51
|
Xuan S, Borok MJ, Decker KJ, Battle MA, Duncan SA, Hale MA, Macdonald RJ, Sussel L. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Invest 2012; 122:3516-28. [PMID: 23006325 DOI: 10.1172/jci63352] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/12/2012] [Indexed: 12/17/2022] Open
Abstract
Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis.
Collapse
Affiliation(s)
- Shouhong Xuan
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Shih HP, Kopp JL, Sandhu M, Dubois CL, Seymour PA, Grapin-Botton A, Sander M. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 2012; 139:2488-99. [PMID: 22675211 DOI: 10.1242/dev.078634] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the pancreas, Notch signaling is thought to prevent cell differentiation, thereby maintaining progenitors in an undifferentiated state. Here, we show that Notch renders progenitors competent to differentiate into ductal and endocrine cells by inducing activators of cell differentiation. Notch signaling promotes the expression of Sox9, which cell-autonomously activates the pro-endocrine gene Ngn3. However, at high Notch activity endocrine differentiation is blocked, as Notch also induces expression of the Ngn3 repressor Hes1. At the transition from high to intermediate Notch activity, only Sox9, but not Hes1, is maintained, thus de-repressing Ngn3 and initiating endocrine differentiation. In the absence of Sox9 activity, endocrine and ductal cells fail to differentiate, resulting in polycystic ducts devoid of primary cilia. Although Sox9 is required for Ngn3 induction, endocrine differentiation necessitates subsequent Sox9 downregulation and evasion from Notch activity via cell-autonomous repression of Sox9 by Ngn3. If high Notch levels are maintained, endocrine progenitors retain Sox9 and undergo ductal fate conversion. Taken together, our findings establish a novel role for Notch in initiating both ductal and endocrine development and reveal that Notch does not function in an on-off mode, but that a gradient of Notch activity produces distinct cellular states during pancreas development.
Collapse
Affiliation(s)
- Hung Ping Shih
- Department of Pediatrics and Cellular & Molecular Medicine, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Arnes L, Leclerc K, Friel JM, Hipkens SB, Magnuson MA, Sussel L. Generation of Nkx2.2:lacZ mice using recombination-mediated cassette exchange technology. Genesis 2012; 50:612-24. [PMID: 22539496 DOI: 10.1002/dvg.22037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 04/16/2012] [Accepted: 04/19/2012] [Indexed: 11/08/2022]
Abstract
Nkx2.2 encodes a homeodomain transcription factor required for the correct specification and/or differentiation of cells in the pancreas, intestine, and central nervous system (CNS). To follow the fate of cells deleted for Nkx2.2 within these tissues, we generated Nkx2.2:lacZ knockin mice using a recombination-mediated cassette exchange (RMCE) approach. Expression analysis of lacZ and/or β-galactosidase in Nkx2.2(lacZ/+) heterozygote embryos and adults demonstrates that lacZ faithfully recapitulates endogenous Nkx2.2 expression. Furthermore, the Nkx2.2(lacZ/lacZ) homozygous embryos display phenotypes indistinguishable from the previously characterized Nkx2.2(-/-) strain. LacZ expression analyses in the Nkx2.2(lacZ/lacZ) homozygous embryos indicate that Nkx2.2-expressing progenitor cells within the pancreas are generated in their normal numbers and are not mislocalized within the pancreatic ductal epithelium or developing islets. In the CNS of Nkx2.2(lacZ/lacZ) embryos, LacZ-expressing cells within the ventral P3 progenitor domain display different migration properties depending on the developmental stage and their respective differentiation potential.
Collapse
Affiliation(s)
- Luis Arnes
- Department of Genetics and Development, Columbia University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
54
|
Swales N, Martens GA, Bonné S, Heremans Y, Borup R, Van de Casteele M, Ling Z, Pipeleers D, Ravassard P, Nielsen F, Ferrer J, Heimberg H. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming. PLoS One 2012. [PMID: 22606327 DOI: 10.137/journal.pone.0037055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIMS/HYPOTHESIS Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. METHODS The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. RESULTS Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. CONCLUSIONS/INTERPRETATION The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes.
Collapse
Affiliation(s)
- Nathalie Swales
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Swales N, Martens GA, Bonné S, Heremans Y, Borup R, Van de Casteele M, Ling Z, Pipeleers D, Ravassard P, Nielsen F, Ferrer J, Heimberg H. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming. PLoS One 2012; 7:e37055. [PMID: 22606327 PMCID: PMC3351393 DOI: 10.1371/journal.pone.0037055] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 04/16/2012] [Indexed: 12/01/2022] Open
Abstract
Aims/Hypothesis Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. Methods The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. Results Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. Conclusions/Interpretation The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes.
Collapse
Affiliation(s)
- Nathalie Swales
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert A. Martens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Bonné
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rehannah Borup
- Microarray Facility, Rigshospitalet, Copenhagen, Denmark
| | | | - Zhidong Ling
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philippe Ravassard
- Centre de Recherche Institut du Cerveau et de la Moelle, CNRS UMR7225, Université Pierre et Marie Curie, Paris, France
| | - Finn Nielsen
- Microarray Facility, Rigshospitalet, Copenhagen, Denmark
| | - Jorge Ferrer
- Genomic Programming of Beta Cells Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
56
|
Swales N, Martens GA, Bonné S, Heremans Y, Borup R, Van de Casteele M, Ling Z, Pipeleers D, Ravassard P, Nielsen F, Ferrer J, Heimberg H. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming. PLoS One 2012. [PMID: 22606327 DOI: 10.137/journal.pone.0037055.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIMS/HYPOTHESIS Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. METHODS The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. RESULTS Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. CONCLUSIONS/INTERPRETATION The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes.
Collapse
Affiliation(s)
- Nathalie Swales
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Classic experiments such as somatic cell nuclear transfer into oocytes and cell fusion demonstrated that differentiated cells are not irreversibly committed to their fate. More recent work has built on these conclusions and discovered defined factors that directly induce one specific cell type from another, which may be as distantly related as cells from different germ layers. This suggests the possibility that any specific cell type may be directly converted into any other if the appropriate reprogramming factors are known. Direct lineage conversion could provide important new sources of human cells for modeling disease processes or for cellular-replacement therapies. For future applications, it will be critical to carefully determine the fidelity of reprogramming and to develop methods for robustly and efficiently generating human cell types of interest.
Collapse
Affiliation(s)
- Thomas Vierbuchen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
58
|
Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development. Dev Biol 2011; 361:277-85. [PMID: 22056785 DOI: 10.1016/j.ydbio.2011.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 11/21/2022]
Abstract
During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3(+) progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3(CreERT/+)) and Neurog3-deficient (Neurog3(CreERT/CreERT)) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition, endocrine progenitor cells arise from bipotent precursors already committed to the duct/endocrine lineages and not from domain of cells having distinct potentialities.
Collapse
|
59
|
Michalek JL, Besold AN, Michel SLJ. Cysteine and histidine shuffling: mixing and matching cysteine and histidine residues in zinc finger proteins to afford different folds and function. Dalton Trans 2011; 40:12619-32. [PMID: 21952363 DOI: 10.1039/c1dt11071c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Zinc finger proteins utilize zinc for structural purposes: zinc binds to a combination of cysteine and histidine ligands in a tetrahedral coordination geometry facilitating protein folding and function. While much is known about the classical zinc finger proteins, which utilize a Cys(2)His(2) ligand set to coordinate zinc and fold into an anti-parallel beta sheet/alpha helical fold, there are thirteen other families of 'non-classical' zinc finger proteins for which relationships between metal coordination and protein structure/function are less defined. This 'Perspective' article focuses on two classes of these non-classical zinc finger proteins: Cys(3)His type zinc finger proteins and Cys(2)His(2)Cys type zinc finger proteins. These proteins bind zinc in a tetrahedral geometry, like the classical zinc finger proteins, yet they adopt completely different folds and target different oligonucleotides. Our current understanding of the relationships between ligand set, metal ion, fold and function for these non-classical zinc fingers is discussed.
Collapse
Affiliation(s)
- Jamie L Michalek
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, USA
| | | | | |
Collapse
|
60
|
G protein-coupled receptor signaling and sphingosine-1-phosphate play a phylogenetically conserved role in endocrine pancreas morphogenesis. Mol Cell Biol 2011; 31:4442-53. [PMID: 21911471 DOI: 10.1128/mcb.05702-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During development pancreatic endocrine cells migrate in a coordinated fashion. This migration is necessary to form fully functional islets, but the mechanisms involved remain unknown. Therapeutic strategies to restore β-cell mass and islet functionality by reprogramming endogenous exocrine cells would be strengthened from simultaneous treatments that enhance endocrine cell clustering. We found that endocrine progenitors respond to and regulate G protein-coupled receptor (GPCR) signaling in order to cluster in islets. Rgs4, a dedicated regulator of GPCR signaling, was specifically expressed in early epithelial endocrine progenitors of both zebrafish and mouse, and its expression in the mouse endocrine progenitors was strictly dependent upon Ngn3, the key specification gene of the endocrine lineage. Rgs4 loss of function resulted in defects in islet cell aggregation. By genetically inactivating Gα(i)-mediated GPCR signaling in endocrine progenitors, we established its role in islet cell aggregation in both mouse and zebrafish. Finally, we identified sphingosine-1-phosphate (S1P) as a ligand mediating islet cell aggregation in both species acting through distinct but closely related receptors.
Collapse
|
61
|
Kameyama T, Matsushita F, Kadokawa Y, Marunouchi T. Myt/NZF family transcription factors regulate neuronal differentiation of P19 cells. Neurosci Lett 2011; 497:74-9. [PMID: 21540077 DOI: 10.1016/j.neulet.2011.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/24/2011] [Accepted: 04/15/2011] [Indexed: 11/17/2022]
Abstract
During mammalian central nervous system development, neural stem cells differentiate and then mature into various types of neurons. Myelin transcription factor (Myt)/neural zinc finger (NZF) family proteins were first identified as myelin proteolipid protein promoter binding factors and were shown to be involved in oligodendrocyte development. In this study, we found that Myt/NZF family molecules were expressed during neuronal differentiation in vivo and in vitro. Transient over-expression of Myt/NZF family genes could convert undifferentiated P19 cells into neurons without induction by retinoic acid (RA), and the ability of these genes to induce neuronal differentiation was comparable to that of Neurog1 and Neurod1. Additionally, we found that St18 (or NZF-3) was induced by several bHLH transcription factors. When NZF-3 and Neurog1 were co-expressed in P19 cells, the rate of neuronal differentiation was significantly increased. These data suggest not only that NZF-3 works downstream of Neurog1 but also that it plays a crucial role together with Neurog1 in neuronal differentiation.
Collapse
Affiliation(s)
- Toshiki Kameyama
- Division of Gene Expression Mechanisms, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | | | | | | |
Collapse
|
62
|
Gefen-Halevi S, Rachmut IH, Molakandov K, Berneman D, Mor E, Meivar-Levy I, Ferber S. NKX6.1 promotes PDX-1-induced liver to pancreatic β-cells reprogramming. Cell Reprogram 2011; 12:655-64. [PMID: 21108535 DOI: 10.1089/cell.2010.0030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Reprogramming adult mammalian cells is an attractive approach for generating cell-based therapies for degenerative diseases, such as diabetes. Adult human liver cells exhibit a high level of developmental plasticity and have been suggested as a potential source of pancreatic progenitor tissue. An instructive role for dominant pancreatic transcription factors in altering the hepatic developmental fate along the pancreatic lineage and function has been demonstrated. Here we analyze whether transcription factors expressed in mature pancreatic β-cells preferentially activate β-cell lineage differentiation in liver. NKX6.1 is a transcription factor uniquely expressed in β-cells of the adult pancreas, its potential role in reprogramming liver cells to pancreatic lineages has never been analyzed. Our results suggest that NKX6.1 activates immature pancreatic markers such as NGN-3 and ISL-1 but not pancreatic hormones gene expression in human liver cells. We hypothesized that its restricted capacity to activate a wide pancreatic repertoire in liver could be related to its incapacity to activate endogenous PDX-1 expression in liver cells. Indeed, the complementation of NKX6.1 by ectopic PDX-1 expression substantially and specifically promoted insulin expression and glucose regulated processed hormone secretion to a higher extent than that of PDX-1 alone, without increasing the reprogrammed cells. This may suggest a potential role for NKX6.1 in promoting PDX-1 reprogrammed cells maturation along the β-cell-like lineage. By contrast, NKX6.1 repressed PDX-1 induced proglucagon gene expression. The individual and concerted effects of pancreatic transcription factors in adult extra-pancreatic cells, is expected to facilitate developing regenerative medicine approaches for cell replacement therapy in diabetics.
Collapse
Affiliation(s)
- Shiraz Gefen-Halevi
- Sheba Regenerative Medicine, Stem cells and Tissue engineering Center , Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
63
|
Hudson LD, Romm E, Berndt JA, Nielsen JA. A tool for examining the role of the zinc finger myelin transcription factor 1 (Myt1) in neural development: Myt1 knock-in mice. Transgenic Res 2011; 20:951-61. [PMID: 21267777 PMCID: PMC3139087 DOI: 10.1007/s11248-010-9470-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 11/23/2010] [Indexed: 11/30/2022]
Abstract
The Myt1 family of transcription factors is unique among the many classes of zinc finger proteins in how the zinc-stabilized fingers contact the DNA helix. To examine the function of Myt1 in the developing nervous system, we generated mice in which Myt1 expression was replaced by an enhanced Green Fluorescent Protein fused to a Codon-improved Cre recombinase as a protein reporter. Myt1 knock-in mice die at birth, apparently due to improper innervation of their lungs. Elimination of Myt1 did not significantly affect the number or distribution of neural precursor cells that normally express Myt1 in the embryonic spinal cord. Nor was the general pattern of differentiated neurons altered in the embryonic spinal cord. The Myt1 knock-in mice should provide an important tool for identifying the in vivo targets of Myt1 action and unraveling the role of this structurally distinct zinc finger protein in neural development.
Collapse
Affiliation(s)
- Lynn D Hudson
- Section of Developmental Genetics, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Building 1, Room 228, Bethesda, MD 20892-0166, USA.
| | | | | | | |
Collapse
|
64
|
Shimajiri Y, Kosaka Y, Scheel DW, Lynn FC, Kishimoto N, Wang J, Zhao S, German MS. A mouse model for monitoring islet cell genesis and developing therapies for diabetes. Dis Model Mech 2010; 4:268-76. [PMID: 21135059 PMCID: PMC3046103 DOI: 10.1242/dmm.002998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transient expression of the transcription factor neurogenin-3 marks progenitor cells in the pancreas as they differentiate into islet cells. We developed a transgenic mouse line in which the surrogate markers secreted alkaline phosphatase (SeAP) and enhanced green florescent protein (EGFP) can be used to monitor neurogenin-3 expression, and thus islet cell genesis. In transgenic embryos, cells expressing EGFP lined the pancreatic ducts. SeAP was readily detectable in embryos, in the media of cultured embryonic pancreases and in the serum of adult animals. Treatment with the γ-secretase inhibitor DAPT, which blocks Notch signaling, enhanced SeAP secretion rates and increased the number of EGFP-expressing cells as assayed by fluorescence-activated cell sorting (FACS) and immunohistochemistry in cultured pancreases from embryos at embryonic day 11.5, but not in pancreases harvested 1 day later. By contrast, treatment with growth differentiation factor 11 (GDF11) reduced SeAP secretion rates. In adult mice, partial pancreatectomy decreased, whereas duct ligation increased, circulating SeAP levels. This model will be useful for studying signals involved in islet cell genesis in vivo and developing therapies that induce this process.
Collapse
Affiliation(s)
- Yoshinori Shimajiri
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143-0534, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Rosenberg LC, Lafon ML, Pedersen JK, Yassin H, Jensen JN, Serup P, Hecksher-Sørensen J. The transcriptional activity of Neurog3 affects migration and differentiation of ectopic endocrine cells in chicken endoderm. Dev Dyn 2010; 239:1950-66. [PMID: 20549731 PMCID: PMC3070887 DOI: 10.1002/dvdy.22329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Neurog3 is expressed transiently in pancreatic endocrine progenitors where it is responsible for activating a transcription factor cascade which eventually defines the mature endocrine cells. However, the mechanism by which Neurog3 regulates different aspects of the endocrine differentiation program is less clear. In this report we used in ovo electroporation to investigate how manipulation of Neurog3 protein activity affected migration, differentiation and fate determination. We found that changes in the onset of Neurog3 expression only had minor effect on differentiation. However increasing the transcriptional activity of Neurog3 by fusing it to VP16 or co-electroporating with Ep300 caused the electroporated cells to migrate rather than differentiate. In contrast, reducing the transcriptional activity of Neurog3 by deleting parts of the activation domain, by fusing Neurog3 to the engrailed repressor domain, or co-electroporating with Hdac1 greatly increased the proportion of glucagon expressing cells.
Collapse
Affiliation(s)
- Louise C Rosenberg
- Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark
| | - Merete L Lafon
- Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark
| | | | - Hani Yassin
- Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark
| | - Jan Nygaard Jensen
- Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark
| | - Palle Serup
- Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark
| | | |
Collapse
|
66
|
Smith SB, Qu HQ, Taleb N, Kishimoto N, Scheel DW, Lu Y, Patch AM, Grabs R, Wang J, Lynn FC, Miyatsuka T, Mitchell J, Seerke R, Désir J, Eijnden SV, Abramowicz M, Kacet N, Weill J, Renard MÉ, Gentile M, Hansen I, Dewar K, Hattersley AT, Wang R, Wilson ME, Johnson JD, Polychronakos C, German MS. Rfx6 directs islet formation and insulin production in mice and humans. Nature 2010; 463:775-80. [PMID: 20148032 PMCID: PMC2896718 DOI: 10.1038/nature08748] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 12/07/2009] [Indexed: 02/07/2023]
Abstract
Insulin from the beta-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor neurogenin 3 (Neurog3) initiates the differentiation of the beta-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurog3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate beta-cells for patients with diabetes.
Collapse
Affiliation(s)
- Stuart B. Smith
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, U.S.A
| | - Hui-Qi Qu
- Departments of Paediatrics and Human Genetics, McGill University, Montreal, Québec, Canada
| | - Nadine Taleb
- Departments of Paediatrics and Human Genetics, McGill University, Montreal, Québec, Canada
| | - Nina Kishimoto
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, U.S.A
| | - David W. Scheel
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, U.S.A
| | - Yang Lu
- Departments of Paediatrics and Human Genetics, McGill University, Montreal, Québec, Canada
| | - Ann-Marie Patch
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK
| | - Rosemary Grabs
- Departments of Paediatrics and Human Genetics, McGill University, Montreal, Québec, Canada
| | - Juehu Wang
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, U.S.A
| | - Francis C. Lynn
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, U.S.A
| | - Takeshi Miyatsuka
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, U.S.A
| | - John Mitchell
- Departments of Paediatrics and Human Genetics, McGill University, Montreal, Québec, Canada
| | - Rina Seerke
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, U.S.A
| | - Julie Désir
- Laboratory of Medical Genetics, Hôpital Erasme-ULB, Brussels, Belgium
| | | | - Marc Abramowicz
- Laboratory of Medical Genetics, Hôpital Erasme-ULB, Brussels, Belgium
| | - Nadine Kacet
- Department of Neonatology, Hôpital Calmette, Lille, France
| | - Jacques Weill
- Department of Neonatology, Hôpital Calmette, Lille, France
| | | | - Mattia Gentile
- Medical Genetic Unit, Di Venere General Hospital, Bari, Italy
| | - Inger Hansen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ken Dewar
- Department of Human Genetics, McGill University, and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK
| | - Rennian Wang
- Departments of Physiology, Pharmacology & Medicine, Child Health Research Institute, the University of Western Ontario, London, Ontario, Canada
| | | | | | | | - Michael S. German
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, U.S.A
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, U.S.A
| |
Collapse
|
67
|
Wang S, Yan J, Anderson DA, Xu Y, Kanal MC, Cao Z, Wright CVE, Gu G. Neurog3 gene dosage regulates allocation of endocrine and exocrine cell fates in the developing mouse pancreas. Dev Biol 2009; 339:26-37. [PMID: 20025861 DOI: 10.1016/j.ydbio.2009.12.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 12/05/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
The basic helix-loop-helix transcription factor Neurog3 (Neurogenin3 or Ngn3) actively drives endodermal progenitor cells towards endocrine islet cell differentiation during embryogenesis. Here, we manipulate Neurog3 expression levels in endocrine progenitor cells without altering its expression pattern using heterozygosity and a hypomorph. Lowered Neurog3 gene dosage in the developing pancreatic epithelium reduces the overall production of endocrine islet cells without significantly affecting the proportions of various islet cell types that do form. A reduced Neurog3 production level in the endocrine-directed pancreatic progenitor population activates the expression of Neurog3 in an increased number of epithelial progenitors. Yet a significant number of these Neurog3+ cells detected in heterozygous and hypomorphic pancreata, possibly those that express low levels of Neurog3, move on to adopt pancreatic ductal or acinar fates. These data directly demonstrate that achieving high levels of Neurog3 expression is a critical step for endocrine commitment from multipotent pancreatic progenitors. These findings also suggest that a high level of Neurog3 expression could mediate lateral inhibition or other unknown feedback mechanisms to regulate the number of cells that initiate Neurog3 transcription and protein production. The control of Neurog3+ cell number and the Neurog3 threshold-dependent endocrine differentiation mechanism combine to select a specific proportion of pancreatic progenitor cells to adopt the islet cell fate.
Collapse
Affiliation(s)
- Sui Wang
- Program in Developmental Biology and Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University Medical Center, 465 21st Avenue South, Rm 4128, Vanderbilt Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Anderson KR, White P, Kaestner KH, Sussel L. Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:65. [PMID: 20003319 PMCID: PMC2799404 DOI: 10.1186/1471-213x-9-65] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 12/10/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The homeodomain containing transcription factor Nkx2.2 is essential for the differentiation of pancreatic endocrine cells. Deletion of Nkx2.2 in mice leads to misspecification of islet cell types; insulin-expressing beta cells and glucagon-expressing alpha cells are replaced by ghrelin-expressing cells. Additional studies have suggested that Nkx2.2 functions both as a transcriptional repressor and activator to regulate islet cell formation and function. To identify genes that are potentially regulated by Nkx2.2 during the major wave of endocrine and exocrine cell differentiation, we assessed gene expression changes that occur in the absence of Nkx2.2 at the onset of the secondary transition in the developing pancreas. RESULTS Microarray analysis identified 80 genes that were differentially expressed in e12.5 and/or e13.5 Nkx2.2-/- embryos. Some of these genes encode transcription factors that have been previously identified in the pancreas, clarifying the position of Nkx2.2 within the islet transcriptional regulatory pathway. We also identified signaling factors and transmembrane proteins that function downstream of Nkx2.2, including several that have not previously been described in the pancreas. Interestingly, a number of known exocrine genes are also misexpressed in the Nkx2.2-/- pancreas. CONCLUSIONS Expression profiling of Nkx2.2-/- mice during embryogenesis has allowed us to identify known and novel pancreatic genes that function downstream of Nkx2.2 to regulate pancreas development. Several of the newly identified signaling factors and transmembrane proteins may function to influence islet cell fate decisions. These studies have also revealed a novel function for Nkx2.2 in maintaining appropriate exocrine gene expression. Most importantly, Nkx2.2 appears to function within a complex regulatory loop with Ngn3 at a key endocrine differentiation step.
Collapse
Affiliation(s)
- Keith R Anderson
- Department of Biochemistry and Program in Molecular Biology, University of Colorado Health Science Center, Denver, CO 80045, USA
| | | | | | | |
Collapse
|
69
|
Lefebvre B, Belaich S, Longue J, Vandewalle B, Oberholzer J, Gmyr V, Pattou F, Kerr-Conte J. 5'-AZA induces Ngn3 expression and endocrine differentiation in the PANC-1 human ductal cell line. Biochem Biophys Res Commun 2009; 391:305-9. [PMID: 19913512 DOI: 10.1016/j.bbrc.2009.11.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 11/07/2009] [Indexed: 12/24/2022]
Abstract
Neurogenin 3 is necessary for endocrine cell development in the embryonic pancreas and has been shown to induce transdifferentiation duct cells from adult pancreas toward a neuro-endocrine phenotype. Here we discovered that the demethylating agent 5'-Azadeoxycytidine (AZA) induced Ngn3 expression and endocrine differentiation from the PANC-1 human ductal cell line. The expression of markers specific to mature islet cells, i.e., glucagon and somatostatin, was also observed. In addition, we demonstrated that growth factors (betacellulin and soluble factors released during pancreas embryogenesis) increased the level of maturation. Our studies revealed that the PANC-1 model system may provide a basis for elucidating the ductal/endocrine differentiation.
Collapse
|
70
|
Effects of intrahepatic bone-derived mesenchymal stem cells autotransplantation on the diabetic Beagle dogs. J Surg Res 2009; 168:213-23. [PMID: 20097376 DOI: 10.1016/j.jss.2009.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/18/2009] [Accepted: 10/05/2009] [Indexed: 12/28/2022]
Abstract
BACKGROUND To assess the effects of intrahepatic autotransplantation of bone-derived Beagle canine mesenchymal stem cells (BcMSCs) containing human insulin and EGFP in diabetic Beagle dogs. MATERIALS AND METHODS BcMSCs were isolated from Beagle canine bone marrow, expanded, and transfected with a recombinant retrovirus MSCV carrying human insulin and EGFP. Animals were made diabetic by an intravenous administration of streptozotocin (STZ, 30 mg/kg) and alloxan (50 mg/kg), followed by intrahepatic autotransplantation of transfected BcMSCs. The variations of body weight, blood glucose, serum insulin levels, and plasma C-peptide were determined after autotransplantation. BcMSCs' survival and human insulin expression in liver and serum were examined by fluorescent microscopy, radioimmunoassay (RIA), and immunohistochemistry (IHC). RESULTS The body weight of diabetic Beagle dogs received BcMSCs transplantation increased by 11.09% within 16 wk after treatment, and the average blood glucose levels were 19.80±3.13 mmol/L (d 7) and 9.78±3.11 mmol/L (d 112), while in untreated animals, the average values were 21.20±3.26 mmol/L (d 7) and 22.5±3.22 mmol/L (d 112), showing a significant difference (P<0.05). The detection of C-peptide excluded the possible function of regenerative β cells. However, glucose tolerance test revealed BcMSCs group response was not as efficient as that of normal islets, although they could respond to the glucose challenge. CONCLUSION Experimental diabetes could be relieved effectively for up to 16 wk by intrahepatic autotransplantation of BcMSCs expressing human insulin, which implies a novel approach of gene therapy for type I diabetes.
Collapse
|
71
|
Transcription factor Glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression. Mol Cell Biol 2009; 29:6366-79. [PMID: 19805515 DOI: 10.1128/mcb.01259-09] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, we report that the Krüppel-like zinc finger transcription factor Gli-similar 3 (Glis3) is induced during the secondary transition of pancreatic development, a stage of cell lineage specification and extensive patterning, and that Glis3(zf/zf) mutant mice develop neonatal diabetes, evidenced by hyperglycemia and hypoinsulinemia. The Glis3(zf/zf) mutant mouse pancreas shows a dramatic loss of beta and delta cells, contrasting a smaller relative loss of alpha, PP, and epsilon cells. In addition, Glis3(zf/zf) mutant mice develop ductal cysts, while no significant changes were observed in acini. Gene expression profiling and immunofluorescent staining demonstrated that the expression of pancreatic hormones and several transcription factors important in endocrine cell development, including Ngn3, MafA, and Pdx1, were significantly decreased in the developing pancreata of Glis3(zf/zf) mutant mice. The population of pancreatic progenitors appears not to be greatly affected in Glis3(zf/zf) mutant mice; however, the number of neurogenin 3 (Ngn3)-positive endocrine cell progenitors is significantly reduced. Our study indicates that Glis3 plays a key role in cell lineage specification, particularly in the development of mature pancreatic beta cells. In addition, we provide evidence that Glis3 regulates insulin gene expression through two Glis-binding sites in its proximal promoter, indicating that Glis3 also regulates beta-cell function.
Collapse
|
72
|
Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc Natl Acad Sci U S A 2009; 106:9715-20. [PMID: 19487660 DOI: 10.1073/pnas.0904247106] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurog3 (Neurogenin 3 or Ngn3) is both necessary and sufficient to induce endocrine islet cell differentiation from embryonic pancreatic progenitors. Since robust Neurog3 expression has not been detected in hormone-expressing cells, Neurog3 is used as an endocrine progenitor marker and regarded as dispensable for the function of differentiated islet cells. Here we used 3 independent lines of Neurog3 knock-in reporter mice and mRNA/protein-based assays to examine Neurog3 expression in hormone-expressing islet cells. Neurog3 mRNA and protein are detected in hormone-producing cells at both embryonic and adult stages. Significantly, inactivating Neurog3 in insulin-expressing beta cells at embryonic stages or in Pdx1-expressing islet cells in adults impairs endocrine function, a phenotype that is accompanied by reduced expression of several Neurog3 target genes that are essential for islet cell differentiation, maturation, and function. These findings demonstrate that Neurog3 is required not only for initiating endocrine cell differentiation, but also for promoting islet cell maturation and maintaining islet function.
Collapse
|
73
|
Fellous TG, McDonald SA, Burkert J, Humphries A, Islam S, De-Alwis NM, Gutierrez-Gonzalez L, Tadrous PJ, Elia G, Kocher HM, Bhattacharya S, Mears L, El-Bahrawy M, Turnbull DM, Taylor RW, Greaves LC, Chinnery PF, Day CP, Wright NA, Alison MR. A Methodological Approach to Tracing Cell Lineage in Human Epithelial Tissues. Stem Cells 2009; 27:1410-20. [DOI: 10.1002/stem.67] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|