulation of fat in hepatocytes, and characterized by steatosis, inflammation, fibrosis, apoptosis or necrosis. AIM This study was carried out to explore the correlation between gene expression profiles of rat livers and the occurrence and progression of NAFLD at the transcriptional level. METHODS A rat model of nonalcoholic steatohepatitis (NASH) was established by feeding male rats with high-fat emulsion via gavage, and Rat Genome 230 2.0 Array was used to detect gene expression profiles of liver tissues obtained from male rats following 0, 2, 4, and 6 weeks of high-fat emulsion feeding. Methods of bioinformatics and systems biology were applied to analyze the correlation between gene expression changes and physiological activities involved in NAFLD. RESULTS In total, 93 function-known genes, including 36 up-regulated and 57 down-regulated, differed significantly in expression compared to those of control rats, and 18 physiological activities were closely related to NAFLD. Especially, the activity of cell differentiation was decreased during the whole process of NAFLD, and the activities of inflammation response, stimulus response, cell migration and adhesion were attenuated in the second, fourth and sixth week, respectively. In the fourth and sixth weeks, lipid metabolism and cell apoptosis were augmented, and the former might be associated with the enhanced expression of plin, acsl6, scd2, elovl3, etc. CONCLUSION These data provide useful information on the global gene expression changes due to high-fat emulsion feeding and bring important insights into the mechanisms of NAFLD.
Collapse
|
79
|
Nagaoka M, Duncan SA. Transcriptional control of hepatocyte differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 97:79-101. [PMID: 21074730 DOI: 10.1016/b978-0-12-385233-5.00003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is the largest glandular organ in the body and plays a central role in controlling metabolism. During hepatogenesis, complex developmental processes must generate an array of cell types that are spatially arranged to generate a hepatic architecture that is essential to support liver function. The processes that control the ultimate formation of the liver are diverse and complex and in many cases poorly defined. Much of the focus of research during the past three decades has been on understanding how hepatocytes, which are the predominant liver parenchymal cells, differentiate during embryogenesis. Through a combination of mouse molecular genetics, embryology, and molecular biochemistry, investigators have defined a myriad of transcription factors that combine to control formation and function of hepatocytes. Here, we will review the major discoveries that underlie our current understanding of transcriptional regulation of hepatocyte differentiation.
Collapse
Affiliation(s)
- Masato Nagaoka
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
80
|
Klein C, Mikutta J, Krueger J, Scholz K, Brinkmann J, Liu D, Veerkamp J, Siegel D, Abdelilah-Seyfried S, le Noble F. Neuron navigator 3a regulates liver organogenesis during zebrafish embryogenesis. Development 2011; 138:1935-45. [PMID: 21471154 DOI: 10.1242/dev.056861] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endodermal organogenesis requires a precise orchestration of cell fate specification and cell movements, collectively coordinating organ size and shape. In Caenorhabditis elegans, uncoordinated-53 (unc-53) encodes a neural guidance molecule that directs axonal growth. One of the vertebrate homologs of unc-53 is neuron navigator 3 (Nav3). Here, we identified a novel vertebrate neuron navigator 3 isoform in zebrafish, nav3a, and we provide genetic evidence in loss- and gain-of-function experiments showing its functional role in endodermal organogenesis during zebrafish embryogenesis. In zebrafish embryos, nav3a expression was initiated at 22 hpf in the gut endoderm and at 40 hpf expanded to the newly formed liver bud. Endodermal nav3a expression was controlled by Wnt2bb signaling and was independent of FGF and BMP signaling. Morpholino-mediated knockdown of nav3a resulted in a significantly reduced liver size, and impaired development of pancreas and swim bladder. In vivo time-lapse imaging of liver development in nav3a morphants revealed a failure of hepatoblast movement out from the gut endoderm during the liver budding stage, with hepatoblasts being retained in the intestinal endoderm. In hepatocytes in vitro, nav3a acts as a positive modulator of actin assembly in lamellipodia and filipodia extensions, allowing cellular movement. Knockdown of nav3a in vitro impeded hepatocyte movement. Endodermal-specific overexpression of nav3a in vivo resulted in additional ectopic endodermal budding beyond the normal liver and pancreatic budding sites. We conclude that nav3a is required for directing endodermal organogenesis involving coordination of endodermal cell behavior.
Collapse
Affiliation(s)
- Christian Klein
- Department of Angiogenesis and Cardiovascular Pathology, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Locker J. Transcriptional Control of Hepatocyte Differentiation. MOLECULAR PATHOLOGY LIBRARY 2011. [DOI: 10.1007/978-1-4419-7107-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
82
|
Liver Stem Cells. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
83
|
Lade AG, Monga SPS. Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow? Dev Dyn 2010; 240:486-500. [PMID: 21337461 DOI: 10.1002/dvdy.22522] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2010] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling cascade that plays key roles in development and adult tissue homeostasis and is aberrantly activated in many tumors. Over a decade of work in mouse, chick, xenopus, and zebrafish models has uncovered multiple functions of this pathway in hepatic pathophysiology. Specifically, beta-catenin, the central component of the canonical Wnt pathway, is implicated in the regulation of liver regeneration, development, and carcinogenesis. Wnt-independent activation of beta-catenin by receptor tyrosine kinases has also been observed in the liver. In liver development across various species, through regulation of cell proliferation, differentiation, and maturation, beta-catenin directs foregut endoderm specification, hepatic specification of the foregut, and hepatic morphogenesis. Its role has also been defined in adult hepatic progenitors or oval cells especially in their expansion and differentiation. Thus, beta-catenin undergoes tight temporal regulation to exhibit pleiotropic effects during hepatic development and in hepatic progenitor biology.
Collapse
|
84
|
Crawford LW, Foley JF, Elmore SA. Histology atlas of the developing mouse hepatobiliary system with emphasis on embryonic days 9.5-18.5. Toxicol Pathol 2010; 38:872-906. [PMID: 20805319 PMCID: PMC3490618 DOI: 10.1177/0192623310374329] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Animal model phenotyping, in utero exposure toxicity studies, and investigation into causes of embryonic, fetal, or perinatal deaths have required pathologists to recognize and diagnose developmental disorders in spontaneous and engineered mouse models of disease. In mammals, the liver is the main site of hematopoiesis during fetal development, has endocrine and exocrine functions important for maintaining homeostasis in fetal and adult life; and performs other functions including waste detoxification, production and removal of glucose, glycogen storage, triglyceride and fatty acid processing, and serum protein production. Due to its role in many critical functions, alterations in the size, morphology, or function(s) of the liver often lead to embryonic lethality. Many publications and websites describe individual aspects of hepatobiliary development at defined stages. However, no single resource provides a detailed histological evaluation of H&E-stained sections of the developing murine liver and biliary systems using high-magnification and high-resolution color images. The work herein provides a histology atlas of hepatobiliary development between embryonic days 9.5-18.5. Although the focus of this work is normal hepatobiliary development, common defects in liver development are also described as a reference for pathologists who may be asked to phenotype mice with congenital, inherited, or treatment-related hepatobiliary defects. Authors' note: All digital images can be viewed online at https://niehsimagesepl-inc.com with the username "ToxPathLiver" and the password "embryolivers."
Collapse
Affiliation(s)
- Laura Wilding Crawford
- 1Cellular and Molecular Pathology Branch, NIEHS, NIH, Research Triangle Park, NC 27709,USA
| | | | | |
Collapse
|
85
|
Abstract
Embryonic development of the liver has been studied intensely, yielding insights that impact diverse areas of developmental and cell biology. Understanding the fundamental mechanisms that control hepatogenesis has also laid the basis for the rational differentiation of stem cells into cells that display many hepatic functions. Here, we review the basic molecular mechanisms that control the formation of the liver as an organ.
Collapse
|
86
|
Dusing MR, Maier EA, Aronow BJ, Wiginton DA. Onecut-2 knockout mice fail to thrive during early postnatal period and have altered patterns of gene expression in small intestine. Physiol Genomics 2010; 42:115-25. [PMID: 20354101 DOI: 10.1152/physiolgenomics.00017.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ablation of the mouse genes for Onecut-2 and Onecut-3 was reported previously, but characterization of the resulting knockout mice was focused on in utero development, principally embryonic development of liver and pancreas. Here we examined postnatal development of these Onecut knockout mice, especially the critical period before weaning. Onecut-3 knockout mice develop normally during this period. However, Onecut-2 knockout mice fail to thrive, lagging behind their littermates in size and weight. By postnatal day (d)19, they are consistently 25-30% smaller. Onecut-2 knockout mice also have a much higher level of mortality before weaning, with only approximately 70% survival. Interestingly, Onecut-2 knockout mice that are heterozygous for the Onecut-3 knockout allele are diminished even further in their ability to thrive. They are approximately 50-60% as large as their normal-sized littermates at d19, and less than half of these mice survive to weaning. As reported previously, the Onecut-2/Onecut-3 double knockout is a perinatal lethal. Microarray technology was used to determine the effect of Onecut-2 ablation on gene expression in duodenum, whose epithelium has among the highest levels of Onecut-2. A subset of intestinally expressed genes showed dramatically altered patterns of expression. Many of these genes encode proteins associated with the epithelial membrane, including many involved in transport and metabolism. Previously, we reported that Onecut-2 was critical to temporal regulation of the adenosine deaminase gene in duodenum. Many of the genes with altered patterns of expression in Onecut-2 knockout mouse duodenum displayed changes in the timing of gene expression.
Collapse
Affiliation(s)
- Mary R Dusing
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
87
|
Kung JWC, Currie IS, Forbes SJ, Ross JA. Liver development, regeneration, and carcinogenesis. J Biomed Biotechnol 2010; 2010:984248. [PMID: 20169172 PMCID: PMC2821627 DOI: 10.1155/2010/984248] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 11/12/2009] [Indexed: 02/06/2023] Open
Abstract
The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.
Collapse
Affiliation(s)
- Janet W C Kung
- Tissue Injury and Repair Group, Medical Research Council Centre for Regenerative Medicine, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| | | | | | | |
Collapse
|
88
|
Francius C, Clotman F. Dynamic expression of the Onecut transcription factors HNF-6, OC-2 and OC-3 during spinal motor neuron development. Neuroscience 2010; 165:116-29. [DOI: 10.1016/j.neuroscience.2009.09.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/01/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
|
89
|
Simion A, Laudadio I, Prévot PP, Raynaud P, Lemaigre FP, Jacquemin P. MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2. Biochem Biophys Res Commun 2009; 391:293-8. [PMID: 19913497 DOI: 10.1016/j.bbrc.2009.11.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 11/07/2009] [Indexed: 12/20/2022]
Abstract
MicroRNAs are small, non-coding RNAs that posttranscriptionally regulate gene expression mainly by binding to the 3'UTR of their target mRNAs. Recent data revealed that microRNAs have an important role in pancreas and liver development and physiology. Using cloning and microarray profiling approaches, we show that a unique repertoire of microRNAs is expressed at the onset of liver and pancreas organogenesis, and in pancreas and liver at key stages of cell fate determination. Among the microRNAs that are expressed at these stages, miR-495 and miR-218 were predicted to, respectively, target the Onecut (OC) transcription factors Hepatocyte Nuclear Factor-6 (HNF-6/OC-1) and OC-2, two important regulators of liver and pancreas development. MiR-495 and miR-218 are dynamically expressed in developing liver and pancreas, and by transient transfection, we show that they target HNF-6 and OC-2 3'UTRs. Moreover, when overexpressed in cultured cells, miR-495 and miR-218 decrease the endogenous levels of HNF-6 and OC-2 mRNA. These results indicate that the expression of regulators of liver and pancreas development is modulated by microRNAs. They also suggest a developmental role for miR-495 and miR-218.
Collapse
Affiliation(s)
- Alexandru Simion
- Université catholique de Louvain, de Duve Institute, 75 Avenue Hippocrate 7529, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
90
|
Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 2009; 137:62-79. [PMID: 19328801 DOI: 10.1053/j.gastro.2009.03.035] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/15/2009] [Accepted: 03/18/2009] [Indexed: 12/12/2022]
Abstract
The study of liver development has significantly contributed to developmental concepts about morphogenesis and differentiation of other organs. Knowledge of the mechanisms that regulate hepatic epithelial cell differentiation has been essential in creating efficient cell culture protocols for programmed differentiation of stem cells to hepatocytes as well as developing cell transplantation therapies. Such knowledge also provides a basis for the understanding of human congenital diseases. Importantly, much of our understanding of organ development has arisen from analyses of patients with liver deficiencies. We review how the liver develops in the embryo and discuss the concepts that operate during this process. We focus on the mechanisms that control the differentiation and organization of the hepatocytes and cholangiocytes and refer to other reviews for the development of nonepithelial tissue in the liver. Much progress in the characterization of liver development has been the result of genetic studies of human diseases; gaining a better understanding of these mechanisms could lead to new therapeutic approaches for patients with liver disorders.
Collapse
|
91
|
Antoniou A, Raynaud P, Cordi S, Zong Y, Tronche F, Stanger BZ, Jacquemin P, Pierreux CE, Clotman F, Lemaigre FP. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 2009; 136:2325-33. [PMID: 19403103 PMCID: PMC2743481 DOI: 10.1053/j.gastro.2009.02.051] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 01/13/2009] [Accepted: 02/06/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A number of diseases are characterized by defective formation of the intrahepatic bile ducts. In the embryo, hepatoblasts differentiate to cholangiocytes, which give rise to the bile ducts. Here, we investigated duct development in mouse liver and characterized the role of the SRY-related HMG box transcription factor 9 (SOX9). METHODS We identified SOX9 as a new biliary marker and used it in immunostaining experiments to characterize bile duct morphogenesis. The expression of growth factors was determined by in situ hybridization and immunostaining, and their role was studied on cultured hepatoblasts. SOX9 function was investigated by phenotyping mice with a liver-specific inactivation of Sox9. RESULTS Biliary tubulogenesis started with formation of asymmetrical ductal structures, lined on the portal side by cholangiocytes and on the parenchymal side by hepatoblasts. When the ducts grew from the hilum to the periphery, the hepatoblasts lining the asymmetrical structures differentiated to cholangiocytes, thereby allowing formation of symmetrical ducts lined only by cholangiocytes. We also provide evidence that transforming growth factor-beta promotes differentiation of the hepatoblasts lining the asymmetrical structures. In the absence of SOX9, the maturation of asymmetrical structures into symmetrical ducts was delayed. This was associated with abnormal expression of CCAAT/Enhancer Binding Protein alpha and Homolog of Hairy/Enhancer of Split-1, as well as of the transforming growth factor-beta receptor type II, which are regulators of biliary development. CONCLUSIONS Our results suggest that biliary development proceeds according to a new mode of tubulogenesis characterized by transient asymmetry and whose timing is controlled by SOX9.
Collapse
Affiliation(s)
- Aline Antoniou
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Waterland RA, Kellermayer R, Rached MT, Tatevian N, Gomes MV, Zhang J, Zhang L, Chakravarty A, Zhu W, Laritsky E, Zhang W, Wang X, Shen L. Epigenomic profiling indicates a role for DNA methylation in early postnatal liver development. Hum Mol Genet 2009; 18:3026-38. [PMID: 19457928 DOI: 10.1093/hmg/ddp241] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The question of whether DNA methylation contributes to the stabilization of gene expression patterns in differentiated mammalian tissues remains controversial. Using genome-wide methylation profiling, we screened 3757 gene promoters for changes in methylation during postnatal liver development to test the hypothesis that developmental changes in methylation and expression are temporally correlated. We identified 31 genes that gained methylation and 111 that lost methylation from embryonic day 17.5 to postnatal day 21. Promoters undergoing methylation changes in postnatal liver tended not to be associated with CpG islands. At most genes studied, developmental changes in promoter methylation were associated with expression changes, suggesting both that transcriptional inactivity attracts de novo methylation, and that transcriptional activity can override DNA methylation and successively induce developmental hypomethylation. These in vivo data clearly indicate a role for DNA methylation in mammalian differentiation, and provide the novel insight that critical windows in mammalian developmental epigenetics extend well beyond early embryonic development.
Collapse
Affiliation(s)
- Robert A Waterland
- Department of Pediatrics, Baylor College of Medicine, USDA Children's Nutrition Research Center, 1100 Bates St., Ste. 5080, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Lüdtke THW, Christoffels VM, Petry M, Kispert A. Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology 2009; 49:969-78. [PMID: 19140222 DOI: 10.1002/hep.22700] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED After specification of the hepatic endoderm, mammalian liver organogenesis progresses through a series of morphological stages that culminate in the migration of hepatocytes into the underlying mesenchyme to populate the hepatic lobes. Here, we show that in the mouse the transcriptional repressor Tbx3, a member of the T-box protein family, is required for the transition from a hepatic diverticulum with a pseudo-stratified epithelium to a cell-emergent liver bud. In Tbx3-deficient embryos, proliferation in the hepatic epithelium is severely reduced, hepatoblasts fail to delaminate, and cholangiocyte rather than hepatocyte differentiation occurs. Molecular analyses suggest that the primary function of Tbx3 is to maintain expression of hepatocyte transcription factors, including hepatic nuclear factor 4a (Hnf4a) and CCAAT/enhancer binding protein (C/EBP), alpha (Cebpa), and to repress expression of cholangiocyte transcription factors such as Onecut1 (Hnf6) and Hnf1b. CONCLUSION Tbx3 controls liver bud expansion by suppressing cholangiocyte and favoring hepatocyte differentiation in the liver bud.
Collapse
Affiliation(s)
- Timo H-W Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
94
|
Abstract
Liver and pancreas progenitors develop from endoderm cells in the embryonic foregut. Shortly after their specification, liver and pancreas progenitors rapidly acquire markedly different cellular functions and regenerative capacities. These changes are elicited by inductive signals and genetic regulatory factors that are highly conserved among vertebrates. Interest in the development and regeneration of the organs has been fueled by the intense need for hepatocytes and pancreatic beta cells in the therapeutic treatment of liver failure and type I diabetes. Studies in diverse model organisms have revealed evolutionarily conserved inductive signals and transcription factor networks that elicit the differentiation of liver and pancreatic cells and provide guidance for how to promote hepatocyte and beta cell differentiation from diverse stem and progenitor cell types.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Epigenetics and Progenitor Cells Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
95
|
Lazarevich NL, Fleishman DI. Tissue-specific transcription factors in progression of epithelial tumors. BIOCHEMISTRY (MOSCOW) 2008; 73:573-91. [PMID: 18605982 DOI: 10.1134/s0006297908050106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dedifferentiation and epithelial-mesenchymal transition are important steps in epithelial tumor progression. A central role in the control of functional and morphological properties of different cell types is attributed to tissue-specific transcription factors which form regulatory cascades that define specification and differentiation of epithelial cells during embryonic development. The main principles of the action of such regulatory systems are reviewed on an example of a network of hepatocyte nuclear factors (HNFs) which play a key role in establishment and maintenance of hepatocytes--the major functional type of liver cells. HNFs, described as proteins binding to promoters of most hepatospecific genes, not only control expression of functional liver genes, but are also involved in regulation of proliferation, morphogenesis, and detoxification processes. One of the central components of the hepatospecific regulatory network is nuclear receptor HNF4alpha. Derangement of the expression of this gene is associated with progression of rodent and human hepatocellular carcinomas (HCCs) and contributes to increase of proliferation, loss of epithelial morphology, and dedifferentiation. Dysfunction of HNF4alpha during HCC progression can be either caused by structural changes of this gene or occurs due to modification of up-stream regulatory signaling pathways. Investigations preformed on a model system of the mouse one-step HCC progression have shown that the restoration of HNF4alpha function in dedifferentiated cells causes partial reversion of malignant phenotype both in vitro and in vivo. Derangement of HNFs function was also described in other tumors of epithelial origin. We suppose that tissue-specific factors that underlie the key steps in differentiation programs of certain tissues and are able to receive or modulate signals from the cell environment might be considered as promising candidates for the role of tumor suppressors in the tissue types where they normally play the most significant role.
Collapse
Affiliation(s)
- N L Lazarevich
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow 115478, Russia.
| | | |
Collapse
|
96
|
Margagliotti S, Clotman F, Pierreux CE, Lemoine P, Rousseau GG, Henriet P, Lemaigre FP. Role of metalloproteinases at the onset of liver development. Dev Growth Differ 2008; 50:331-8. [PMID: 18445063 DOI: 10.1111/j.1440-169x.2008.01031.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
At the onset of liver development, the hepatic precursor cells, namely, the hepatoblasts, derive from the ventral foregut endoderm and form a bud surrounded by a basement membrane (BM). To initiate liver growth, the hepatoblasts migrate across the BM and invade the neighboring septum transversum mesenchyme. In the present study, carried out in the mouse embryo, we searched for effectors involved in this process and we examined the role of matrix metalloproteinases (MMPs). We found expression of a broad range of MMPs, among which MMP-2 was predominantly expressed in the septum transversum and MMP-14 in the hepatoblasts. Using a new liver explant culture system we showed that inhibition of MMP activity represses migration of the hepatoblasts. We conclude that MMPs are required to initiate expansion of the liver during development and that our culture system provides a new model to study hepatoblast migration.
Collapse
Affiliation(s)
- Sabrina Margagliotti
- Hormone and Metabolic Research Unit, Université Catholique de Louvain, de Duve Institute, 1200 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
97
|
Onecut transcription factor OC2 is a direct target of T-bet in type-1 T-helper cells. Genes Immun 2008; 9:302-8. [DOI: 10.1038/gene.2008.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|