51
|
Li J, Tian W, Song J. Proteomics Applications in Dental Derived Stem Cells. J Cell Physiol 2017; 232:1602-1610. [PMID: 27791269 DOI: 10.1002/jcp.25667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Jie Li
- College of Stomatology; Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Jinlin Song
- College of Stomatology; Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| |
Collapse
|
52
|
Han YJ, Kang YH, Shivakumar SB, Bharti D, Son YB, Choi YH, Park WU, Byun JH, Rho GJ, Park BW. Stem Cells from Cryopreserved Human Dental Pulp Tissues Sequentially Differentiate into Definitive Endoderm and Hepatocyte-Like Cells in vitro. Int J Med Sci 2017; 14:1418-1429. [PMID: 29200956 PMCID: PMC5707759 DOI: 10.7150/ijms.22152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/13/2017] [Indexed: 01/03/2023] Open
Abstract
We previously described a novel tissue cryopreservation protocol to enable the safe preservation of various autologous stem cell sources. The present study characterized the stem cells derived from long-term cryopreserved dental pulp tissues (hDPSCs-cryo) and analyzed their differentiation into definitive endoderm (DE) and hepatocyte-like cells (HLCs) in vitro. Human dental pulp tissues from extracted wisdom teeth were cryopreserved as per a slow freezing tissue cryopreservation protocol for at least a year. Characteristics of hDPSCs-cryo were compared to those of stem cells from fresh dental pulps (hDPSCs-fresh). hDPSCs-cryo were differentiated into DE cells in vitro with Activin A as per the Wnt3a protocol for 6 days. These cells were further differentiated into HLCs in the presence of growth factors until day 30. hDPSCs-fresh and hDPSCs-cryo displayed similar cell growth morphology, cell proliferation rates, and mesenchymal stem cell character. During differentiation into DE and HLCs in vitro, the cells flattened and became polygonal in shape, and finally adopted a hepatocyte-like shape. The differentiated DE cells at day 6 and HLCs at day 30 displayed significantly increased DE- and hepatocyte-specific markers at the mRNA and protein level, respectively. In addition, the differentiated HLCs showed detoxification and glycogen storage capacities, indicating they could share multiple functions with real hepatocytes. These data conclusively show that hPDSCs-cryo derived from long-term cryopreserved dental pulp tissues can be successfully differentiated into DE and functional hepatocytes in vitro. Thus, preservation of dental tissues could provide a valuable source of autologous stem cells for tissue engineering.
Collapse
Affiliation(s)
- Young-Jin Han
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea
| | - Young-Hoon Kang
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea.,Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Sarath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong-Ho Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Uk Park
- Department of Dental Technology, Jinju Health College, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea.,Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea
| |
Collapse
|
53
|
Park HC, Son YB, Lee SL, Rho GJ, Kang YH, Park BW, Byun SH, Hwang SC, Cho IA, Cho YC, Sung IY, Woo DK, Byun JH. Effects of Osteogenic-Conditioned Medium from Human Periosteum-Derived Cells on Osteoclast Differentiation. Int J Med Sci 2017; 14:1389-1401. [PMID: 29200953 PMCID: PMC5707756 DOI: 10.7150/ijms.21894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022] Open
Abstract
Stem/progenitor cell-based regenerative medicine using the osteoblast differentiation of mesenchymal stem cells (MSCs) is regarded as a promising approach for the therapeutic treatment of various bone defects. The effects of the osteogenic differentiation of stem/progenitor cells on osteoclast differentiation may have important implications for use in therapy. However, there is little data regarding the expression of osteoclastogenic proteins during osteoblastic differentiation of human periosteum-derived cells (hPDCs) and whether factors expressed during this process can modulate osteoclastogenesis. In the present study, we measured expression of RANKL in hPDCs undergoing osteoblastic differentiation and found that expression of RANKL mRNA was markedly increased in these cells in a time-dependent manner. RANKL protein expression was also significantly enhanced in osteogenic-conditioned media from hPDCs undergoing osteoblastic differentiation. We then isolated and cultured CD34+ hematopoietic stem cells (HSCs) from umbilical cord blood (UCB) mononuclear cells (MNCs) and found that these cells were well differentiated into several hematopoietic lineages. Finally, we co-cultured human trabecular bone osteoblasts (hOBs) with CD34+ HSCs and used the conditioned medium, collected from hPDCs during osteoblastic differentiation, to investigate whether factors produced during osteoblast maturation can affect osteoclast differentiation. Specifically, we measured the effect of this osteogenic-conditioned media on expression of osteoclastogenic markers and osteoclast cell number. We found that osteoclastic marker gene expression was highest in co-cultures incubated with the conditioned medium collected from hPDCs with the greatest level of osteogenic maturation. Although further study will be needed to clarify the precise mechanisms that underlie osteogenic-conditioned medium-regulated osteoclastogenesis, our results suggest that the osteogenic maturation of hPDCs could promote osteoclastic potential.
Collapse
Affiliation(s)
- Hyun-Chang Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Hoon Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - In-Ae Cho
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yeong-Cheol Cho
- Department of Oral and Maxillofacial Surgery, College of Medicine, Ulsan University Hospital, University of Ulsan, Ulsan, Republic of Korea
| | - Iel-Yong Sung
- Department of Oral and Maxillofacial Surgery, College of Medicine, Ulsan University Hospital, University of Ulsan, Ulsan, Republic of Korea
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
54
|
Kim HJ, Cho YA, Lee YM, Lee SY, Bae WJ, Kim EC. PIN1 Suppresses the Hepatic Differentiation of Pulp Stem Cells via Wnt3a. J Dent Res 2016; 95:1415-1424. [PMID: 27439725 DOI: 10.1177/0022034516659642] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the role of PIN1 on the hepatic differentiation of human dental pulp stem cells (hDPSCs) and its signaling pathway, as well as the potential therapeutic effects of hDPSC transplantation and PIN1 inhibition on CCl4 (carbon tetrachloride)-induced liver fibrosis in mice. The in vitro results showed that hepatic differentiation was suppressed by infection with adenovirus-PIN1 and promoted by PIN1 inhibitor juglone via the downregulation of Wnt3a and β-catenin. Compared with treatment with either hDPSC transplantation or juglone alone, the combination of hDPSCs and juglone into CCl4-injured mice significantly suppressed liver fibrosis and restored serum levels of alanine transaminase, aspartate transaminase, and ammonia. Collectively, the present study shows for the first time that PIN1 inhibition promotes hepatic differentiation of hDPSCs through the Wnt/β-catenin pathway. Furthermore, juglone in combination with hDPSC transplantation effectively treats liver fibrosis, suggesting that hDPSC transplantation with PIN1 inhibition may be a novel therapeutic candidate for the treatment of liver injury.
Collapse
Affiliation(s)
- H J Kim
- 1 Department of Oral Physiology, BK21 PLUS Project, and Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Y A Cho
- 2 Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration, and School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Y M Lee
- 2 Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration, and School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - S Y Lee
- 2 Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration, and School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - W J Bae
- 2 Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration, and School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - E C Kim
- 2 Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration, and School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
55
|
Lee WJ, Park JS, Jang SJ, Lee SC, Lee H, Lee JH, Rho GJ, Lee SL. Isolation and Cellular Phenotyping of Mesenchymal Stem Cells Derived from Synovial Fluid and Bone Marrow of Minipigs. J Vis Exp 2016. [PMID: 27404916 DOI: 10.3791/54077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been established after isolation from various tissue sources, including bone marrow and synovial fluid. Recently, synovial-fluid-derived MSCs were reported to have multi-lineage differentiation potential and immunomodulatory features, which indicates that these cells can be used for tissue engineering and systemic treatments. This study presents a protocol for simple and non-invasive isolation of MSCs derived from the bone marrow and synovial fluid of minipigs to analyze cell surface markers for cell phenotyping and in vitro culturing. Using sexually mature six-month-old minipigs, bone marrow was extracted from the iliac crest bone using a bone marrow extractor, and the synovial fluid was aspirated from the femorotibial joint. Procedures for the collection of samples from both sources were non-invasive. The protocols for effective isolation of MSCs from harvested cell sources and for creating in vitro culture conditions to expand stable MSCs from minipigs and the application of systemic autologous treatments are provided. For cell phenotyping, the cell surface markers of both cells were analyzed using flow cytometry. In the results, the MSCs were isolated from the synovial fluid of the minipigs and showed that synovial-fluid-derived MSCs have a similar morphology and cell phenotype to bone-marrow-derived MSCs. Therefore, non-invasively obtained synovial fluid is a valuable source of MSCs.
Collapse
Affiliation(s)
- Won-Jae Lee
- College of Veterinary Medicine, Gyeongsang National University; PWG Genetics Pte Ltd
| | - Ji-Sung Park
- College of Veterinary Medicine, Gyeongsang National University
| | - Si-Jung Jang
- College of Veterinary Medicine, Gyeongsang National University
| | - Seung-Chan Lee
- College of Veterinary Medicine, Gyeongsang National University
| | - HyeonJeong Lee
- College of Veterinary Medicine, Gyeongsang National University
| | - Jae-Hoon Lee
- College of Veterinary Medicine, Gyeongsang National University
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University;
| |
Collapse
|
56
|
Shivakumar SB, Bharti D, Subbarao RB, Jang SJ, Park JS, Ullah I, Park JK, Byun JH, Park BW, Rho GJ. DMSO- and Serum-Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord. J Cell Biochem 2016; 117:2397-412. [PMID: 27038129 PMCID: PMC5094545 DOI: 10.1002/jcb.25563] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/31/2016] [Indexed: 01/09/2023]
Abstract
The facile nature of mesenchymal stem cell (MSC) acquisition in relatively large numbers has made Wharton's jelly (WJ) tissue an alternative source of MSCs for regenerative medicine. However, freezing of such tissue using dimethyl sulfoxide (DMSO) for future use impedes its clinical utility. In this study, we compared the effect of two different cryoprotectants (DMSO and cocktail solution) on post-thaw cell behavior upon freezing of WJ tissue following two different freezing protocols (Conventional [-1°C/min] and programmed). The programmed method showed higher cell survival rate compared to conventional method of freezing. Further, cocktail solution showed better cryoprotection than DMSO. Post-thaw growth characteristics and stem cell behavior of Wharton's jelly mesenchymal stem cells (WJMSCs) from WJ tissue cryopreserved with a cocktail solution in conjunction with programmed method (Prog-Cock) were comparable with WJMSCs from fresh WJ tissue. They preserved their expression of surface markers, pluripotent factors, and successfully differentiated in vitro into osteocytes, adipocytes, chondrocytes, and hepatocytes. They also produced lesser annexin-V-positive cells compared to cells from WJ tissue stored using cocktail solution in conjunction with the conventional method (Conv-Cock). Real-time PCR and Western blot analysis of post-thaw WJMSCs from Conv-Cock group showed significantly increased expression of pro-apoptotic factors (BAX, p53, and p21) and reduced expression of anti-apoptotic factor (BCL2) compared to WJMSCs from the fresh and Prog-Cock group. Therefore, we conclude that freezing of fresh WJ tissue using cocktail solution in conjunction with programmed freezing method allows for an efficient WJ tissue banking for future MSC-based regenerative therapies. J. Cell. Biochem. 117: 2397-2412, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Ji-Sung Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Ji-Kwon Park
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, Jinju, 660-702, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, 660-702, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, 660-702, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea.,Research Institute of Life Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| |
Collapse
|
57
|
Ullah I, Subbarao RB, Kim EJ, Bharti D, Jang SJ, Park JS, Shivakumar SB, Lee SL, Kang D, Byun JH, Park BW, Rho GJ. In vitro comparative analysis of human dental stem cells from a single donor and its neuronal differentiation potential evaluated by electrophysiology. Life Sci 2016; 154:39-51. [PMID: 27107840 DOI: 10.1016/j.lfs.2016.04.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 01/09/2023]
Abstract
AIMS The aim of this study was to find out a mesenchymal stem cells (MSCs) source from human dental tissues of the same donor (follicle, papilla and pulp), which exhibits higher neurogenic differentiation potential in vitro. MAIN METHODS MSCs were isolated from dental tissues (follicle, papilla and pulp) by digestion method. All MSCs were analyzed for pluripotent makers by western blot, cell surface markers by flow cytometry, adipo- and osteocytes markers by RT-qPCR. The neuronal differentiated MSCs were characterized for neuronal specific markers by RT-qPCR and immunofluorescence. Functional neuronal properties were analyzed by electrophysiology and synaptic markers expression. KEY FINDINGS All MSCs expressed pluripotent markers (Oct4, Sox2 and Nanog) and were found positive for mesenymal markers (CD44, CD90, CD105) while negative for hematopoietic markers (CD34 and CD45). Furthermore, MSCs were successfully differentiated into adipocytes, osteocytes and trans-differentiated into neuronal cells. Among them, dental pulp derived MSCs exhibits higher neurogenic differentiation potential, in term of expression of neuronal specific markers at both gene and protein level, and having higher Na(+) and K(+) current with the expression of synaptic markers. SIGNIFICANCE The three types of dental MSCs from a single donor broadly possessed similar cellular properties and can differentiate into neuronal cells; however, pulp derived MSCs showed higher neurogenic potential than the follicle and papilla, suggesting their use in future stem cells therapy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ji-Sung Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Republic of Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
58
|
Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy. Stem Cells Int 2016; 2016:9204574. [PMID: 27069484 PMCID: PMC4812497 DOI: 10.1155/2016/9204574] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/25/2016] [Accepted: 02/17/2016] [Indexed: 01/09/2023] Open
Abstract
Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration.
Collapse
|
59
|
Li J, Li H, Tian Y, Yang Y, Chen G, Guo W, Tian W. Cytoskeletal binding proteins distinguish cultured dental follicle cells and periodontal ligament cells. Exp Cell Res 2015; 345:6-16. [PMID: 26708290 DOI: 10.1016/j.yexcr.2015.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023]
Abstract
Human dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) derived from the ectomesenchymal tissue, have been shown to exhibit stem/progenitor cell properties and the ability to induce tissue regeneration. Stem cells in dental follicle differentiate into cementoblasts, periodontal ligament fibroblasts and osteoblasts, these cells form cementum, periodontal ligament and alveolar bone, respectively. While stem cells in dental follicle are a precursor to periodontal ligament fibroblasts, the molecular changes that distinguish cultured DFCs from PDLCs are still unknown. In this study, we have compared the immunophenotypic features and cell cycle status of the two cell lines. The results suggest that DFCs and PDLCs displayed similar features related to immunophenotype and cell cycle. Then we employed an isobaric tag for relative and absolute quantitation (iTRAQ) proteomics strategy to reveal the molecular differences between the two cell types. A total of 2138 proteins were identified and 39 of these proteins were consistently differentially expressed between DFCs and PDLCs. Gene ontology analyses revealed that the protein subsets expressed higher in PDLCs were related to actin binding, cytoskeletal protein binding, and structural constituent of muscle. Upon validation by real-time PCR, western blotting, and immunofluorescence staining. Tropomyosin 1 (TPM1) and caldesmon 1 (CALD1) were expressed higher in PDLCs than in DFCs. Our results suggested that PDLCs display enhanced actin cytoskeletal dynamics relative to DFCs while DFCs may exhibit a more robust antioxidant defense ability relative to PDLCs. This study expands our knowledge of the cultured DFCs and PDLCs proteome and provides new insights into possible mechanisms responsible for the different biological features observed in each cell type.
Collapse
Affiliation(s)
- Jie Li
- College of Life Science, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Yang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pedodontics, West China School of Stomatology, Sichuan University, Chengdu, China.
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
60
|
Jeon BG, Jang SJ, Park JS, Subbarao RB, Jeong GJ, Park BW, Rho GJ. Differentiation potential of mesenchymal stem cells isolated from human dental tissues into non-mesodermal lineage. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1087430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
61
|
Selection of Reference Genes for Quantitative Gene Expression in Porcine Mesenchymal Stem Cells Derived from Various Sources along with Differentiation into Multilineages. Stem Cells Int 2015; 2015:235192. [PMID: 25972899 PMCID: PMC4417979 DOI: 10.1155/2015/235192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 11/17/2022] Open
Abstract
The identification of stable reference genes is a prerequisite for ensuring accurate validation of gene expression, yet too little is known about stable reference genes of porcine MSCs. The present study was, therefore, conducted to assess the stability of reference genes in porcine MSCs derived from bone marrow (BMSCs), adipose (AMSCs), and skin (SMSCs) with their in vitro differentiated cells into mesenchymal lineages such as adipocytes, osteocytes, and chondrocytes. Twelve commonly used reference genes were investigated for their threshold cycle (Ct) values by qRT-PCR. The Ct values of candidate reference genes were analyzed by geNorm software to clarify stable expression regardless of experimental conditions. Thus, Pearson's correlation was applied to determine correlation between the three most stable reference genes (NF3) and optimal number of reference genes (NFopt). In assessment of stability of reference gene across experimental conditions by geNorm analysis, undifferentiated MSCs and each differentiated status into mesenchymal lineages showed slightly different results but similar patterns about more or less stable rankings. Furthermore, Pearson's correlation revealed high correlation (r > 0.9) between NF3 and NFopt. Overall, the present study showed that HMBS, YWHAZ, SDHA, and TBP are suitable reference genes for qRT-PCR in porcine MSCs.
Collapse
|
62
|
Lee WJ, Hah YS, Ock SA, Lee JH, Jeon RH, Park JS, Lee SI, Rho NY, Rho GJ, Lee SL. Cell source-dependent in vivo immunosuppressive properties of mesenchymal stem cells derived from the bone marrow and synovial fluid of minipigs. Exp Cell Res 2015; 333:273-288. [PMID: 25819273 DOI: 10.1016/j.yexcr.2015.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/06/2015] [Accepted: 03/19/2015] [Indexed: 01/07/2023]
Abstract
The in vitro differentiation and immunosuppressive capacity of mesenchymal stem cells (MSCs) derived from synovial fluid (SF-MSCs) and bone marrow extract (BM-MSCs) in an isogenic background of minipigs were comparatively analyzed in a collagen-induced arthritis (CIA) mouse model of rheumatoid arthritis (RA). The proliferation capacity and expression of pluripotent transcription factors (Oct3/4 and Sox2) were significantly (P<0.05) higher in SF-MSCs than in BM-MSCs. The differentiation capacity of SF-MSCs into adipocytes, osteocytes and neurocytes was significantly (P<0.05) lower than that of BM-MSCs, and the differentiation capacity of SF-MSCs into chondrocytes was significantly (P<0.05) higher than that of BM-MSCs. Systemic injection of BM- and SF-MSCs significantly (P<0.05) ameliorated the clinical symptoms of CIA mice, with SF-MSCs having significantly (P<0.05) higher clinical and histopathological recovery scores than BM-MSCs. Furthermore, the immunosuppressive properties of SF-MSCs in CIA mice were associated with increased levels of the anti-inflammatory cytokine interleukin (IL)-10, and decreased levels of the pro-inflammatory cytokine IL-1β and osteoclast-related sRANKL. In conclusion, SF-MSCs exhibited eminent pluripotency and differentiation capacity into chondrocytes, addition to substantial in vivo immunosuppressive capacity by elevating IL-10 and reducing IL-1β levels in CIA mice.
Collapse
Affiliation(s)
- Won-Jae Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam, Republic of Korea
| | - Young-Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Sun-A Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Suwon 441-706, Gyeonggi, Republic of Korea
| | - Jae-Hoon Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam, Republic of Korea
| | - Ryong-Hoon Jeon
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam, Republic of Korea
| | - Ji-Sung Park
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam, Republic of Korea
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Na-Young Rho
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 4S7
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam, Republic of Korea; Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Gyeongnam, Republic of Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam, Republic of Korea; Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Gyeongnam, Republic of Korea.
| |
Collapse
|
63
|
Saito MT, Silvério KG, Casati MZ, Sallum EA, Jr FHN. Tooth-derived stem cells: Update and perspectives. World J Stem Cells 2015; 7:399-407. [PMID: 25815123 PMCID: PMC4369495 DOI: 10.4252/wjsc.v7.i2.399] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/22/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is an emerging field of science that focuses on creating suitable conditions for the regeneration of tissues. The basic components for tissue engineering involve an interactive triad of scaffolds, signaling molecules, and cells. In this context, stem cells (SCs) present the characteristics of self-renewal and differentiation capacity, which make them promising candidates for tissue engineering. Although they present some common markers, such as cluster of differentiation (CD)105, CD146 and STRO-1, SCs derived from various tissues have different patterns in relation to proliferation, clonogenicity, and differentiation abilities in vitro and in vivo. Tooth-derived tissues have been proposed as an accessible source to obtain SCs with limited morbidity, and various tooth-derived SCs (TDSCs) have been isolated and characterized, such as dental pulp SCs, SCs from human exfoliated deciduous teeth, periodontal ligament SCs, dental follicle progenitor cells, SCs from apical papilla, and periodontal ligament of deciduous teeth SCs. However, heterogeneity among these populations has been observed, and the best method to select the most appropriate TDSCs for regeneration approaches has not yet been established. The objective of this review is to outline the current knowledge concerning the various types of TDSCs, and discuss the perspectives for their use in regenerative approaches.
Collapse
|
64
|
Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu GT, Liang A, Liu S. Concise Reviews: Characteristics and Potential Applications of Human Dental Tissue-Derived Mesenchymal Stem Cells. Stem Cells 2015; 33:627-38. [PMID: 25447379 DOI: 10.1002/stem.1909] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Junjun Liu
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| | - Fang Yu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology; Tongji University; Shanghai People's Republic of China
| | - Yao Sun
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology; Tongji University; Shanghai People's Republic of China
| | - Beizhan Jiang
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology; Tongji University; Shanghai People's Republic of China
| | - Wenjun Zhang
- Translational Center for Stem Cell Research, Tongji Hospital; Tongji University School of Medicine; Shanghai People's Republic of China
| | - Jianhua Yang
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| | - Guo-Tong Xu
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| | - Aibin Liang
- Translational Center for Stem Cell Research, Tongji Hospital; Tongji University School of Medicine; Shanghai People's Republic of China
| | - Shangfeng Liu
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| |
Collapse
|
65
|
Lee JH, Cho JY. Proteomics approaches for the studies of bone metabolism. BMB Rep 2014; 47:141-8. [PMID: 24499667 PMCID: PMC4163882 DOI: 10.5483/bmbrep.2014.47.3.270] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/16/2013] [Accepted: 01/04/2014] [Indexed: 01/13/2023] Open
Abstract
Bone is an active tissue, in which bone formation by osteoblast is followed by bone resorption by osteoclasts, in a repeating cycle. Proteomics approaches may allow the detection of changes in cell signal transduction, and the regulatory mechanism of cell differentiation. LC-MS/MS-based quantitative methods can be used with labeling strategies, such as SILAC, iTRAQ, TMT and enzymatic labeling. When used in combination with specific protein enrichment strategies, quantitative proteomics methods can identify various signaling molecules and modulators, and their interacting proteins in bone metabolism, to elucidate biological functions for the newly identified proteins in the cellular context. In this article, we will briefly review recent major advances in the application of proteomics for bone biology, especially from the aspect of cellular signaling. [BMB Reports 2014; 47(3): 141-148]
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Veterinary Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
66
|
Phenotypic and proteomic characteristics of human dental pulp derived mesenchymal stem cells from a natal, an exfoliated deciduous, and an impacted third molar tooth. Stem Cells Int 2014; 2014:457059. [PMID: 25379041 PMCID: PMC4212660 DOI: 10.1155/2014/457059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/03/2014] [Accepted: 09/18/2014] [Indexed: 12/14/2022] Open
Abstract
The level of heterogeneity among the isolated stem cells makes them less valuable for clinical use. The purpose of this study was to understand the level of heterogeneity among human dental pulp derived mesenchymal stem cells by using basic cell biology and proteomic approaches. The cells were isolated from a natal (NDPSCs), an exfoliated deciduous (stem cells from human exfoliated deciduous (SHED)), and an impacted third molar (DPSCs) tooth of three different donors. All three stem cells displayed similar features related to morphology, proliferation rates, expression of various cell surface markers, and differentiation potentials into adipocytes, osteocytes, and chondrocytes. Furthermore, using 2DE approach coupled with MALDI-TOF/TOF, we have generated a common 2DE profile for all three stem cells. We found that 62.3 ± 7% of the protein spots were conserved among the three mesenchymal stem cell lines. Sixty-one of these conserved spots were identified by MALDI-TOF/TOF analysis. Classification of the identified proteins based on biological function revealed that structurally important proteins and proteins that are involved in protein folding machinery are predominantly expressed by all three stem cell lines. Some of these proteins may hold importance in understanding specific properties of human dental pulp derived mesenchymal stem cells.
Collapse
|
67
|
Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2014; 9:1205-16. [PMID: 24850632 DOI: 10.1002/term.1899] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/16/2013] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Dental pulp stem cells (DPSCs) are a promising source of cells for numerous and varied regenerative medicine applications. Their natural function in the production of odontoblasts to create reparative dentin support applications in dentistry in the regeneration of tooth structures. However, they are also being investigated for the repair of tissues outside of the tooth. The ease of isolation of DPSCs from discarded or removed teeth offers a promising source of autologous cells, and their similarities with bone marrow stromal cells (BMSCs) suggest applications in musculoskeletal regenerative medicine. DPSCs are derived from the neural crest and, therefore, have a different developmental origin to BMSCs. These differences from BMSCs in origin and phenotype are being exploited in neurological and other applications. This review briefly highlights the source and functions of DPSCs and then focuses on in vivo applications across the breadth of regenerative medicine.
Collapse
Affiliation(s)
- Marco Tatullo
- Tecnologica Research Institute, Regenerative Medicine Section, St. E. Fermi, Crotone, Italy
| | | | - Kevin M Shakesheff
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Pharmacy, University of Nottingham, UK
| | - Lisa J White
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Pharmacy, University of Nottingham, UK
| |
Collapse
|
68
|
Ma D, Cui L, Gao J, Yan W, Liu Y, Xu S, Wu B. Proteomic analysis of mesenchymal stem cells from normal and deep carious dental pulp. PLoS One 2014; 9:e97026. [PMID: 24809979 PMCID: PMC4014579 DOI: 10.1371/journal.pone.0097026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/14/2014] [Indexed: 12/19/2022] Open
Abstract
Dental pulp stem cells (DPSCs), precursor cells of odontoblasts, are ideal seed cells for tooth tissue engineering and regeneration. Our previous study has demonstrated that stem cells exist in dental pulp with deep caries and are called carious dental pulp stem cells (CDPSCs). The results indicated that CDPSCs had a higher proliferative and stronger osteogenic differentiation potential than DPSCs. However, the molecular mechanisms responsible for the biological differences between DPSCs and CDPSCs are poorly understood. The aim of this study was to define the molecular features of DPSCs and CDPSCs by comparing the proteomic profiles using two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Our results revealed that there were 18 protein spots differentially expressed between DPSCs and CDPSCs in a narrow pH range of 4 to 7. These differently expressed proteins are mostly involved in the regulation of cell proliferation, differentiation, cell cytoskeleton and motility. In addition, our results suggested that CDPSCs had a higher expression of antioxidative proteins that might protect CDPSCs from oxidative stress. This study explores some potential proteins responsible for the biological differences between DPSCs and CDPSCs and expands our understanding on the molecular mechanisms of mineralization of DPSCs in the formation of the dentin-pulp complex.
Collapse
Affiliation(s)
- Dandan Ma
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Li Cui
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Jie Gao
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Ying Liu
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Shuaimei Xu
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|