51
|
McConn BR, Tachibana T, Gilbert ER, Cline MA. Prolactin-releasing peptide increases food intake and affects hypothalamic physiology in Japanese quail (Coturnix japonica). Domest Anim Endocrinol 2020; 72:106464. [PMID: 32279041 DOI: 10.1016/j.domaniend.2020.106464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/24/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Prolactin-releasing peptide (PrRP) increases food intake in birds, whereas it is a potent satiety factor in rodents and fish. The aim of this study was to determine the effects of central injection of PrRP on feeding behaviors and hypothalamic physiology in juvenile Japanese quail (Coturnix japonica). Intracerebroventricular injection of 1,692 pmol of PrRP increased food intake for the first 90 min after injection but did not affect water intake. Quail treated with PrRP displayed more food and drink pecks, less time standing but more perching, and decreased defecations. Prolactin-releasing peptide-injected quail had increased c-Fos immunoreactivity in the dorsomedial nucleus (DMN) and arcuate nucleus (ARC) of the hypothalamus. Hypothalamic neuropeptide Y receptor subtypes 2 and 5 and melanocortin receptor 4 mRNAs were greater in PrRP- than vehicle-injected quail. In the DMN, there was less corticotropin-releasing factor (CRF) mRNA and in the ARC, more CRF mRNA in PrRP- than vehicle-injected chicks. Thus, PrRP increases food intake in quail, which is associated with changes in hypothalamic CRF and neuropeptide Y receptor gene expression and c-Fos-immunolabeled cells in the ARC and DMN.
Collapse
Affiliation(s)
- B R McConn
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - T Tachibana
- Faculty of Agriculture, Ehime University, Ehime, Japan
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
52
|
Yuan D, Gao Y, Zhang X, Wang B, Chen H, Wu Y, Chen D, Wang Z, Li Z. NPY and NPY receptors in the central control of feeding and interactions with CART and MC4R in Siberian sturgeon. Gen Comp Endocrinol 2019; 284:113239. [PMID: 31394086 DOI: 10.1016/j.ygcen.2019.113239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/25/2019] [Accepted: 08/04/2019] [Indexed: 01/08/2023]
Abstract
Neuropeptide Y (NPY) is the most powerful central neuropeptide implicated in feeding regulation via its receptors. Understanding the role of NPY system is critical to elucidate animal feeding regulation. Unlike mammal, the possible mechanisms of NPY system in the food intake of teleost fish are mostly unknown. Therefore, we investigated the regulatory mechanism of NPY and NPY receptors in Siberian sturgeon. In this study, we cloned the cDNA encoding NPY, and assessed the effects of different energy status on npy mRNAs abundance. The expression of npy was decreased in the brain after feeding 1 and 3 h. Besides, the expression of npy was increased after fasting within 15 days, while exhibiting significant decrease after refeeding. In order to further characterize the role of NPY receptor in fish, we performed acute intraperitoneal (i.p.) injection of NPY Y1 and Y2 receptor agonists, which is [Leu 31, Pro 34] NPY and NPY13-36 respectively. The results showed that the food intake of Siberian sturgeon was increased within 30 mins after injection of both Y1 and Y2 receptor agonist. To explore the relationship between NPY, NPY receptors and another appetite peptides, we examined the level of npy, cocaine- and amphetamine-regulated transcript (cart) and melanocortin-4 receptor (mc4r) by injected Y1 and Y2 receptor agonist. The results suggested that cart expression was regulated by NPY which acts on Y1 receptor or Y2 receptor. While mc4r expression just was mediated by NPY and Y1 receptor.
Collapse
Affiliation(s)
- Dengyue Yuan
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Yundi Gao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China.
| |
Collapse
|
53
|
Hofmann S, Bellmann-Sickert K, Beck-Sickinger AG. Chemical modification of neuropeptide Y for human Y1 receptor targeting in health and disease. Biol Chem 2019; 400:299-311. [PMID: 30653463 DOI: 10.1515/hsz-2018-0364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
As a very abundant neuropeptide in the brain and widely distributed peptide hormone in the periphery, neuropeptide Y (NPY) appears to be a multisignaling key peptide. Together with peptide YY, pancreatic polypeptide and the four human G protein-coupled receptor subtypes hY1R, hY2R, hY4R and hY5R it forms the NPY/hYR multiligand/multireceptor system, which is involved in essential physiological processes as well as in human diseases. In particular, NPY-induced hY1R signaling plays a central role in the regulation of food intake and stress response as well as in obesity, mood disorders and cancer. Thus, several hY1R-preferring NPY analogs have been developed as versatile tools to unravel the complex NPY/hY1R signaling in health and disease. Further, these peptides provide basic lead structures for the development of innovative drugs. Here, the current research is summarized focusing on the development of differently sized hY1R-preferring NPY analogs as well as their advances with respect to hY1R profiling, potential therapeutic applications and targeted cancer imaging and therapy. Finally, major limitations and innovative strategies for next generation hY1R-preferring NPY analogs are addressed.
Collapse
Affiliation(s)
- Sven Hofmann
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| |
Collapse
|
54
|
Campos EJ, Martins J, Brudzewsky D, Woldbye DPD, Ambrósio AF. Neuropeptide Y system mRNA expression changes in the hippocampus of a type I diabetes rat model. Ann Anat 2019; 227:151419. [PMID: 31563570 DOI: 10.1016/j.aanat.2019.151419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) plays a crucial role in many neurobiological functions, such as cognition and memory. Cognitive and memory impairment have been described in diabetic patients. The metabolism of NPY is determined by the activity of proteases, primarily dipeptidyl-peptidase-IV (DPP-IV). Therefore, DPP-IV inhibitors, such as sitagliptin, may modulate the function of NPY. In this study, we investigated the effect of type 1 diabetes and sitagliptin treatment on the regulation of the mRNA encoding for NPY and its receptors (Y1, Y2, and Y5 receptors) in the hippocampus. METHODS Type 1 diabetes was induced in male Wistar rats by i.p. injection of streptozotocin. Starting two weeks after diabetes onset, animals were treated orally with sitagliptin (5mg/kg, daily) for two weeks. The mRNA expression of Npy and its receptors (Npy1r, Npy2r, and Npy5r) in the hippocampus was evaluated using in situ hybridization with 33P-labeled oligonucleotides. RESULTS The mRNA expression of Npy, Npy1r and Npy5r was higher in the dentate gyrus, whereas Npy2r highest level was observed in the CA3 subregion. The mRNA expression of Npy, Npy1r and Npy5r in dentate gyrus, CA1 and CA3 was not affected by diabetes and/or by sitagliptin treatment. Type 1 diabetes increased the mRNA expression of Npy2r in the CA3 subregion, which was prevented by sitagliptin treatment. CONCLUSIONS Our results show that type 1 diabetes, at early stages, induces mild changes in the NPY system in the hippocampus that were counteracted by sitagliptin treatment.
Collapse
Affiliation(s)
- Elisa J Campos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Dan Brudzewsky
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - David P D Woldbye
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
55
|
Wang J, Li Y, Luo P, Chen Y, Xi Q, Wu H, Zhao W, Shu G, Wang S, Gao P, Zhu X, Zhang Y, Jiang Q, Wang L. Oral supplementation with ginseng polysaccharide promotes food intake in mice. Brain Behav 2019; 9:e01340. [PMID: 31392839 PMCID: PMC6749478 DOI: 10.1002/brb3.1340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Ginseng polysaccharide (GPS, same as Panax polysaccharide) is a kind of polysaccharide extracted from ginseng. It has been reported that GPS has the ability to activate innate immunity, regulates blood sugar balance, and improves antioxidant capacity, but the effect on feeding behavior and its mechanism remains unclear. METHOD To investigate the possible effect of GPS on feeding behavior of animals, mice were supplied with GPS in water, and food intake, hedonic feeding behavior, anxiety-like behavior, expression of appetite-regulation peptides in the central nervous system and glucose-related hormone levels in the serum of mice were measured. RESULTS Ginseng polysaccharide significantly increased the average daily food intake in mice and promoted hedonic eating behavior. Meanwhile, the levels of serum glucose and glucagon were significantly reduced by GPS, and GPS promoted hypothalamic neuropeptide Y expression, inhibited proopiomelanocortin (POMC) expression, and reduced dopamine D1 receptor (DRD1) levels in the midbrain. We also found that the anxiety level of mice was significantly lower after GPS intake. In conclusion, oral supplementation with GPS promoted food intake in mice, most likely through the regulation of circulating glucose levels.
Collapse
Affiliation(s)
- Jiawen Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Pei Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yuhuang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Hanyu Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
56
|
He Y, Yang C, Wang P, Yang L, Wu H, Liu H, Qi M, Guo Z, Li J, Shi H, Wu X, Hu Z. Child compound Endothelium corneum attenuates gastrointestinal dysmotility through regulating the homeostasis of brain-gut-microbiota axis in functional dyspepsia rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111953. [PMID: 31082513 DOI: 10.1016/j.jep.2019.111953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nowadays, there is no specific effective western medicine for functional dyspepsia (FD), especially in children. Clinically, child compound Endothelium corneum (CCEC) has shown to be effective for the therapy of FD, however, the underlying mechanism has not been elucidated yet. MATERIALS AND METHODS FD was induced in rats by irregular diet plus dilute hydrochloric acid feeding. Gastric emptying and small intestinal transit were examined by intragastric gavage with Evans blue. Histopathology was assessed by H&E staining. Gastrointestinal hormones and brain gut peptides were measured by ELISA assay. mRNA expression level was quantified by real-time PCR. Protein expression level was detected by western blotting assay. Gut microbiota was analyzed by 16S rRNA miseq sequencing. RESULTS CCEC significantly enhanced gastric emptying and small intestinal transit of FD rats, and prominently suppressed gastrointestinal microinflammation. At phylum level, CCEC prevented the decrease of Firmicutes and the increase of Bacteroidetes in gut of FD rats. In stomach of FD rats, MTL, CCK and VIP levels were significantly increased, which could be repressed by CCEC; however, the decreased GAS level could not be elevated by CCEC. In small intestine of FD rats, MTL and GAS levels were decreased, while VIP content was increased. These alterations could be effectively reversed by CCEC. NPY levels in serum, small intestine and hypothalamus of FD rats were significantly decreased, which could be rescued by CCEC. Moreover, the over-activated POMC/Stat3/Akt pathway in hypothalamus of FD rats could be suppressed by CCEC. CONCLUSION CCEC enhanced gastrointestinal motility probably through rebalancing the homeostasis of brain-gut-microbiota axis in FD rats. The novel findings may provide insightful theoretical basis for its clinical employment.
Collapse
Affiliation(s)
- Yixin He
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Zhengzhou University, Zhengzhou, 450001, China.
| | - Chun Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongmin Liu
- School of Pharmacy, Zhengzhou University, Zhengzhou, 450001, China.
| | - Muge Qi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhonghua Guo
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianghua Li
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhibi Hu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
57
|
Gao Y, Li J, Zhang Z, Zhang R, Pollock A, Sun T. MicroRNA miR-7 and miR-17-92 in the Arcuate Nucleus of Mouse Hypothalamus Regulate Sex-Specific Diet-Induced Obesity. Mol Neurobiol 2019; 56:7508-7521. [DOI: 10.1007/s12035-019-1618-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
|
58
|
Gumbs MCR, Vuuregge AH, Eggels L, Unmehopa UA, Lamuadni K, Mul JD, la Fleur SE. Afferent neuropeptide Y projections to the ventral tegmental area in normal-weight male Wistar rats. J Comp Neurol 2019; 527:2659-2674. [PMID: 30950054 PMCID: PMC6767444 DOI: 10.1002/cne.24698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
The hypothalamic neuropeptide Y (NPY) circuitry is a key regulator of feeding behavior. NPY also acts in the mesolimbic dopaminergic circuitry, where it can increase motivational aspects of feeding behavior through effects on dopamine output in the nucleus accumbens (NAc) and on neurotransmission in the ventral tegmental area (VTA). Endogenous NPY in the NAc originates from local interneurons and afferent projections from the hypothalamic arcuate nucleus (Arc). However, the origin of endogenous NPY in the VTA is unknown. We determined, in normal‐weight male Wistar rats, if the source of VTA NPY is local, and/or whether it is derived from VTA‐projecting neurons. Immunocytochemistry, in situ hybridization and RT‐qPCR were utilized, when appropriate in combination with colchicine treatment or 24 hr fasting, to assess NPY/Npy expression locally in the VTA. Retrograde tracing using cholera toxin beta (CTB) in the VTA, fluorescent immunocytochemistry and confocal microscopy were used to determine NPY‐immunoreactive afferents to the VTA. NPY in the VTA was observed in fibers, but not following colchicine pretreatment. No NPY‐ or Npy‐expressing cell bodies were observed in the VTA. Fasting for 24 hr, which increased Npy expression in the Arc, failed to induce Npy expression in the VTA. Double‐labeling with CTB and NPY was observed in the Arc and in the ventrolateral medulla. Thus, VTA NPY originates from the hypothalamic Arc and the ventrolateral medulla of the brainstem in normal‐weight male Wistar rats. These afferent connections link hypothalamic and brainstem processing of physiologic state to VTA‐driven motivational behavior.
Collapse
Affiliation(s)
- Myrtille C R Gumbs
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Anna H Vuuregge
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Leslie Eggels
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Unga A Unmehopa
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Khalid Lamuadni
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joram D Mul
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
59
|
Fadda M, Hasakiogullari I, Temmerman L, Beets I, Zels S, Schoofs L. Regulation of Feeding and Metabolism by Neuropeptide F and Short Neuropeptide F in Invertebrates. Front Endocrinol (Lausanne) 2019; 10:64. [PMID: 30837946 PMCID: PMC6389622 DOI: 10.3389/fendo.2019.00064] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Numerous neuropeptide systems have been implicated to coordinately control energy homeostasis, both centrally and peripherally. However, the vertebrate neuropeptide Y (NPY) system has emerged as the best described one regarding this biological process. The protostomian ortholog of NPY is neuropeptide F, characterized by an RXRF(Y)amide carboxyterminal motif. A second neuropeptide system is short NPF, characterized by an M/T/L/FRF(W)amide carboxyterminal motif. Although both short and long NPF neuropeptide systems display carboxyterminal sequence similarities, they are evolutionary distant and likely already arose as separate signaling systems in the common ancestor of deuterostomes and protostomes, indicating the functional importance of both. Both NPF and short-NPF systems seem to have roles in the coordination of feeding across bilaterian species, but during chordate evolution, the short NPF system appears to have been lost or evolved into the prolactin releasing peptide signaling system, which regulates feeding and has been suggested to be orthologous to sNPF. Here we review the roles of both NPF and sNPF systems in the regulation of feeding and metabolism in invertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Liliane Schoofs
- Department of Biology, Functional Genomics and Proteomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
60
|
Ahmed RM, Phan K, Highton‐Williamson E, Strikwerda‐Brown C, Caga J, Ramsey E, Zoing M, Devenney E, Kim WS, Hodges JR, Piguet O, Halliday GM, Kiernan MC. Eating peptides: biomarkers of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia. Ann Clin Transl Neurol 2019; 6:486-495. [PMID: 30911572 PMCID: PMC6414477 DOI: 10.1002/acn3.721] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/25/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Physiological changes potentially influence disease progression and survival along the Amyotrophic Lateral Sclerosis (ALS)-Frontotemporal dementia (FTD) spectrum. The peripheral peptides that regulate eating and metabolism may provide diagnostic, metabolic, and progression biomarkers. The current study aimed to examine the relationships and biomarker potential of hormonal peptides. Methods One hundred and twenty-seven participants (36 ALS, 26 ALS- cognitive, patients with additional cognitive behavioral features, and 35 behavioral variant FTD (bvFTD) and 30 controls) underwent fasting blood analyses of leptin, ghrelin, neuropeptide Y (NPY), peptide YY (PYY), and insulin levels. Relationships between endocrine measures, cognition, eating behaviors, and body mass index (BMI) were investigated. Biomarker potential was evaluated using multinomial logistic regression for diagnosis and correlation to disease duration. Results Compared to controls, ALS and ALS-cognitive had higher NPY levels and bvFTD had lower NPY levels, while leptin levels were increased in all patient groups. All groups had increased insulin levels and a state of insulin resistance compared to controls. Lower NPY levels correlated with increasing eating behavioral change and BMI, while leptin levels correlated with BMI. On multinomial logistic regression, NPY and leptin levels were found to differentiate between diagnosis. Reduced Neuropeptide Y levels correlated with increasing disease duration, suggesting it may be useful as a potential marker of disease progression. Interpretation ALS-FTD is characterized by changes in NPY and leptin levels that may impact on the underlying regional neurodegeneration as they were predictive of diagnosis and disease duration, offering the potential as biomarkers and for the development of interventional treatments.
Collapse
Affiliation(s)
- Rebekah M. Ahmed
- Memory and Cognition ClinicInstitute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
| | - Katherine Phan
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | | | - Cherie Strikwerda‐Brown
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
- The University of SydneySchool of Psychology and Brain and Mind CentreSydneyNew South WalesAustralia
| | - Jashelle Caga
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Eleanor Ramsey
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Margaret Zoing
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Emma Devenney
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Woojin S. Kim
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - John R. Hodges
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
| | - Olivier Piguet
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
- The University of SydneySchool of Psychology and Brain and Mind CentreSydneyNew South WalesAustralia
| | - Glenda M. Halliday
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Matthew C. Kiernan
- Memory and Cognition ClinicInstitute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
61
|
Fasting and refeeding induce differential changes in hypothalamic mRNA abundance of appetite-associated factors in 7 day-old Japanese quail, Coturnix japonica. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:60-67. [DOI: 10.1016/j.cbpa.2018.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022]
|
62
|
Fokidis HB, Ma C, Radin B, Prior NH, Adomat HH, Guns ES, Soma KK. Neuropeptide Y and orexin immunoreactivity in the sparrow brain coincide with seasonal changes in energy balance and steroids. J Comp Neurol 2018; 527:347-361. [DOI: 10.1002/cne.24535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Chunqi Ma
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
| | - Benjamin Radin
- Department of Biology; Rollins College; Winter Park Florida
| | - Nora H. Prior
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
- Program in Neuroscience and Cognitive Neuroscience; University of Maryland; College Park Maryland
| | - Hans H. Adomat
- The Prostate Centre; Vancouver General Hospital; Vancouver British Columbia Canada
| | - Emma S. Guns
- The Prostate Centre; Vancouver General Hospital; Vancouver British Columbia Canada
- Department of Urological Sciences; University of British Columbia; Vancouver British Columbia Canada
| | - Kiran K. Soma
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
- Graduate Program in Neuroscience; University of British Columbia; Vancouver British Columbia Canada
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
63
|
Besnier E, Clavier T, Tonon MC, Pelletier G, Dureuil B, Castel H, Compère V. Anesthetic drugs modulate feeding behavior and hypothalamic expression of the POMC polypeptide precursor and the NPY neuropeptide. BMC Anesthesiol 2018; 18:96. [PMID: 30053804 PMCID: PMC6064126 DOI: 10.1186/s12871-018-0557-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 07/11/2018] [Indexed: 12/02/2022] Open
Abstract
Background Several hypnotic drugs have been previously identified as modulators of food intake, but exact mechanisms remain unknown. Feeding behavior implicates several neuronal populations in the hypothalamic arcuate nucleus including orexigenic neuropeptide Y and anorexigenic pro-opiomelanocortin producing neurons. The aim of this study was to investigate in mice the impact of different hypnotic drugs on food consumption and neuropeptide Y or pro-opiomelanocortine mRNA expression level in the hypothalamic arcuate nucleus. Methods Saline control, isoflurane, thiopental, midazolam or propofol were administered to C57Bl/6 mice. Feeding behavior was evaluated during 6 h. In situ hybridization of neuropeptide Y and pro-opiomelanocortine mRNAs in the hypothalamus brain region was also performed. Data were analyzed by Kruskal Wallis test and analysis of variance (p < 0.05). Results Midazolam, thiopental and propofol induced feeding behavior. Midazolam and thiopental increased neuropeptide Y mRNA level (respectively by 106 and 125%, p < 0.001) compared with control. Propofol and midazolam decreased pro-opiomelanocortine mRNA level by 31% (p < 0,01) compared with control. Isoflurane increased pro-opiomelanocortine mRNA level by 40% compared with control. Conclusion In our murine model, most hypnotics induced food consumption. The hypnotic-induced regulation of neuropeptide Y and pro-opiomelanocortine hypothalamic peptides is associated with this finding. Our data suggest that administration of some hypnotic drugs may affect hypothalamic peptide precursor and neuropeptide expression and concomittantly modulate food intake. Thus, this questions the choice of anesthetics for better care management of patients undergoing major surgery or at risk of undernutrition. Electronic supplementary material The online version of this article (10.1186/s12871-018-0557-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Besnier
- Normandie Univ, UNIROUEN, INSERM U1239, DC2N, 76000, Rouen, France. .,Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France. .,Normandie Univ, UNIROUEN, INSERM U1096, EnVi, 76000, Rouen, France. .,Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France.
| | - T Clavier
- Normandie Univ, UNIROUEN, INSERM U1239, DC2N, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.,Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France
| | - M C Tonon
- Normandie Univ, UNIROUEN, INSERM U1239, DC2N, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - G Pelletier
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital Center, Quebec, G1V4G2,, Canada
| | - B Dureuil
- Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France
| | - H Castel
- Normandie Univ, UNIROUEN, INSERM U1239, DC2N, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - V Compère
- Normandie Univ, UNIROUEN, INSERM U1239, DC2N, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.,Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France
| |
Collapse
|
64
|
Nakamura K, Nakamura Y. Hunger and Satiety Signaling: Modeling Two Hypothalamomedullary Pathways for Energy Homeostasis. Bioessays 2018; 40:e1700252. [DOI: 10.1002/bies.201700252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative PhysiologyNagoya University Graduate School of MedicineNagoya466‐8550Japan
- PRESTOJapan Science and Technology AgencyKawaguchiSaitama332‐0012Japan
| | - Yoshiko Nakamura
- Department of Integrative PhysiologyNagoya University Graduate School of MedicineNagoya466‐8550Japan
| |
Collapse
|
65
|
McConn BR, Gilbert ER, Cline MA. Appetite-associated responses to central neuropeptide Y injection in quail. Neuropeptides 2018; 69:9-18. [PMID: 29573813 DOI: 10.1016/j.npep.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 01/28/2023]
Abstract
The appetite-associated effects of neuropeptide Y (NPY) have been extensively studied in mammalian models. Less knowledge exists for other vertebrate species including birds. The aim of this study was to determine the effects of central injection of NPY on feeding behavior and hypothalamic physiology in 7 day-old Japanese quail (Coturnix japonica). During the light cycle, intracerebroventricular injection of 1.9 pmol, 0.5, and 1.0 nmol doses of NPY did not affect food intake, 0.031 to 0.13 nmol increased food intake, and 2.0 nmol NPY decreased food intake, in comparison to vehicle injection. Multiple doses of NPY stimulated water intake, but when food was not available, water intake was not affected. When injected during the dark cycle, NPY did not influence food intake. NPY-injected chicks had more c-Fos immunoreactive cells in the arcuate nucleus of the hypothalamus (ARC) and greater hypothalamic agouti-related peptide and neuropeptide Y receptors 1 and 2 (NPYR1 and NPYR2, respectively) mRNA than vehicle-injected chicks. Within the ventromedial hypothalamus, NPY-treated chicks expressed less NPYR1 mRNA, within the dorsomedial hypothalamus less NPY mRNA, and in the ARC greater NPYR2 mRNA than vehicle-injected chicks. Lastly, quail injected with NPY increased feeding pecks, escape attempts, and time spent preening, while locomotion, the number of steps, and time spent perching decreased compared to chicks injected with the vehicle. Results demonstrate that NPY stimulates food intake in quail, consistent with mammals and other avian species, but with some unique responses at the molecular level that are not documented in other species.
Collapse
Affiliation(s)
- Betty R McConn
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
66
|
Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018; 60:R171-R199. [PMID: 29467140 DOI: 10.1530/jme-17-0320] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.
Collapse
Affiliation(s)
- José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da SaúdeLaboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y BiotecnologíaInstituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
67
|
Chu SC, Chen PN, Chen JR, Yu CH, Hsieh YS, Kuo DY. Role of hypothalamic leptin-LepRb signaling in NPY-CART-mediated appetite suppression in amphetamine-treated rats. Horm Behav 2018; 98:173-182. [PMID: 29307696 DOI: 10.1016/j.yhbeh.2017.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022]
Abstract
Leptin is an adipose tissue hormone which plays an important role in regulating energy homeostasis. Amphetamine (AMPH) is a drug of appetite suppressant, which exerts its effect by decreasing the expression of hypothalamic neuropeptide Y (NPY) and increasing that of cocaine- and amphetamine-regulated transcript (CART). This study investigated whether leptin, the leptin receptor (LepRb) and the signal transducer and activator of transcription-3 (STAT3) were involved in NPY/CART-mediated appetite suppression in AMPH-treated rats. Rats were given AMPH daily for four days, and changes in the levels of blood leptin and hypothalamic NPY, CART, LepRb, Janus kinases 2 (JAK2), and STAT3 were assessed and compared. During the AMPH treatment, blood leptin levels and hypothalamic NPY expression decreased, with the largest reduction observed on Day 2. By contrast, the expression of hypothalamic CART, LepRb, JAK2, and STAT3 increased, with the maximum response on Day 2. Furthermore, the binding activity of pSTAT3/DNA increased and was expressed in similar pattern to that of CART, LepRb, and JAK2. An intracerebroventricular infusion of NPY antisense 60min prior to AMPH treatment increased the levels of leptin, as well as the expression in LepRb, JAK2, and CART, whereas an infusion of STAT3 antisense decreased these levels and the expression of these parameters. The results suggest that blood leptin and hypothalamic LepRb-JAK2-STAT3 signaling involved in NPY-CART-regulated appetite suppression in AMPH-treated rats. The findings may aid understanding the role of leptin-LepRb during the treatment of anorectic drugs.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Department of Food Science, Central Taiwan University of Science and Technology, Taichung City 406, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 40201, Taiwan
| | - Ching-Han Yu
- Department of Physiology, Chung Shan Medical University, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan.
| |
Collapse
|
68
|
|
69
|
Zhou X, Zhang H, He L, Wu X, Yin Y. Long-Term l-Serine Administration Reduces Food Intake and Improves Oxidative Stress and Sirt1/NFκB Signaling in the Hypothalamus of Aging Mice. Front Endocrinol (Lausanne) 2018; 9:476. [PMID: 30190704 PMCID: PMC6115525 DOI: 10.3389/fendo.2018.00476] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022] Open
Abstract
Serine has recently been shown to reduce oxidative stress and inflammation, which, when occurring in the hypothalamus, contribute to age-related obesity. To explore whether long-term serine administration reduces oxidative stress and body weight in aging mice, various concentrations of l-serine dissolved in water were administered to 18-month-old C57BL/6J mice for 6 months. The results showed that the administration of 0.5% (w/v) l-serine significantly reduced food intake and body weight gain during the experiment. Moreover, the administration of 0.5% l-serine decreased the concentrations of leptin, malondialdehyde, interleukin-1β, and interleukin-6, while it increased those of superoxide dismutase and glutathione, in both the serum and hypothalamus. Reactive oxygen species and the activity of nicotinamide adenine dinucleotide phosphate oxidase were reduced in the hypothalamus of aging mice treated with l-serine as compared with untreated control mice. Additionally, the expression of the leptin receptor increased while the levels of neuropeptide Y and agouti-related protein decreased in mice that had been treated with 0.5% l-serine. The expression of Sirt1 and phosphorylated signal transducers and activators of transcription 3 (pSTAT3) increased, while that of phosphorylated NFκB decreased in the mice treated with 0.5% l-serine. These results indicated that long-term l-serine administration reduces body weight by decreasing orexigenic peptide expression and reduces oxidative stress and inflammation during aging in mice, possibly by modulating the Sirt1/NFκB pathway. Thus, l-serine has the potential to be used in the prevention of age-related obesity.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Haiwen Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, China
| | - Liuqin He
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xin Wu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- *Correspondence: Xin Wu
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
70
|
Central regulation of brown adipose tissue thermogenesis and energy homeostasis dependent on food availability. Pflugers Arch 2017; 470:823-837. [PMID: 29209779 PMCID: PMC5942360 DOI: 10.1007/s00424-017-2090-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022]
Abstract
Energy homeostasis of mammals is maintained by balancing energy expenditure within the body and energy intake through feeding. Several lines of evidence indicate that brown adipose tissue (BAT), a sympathetically activated thermogenic organ, turns excess energy into heat to maintain the energy balance in rodents and humans, in addition to its thermoregulatory role for the defense of body core temperature in cold environments. Elucidating the central circuit mechanism controlling BAT thermogenesis dependent on nutritional conditions and food availability in relation to energy homeostasis is essential to understand the etiology of symptoms caused by energy imbalance, such as obesity. The central thermogenic command outflow to BAT descends through an excitatory neural pathway mediated by hypothalamic, medullary and spinal sites. This sympathoexcitatory thermogenic drive is controlled by tonic GABAergic inhibitory signaling from the thermoregulatory center in the preoptic area, whose tone is altered by body core and cutaneous thermosensory inputs. This circuit controlling BAT thermogenesis for cold defense also functions for the development of fever and psychological stress-induced hyperthermia, indicating its important role in the defense from a variety of environmental stressors. When food is unavailable, hunger-driven neural signaling from the hypothalamus activates GABAergic neurons in the medullary reticular formation, which then block the sympathoexcitatory thermogenic outflow to BAT to reduce energy expenditure and simultaneously command the masticatory motor system to promote food intake—effectively commanding responses to survive starvation. This article reviews the central mechanism controlling BAT thermogenesis in relation to the regulation of energy and thermal homeostasis dependent on food availability.
Collapse
|
71
|
van der Klaauw AA. Neuropeptides in Obesity and Metabolic Disease. Clin Chem 2017; 64:173-182. [PMID: 29097517 DOI: 10.1373/clinchem.2017.281568] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The global rise in the prevalence of obesity and associated comorbidities such as type 2 diabetes, cardiovascular disease, and cancer represents a major public health concern. CONTENT Studies in rodents with the use of global and targeted gene disruption, and mapping of neurocircuitry by using optogenetics and designer receptors exclusively activated by designer drugs (DREADDs) have greatly advanced our understanding of the neural control of body weight. In conjunction with analytical chemistry techniques involving classical immunoassays and mass spectrometry, many neuropeptides that are key to energy homeostasis have been identified. The actions of neuropeptides are diverse, from paracrine modulation of local neurotransmission to hormonal control of distant target organs. SUMMARY Multiple hormones, such as the adipocyte-derived leptin, insulin, and gut hormones, and nutrients signal peripheral energy state to the central nervous system. Neurons in distinct areas of the hypothalamus and brainstem integrate and translate this information by both direct inhibitory/excitatory projections and anorexigenic or orexigenic neuropeptides into actions on food intake and energy expenditure. The importance of these neuropeptides in human energy balance is most powerfully illustrated by genetic forms of obesity that involve neuropeptides such as melanocortin-4-receptor (MC4R) deficiency. Drugs that mimic the actions of neuropeptides are being tested for the treatment of obesity. Successful therapeutic strategies in obesity will require in-depth knowledge of the neuronal circuits they are working in, the downstream targets, and potential compensatory mechanisms.
Collapse
Affiliation(s)
- Agatha A van der Klaauw
- Department of Clinical Biochemistry, Metabolic Research Laboratories - Institute of Metabolic Science, University of Cambridge, Cambridge, England.
| |
Collapse
|
72
|
Sasaki T. Neural and Molecular Mechanisms Involved in Controlling the Quality of Feeding Behavior: Diet Selection and Feeding Patterns. Nutrients 2017; 9:nu9101151. [PMID: 29053636 PMCID: PMC5691767 DOI: 10.3390/nu9101151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
We are what we eat. There are three aspects of feeding: what, when, and how much. These aspects represent the quantity (how much) and quality (what and when) of feeding. The quantitative aspect of feeding has been studied extensively, because weight is primarily determined by the balance between caloric intake and expenditure. In contrast, less is known about the mechanisms that regulate the qualitative aspects of feeding, although they also significantly impact the control of weight and health. However, two aspects of feeding quality relevant to weight loss and weight regain are discussed in this review: macronutrient-based diet selection (what) and feeding pattern (when). This review covers the importance of these two factors in controlling weight and health, and the central mechanisms that regulate them. The relatively limited and fragmented knowledge on these topics indicates that we lack an integrated understanding of the qualitative aspects of feeding behavior. To promote better understanding of weight control, research efforts must focus more on the mechanisms that control the quality and quantity of feeding behavior. This understanding will contribute to improving dietary interventions for achieving weight control and for preventing weight regain following weight loss.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory for Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.
| |
Collapse
|
73
|
Lucas AR, Richards DY, Ramirez LM, Lutterschmidt DI. Arginine Vasotocin and Neuropeptide Y Vary with Seasonal Life-History Transitions in Garter Snakes. Integr Comp Biol 2017; 57:1166-1183. [DOI: 10.1093/icb/icx107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
74
|
Hartenstein V, Takashima S, Hartenstein P, Asanad S, Asanad K. bHLH proneural genes as cell fate determinants of entero-endocrine cells, an evolutionarily conserved lineage sharing a common root with sensory neurons. Dev Biol 2017; 431:36-47. [PMID: 28751238 DOI: 10.1016/j.ydbio.2017.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 01/02/2023]
Abstract
Entero-endocrine cells involved in the regulation of digestive function form a large and diverse cell population within the intestinal epithelium of all animals. Together with absorptive enterocytes and secretory gland cells, entero-endocrine cells are generated by the embryonic endoderm and, in the mature animal, from a pool of endoderm derived, self-renewing stem cells. Entero-endocrine cells share many structural/functional and developmental properties with sensory neurons, which hints at the possibility of an ancient evolutionary relationship between these two cell types. We will survey in this article recent findings that emphasize the similarities between entero-endocrine cells and sensory neurons in vertebrates and insects, for which a substantial volume of data pertaining to the entero-endocrine system has been compiled. We will then report new findings that shed light on the specification and morphogenesis of entero-endocrine cells in Drosophila. In this system, presumptive intestinal stem cells (pISCs), generated during early metamorphosis, undergo several rounds of mitosis that produce the endocrine cells and stem cells (ISCs) with which the fly is born. Clonal analysis demonstrated that individual pISCs can give rise to endocrine cells expressing different types of peptides. Immature endocrine cells start out as unpolarized cells located basally of the gut epithelium; they each extend an apical process into the epithelium which establishes a junctional complex and apical membrane specializations contacting the lumen of the gut. Finally, we show that the Drosophila homolog of ngn3, a bHLH gene that defines the entero-endocrine lineage in mammals, is expressed and required for the differentiation of this cell type in the fly gut.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA.
| | - Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Parvana Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Samuel Asanad
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Kian Asanad
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
75
|
Vitalone A, Di Sotto A, Mammola CL, Heyn R, Miglietta S, Mariani P, Sciubba F, Passarelli F, Nativio P, Mazzanti G. Phytochemical analysis and effects on ingestive behaviour of a Caralluma fimbriata extract. Food Chem Toxicol 2017; 108:63-73. [PMID: 28713048 DOI: 10.1016/j.fct.2017.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022]
Abstract
Caralluma fimbriata Wall. is currently used as a "natural slimming" food supplement, likely due to its content in pregnane glycosides. In the present study, a commercially available Caralluma fimbriata extract (Slimaluma®; CFE, 100 mg/kg) has been evaluated for its ability to affect the ingestive behaviour in female rats, also with reference to the modulation of the brain neuropeptides NPY and ORX.The interference of CFE with α-amylase and lipase enzymes has been investigated in vitro, as possible peripheral mechanism of action. Also, the chemical composition of CFE has been assessed by NMR and spectrophotometric analysis. Results from in vivo study showed that CFE induced effects neither on blood parameters, nor on liver and gut histomorphology. Interestingly, a reduction in body weight gain with an increase in water intake and hypothalamic levels of NPY and ORX peptides were found. Phytochemical analysis, showed CFE contained about 12% of pregnane glycosides and 1.3% of polyphenols. Present results suggest possible effects of C. fimbriata on ingestive behaviour, likely mediated by central and peripheral mechanisms.
Collapse
Affiliation(s)
- Annabella Vitalone
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| | - Rosemarie Heyn
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| | - Selenia Miglietta
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| | - Paola Mariani
- Department of General and Specialized Surgery "P. Stefanini", Sapienza University of Rome, V.le Del Policlinico 155, 00161 Rome, Italy
| | - Fabio Sciubba
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Passarelli
- Department of Molecular Medicine and of Medical Surgical Sciences and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Paola Nativio
- Department of Molecular Medicine and of Medical Surgical Sciences and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
76
|
Pitts PM, Volkoff H. Characterization of appetite-regulating factors in platyfish, Xiphophorus maculatus (Cyprinodontiformes Poeciliidae). Comp Biochem Physiol A Mol Integr Physiol 2017; 208:80-88. [PMID: 28377124 DOI: 10.1016/j.cbpa.2017.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
The regulation of energy in fish, like most vertebrates, is a complex process that involves a number of brain and peripheral hormones. These signals include anorexigenic (e.g. cholecystokinin (CCK) and cocaine- and amphetamine-regulated transcript (CART)) as well as orexigenic (e.g. orexin and neuropeptide Y (NPY)) peptides. Platyfish, Xiphophorus maculatus, are freshwater viviparous fish for which little is known about the endocrine mechanisms regulating feeding. In order to elucidate the role of these peptides in the regulation of feeding of platyfish, we examined the effects of peripheral injections of CCK and orexin on feeding behavior and food intake. Injections of CCK decreased both food intake and searching behavior, while injections of orexin increased searching behavior but did not affect food consumption. In order to better characterize these peptides, we examined their mRNA tissue distribution and assessed the effects of a 10-day fast on their brain and intestine expressions in both males and females. CCK, CART, NPY and orexin all show widespread distributions in brain and several peripheral tissues, including intestine and gonads. Fasting induced decreases in both CCK and CART and an increase in orexin mRNA expressions in the brain and a decrease in CCK expression in the intestine, but did not affect either expressions of NPY. There were no significant sex-specific differences in either the behavioral responses to injections or the expression responses to fasting. The widespread distribution and the fasting-induced changes in expression of these peptides suggest that they might have several physiological roles in platyfish, including the regulation of feeding.
Collapse
Affiliation(s)
- Paul M Pitts
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
77
|
Park S, Komatsu T, Kim SE, Tanaka K, Hayashi H, Mori R, Shimokawa I. Neuropeptide Y resists excess loss of fat by lipolysis in calorie-restricted mice: a trait potential for the life-extending effect of calorie restriction. Aging Cell 2017; 16:339-348. [PMID: 28101970 PMCID: PMC5334538 DOI: 10.1111/acel.12558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2016] [Indexed: 12/01/2022] Open
Abstract
Neuropeptide Y (NPY) is an orexigenic peptide that plays an essential role in caloric restriction (CR)‐mediated lifespan extension. However, the mechanisms underlying the NPY‐mediated effects in CR are poorly defined. Here, we report that NPY deficiency in male mice during CR increases mortality in association with lipodystrophy. NPY−/− mice displayed a rapid decrease in body weight and fat mass, as well as increased lipolysis during CR. These alterations in fat regulation were inhibited by the lipolysis inhibitor, acipimox, a treatment associated with reduced mortality. The lipolytic/thermogenic signaling, β3‐adrenergic receptor/hormone sensitive lipase, was markedly activated in white adipose tissue of NPY−/− mice compared with that of NPY+/+ mice, and thermogenesis was controlled by NPY under negative energy balance. These results demonstrate the critical role of NPY in the regulation of lipid metabolic homeostasis and survival via control of lipolysis and thermogenesis in a state of negative energy balance.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Toshimitsu Komatsu
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Sang Eun Kim
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Katsuya Tanaka
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
- Department of Plastic and Reconstructive Surgery; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Hiroko Hayashi
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Ryoichi Mori
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Isao Shimokawa
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| |
Collapse
|
78
|
Abstract
There is increasing evidence that an active lifestyle benefits both body and brain. However, not everyone may be able to exercise due to disease, injury or aging-related frailty. Identification of cellular targets activated by physical activity may lead to the development of new compounds that can, to some extent, mimic systemic and central effects of exercise. This review will focus on factors relevant to energy metabolism in muscle, such as the 5’ adenosine monophosphate-activated protein kinase (AMPK) - sirtuin (SIRT1) - Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, and the molecules affecting it. In particular, putative exercise-mimetics such as AICAR, metformin, and GW501516 will be discussed. Moreover, plant-derived polyphenols such as resveratrol and (-)epicatechin, with exercise-like effects on the body and brain will be evaluated.
Collapse
Affiliation(s)
- Davide Guerrieri
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA
| | - Hyo Youl Moon
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
79
|
McConn BR, Cline MA, Gilbert ER. Dietary macronutrient composition and central neuropeptide Y injection affect dietary preference and hypothalamic gene expression in chicks. Nutr Neurosci 2017; 21:403-413. [PMID: 28279130 DOI: 10.1080/1028415x.2017.1296606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this study was to determine the influence of dietary macronutrient composition on central NPY's orexigenic effect in chicks. METHODS Day-of-hatch chicks were fed one of three diets (3000 kcal ME/kg) ad libitum from hatch: high carbohydrate (HC), high fat (HF; 30% ME derived from soybean oil), and high protein (HP; 25 vs. 22% CP). In Experiment 1, chicks received intracerebroventricular injections of 0 (vehicle), 0.2, or 2.0 nmol NPY on day 4 and food intake was recorded for 6 hours. In Experiment 2, chicks were given all three diets before and after injection. In Experiment 3, hypothalamus was collected at 1-hour post-injection for gene expression analysis. RESULTS The HC diet-fed chicks responded with a greater increase, while the chicks fed the HF diet had a lower threshold response in food intake to NPY. Neuropeptide Y dose-dependently increased food intake in chicks fed the HC and HP diets. Chicks administered 0.2 nmol NPY preferred the HC and HP diets over the HF diet. Relative quantities of hypothalamic NPYR1 and MC4R mRNA were reduced by NPY in chicks that consumed the HP and HC diets, respectively. DISCUSSION Consumption of the HC diet was associated with the most robust NPY-induced increase in food intake. Injection of NPY accentuated differences among dietary groups in hypothalamic gene expression of several appetite-associated factors, results suggesting that the NPY/agouti-related peptide and melanocortin pathways are associated with some of the diet- and NPY-induced differences observed in this study.
Collapse
Affiliation(s)
- Betty R McConn
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Mark A Cline
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Elizabeth R Gilbert
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| |
Collapse
|
80
|
Nakamura Y, Yanagawa Y, Morrison SF, Nakamura K. Medullary Reticular Neurons Mediate Neuropeptide Y-Induced Metabolic Inhibition and Mastication. Cell Metab 2017; 25:322-334. [PMID: 28065829 PMCID: PMC5299028 DOI: 10.1016/j.cmet.2016.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/16/2016] [Accepted: 12/05/2016] [Indexed: 02/01/2023]
Abstract
Hypothalamic neuropeptide Y (NPY) elicits hunger responses to increase the chances of surviving starvation: an inhibition of metabolism and an increase in feeding. Here we elucidate a key central circuit mechanism through which hypothalamic NPY signals drive these hunger responses. GABAergic neurons in the intermediate and parvicellular reticular nuclei (IRt/PCRt) of the medulla oblongata, which are activated by NPY-triggered neural signaling from the hypothalamus, potentially through the nucleus tractus solitarius, mediate the NPY-induced inhibition of metabolic thermogenesis in brown adipose tissue (BAT) via their innervation of BAT sympathetic premotor neurons. Intriguingly, the GABAergic IRt/PCRt neurons innervating the BAT sympathetic premotor region also innervate the masticatory motor region, and stimulation of the IRt/PCRt elicits mastication and increases feeding as well as inhibits BAT thermogenesis. These results indicate that GABAergic IRt/PCRt neurons mediate hypothalamus-derived hunger signaling by coordinating both autonomic and feeding motor systems to reduce energy expenditure and to promote feeding.
Collapse
Affiliation(s)
- Yoshiko Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
81
|
Gao S, Zhang J, He C, Meng F, Bu G, Zhu G, Li J, Wang Y. Molecular characterization of neuropeptide Y (NPY) receptors (Y1, Y4 and Y6) and investigation of the tissue expression of their ligands (NPY, PYY and PP) in chickens. Gen Comp Endocrinol 2017; 240:46-60. [PMID: 27641685 DOI: 10.1016/j.ygcen.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 01/06/2023]
Abstract
Neuropeptide Y (NPY) receptors and its ligands, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are suggested to regulate many physiological processes including food intake in birds. However, our knowledge regarding this avian NPY system remains rather limited. Here, we examined the tissue expression of NPY, PYY and PP and the gene structure, expression and signaling of three NPY receptors (cY1, cY4 and cY6) in chickens. The results showed that 1) NPY is widely expressed in chicken tissues with abundance noted in the hypothalamus via quantitative real-time PCR, whereas PYY is highly expressed in the pancreas, gastrointestinal tract and various brain regions, and PP is expressed almost exclusively in the pancreas; 2) cY1, cY4 and cY6 contain novel non-coding exon(s) at their 5'-UTR; 3) The wide tissue distribution of cY1 and cY4 and cY6 were detected in chickens by quantitative real-time PCR and their expression is controlled by the promoter near exon 1, which displays strong promoter activity in DF-1 cells as demonstrated by Dual-luciferase reporter assay; 4) Monitored by luciferase reporter assays, activation of cY1 and cY4 expressed in HEK293 cells by chicken NPY1-36, PYY1-37, and PP1-36 treatment inhibits cAMP/PKA and activates MAPK/ERK signaling pathways, while cY6-expressing cells show little response to peptide treatment, indicating that cY1 and cY4, and not cY6, can transmit signals in vitro. Taken together, our study offers novel information about the expression and functionality of cY1, cY4, cY6 and their ligands in birds, and helps to decipher their conserved roles in vertebrates.
Collapse
Affiliation(s)
- Shunyu Gao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China; College of Chemistry and Life Sciences, Chuxiong Normal University, Chuxiong 675000, PR China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Chen He
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Fengyan Meng
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Guoqiang Zhu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
82
|
Wang X, Miao J, Liu P, Pan L. Role of neuropeptide F in regulating filter feeding of Manila clam, Ruditapes philippinarum. Comp Biochem Physiol B Biochem Mol Biol 2016; 205:30-38. [PMID: 28007616 DOI: 10.1016/j.cbpb.2016.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Endogenous signals which may be involved in the regulation of filter feeding in bivalves have never been examined. NPY/NPF homologue has been proved to play an important role in the regulation of food intake in vertebrate and several invertebrates. In this study, a NPF homologue was cloned from visceral ganglia of clam Ruditapes philippinarum. The full-length cDNA sequence was 892bp in length and encoded a precursor of 82 amino acid residues. We then examined the effects of fasting and refeeding on the filtration rates (FR), plasma glucose concentration (PGC), 5-HT, DA and the expression level of the rp-NPF and insulin transcript. The mRNA expression level of rp-NPF in visceral ganglion was increased during fasting, and rose to highest level on 72h after starvation and declined immediately after food had been supplied. Hemocoel injection of rp-NPF(5μg/g)significantly increased FR of clams within 2h. Compared to the controls, a significant increase in insulin mRNA levels was observed at 8h after injection. Contents of 5-HT and DA also increased in the 5μg/grp-NPF administrated clams at 8 and 24h after injection. These results suggest that, similar to vertebrates, NPF, insulin, 5-HT and DA may play a role in the regulation of feeding in R. philippinarum.
Collapse
Affiliation(s)
- Xin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Peipei Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
83
|
Klemettilä JP, Kampman O, Solismaa A, Lyytikäinen LP, Seppälä N, Viikki M, Hämäläinen M, Moilanen E, Mononen N, Lehtimäki T, Leinonen E. Association Study of Arcuate Nucleus Neuropeptide Y Neuron Receptor Gene Variation And Serum Npy Levels in Clozapine Treated Patients With Schizophrenia. Eur Psychiatry 2016; 40:13-19. [DOI: 10.1016/j.eurpsy.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 11/29/2022] Open
Abstract
AbstractBackgroundAntipsychotic-induced weight gain (AIWG) leads to metabolic consequences and comorbidity, social stigmatization and nonadherence in patients with schizophrenia. Neuropeptide Y (NPY) has an important role in appetite and body weight regulation. Associations between AIWG and serum NPY levels, and genetic polymorphisms (SNPs) associated with its serum levels have been little studied in these patients.Subjects and methodsAssociations between serum NPY concentration and other metabolic and inflammatory markers, and 215 SNPs in 21 genes (NPY gene, NPY receptor genes and genes encoding arcuate nucleus NPY neuron receptors) were studied in 180 patients with schizophrenia on clozapine treatment.ResultsThe serum levels of NPY correlated with levels of resistin (r = 0.31, P < 0.001) and age (r = 0.22, P = 0.003). In the general linear univariate model the best-fitting model with explanatory factors age, serum resistin level, serum insulin level, BMI and gender explained 18.0% (P < 0.001) of the variance of serum NPY. Genetic risk score (GRSNPY) analysis found twelve significant (P < 0.05) serum NPY concentration related SNPs among α7 nicotinic acetylcholine receptor gene CHRNA7, insulin receptor gene INSR, leptin receptor gene LEPR, glucocorticoid receptor (GR) gene NR3C1, and NPY gene. However, after permutation test of gene score the predictive value of GRSNPY remained non-significant (P = 0.078).ConclusionsSerum NPY level does not seem to be a feasible biomarker of AIWG. Serum NPY level alterations are not significantly associated with the candidate gene polymorphisms studied.
Collapse
|
84
|
Muroi Y, Ishii T. A novel neuropeptide Y neuronal pathway linking energy state and reproductive behavior. Neuropeptides 2016; 59:1-8. [PMID: 27659234 DOI: 10.1016/j.npep.2016.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023]
Abstract
Animals consume energy for reproduction, as well as survival. Excess or insufficient energy investment into reproduction, respectively, threatens the survival of parents or leads to the failure of reproduction. Management of energy consumption in reproduction is important, not only for the success of the process, but also for the survival of the parents. Reproductive behaviors, such as mating and parental behavior, are indispensable for achieving each event of reproduction including gametogamy, parturition, and lactation. Therefore, reproductive behavior is one of the important factors in managing energy consumption for reproduction. Orexigenic and anorexigenic molecules in the hypothalamus have been implicated in the regulation of reproductive functions. An orexigenic neuropeptide, neuropeptide Y (NPY), has been also implicated in the regulation of both reproduction and energy state of animals. In this review, we will first summarize the neuronal mechanism for regulating reproductive functions by orexigenic and anorexigenic molecules in the hypothalamus. Second, we will focus on the NPY neuronal pathways regulating reproductive behavior in the intra- and extra-hypothalamic brain areas. We will highlight the NPY neuronal pathway from the arcuate nucleus to the dorsal raphe nucleus as a novel extra-hypothalamic pathway for energy state-dependent regulation of reproductive behavior. Finally, we will propose a biological significance of the extra-hypothalamic NPY neuronal pathway, which plays an important role in the associative control of feeding and reproductive behaviors.
Collapse
Affiliation(s)
- Yoshikage Muroi
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Toshiaki Ishii
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
85
|
Gao Y, Sun T. Molecular regulation of hypothalamic development and physiological functions. Mol Neurobiol 2016; 53:4275-85. [PMID: 26223804 PMCID: PMC4733441 DOI: 10.1007/s12035-015-9367-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Abstract
The hypothalamus is composed of many heterogeneous nuclei that control distinct physiological functions. Investigating molecular mechanisms that regulate the specification of these nuclei and specific neuronal subtypes, and their contribution to diverse hypothalamic functions, is an exciting research focus. Here, we begin by summarizing the hypothalamic functions of feeding regulation, sleep-wake cycles, stress responses, and circadian rhythm, and describing their anatomical bases. Next, we review the molecular regulation of formation of hypothalamic territories, specification of nuclei and subnuclei, and generation of specific neurons. Finally, we highlight physiological and behavioral consequences of altered hypothalamic development. Identifying molecules that regulate hypothalamic development and function will increase our understanding of hypothalamus-related disorders, such as obesity and diabetes, and aid in the development of therapies aimed specifically at their etiologies.
Collapse
Affiliation(s)
- Yanxia Gao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Tao Sun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY, 10065, USA.
| |
Collapse
|
86
|
Gumbs MC, van den Heuvel JK, la Fleur SE. The effect of obesogenic diets on brain Neuropeptide Y. Physiol Behav 2016; 162:161-73. [DOI: 10.1016/j.physbeh.2016.04.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
|
87
|
Lim K, Barzel B, Burke SL, Armitage JA, Head GA. Origin of Aberrant Blood Pressure and Sympathetic Regulation in Diet-Induced Obesity. Hypertension 2016; 68:491-500. [DOI: 10.1161/hypertensionaha.116.07461] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022]
Abstract
High fat diet (HFD)–induced hypertension in rabbits is neurogenic and caused by the central action of leptin, which is thought to be dependent on activation of α-melanocortin–stimulating hormone (α-MSH) and neuropeptide Y–positive neurons projecting to the dorsomedial hypothalamus (DMH) and ventromedial hypothalamus (VMH). However, leptin may act directly in these nuclei. Here, we assessed the contribution of leptin, α-MSH, and neuropeptide Y signaling in the DMH and VMH to diet-induced hypertension. Male New Zealand white rabbits were instrumented with a cannula for drug injections into the DMH or VMH and a renal sympathetic nerve activity (RSNA) electrode. After 3 weeks of an HFD (13.3% fat; n=19), rabbits exhibited higher RSNA, mean arterial pressure (MAP), and heart rate compared with control diet–fed animals (4.2% fat; n=15). Intra-VMH injections of a leptin receptor antagonist or SHU9119, a melanocortin 3/4 receptor antagonist, decreased MAP, heart rate, and RSNA compared with vehicle in HFD rabbits (
P
<0.05) but not in control diet–fed animals. By contrast, α-MSH or neuropeptide Y injected into the VMH had no effect on MAP but produced sympathoexcitation in HFD rabbits (
P
<0.05) but not in control diet–fed rabbits. The effects of the leptin antagonist, α-MSH, or neuropeptide Y injections into the DMH on MAP or RSNA of HFD rabbits were not different from those after vehicle injection. α-MSH into the DMH of control diet–fed animals did increase MAP, heart rate, and RSNA. We conclude that the VMH is the likely origin of leptin-mediated sympathoexcitation and α-MSH hypersensitivity that contribute to obesity-related hypertension.
Collapse
Affiliation(s)
- Kyungjoon Lim
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - Benjamin Barzel
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - Sandra L. Burke
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - James A. Armitage
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - Geoffrey A. Head
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| |
Collapse
|
88
|
Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol Dis 2016; 95:210-24. [PMID: 27461050 DOI: 10.1016/j.nbd.2016.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.
Collapse
|
89
|
Yi J, Delp MS, Gilbert ER, Siegel PB, Cline MA. Anorexia is Associated with Stress-Dependent Orexigenic Responses to Exogenous Neuropeptide Y. J Neuroendocrinol 2016; 28. [PMID: 26924179 DOI: 10.1111/jne.12378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 11/28/2022]
Abstract
Chicken lines that have been divergently selected for either low (LWS) or high (HWS) body weight at 56 days of age for more than 57 generations have different feeding behaviours in response to a range of i.c.v. injected neurotransmitters. The LWS have different severities of anorexia, whereas the HWS become obese. Previously, we demonstrated that LWS chicks did not respond, whereas HWS chicks increased food intake, after central injection of neuropeptide Y (NPY). The present study aimed to determine the molecular mechanisms underlying the loss of orexigenic function of NPY in LWS. Chicks were divided into four groups: stressed LWS and HWS on day of hatch, and control LWS and HWS. The stressor was a combination of food deprivation and cold exposure. On day 5 post-hatch, each chick received an i.c.v. injection of vehicle or 0.2 nmol of NPY. Only the LWS stressed group did not increase food intake in response to i.c.v. NPY. Hypothalamic mRNA abundance of appetite-associated factors was measured at 1 h post-injection. Interactions of genetic line, stress and NPY treatment were observed for the mRNA abundance of agouti-related peptide (AgRP) and synaptotagmin 1 (SYT1). Intracerebroventricular injection of NPY decreased and increased AgRP and SYT1 mRNA, respectively, in the stressed LWS and increased AgRP mRNA in stressed HWS chicks. Stress was associated with increased NPY, orexin receptor 2, corticotrophin-releasing factor receptor 1, melanocortin receptor 3 (MC3R) and growth hormone secretagogue receptor expression. In conclusion, the loss of responsiveness to exogenous NPY in stressed LWS chicks may be a result of the decreased and increased hypothalamic expression of AgRP and MC3R, respectively. This may induce an intensification of anorexigenic melanocortin signalling pathways in LWS chicks that block the orexigenic effect of exogenous NPY. These results provide insights onto the anorexic condition across species, and especially for forms of inducible anorexia such as human anorexia nervosa.
Collapse
Affiliation(s)
- J Yi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M S Delp
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - P B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
90
|
Ameliorating antipsychotic-induced weight gain by betahistine: Mechanisms and clinical implications. Pharmacol Res 2016; 106:51-63. [DOI: 10.1016/j.phrs.2016.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/08/2023]
|
91
|
Barrell GK, Ridgway MJ, Wellby M, Pereira A, Henry BA, Clarke IJ. Expression of regulatory neuropeptides in the hypothalamus of red deer (Cervus elaphus) reveals anomalous relationships in the seasonal control of appetite and reproduction. Gen Comp Endocrinol 2016; 229:1-7. [PMID: 26899722 DOI: 10.1016/j.ygcen.2016.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 12/22/2022]
Abstract
Red deer are seasonal with respect to reproduction and food intake, so we tested the hypothesis that their brains would show seasonal changes in numbers of cells containing hypothalamic neuropeptides that regulate these functions. We examined the brains of male and female deer in non-breeding and breeding seasons to quantify the production of kisspeptin, gonadotropin inhibitory hormone (GnIH), neuropeptide Y (NPY) and γ-melanocyte stimulating hormone (γ-MSH - an index of pro-opiomelanocortin production), using immunohistochemistry. These neuropeptides are likely to be involved in the regulation of reproductive function and appetite. During the annual breeding season there were more cells producing kisspeptin in the arcuate nucleus of the hypothalamus than during the non-breeding season in males and females whereas there was no seasonal difference in the expression of GnIH. There were more cells producing the appetite stimulating peptide, NPY, in the arcuate/median eminence regions of the hypothalamus of females during the non-breeding season whereas the levels of an appetite suppressing peptide, γ-MSH, were highest in the breeding season. Male deer brains exhibited the converse, with NPY cell numbers highest in the breeding season and γ-MSH levels highest in the non-breeding season. These results support a role for kisspeptin as an important stimulatory regulator of seasonal breeding in deer, as in other species, but suggest a lack of involvement of GnIH in the seasonality of reproduction in deer. In the case of appetite regulation, the pattern exhibited by females for NPY and γ-MSH was as expected for the breeding and non-breeding seasons, based on previous studies of these peptides in sheep and the seasonal cycle of appetite reported for various species of deer. An inverse result in male deer most probably reflects the response of appetite regulating cells to negative energy balance during the mating season. Differences between the sexes in the seasonal changes in appetite regulating peptide cells of the hypothalamus present an interesting model for future studies.
Collapse
Affiliation(s)
- G K Barrell
- Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand.
| | - M J Ridgway
- Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - M Wellby
- Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - A Pereira
- Department of Physiology, Building 13F, Monash University, Clayton, VIC 3800, Australia
| | - B A Henry
- Department of Physiology, Building 13F, Monash University, Clayton, VIC 3800, Australia
| | - I J Clarke
- Department of Physiology, Building 13F, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
92
|
Role of Leptin and Orexin-A Within the Suprachiasmatic Nucleus on Anxiety-Like Behaviors in Hamsters. Mol Neurobiol 2016; 54:2674-2684. [DOI: 10.1007/s12035-016-9847-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/09/2016] [Indexed: 01/09/2023]
|
93
|
Khandekar N, Berning BA, Sainsbury A, Lin S. The role of pancreatic polypeptide in the regulation of energy homeostasis. Mol Cell Endocrinol 2015; 418 Pt 1:33-41. [PMID: 26123585 DOI: 10.1016/j.mce.2015.06.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/16/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022]
Abstract
Imbalances in normal regulation of food intake can cause obesity and related disorders. Inadequate therapies for such disorders necessitate better understanding of mechanisms that regulate energy homeostasis. Pancreatic polypeptide (PP), a robust anorexigenic hormone, effectively modulates food intake and energy homeostasis, thus potentially aiding anti-obesity therapeutics. Intra-gastric and intra-intestinal infusion of nutrients stimulate PP secretion from the gastrointestinal tract, leading to vagal stimulation that mediates complex actions via the neuropeptide Y4 receptor in arcuate nucleus of the hypothalamus, subsequently activating key hypothalamic nuclei and dorsal vagal complex of the brainstem to influence energy homeostasis and body composition. Novel studies indicate affinity of PP for the relatively underexplored neuropeptide y6 receptor, mediating actions via the suprachiasmatic nucleus and pathways involving vasoactive intestinal polypeptide and insulin like growth factor 1. This review highlights detailed mechanisms by which PP mediates its actions on energy balance through various areas in the brain.
Collapse
Affiliation(s)
- Neeta Khandekar
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Britt A Berning
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Amanda Sainsbury
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Shu Lin
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
94
|
Ruegsegger GN, Toedebusch RG, Braselton JF, Roberts CK, Booth FW. Reduced metabolic disease risk profile by voluntary wheel running accompanying juvenile Western diet in rats bred for high and low voluntary exercise. Physiol Behav 2015; 152:47-55. [DOI: 10.1016/j.physbeh.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022]
|
95
|
Ji W, Ping HC, Wei KJ, Zhang GR, Shi ZC, Yang RB, Zou GW, Wang WM. Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) in blunt snout bream (Megalobrama amblycephala): cDNA cloning, tissue distribution and mRNA expression changes responding to fasting and refeeding. Gen Comp Endocrinol 2015; 223:108-19. [PMID: 26316038 DOI: 10.1016/j.ygcen.2015.08.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 01/22/2023]
Abstract
Blunt snout bream (Megalobrama amblycephala Yih, 1955) is an endemic freshwater fish in China for which the endocrine mechanism of regulation of feeding has never been examined. Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) play important roles in the regulation of fish feeding. In this study, full-length cDNAs of ghrelin, NPY and CCK were cloned and analyzed from blunt snout bream. Both the ghrelin and NPY genes of blunt snout bream had the same amino acid sequences as grass carp, and CCK also shared considerable similarity with that of grass carp. The three genes were expressed in a wide range of adult tissues, with the highest expression levels of ghrelin in the hindgut, NPY in the hypothalamus and CCK in the pituitary, respectively. Starvation challenge experiments showed that the expression levels of ghrelin and NPY mRNA increased in brain and intestine after starvation, and the expression levels of CCK decreased after starvation. Refeeding could bring the expression levels of the three genes back to the control levels. These results indicated that the feeding behavior of blunt snout bream was regulated by the potential correlative actions of ghrelin, NPY and CCK, which contributed to the defense against starvation. This study will further our understanding of the function of ghrelin, NPY and CCK and the molecular mechanism of feeding regulation in teleosts.
Collapse
Affiliation(s)
- Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China
| | - Hai-Chao Ping
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China.
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China.
| | - Ze-Chao Shi
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China
| | - Rui-Bin Yang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China
| | - Gui-Wei Zou
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China
| | - Wei-Min Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
96
|
Luchtman DW, Chee MJS, Doslikova B, Marks DL, Baracos VE, Colmers WF. Defense of Elevated Body Weight Setpoint in Diet-Induced Obese Rats on Low Energy Diet Is Mediated by Loss of Melanocortin Sensitivity in the Paraventricular Hypothalamic Nucleus. PLoS One 2015; 10:e0139462. [PMID: 26444289 PMCID: PMC4596859 DOI: 10.1371/journal.pone.0139462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/12/2015] [Indexed: 01/15/2023] Open
Abstract
Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks’ refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint.
Collapse
Affiliation(s)
- Dirk W. Luchtman
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Melissa J. S. Chee
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Barbora Doslikova
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Portland, Oregon, United States of America
| | - Vickie E. Baracos
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - William F. Colmers
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
97
|
Zagorácz O, Kovács A, László K, Ollmann T, Péczely L, Lénárd L. Effects of direct QRFP-26 administration into the medial hypothalamic area on food intake in rats. Brain Res Bull 2015; 118:58-64. [PMID: 26385088 DOI: 10.1016/j.brainresbull.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
The RFamide peptide family comprises a number of biologically active peptides sharing RF motif at their C-terminal end. These peptides are involved in the control of multiple physiological functions including regulation of metabolism and feeding behavior. QRFP-43 as well as its 26-aminoacid residue QRFP-26 are able to cause orexigenic effect when administered to the rodents' cerebral ventricles. QRFPs have been suggested as the endogenous ligands of the previously orphan GPR103 receptors. GPR103 receptors share amino acid identity with other receptors of neuropeptides involved in feeding (NPY, NPFF, galanin). QRFP-26 expressing neurons and binding sites are densely present in the rat medial hypothalamus (MHA), an area directly responsible for the regulation of feeding. QRFP-26 was delivered to the target area by direct intrahypothalamic microinjection, and the consumption of liquid food was measured over a 60 min period. Both doses (100 and 200 ng) significantly increased food intake. Non-specific receptor antagonist BIBP3226 eliminated the orexigenic effect caused by QRFP-26 administration. Effective doses of QRFP-26 did not modify general locomotor activity and behavioral patterns examined in the open-field test. This study is the first reporting feeding modulating effects following direct intrahypothalamic QRFP-26 administration.
Collapse
Affiliation(s)
- Olga Zagorácz
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary; Molecular Neurophysiology Research Group, Pécs University, Szentágothai Research Center, Pécs, Hungary.
| |
Collapse
|
98
|
Wang H, Ji J, Yu Y, Wei X, Chai S, Liu D, Huang D, Li Q, Dong Z, Xiao X. Neonatal Overfeeding in Female Mice Predisposes the Development of Obesity in their Male Offspring via Altered Central Leptin Signalling. J Neuroendocrinol 2015; 27:600-8. [PMID: 25855235 DOI: 10.1111/jne.12281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 02/01/2023]
Abstract
The prevalence of obesity among child-bearing women has increased significantly. The adverse consequences of maternal obesity on the descendants have been well accepted, although few studies have examined the underlying mechanisms. We investigated whether neonatal overfeeding in female mice alters metabolic phenotypes in the offspring and whether hypothalamic leptin signalling is involved. Neonatal overfeeding was induced by reducing the litter size to three pups per litter, in contrast to normal litter size of 10 pups per litter. Normal and neonatally overfed female mice were bred with normal male mice, and offspring of overfeeding mothers (OOM) and control mothers (OCM) were generated. We examined body weight, daily food intake, leptin responsiveness and the number of positive neurones for phosphorylated-signal transducer and activator of transcription 3 (pSTAT3) along with neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH) and NPY in the nucleus tractus solitarius (NTS) of the brain stem. The body weight and daily food intake of OOM were significantly higher than those of OCM. Leptin significantly reduced food intake and increased the number of pSTAT3 positive neurones in the ARH of OCM mice, whereas no significant changes in food intake and pSTAT3 neurones were found in leptin-treated OOM mice. The number of NPY neurones in the ARH and NTS of the OOM mice was significantly higher than that of OCM mice. The results of the present study indicate that the obese phenotype from mothers can be passed onto the subsequent generation, which is possibly associated with hypothalamic leptin resistance.
Collapse
Affiliation(s)
- H Wang
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - J Ji
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Y Yu
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - X Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - S Chai
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - D Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - D Huang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Q Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Z Dong
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - X Xiao
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
99
|
Davies S, Deviche P. Regulation of feeding behavior and plasma testosterone in response to central neuropeptide Y administration in a songbird. ACTA ACUST UNITED AC 2015; 323:478-86. [DOI: 10.1002/jez.1943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Scott Davies
- School of Life Sciences; Arizona State University; Tempe Arizona
| | - Pierre Deviche
- School of Life Sciences; Arizona State University; Tempe Arizona
| |
Collapse
|
100
|
Hsieh YS, Chen PN, Yu CH, Chen CH, Tsai TT, Kuo DY. Involvement of oxidative stress in the regulation of NPY/CART-mediated appetite control in amphetamine-treated rats. Neurotoxicology 2015; 48:131-41. [PMID: 25825358 DOI: 10.1016/j.neuro.2015.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 01/09/2023]
Abstract
Amphetamine (AMPH) treatment can suppress appetite and increase oxidative stress in the brain. AMPH-induced appetite suppression is associated with the regulation of neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) in the hypothalamus. The present study explored whether antioxidants, including glutathione S-transferase (GST) and glutathione peroxidase (GP), were involved in this NPY/CART-mediated appetite control. Rats were treated daily with AMPH for four days. Changes in food intake and expression levels of hypothalamic NPY, CART, GST, and GP were examined and compared. Results showed that, in AMPH-treated rats, (1) food intake and NPY expression decreased, while CART, GST, and GP expression increased; (2) NPY knockdown in the brain enhanced the decrease in NPY and the increases in CART, GST, and GP expression; and (3) central inhibition of reactive oxygen species production decreased GST and GP and modulated AMPH anorexia and the expression levels of NPY and CART. The present results suggest that oxidative stress in the brain participates in regulating NPY/CART-mediated appetite control in AMPH-treated rats. These results may advance the knowledge regarding the molecular mechanism of AMPH-evoked or NPY/CART-mediated appetite suppression.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Ching-Han Yu
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Chia-Hui Chen
- Department of Biomedical Science, College of Medical Science and Technology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Tsung-Ta Tsai
- Department of Biomedical Science, College of Medical Science and Technology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan.
| |
Collapse
|