51
|
Adolfi MC, Depincé A, Wen M, Pan Q, Herpin A. Development of Ovaries and Sex Change in Fish: Bringing Potential into Action. Sex Dev 2023; 17:84-98. [PMID: 36878204 DOI: 10.1159/000526008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/08/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Encompassing about half of the 60,000 species of vertebrates, fish display the greatest diversity of sex determination mechanisms among metazoans. As such that phylum offers a unique playground to study the impressive variety of gonadal morphogenetic strategies, ranging from gonochorism, with either genetic or environmental sex determination, to unisexuality, with either simultaneous or consecutive hermaphroditism. SUMMARY From the two main types of gonads, the ovaries embrace the important role to produce the larger and non-motile gametes, which is the basis for the development of a future organism. The production of the egg cells is complex and involves the formation of follicular cells, which are necessary for the maturation of the oocytes and the production of feminine hormones. In this vein, our review focuses on the development of ovaries in fish with special emphasis on the germ cells, including those that transition from one sex to the other as part of their life cycle and those that are capable of transitioning to the opposite sex depending on environmental cues. KEY MESSAGES Clearly, establishing an individual as either a female or a male is not accomplished by the sole development of two types of gonads. In most cases, that dichotomy, be it final or transient, is accompanied by coordinated transformations across the entire organism, leading to changes in the physiological sex as a whole. These coordinated transformations require both molecular and neuroendocrine networks, but also anatomical and behavioural adjustments. Remarkably, fish managed to tame the ins and outs of sex reversal mechanisms to take the most advantages of changing sex as adaptive strategies in some situations.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Amaury Herpin
- Fish Physiology and Genomics, INRAE, UR 1037, Rennes, France
| |
Collapse
|
52
|
Wang S, Sun M, Ning Z, Chen Y, Zhou H, Mu W. The effects of sustained and diel-cycling hypoxia on high-latitude fish Phoxinus lagowskii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101059. [PMID: 36706598 DOI: 10.1016/j.cbd.2023.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
High-latitude fish are subjected to sustained and diel-cycling hypoxia. Oxygen deficiency could pose a serious threat to fish, but little information is available regarding the response mechanisms employed by high-latitude fish to sustained and diel-cycling hypoxia. In this study, a combination of transcriptomics and metabolomics were used to examine the molecular response mechanisms actioned by sustained and diel-cycling hypoxia in the high-latitude fish, Phoxinus lagowskii. P. lagowskii was divided into normoxic control (6.0-7.0 mg/L dissolved oxygen), sustained (1.5 mg/L dissolved oxygen), and diel-cycling hypoxic treatment (6.0-7.0 mg/L between 07:00-21:00, and 3.0-4.0 mg/L between 21:00-07:00) tanks for 28 days. Differentially expressed genes (DEGs) and significantly different metabolites (DMs) related to digestive proteases, lipid metabolism, estrogen signaling pathway, steroid hormone biosynthesis, glutathione metabolism, and tryptophan metabolism were identified from comparative metabolomic and transcriptomic data expression profiles within the liver. The current study found that P. lagowskii had significantly different responses between sustained and diel-cycling hypoxia. P. lagowskii faced with sustained hypoxia may enhance their tolerance capacity through phospholipid and glutathione metabolism. Our data provide new insights into the high latitude fish coping with changes in hypoxia and warrants further investigation into these potentially important genes and metabolites.
Collapse
Affiliation(s)
- Sihan Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Mingyang Sun
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zhaoyang Ning
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yingqiao Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Haishui Zhou
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
53
|
Identification of sex-specific splicing via comparative transcriptome analysis of gonads from sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101031. [PMID: 36371882 DOI: 10.1016/j.cbd.2022.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Alternative splicing (AS) is an essential post-transcriptional regulation mechanism for sex differentiation and gonadal development, which has rarely been reported in marine invertebrates. Sea cucumber (Apostichopus japonicus) is an economically important marine benthic echinoderm with a potential XX/XY sex determination mechanism, whose molecular mechanism in the gonadal differentiation has not been clearly understood. In this study, we analyzed available RNA-seq datasets of male and female gonads to explore if AS mechanism exerts an essential function in sex differentiation and gonadal development of A. japonicus. In our results, a total of 20,338 AS events from 7219 alternatively spliced genes, and 189 sexually differential alternative splicing (DAS) events from 156 genes were identified in gonadal transcriptome of sea cucumber. Gene Ontology analysis indicated that these DAS genes were significantly enriched in spermatogenesis-related GO terms. Maximal Clique Centrality (MCC) was then applied for protein-protein interaction (PPI) analysis to search for protein interactions and hub DAS gene. Among all DAS genes, we identified 10 DAS genes closely related to spermatogenesis and (or) sperm motility and a hub gene dnah1. Thus, this study revealed that alternative isoforms were generated from certain genes in female and male gonads through alternative splicing, which may provide direct evidence that alternative splicing mechanisms participate in female and male gonads. These results suggested a novel perspective for explaining the molecular mechanisms underlying gonadal differentiation between male and female sea cucumbers.
Collapse
|
54
|
Su J, Yi S, Gao Z, Abbas K, Zhou X. DNA methylation mediates gonadal development via regulating the expression levels of cyp19a1a in loach Misgurnus anguillicaudatus. Int J Biol Macromol 2023; 235:123794. [PMID: 36828090 DOI: 10.1016/j.ijbiomac.2023.123794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
DNA methylation-mediated transcriptional regulation has been considered to significantly impact some steroidogenic enzyme genes expression. To uncover the roles of DNA methylation on the regulation of aromatase gene expression during gametogenesis in Misgurnus anguillicaudatus, the expression profiles and cellular localization of cyp19a1a and cyp19a1b were analyzed, and the landscape of DNA methylation dynamics was investigated. We found that cyp19a1a was predominantly expressed in granulosa cells of oocytes, while cyp19a1b expression was enriched in radial glial cells of the forebrain. In ovary, cyp19a1a was highly expressed until the vitellogenesis stage. The average methylation levels, especially for two CpG sites within the cAMP response element, were negatively correlated with cyp19a1a expression levels, indicating that methylation could regulate cyp19a1a transcriptional activity by modulating the binding efficiency of cAMP to its response elements. Compared with in ovary, cyp19a1a showed lower expression in testis but was hypermethylated. Cyp19a1b in female brain weakly expressed before the vitellogenesis stage, but significantly elevated at the maturation stage. In both sexes, it maintained high methylation levels in brain despite the obvious fluctuation of the cyp19a1b expression. This study revealed that DNA methylation plays a key role in establishing cyp19a1a spatiotemporal expression patterns and thus mediates gonadal development in teleosts.
Collapse
Affiliation(s)
- Junxiao Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaokui Yi
- College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Zexia Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Khalid Abbas
- Aquaculture Biotechnology Lab, Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Xiaoyun Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
55
|
The Expression Pattern of Insulin-Like Growth Factor Subtype 3 (igf3) in the Orange-Spotted Grouper Epinephelus coioides and Its Function on Ovary Maturation. Int J Mol Sci 2023; 24:ijms24032868. [PMID: 36769198 PMCID: PMC9918221 DOI: 10.3390/ijms24032868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
A new insulin-like growth factor (Igf) subtype 3 (igf3) has recently been found in the bony fish orange-spotted grouper (Epinephelus coioides). However, the role of igf3 in the maturation of the ovary and sex differentiation in E. coioides is currently unknown. We examined the ovarian localization and receptor binding of the novel ortholog Igf3 using qRT-PCR, and Western blotting, combined with in situ hybridization and immunohistochemistry methods. Results demonstrated the presence of igf3 mRNA and protein in mature oocytes. Furthermore, Igf3 protein expression was not detected in testis, brain, kidney and liver homogenates. The calculated molecular weight of Igf3 was 22 kDa, which was consistent with the deduced amino acid sequence from the full-length open reading frame. The immunoreactivity showed that Igf3 was strongly present in the follicle staining fully-grown stage. The igf3 mRNA expression level was significantly positively correlated with ovarian follicular maturation. Meanwhile, Igf3 increased germinal-vesicle breakdown in a time- and dose-dependent manner. In vitro, treatment of primary ovarian cells with Igf3 up-regulated significantly the mRNA expression level of genes related to sex determination and reproduction such as forkhead boxl2 (foxl2), dosage-sensitive sex reversal adrenal hypoplasia critical region on chromosome x gene 1 (dax1), cytochrome P450 family 19 subfamily member 1 a (cyp19a1a), cytochrome P450 family 11 subfamily a member 1 a (cyp11a1a) and luteinizing hormone receptor 1 (lhr1). Overall, our results demonstrated that igf3 promotes the maturation of the ovary and plays an important role in sex differentiation in E. coioides.
Collapse
|
56
|
Valdivieso A, Anastasiadi D, Ribas L, Piferrer F. Development of epigenetic biomarkers for the identification of sex and thermal stress in fish using DNA methylation analysis and machine learning procedures. Mol Ecol Resour 2023; 23:453-470. [PMID: 36305237 PMCID: PMC10098837 DOI: 10.1111/1755-0998.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 01/04/2023]
Abstract
The sex ratio is a key ecological demographic parameter crucial for population viability. However, the epigenetic mechanisms operating during gonadal development regulating gene expression and the sex ratio remain poorly understood. Moreover, there is interest in the development of epigenetic markers associated with a particular phenotype or as sentinels of environmental effects. Here, we profiled DNA methylation and gene expression of 10 key genes related to sex development and stress, including steroidogenic enzymes, and growth and transcription factors. We provide novel information on the sex-related differences and on the influence of elevated temperature on these genes in zebrafish, a species with mixed genetic and environmental influences on sex ratios. We identified both positive (e.g., amh, cyp11c and hsd11b2) and negative (e.g., cyp11a1 and dmrt1) correlations in unexposed males, and negative correlation (amh) in exposed females between DNA methylation and gene expression levels. Further, we combined DNA methylation analysis with machine learning procedures and found a series of informative CpGs capable not only of correctly identifying sex (based on cyp19a1a DNA methylation levels) but also of identifying whether males and females had been exposed to abnormally elevated temperature when young (based on amh and foxl2a DNA methylation levels, respectively). This was achieved in the absence of conspicuous morphological alterations of the gonads. These DNA methylation-based epigenetic biomarkers represent molecular resources that can correctly recapitulate past thermal history and pave the way for similar findings in other species to assess potential ecological effects of environmental disturbances in the context of climate change.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
57
|
Amh/Amhr2 Signaling Causes Masculinization by Inhibiting Estrogen Synthesis during Gonadal Sex Differentiation in Japanese Flounder ( Paralichthys olivaceus). Int J Mol Sci 2023; 24:ijms24032480. [PMID: 36768803 PMCID: PMC9917198 DOI: 10.3390/ijms24032480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The anti-Müllerian hormone (Amh) is a protein belonging to the TGF-β superfamily, the function of which has been considered important for male sex differentiation in vertebrates. The Japanese flounder (Paralichthys olivaceus) is a teleost fish that has an XX/XY sex determination system and temperature-dependent sex determination. In this species, amh expression is up-regulated in genetic males and in temperature-induced masculinization during the sex differentiation period. However, to the best of our knowledge, no reports on the Amh receptor (Amhr2) in flounder have been published, and the details of Amh signaling remain unclear. In this study, we produced amhr2-deficient mutants using the CRISPR/Cas9 system and analyzed the gonadal phenotypes and sex-related genes. The results revealed that the gonads of genetically male amhr2 mutants featured typical ovaries, and the sex differentiation-related genes showed a female expression pattern. Thus, the loss of Amhr2 function causes male-to-female sex reversal in Japanese flounder. Moreover, the treatment of genetically male amhr2 mutants with an aromatase inhibitor fadrozole, which inhibits estrogen synthesis, resulted in testicular formation. These results strongly suggest that Amh/Amhr2 signaling causes masculinization by inhibiting estrogen synthesis during gonadal sex differentiation in the flounder.
Collapse
|
58
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|
59
|
Li S, Li W, Jiang S, Jing Y, Xiao L, Yu Y, Liu Y, Li Y, Wang D, Li J, Peng C, Chen J, Lu D, Wu B, Guang X, Ma J, You X, Yang Y, Liu S, Fang X, Gao Q, Shi Q, Lin H, Schartl M, Yue Z, Zhang Y. Mechanisms of sex differentiation and sex reversal in hermaphrodite fish as revealed by the Epinephelus coioides genome. Mol Ecol Resour 2023; 23:920-932. [PMID: 36631404 DOI: 10.1111/1755-0998.13753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Most grouper species are functional protogynous hermaphrodites, but the genetic basis and the molecular mechanisms underlying the regulation of this unique reproductive strategy remain enigmatic. In this study, we report a high-quality chromosome-level genome assembly of the representative orange-spotted grouper (Epinephelus coioides). No duplication or deletion of sex differentiation-related genes was found in the genome, suggesting that sex development in this grouper may be related to changes in regulatory sequences or environmental factors. Transcriptomic analyses showed that aromatase and retinoic acid are probably critical to promoting ovarian fate determination, and follicle-stimulating hormone triggers the female-to-male sex change. Socially controlled sex-change studies revealed that, in sex-changing fish, the brain's response to the social environment may be mediated by activation of the phototransduction cascade and the melatonin synthesis pathway. In summary, our genomic and experimental results provide novel insights into the molecular mechanisms of sex differentiation and sex change in the protogynous groupers.
Collapse
Affiliation(s)
- Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Shoujia Jiang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, Shenzhen, China
| | - Yi Jing
- BGI-Shenzhen, Shenzhen, China.,BGI-Sanya, BGI-Shenzhen, Sanya, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | - Yun Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yanhong Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Dengdong Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiang Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Cheng Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | | | - Junping Ma
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, Shenzhen, China
| | - Yuqing Yang
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| | - Su Liu
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| | | | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, Shenzhen, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Manfred Schartl
- Developmental Biochemistry, University of Würzburg, Biozentrum, Am Hubland, Würzburg, and Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Zhen Yue
- BGI-Shenzhen, Shenzhen, China.,BGI-Sanya, BGI-Shenzhen, Sanya, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
60
|
Inaba H, Iwata Y, Suzuki T, Horiuchi M, Surugaya R, Ijiri S, Uchiyama A, Takano R, Hara S, Yazawa T, Kitano T. Soy Isoflavones Induce Feminization of Japanese Eel ( Anguilla japonica). Int J Mol Sci 2022; 24:ijms24010396. [PMID: 36613840 PMCID: PMC9820629 DOI: 10.3390/ijms24010396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Under aquaculture conditions, Japanese eels (Anguilla japonica) produce a high percentage of males. However, females gain higher body weight and have better commercial value than males, and, therefore, a high female ratio is required in eel aquaculture. In this study, we examined the effects of isoflavones, genistein, and daidzein on sex differentiation and sex-specific genes of eels. To investigate the effects of these phytoestrogens on the gonadal sex, we explored the feminizing effects of soy isoflavones, genistein, and daidzein in a dose-dependent manner. The results showed that genistein induced feminization more efficiently than daidzein. To identify the molecular mechanisms of sex-specific genes, we performed a comprehensive expression analysis by quantitative real-time PCR and RNA sequencing. Phenotypic males and females were produced by feeding elvers a normal diet or an estradiol-17β- or genistein-treated diet for 45 days. The results showed that female-specific genes were up-regulated and male-specific genes were down-regulated in the gonads, suggesting that genistein induces feminization by altering the molecular pathways responsible for eel sex differentiation.
Collapse
Affiliation(s)
- Hiroyuki Inaba
- Freshwater Resource Research Center, Aichi Fisheries Research Institute, Isshiki, Nishio 444-0425, Aichi, Japan
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan
- Fisheries Administration Division, Bureau of Agriculture and Fisheries, Aichi Prefectural Governmental Office, 3-1-2 Sannomaru, Nakaku, Nagoya 460-8501, Aichi, Japan
| | - Yuzo Iwata
- Freshwater Resource Research Center, Aichi Fisheries Research Institute, Isshiki, Nishio 444-0425, Aichi, Japan
- Nishimikawa Agriculture, Forestry, and Fisheries Office of Aichi Prefectural Government, Myoudaijihonmachi, Okazaki 444-0860, Aichi, Japan
| | - Takashi Suzuki
- Freshwater Resource Research Center, Aichi Fisheries Research Institute, Isshiki, Nishio 444-0425, Aichi, Japan
- Marine Resources Research Center, Aichi Fisheries Research Institute, Toyohama, Minamichita 470-3412, Aichi, Japan
| | - Moemi Horiuchi
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Ryohei Surugaya
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Shigeho Ijiri
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Ai Uchiyama
- Advanced Technology Development Center, Kyoritsu Seiyaku Corporation, 2-9-22 Takamihara, Tsukuba 300-1252, Ibaraki, Japan
| | - Ryoko Takano
- Advanced Technology Development Center, Kyoritsu Seiyaku Corporation, 2-9-22 Takamihara, Tsukuba 300-1252, Ibaraki, Japan
| | - Seiji Hara
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan
- Fukui Prefectural Fish Farming Center, 50-1 Katsumi, Obama 917-0166, Fukui, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan
- Correspondence: ; Tel.: +81-96-342-3031
| |
Collapse
|
61
|
Fan M, Yang W, Zhang W, Zhang L. The ontogenic gonadal transcriptomes provide insights into sex change in the ricefield eel Monopterus albus. BMC ZOOL 2022; 7:56. [PMID: 37170354 PMCID: PMC10127409 DOI: 10.1186/s40850-022-00155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The ricefield eel is a freshwater protogynous hermaphrodite fish and has become an important aquaculture species in China. The sex change of ricefield eel is impeding its aquaculture practice, particularly the large-scale artificial breeding. Many studies including transcriptomes of mixed gonadal samples from different individuals have been aimed to elucidate mechanisms underlying the sex change. However, the key physiological factors involved in the initiation of sex change remain to be identified. RESULTS: The present study performed transcriptomic analysis on gonadal samples of different sexual stages obtained through biopsy from the same fish undergoing sex change. A total of 539,764,816 high-quality reads were generated from twelve cDNA libraries of gonadal tissues at female (F), early intersexual (EI), mid-intersexual (MI), and late intersexual (LI) stages of three individual sex-changing fish. Pairwise comparisons between EI and F, MI and EI, and LI and MI identified 886, 319, and 10,767 differentially expressed genes (DEGs), respectively. Realtime quantitative PCR analysis of 12 representative DEGs showed similar expression profiles to those inferred from transcriptome data, suggesting the reliability of RNA-seq data for gene expression analysis. The expression of apoeb, csl2, and enpp2 was dramatically increased and peaked at EI while that of cyp19a1a, wnt4a, fgf16, and foxl2a significantly downregulated from F to EI and remained at very low levels during subsequent development until LI, which suggests that apoeb, csl2, enpp2, cyp19a1a, wnt4a, fgf16, and foxl2a may be closely associated with the initiation of sex change of ricefield eels. CONCLUSIONS Collectively, results of the present study confirmed that the down-regulation of female-related genes, such as cyp19a1a, wnt4a, fgf16, and foxl2a, is important for the sex change of ricefield eels. More importantly, some novel genes, including apoeb, csl2, and enpp2, were shown to be expressed with peak values at EI, which are potentially involved in the initiation of sex change. The present transcriptomic data may provide an important research resource for further unraveling the mechanisms underlying the sex change and testicular development in ricefield eels as well as other teleosts.
Collapse
Affiliation(s)
- Miao Fan
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Present address: Institute of Biomedical Engineering, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Lihong Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
62
|
Molecular cloning and expression patterns of a sex-biased transcriptional factor Foxl2 in the giant freshwater prawn (Macrobrachium rosenbergii). Mol Biol Rep 2022; 50:3581-3591. [PMID: 36422756 DOI: 10.1007/s11033-022-07526-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUD Macrobrachium rosenbergii is an economically important species that is widely cultivated in some Asian nations. Foxl2 is a transcriptional regulator of ovarian differentiation and development. The aim of this study was to study the bioinformatics features and expression patterns of M. rosenbergii Foxl2 (MrFoxl2). METHODS In this study, all experimental animals were mature M. rosenbergii (9-12 cm) individuals. The foxl2 gene was identified and characterized in the genome of M. rosenbergii using molecular cloning, bioinformatic analysis, in situ hybridization, and quantitative analysis. RESULTS The identified cDNA encoded a putative 489-amino-acid MrFoxl2 protein. Bioinformatics analysis revealed a low identity of MrFoxl2 to other crustacean orthologues. The closest phylogenetic relationship was to Foxl2 of Eriocheir sinensis. The result of in situ hybridization demonstrated that transcripts of MrFoxl2 in M. rosenbergii were identified in spermatocytes, oocytes, and secretory epithelial cells of the vas deferens. The result of q-PCR suggested that a high expression of MrFoxl2 was identified in the testis, vas deferens, and ovaries. During ovarian development, MrFoxl2 expression was the highest in stage I. CONCLUSION Our findings suggest that MrFoxl2 may play a role in gonadal development in both female and male M. rosenbergii.
Collapse
|
63
|
Estermann MA, Smith CA. Fadrozole-mediated sex reversal in the embryonic chicken gonad involves a PAX2 positive undifferentiated supporting cell state. Front Cell Dev Biol 2022; 10:1042759. [PMID: 36438569 PMCID: PMC9684329 DOI: 10.3389/fcell.2022.1042759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 09/08/2024] Open
Abstract
Gonadal sex differentiation among vertebrates involves divergent fates of a common group of progenitor cells present in both presumptive ovaries and testes. The first cell type to differentiate gives rise to pre-Sertoli cells in the testis, and pre-follicular cells in the ovary. These cells derive from a common lineage of so-called "supporting cells". In birds and other egg-laying vertebrates, locally synthesised estrogen has a central role in ovarian development and influences the fate of these supporting cells. Manipulation of estrogen levels during embryonic development induces gonadal sex reversal, providing an experimental setting to evaluate the process of gonadal sex differentiation. Recently, we identified PAX2 as a novel marker of the undifferentiated supporting cell lineage in the chicken embryo, expressed in both sexes prior to overt gonadal sex differentiation. PAX2 expression is downregulated at the onset of gonadal sex differentiation in both males and females. The analysis of this undifferentiated supporting cell marker, together with Sertoli (male) and pre-granulosa (female) will enhance our understanding of supporting cell differentiation. Here we characterized the supporting cells differentiation process and identified undifferentiated supporting cells in estrogen-mediated sex reversal experiments. Female embryos treated with the aromatase inhibitor fadrozole developed into ovotestis, containing pre-granulosa cells, Sertoli cells and PAX2 positive undifferentiated supporting cells. In contrast, male embryos treated with 17β-estradiol showed no PAX2+ undifferentiated gonadal supporting cells. Fadrozole time-course as well as multiple dose analysis suggests that supporting cell transdifferentiation involves a dedifferentiation event into a PAX2+ undifferentiated supporting cell state, followed by a redifferentiation towards the opposite sex lineage.
Collapse
Affiliation(s)
| | - Craig A. Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
64
|
Feng Y, Zhong ZW, Xu Y, Zhang ZY, Ao LL, Yang Z, Wang YL, Jiang YH. Characterization of the transcription factor Sox3 regulating the gonadal development of pearlscale angelfish (Centropyge vrolikii). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1193-1207. [PMID: 35963922 DOI: 10.1007/s10695-022-01110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
As a member of the Sox gene family, Sox3 plays a vital role in gonadal development and gametogenesis. Nevertheless, the exact expression pattern of this gene in fish is still unknown. Here, we identified the Sox3 gene of Centropyge vrolikii, namely, Cv-Sox3. The Cv-Sox3 mRNA expression in the ovary and testis was detected by reverse transcription-polymerase chain reaction (RT-PCR) analysis, and the mRNA expression level of Cv-Sox3 in the ovary in the resting stage was significantly higher than that in other tissues. The phylogenetic tree and alignment of multiple sequences were constructed to analyze the evolutionary relationships of Cv-Sox3. Cv-Sox3 was relatively conserved in the evolution of teleost fish, indicating the importance and similarity of its function. The in situ hybridization results demonstrate that Cv-Sox3 was present in the follicle cells and cytoplasm of oocytes in the ovary of different stages, and the positive signals occurred in germ cells of the testis. After interfering with Cv-Sox3, the growth rate of ovarian cells in culture became slow, and the expression of ovary-bias-related genes Cyp19a and Foxl2 significantly increased. Meanwhile, the expression of testis-bias-related genes Dmrt1, Sox9, Cyp11a, Amh, and Sox8 significantly decreased. These results suggest that Cv-Sox3 gene might be expressed in the germ cells of male and female gonads during gonadal development. This study provides a precise expression pattern of Cv-Sox3 and demonstrates that Cv-Sox3 might play a significant role in the reproductive regulation of C. vrolikii. In this study, Sox3 of C. vrolikii (Cv-Sox3) was cloned to understand the expression pattern in the gonadal development, which is expressed in germ cells, involved in the process of gonadal development. The results demonstrated that Cv-Sox3 may play a significant role in the reproductive regulation of C. vrolikii.
Collapse
Affiliation(s)
- Yan Feng
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Zhao-Wei Zhong
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Yan Xu
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Ze-Yu Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Lu-Lu Ao
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Zhen Yang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Yi-Lei Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China.
| | - Yong-Hua Jiang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
65
|
Fang Z, Li X, Wang Y, Lu W, Hou J, Cheng J. Steroidogenic Effects of Salinity Change on the Hypothalamus-Pituitary-Gonad (HPG) Axis of Male Chinese Sea Bass ( Lateolabrax maculatus). Int J Mol Sci 2022; 23:ijms231810905. [PMID: 36142817 PMCID: PMC9503316 DOI: 10.3390/ijms231810905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
As lower vertebrates, teleost species could be affected by dynamic aquatic environments and may respond to environmental changes through the hypothalamus–pituitary–gonad (HPG) axis to ensure their normal growth and sexual development. Chinese sea bass (Lateolabrax maculatus), euryhaline marine teleosts, have an extraordinary ability to deal with a wide range of salinity changes, whereas the salinity decrease during their sex-maturation season may interfere with the HPG axis and affect their steroid hormone metabolism, resulting in abnormal reproductive functioning. To this end, in this study, 40 HPG axis genes in the L. maculatus genome were systematically characterized and their copy numbers, phylogenies, gene structures, and expression patterns were investigated, revealing the conservation of the HPG axis among teleost lineages. In addition, freshwater acclimation was carried out with maturing male L. maculatus, and their serum cortisol and 11-ketotestosterone (11-KT) levels were both increased significantly after the salinity change, while their testes were found to be partially degraded. After salinity reduction, the expression of genes involved in cortisol and 11-KT synthesis (cyp17a, hsd3b1, cyp21a, cyp11c, hsd11b2, and hsd17b3) showed generally upregulated expression in the head kidneys and testes, respectively. Moreover, cyp11c and hsd11b2 were involved in the synthesis and metabolism of both cortisol and 11-KT, and after salinity change their putative interaction may contribute to steroid hormone homeostasis. Our results proved the effects of salinity change on the HPG axis and steroidogenic pathway in L. maculatus and revealed the gene interactions involved in the regulation of steroid hormone levels. The coordinated interaction of steroidogenic genes provides comprehensive insights into steroidogenic pathway regulation, as well as sexual development, in teleost species.
Collapse
Affiliation(s)
- Zhenru Fang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Xujian Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Yapeng Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Juncheng Hou
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Correspondence: ; Tel.: +86-0532-82031986
| |
Collapse
|
66
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
67
|
Wang H, Qu M, Tang W, Liu S, Ding S. Transcriptome Profiling and Expression Localization of Key Sex-Related Genes in a Socially-Controlled Hermaphroditic Clownfish, Amphiprion clarkii. Int J Mol Sci 2022; 23:ijms23169085. [PMID: 36012348 PMCID: PMC9409170 DOI: 10.3390/ijms23169085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Clownfish can be an excellent research model for investigating the socially-controlled sexual development of sequential hermaphrodite teleosts. However, the molecular cascades underlying the social cues that orchestrate the sexual development process remain poorly understood. Here, we performed a comparative transcriptomic analysis of gonads from females, males, and nonbreeders of Amphiprion clarkii, which constitute a complete social group, allowing us to investigate the molecular regulatory network under social control. Our analysis highlighted that the gonads of nonbreeders and males exhibited high similarities but were far from females, both in global transcriptomic profiles and histological characteristics, and identified numerous candidate genes involved in sexual development, some well-known and some novel. Significant upregulation of cyp19a1a, foxl2, nr5a1a, wnt4a, hsd3b7, and pgr in females provides strong evidence for the importance of steroidogenesis in ovarian development and maintenance, with cyp19a1a playing a central role. Amh and sox8 are two potential key factors that may regulate testicular tissue development in early and late stages, respectively, as they are expressed at higher levels in males than in females, but with slightly different expression timings. Unlike previous descriptions in other fishes, the unique expression pattern of dmrt1 in A. clarkii implied its potential function in both male and female gonads, and we speculated that it might play promoting roles in the early development of both testicular and ovarian tissues.
Collapse
Affiliation(s)
- Huan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meng Qu
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou 511458, China
| | - Wei Tang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Correspondence: (S.L.); (S.D.)
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- Correspondence: (S.L.); (S.D.)
| |
Collapse
|
68
|
Paixão RV, Silva GF, Caetano AR, Cintra LC, Varela ES, O'Sullivan FLA. Phylogenomic and expression analysis of Colossoma macropomum cyp19a1a and cyp19a1b and their non-classical role in tambaqui sex differentiation. Gene 2022; 843:146795. [PMID: 35961435 DOI: 10.1016/j.gene.2022.146795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
The genes coding for Cytochrome P450 aromatase (cyp19a1a and cyp19a1b) and estrogen (E2) receptors (esr1, esr2a and esr2b) play a conserved role in ovarian differentiation and development among teleosts. Classically, the "gonad form" of aromatase, coded by the cyp19a1a, is responsible for the ovarian differentiation in genetic females via ligation and activation of the Esr, which mediates the endocrine and exocrine signaling to allow or block the establishment of the feminine phenotype. However, in neotropical species, studies on the molecular and endocrine processes involved in gonad differentiation as well as on the effects of sex modulators are recent and scarce. In this study, we combined in silico analysis, real-time quantitative PCR (qPCR) assay and quantification of E2 plasma levels of differentiating tambaqui (Colossoma macropomum) to unveil the roles of the paralogs cypa19a1a and cyp19a1b during sex differentiation. Although the synteny of each gene is very conserved among characids, the genomic environment displays striking differences in comparison to model teleost species, with many rearrangements in cyp19a1a and cyp19a1b adjacencies and transposable element traces in both regulatory regions. The high dissimilarity (DI) of SF-1 binding motifs in cyp19a1a (DI = 10.06 to 14.90 %) and cyp19a1b (DI = 8.41 to 13.50 %) regulatory region, respectively, may reflect in an alternative pathway in tambaqui. Indeed, while low transcription of cyp19a1a was detected prior to sex differentiation, the expression of cyp19a1b and esr2a presented a large variation at this phase, which could be associated with sex-specific differential expression. Histological analysis revealed that anti-estradiol treatments did not affect gonadal sex ratios, although Fadrozole (50 mg kg-1 of food) reduced E2 plasma levels (p < 0,005) as well cyp19a1a transcription; and tamoxifen (200 mg kg-1 of food) down regulated both cyp19a1a and cyp19a1b but did not influence E2 levels. Altogether, our results bring into light new insights about the evolutionary fate of cyp19a1 paralogs in neotropical fish, which may have generated uncommon roles for the gonadal and brain forms of cyp19a1 genes and the unexpected lack of effect of endocrine disruptors on tambaqui sexual differentiation.
Collapse
Affiliation(s)
- R V Paixão
- Universidade Federal do Amazonas (UFAM), Programa de Pós-graduação em Ciência Animal e Recursos Pesqueiros, Avenida Rodrigo Otávio, CEP: 69080-900, 6200 Manaus, AM, Brazil
| | - G F Silva
- Embrapa Amazônia Ocidental, Rodovia AM-010, Km 29, Caixa Postal 319, CEP: 69010-790, Brazil
| | - A R Caetano
- Embrapa Recursos Genéticos e Biotecnologia, Final Av. W/5 Norte, C.P. 02372, CEP 70770-917, Brasília, DF, Brazil
| | - L C Cintra
- Embrapa Agricultura Digital, Avenida André Tosselo, 209, Cidade Universitária, CEP: 13083-886, Campinas, SP, Brazil
| | - E S Varela
- Embrapa Pesca e Aquicultura, Av. NS 10, cruzamento com a Av. LO 18 Sentido Norte Loteamento - Água Fria, Palmas, TO 77008-900, Brazil
| | - F L A O'Sullivan
- Embrapa Amazônia Ocidental, Rodovia AM-010, Km 29, Caixa Postal 319, CEP: 69010-790, Brazil.
| |
Collapse
|
69
|
He X, Wu H, Ye Y, Gong X, Bao B. Transcriptome analysis revealed gene expression feminization of testis after exogenous tetrodotoxin administration in pufferfish Takifugu flavidus. BMC Genomics 2022; 23:553. [PMID: 35922761 PMCID: PMC9347094 DOI: 10.1186/s12864-022-08787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tetrodotoxin (TTX) is a deadly neurotoxin and usually accumulates in large amounts in the ovaries but is non-toxic or low toxic in the testis of pufferfish. The molecular mechanism underlying sexual dimorphism accumulation of TTX in ovary and testis, and the relationship between TTX accumulation with sex related genes expression remain largely unknown. The present study investigated the effects of exogenous TTX treatment on Takifugu flavidus. The results demonstrated that exogenous TTX administration significantly incresed level of TTX concentration in kidney, cholecyst, skin, liver, heart, muscle, ovary and testis of the treatment group (TG) than that of the control group (CG). Transcriptome sequencing and analysis were performed to study differential expression profiles of mRNA and piRNA after TTX administration of the ovary and testis. The results showed that compared with female control group (FCG) and male control group (MCG), TTX administration resulted in 80 and 23 piRNAs, 126 and 223 genes up and down regulated expression in female TTX-treated group (FTG), meanwhile, 286 and 223 piRNAs, 2 and 443 genes up and down regulated expression in male TTX-treated group (MTG). The female dominant genes cyp19a1, gdf9 and foxl2 were found to be up-regulated in MTG. The cyp19a1, whose corresponding target piRNA uniq_554482 was identified as down-regulated in the MTG, indicating the gene expression feminization in testis after exogenous TTX administration. The KEGG enrichment analysis revealed that differentially expressed genes (DEGs) and piRNAs (DEpiRNAs) in MTG vs MCG group were more enriched in metabolism pathways, indicating that the testis produced more metabolic pathways in response to exogenous TTX, which might be a reason for the sexual dimorphism of TTX distribution in gonads. In addition, TdT-mediated dUTP-biotin nick end labeling staining showed that significant apoptosis was detected in the MTG testis, and the role of the cell apoptotic pathways was further confirmed. Overall, our research revealed that the response of the ovary and testis to TTX administration was largely different, the ovary is more tolerant whereas the testis is more sensitive to TTX. These data will deepen our understanding on the accumulation of TTX sexual dimorphism in Takifugu.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hexing Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaping Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolin Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
70
|
Accustomed to the heat: Temperature and thyroid hormone influences on oogenesis and gonadal steroidogenesis pathways vary among populations of Amargosa pupfish (Cyprinodon nevadensis amargosae). Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111280. [PMID: 35902003 DOI: 10.1016/j.cbpa.2022.111280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Many fish experience diminished reproductive performance under atypically high or prolonged elevations of temperature. Such high temperature inhibition of reproduction comes about in part from altered stimulation of gametogenesis by the hypothalamic-pituitary-gonadal (HPG) endocrine axis. Elevated temperatures have also been shown to affect thyroid hormone (TH) signaling, and altered TH status under high temperatures may impact gametogenesis via crosstalk with HPG axis pathways. Here, we examined effects of temperature and 3'-triiodo-L-thyronine (T3) on pathways for gonadal steroidogenesis and gametogenesis in Amargosa pupfish (Cyprinodon nevadensis amargosae) from two allopatric populations: 1) the Amargosa River - a highly variable temperature habitat, and 2) Tecopa Bore - an invariably warm groundwater-fed marsh. These populations were previously shown to differ in TH signaling profiles both in the wild and under common laboratory conditions. Sexually-mature pupfish from each population were maintained at 24 °C or 34 °C for 88 days, after which a subset of fish was treated with T3 for 18-24 h. In both populations, mRNA abundances for follicle-stimulating hormone receptor and luteinizing hormone receptor were higher in the ovary and testis at 24 °C compared to 34 °C. Females from Tecopa Bore - but not from the Amargosa River - also had greater ovarian transcript abundances for steroidogenic enzymes cytochrome P450 aromatase, 3β-hydroxysteroid dehydrogenase, and 17β-hydroxysteroid dehydrogenase at 24 °C compared to 34 °C, as well as higher liver mRNA levels of vitellogenins and choriogenins at cooler temperature. Transcript abundances for estrogen receptors esr1, esr2a, and esr2b were reduced at 34 °C in Amargosa River females, but not in Tecopa Bore females. T3 augmented gonadal gene transcript levels for steroid acute regulatory protein (StAR) transporter in both sexes and populations. T3 also downregulated liver estrogen receptor mRNAs in females from the warmer Tecopa Bore habitat only, suggesting T3 modulation of liver E2 sensitivity as a possible mechanism whereby temperature-induced changes in TH status may contribute to shifts in thermal sensitivity for oogenesis.
Collapse
|
71
|
Song W, Wu K, Wu X, Lu Y, Li J, Li J, Cui M. The antiestrogen-like activity and reproductive toxicity of 2,6-DCBQ on female zebrafish upon sub-chronic exposure. J Environ Sci (China) 2022; 117:10-20. [PMID: 35725062 DOI: 10.1016/j.jes.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 06/15/2023]
Abstract
2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ), an emerging water disinfection by-product, is widely detected in water resources. However, its potential effects on the reproductive system are largely unknown. Here, we investigated the long-term effects of 2,6-DCBQ on gonadal development by exposing zebrafish from 15 to 180 days postfertilization (dpf). Following exposure to 2,6-DCBQ (20 and 100 µg/L), female-specific effects including delayed puberty onset, retarded ovarian growth and breakdown of the zona radiata were observed, resulting in subfertility in adult females. Adverse effects in folliculogenesis disappeared two months after cessation of 2,6-DCBQ administration. In contrast, no adverse impacts were noted in male testes. The effects on females were associated with significant reduction in 17β-estradiol (E2) level, suggesting a role for 2,6-DCBQ in anti-estrogenic activity. E2 level change in blood was further supported by dysregulated expression of genes (cyp19a1a, fshb, kiss3, esr2b, vtg1, and vtg3) related to the hypothalamic-pituitary-gonad-liver (HPGL) axis. The present study demonstrates for the first time that 2,6-DCBQ induces reproductive impairments in female zebrafish through disrupting 17β-estradiol level.
Collapse
Affiliation(s)
- Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221000, China
| | - Kun Wu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiling Wu
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221000, China
| | - Yichun Lu
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221000, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun 130025, China.
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221000, China.
| |
Collapse
|
72
|
Feng K, Su J, Wu Z, Su S, Yao W. Molecular Cloning and Expression Analysis of Thyrotropin-Releasing Hormone, and Its Possible Role in Gonadal Differentiation in Rice Field eel Monopterus albus. Animals (Basel) 2022; 12:1691. [PMID: 35804589 PMCID: PMC9264984 DOI: 10.3390/ani12131691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Rice field eel (Monopterus albus), a protogynous hermaphrodite fish, is a good model for the research of sex determination and gonadal differentiation in teleosts. In this study, we cloned the full-length cDNA sequence of trh, which encoded a predicted protein with 270 amino acids. Trh mainly expressed in the brain, followed by the ovary, testis, muscle and pituitary, and had low levels in other peripheral tissues. During natural sex reversal, trh mRNA expression levels exhibited a significant increase at the late intersexual stage in the hypothalamus. In the gonad, trh mRNA expression levels showed a trend of increase followed by decrease, and only increased significantly at the middle intersexual stage. No matter static incubation or intraperitoneal (IP) injection, TRH had no significant effect on trh and thyroid-stimulating hormone βsubunit (tshβ) mRNA expression levels, and serum T3, T4 and TRH release. After static incubation of ovarian fragments by TRH, the expression of gonadal soma derived factor (gsdf) was up-regulated significantly at both the doses of 10 and 100 nM. IP injection of TRH stimulated the expression of gsdf, and inhibited the expression of ovarian aromatase gene (cyp19a1a), accompanied by the increase of serum 11-KT levels. The results indicated that TRH may play a novel role in gonadal differentiation by the regulation of gonadal differentiation-related gene expression and sex steroid hormone secretion in rice field eel.
Collapse
Affiliation(s)
| | | | | | | | - Weizhi Yao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China; (K.F.); (J.S.); (Z.W.); (S.S.)
| |
Collapse
|
73
|
Lu LF, Jiang JY, Du WX, Wang XL, Li ZC, Zhou XY, Zhang C, Mou CY, Chen DD, Li Z, Zhou L, Gui JF, Li XY, Li S. Fish female-biased gene cyp19a1a leads to female antiviral response attenuation between sexes by autophagic degradation of MITA. PLoS Pathog 2022; 18:e1010626. [PMID: 35727817 PMCID: PMC9249237 DOI: 10.1371/journal.ppat.1010626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/01/2022] [Accepted: 05/30/2022] [Indexed: 11/19/2022] Open
Abstract
From insects to mammals, both innate and adaptive immune response are usually higher in females than in males, with the sex chromosome and hormonal differences considered the main reasons. Here, we report that zebrafish cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a), an autosomal gene with female-biased expression, causes female fish to exhibit a lower antiviral response. First, we successfully constructed an infection model by intraperitoneal injection of spring viremia of carp virus (SVCV) into zebrafish (Danio rerio) and Carassius auratus herpesvirus (CaHV) in gibel carp (Carassius gibelio). Specifically, female fish were more vulnerable to viral infection than males, accompanied by a significantly weaker interferon (IFN) expression. After screening several candidates, cyp19a1a, which was highly expressed in female fish tissues, was selected for further analysis. The IFN expression and antiviral response were significantly higher in cyp19a1a-/- than in cyp19a1a+/+. Further investigation of the molecular mechanism revealed that Cyp19a1a targets mediator of IRF3 activation (MITA) for autophagic degradation. Interestingly, in the absence of MITA, Cyp19a1a alone could not elicit an autophagic response. Furthermore, the autophagy factor ATG14 (autophagy-related 14) was found interacted with Cyp19a1a to either promote or attenuate Cyp19a1a-mediated MITA degradation by either being overexpressed or knocked down, respectively. At the cellular level, both the normal and MITA-enhanced cellular antiviral responses were diminished by Cyp19a1a. These findings demonstrated a sex difference in the antiviral response based on a regulation mechanism controlled by a female-biased gene besides sex chromosome and hormonal differences, supplying the current understanding of sex differences in fish.
Collapse
Affiliation(s)
- Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xuan Du
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- University of Chinese Academy of Sciences, Beijing, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Yan Mou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Xi-Yin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (X-YL); (SL)
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (X-YL); (SL)
| |
Collapse
|
74
|
Function of Foxl2 and Dmrt1 proteins during gonadal differentiation in the olive flounder Paralichthys olivaceus. Int J Biol Macromol 2022; 215:141-154. [PMID: 35716793 DOI: 10.1016/j.ijbiomac.2022.06.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023]
Abstract
Study on fish sex differentiation is important both from academic and practical aspects. Foxl2 and Dmrt1 are important transcription factors that should be involved in fish gonadal differentiation, but there is still no direct evidence to clarify their protein functions. Olive flounder Paralichthys olivaceus, an important mariculture fish in China, Japan, and Korea, shows sex-dimorphic growth. In this study, the Foxl2 and Dmrt1 proteins were detected in granulosa cells of the ovary and Sertoli cells of the testis, respectively, showing significant sex-dimorphic expression patterns. Then, bioactive high-purity Foxl2 and Dmrt1 recombinant proteins were obtained in vitro. Furthermore, effects of the recombinant Foxl2 and Dmrt1 during gonadal differentiation period were evaluated by intraperitoneal injection in juvenile fish. Compared with the control group, the male rate in the Dmrt1 group increased from 0 % to 82 %, showing for the first time in fish that the recombinant Dmrt1 could alter the sex phenotype. In addition, transcription levels of cyp19a and its transcription factors also changed after the recombinant Foxl2 and Dmrt1 injection. These findings reveal that Foxl2 and Dmrt1 are vital regulators for fish gonadal differentiation by regulating cyp19a expression, and also provide a new approach for sex control in fish aquaculture.
Collapse
|
75
|
Wang MT, Li Z, Ding M, Yao TZ, Yang S, Zhang XJ, Miao C, Du WX, Shi Q, Li S, Mei J, Wang Y, Wang ZW, Zhou L, Li XY, Gui JF. Two duplicated gsdf homeologs cooperatively regulate male differentiation by inhibiting cyp19a1a transcription in a hexaploid fish. PLoS Genet 2022; 18:e1010288. [PMID: 35767574 PMCID: PMC9275722 DOI: 10.1371/journal.pgen.1010288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Although evolutionary fates and expression patterns of duplicated genes have been extensively investigated, how duplicated genes co-regulate a biological process in polyploids remains largely unknown. Here, we identified two gsdf (gonadal somatic cell-derived factor) homeologous genes (gsdf-A and gsdf-B) in hexaploid gibel carp (Carassius gibelio), wherein each homeolog contained three highly conserved alleles. Interestingly, gsdf-A and gsdf-B transcription were mainly activated by dmrt1-A (dsx- and mab-3-related transcription factor 1) and dmrt1-B, respectively. Loss of either gsdf-A or gsdf-B alone resulted in partial male-to-female sex reversal and loss of both caused complete sex reversal, which could be rescued by a nonsteroidal aromatase inhibitor. Compensatory expression of gsdf-A and gsdf-B was observed in gsdf-B and gsdf-A mutants, respectively. Subsequently, we determined that in tissue culture cells, Gsdf-A and Gsdf-B both interacted with Ncoa5 (nuclear receptor coactivator 5) and blocked Ncoa5 interaction with Rora (retinoic acid-related orphan receptor-alpha) to repress Rora/Ncoa5-induced activation of cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a). These findings illustrate that Gsdf-A and Gsdf-B can regulate male differentiation by inhibiting cyp19a1a transcription in hexaploid gibel carp and also reveal that Gsdf-A and Gsdf-B can interact with Ncoa5 to suppress cyp19a1a transcription in vitro. This study provides a typical case of cooperative mechanism of duplicated genes in polyploids and also sheds light on the conserved evolution of sex differentiation.
Collapse
Affiliation(s)
- Ming-Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Zi Yao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
76
|
Liu Y, Kossack ME, McFaul ME, Christensen LN, Siebert S, Wyatt SR, Kamei CN, Horst S, Arroyo N, Drummond IA, Juliano CE, Draper BW. Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. eLife 2022; 11:e76014. [PMID: 35588359 PMCID: PMC9191896 DOI: 10.7554/elife.76014] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish are an established research organism that has made many contributions to our understanding of vertebrate tissue and organ development, yet there are still significant gaps in our understanding of the genes that regulate gonad development, sex, and reproduction. Unlike the development of many organs, such as the brain and heart that form during the first few days of development, zebrafish gonads do not begin to form until the larval stage (≥5 days post-fertilization). Thus, forward genetic screens have identified very few genes required for gonad development. In addition, bulk RNA-sequencing studies that identify genes expressed in the gonads do not have the resolution necessary to define minor cell populations that may play significant roles in the development and function of these organs. To overcome these limitations, we have used single-cell RNA sequencing to determine the transcriptomes of cells isolated from juvenile zebrafish ovaries. This resulted in the profiles of 10,658 germ cells and 14,431 somatic cells. Our germ cell data represents all developmental stages from germline stem cells to early meiotic oocytes. Our somatic cell data represents all known somatic cell types, including follicle cells, theca cells, and ovarian stromal cells. Further analysis revealed an unexpected number of cell subpopulations within these broadly defined cell types. To further define their functional significance, we determined the location of these cell subpopulations within the ovary. Finally, we used gene knockout experiments to determine the roles of foxl2l and wnt9b for oocyte development and sex determination and/or differentiation, respectively. Our results reveal novel insights into zebrafish ovarian development and function, and the transcriptome profiles will provide a valuable resource for future studies.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Michelle E Kossack
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Matthew E McFaul
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Lana N Christensen
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Sydney R Wyatt
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Caramai N Kamei
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Samuel Horst
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Nayeli Arroyo
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Iain A Drummond
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
77
|
The Comparative Survey of Coordinated Regulation of Steroidogenic Pathway in Japanese Flounder (Paralichthys olivaceus) and Chinese Tongue Sole (Cynoglossus semilaevis). Int J Mol Sci 2022; 23:ijms23105520. [PMID: 35628330 PMCID: PMC9141715 DOI: 10.3390/ijms23105520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Steroidogenesis controls the conversion of cholesterol into steroid hormones through the complex cascade reaction of various enzymes, which play essential roles in sexual differentiation and gonadal development in vertebrates, including teleosts. Japanese flounder (Paralichthys olivaceus) and Chinese tongue sole (Cynoglossus semilaevis) are important marine cultured fishes in China and have remarkable sexual dimorphism with bigger females and sex reversal scenarios from female to neo-male. Several steroidogenic genes have been analyzed individually in the two species, but there is a lack of information on the coordinated interaction of steroidogenic gene regulation. Therefore, in this study, through genomic and transcriptomic analysis, 39 and 42 steroidogenic genes were systematically characterized in P. olivaceus and C. semilaevis genomes, respectively. Phylogenetic and synteny analysis suggested a teleost specific genome duplication origin for cyp19a1a/cyp19a1b, hsd17b12a/hsd17b12b, ara/arb and esr2a/esr2b but not for star/star2 and cyp17a1/cyp17a2. Comparative transcriptome analysis revealed conserved expression patterns for steroidogenic genes in P. olivaceus and C. smilaevis gonads; star/star2, cyp11a/cyp11c, cyp17a1/cyp17a2, cyp21a, hsd3b1, hsd11b and hsd20b were strongly expressed in testis, while cyp19a1a and hsd17b genes were highly expressed in ovaries. Only a few genes were differentially expressed between male and neo-male testis of both P. olivaceus and C. semilaevis, and even fewer genes were differentially regulated in the brains of both species. Network analysis indicated that cyp11c, cyp17a1 and hsd3b1 actively interacted with other steroidogenic genes in P. olivaceus and C. semilaevis, and may play a more sophisticated role in the steroid hormone biosynthesis cascade. The coordinated interaction of steroidogenic genes provided comprehensive insights into steroidogenic pathway regulation with a global biological impact, as well as sexual development in teleost species.
Collapse
|
78
|
Horiuchi M, Hagihara S, Kume M, Chushi D, Hasegawa Y, Itakura H, Yamashita Y, Adachi S, Ijiri S. Morphological and Molecular Gonadal Sex Differentiation in the Wild Japanese eel Anguilla japonica. Cells 2022; 11:cells11091554. [PMID: 35563858 PMCID: PMC9105286 DOI: 10.3390/cells11091554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 02/04/2023] Open
Abstract
Most cultured Japanese eels (Anguilla japonica) show male sex differentiation; however, natural gonadal sex differentiation has not been evaluated. In this study, this process was characterized in wild eels. Differentiated ovaries and testes were observed after the eels grew to 320 and 300 mm in total length, respectively. The youngest ovary and testis appeared at 3 and 4 years old, respectively; however, undifferentiated gonads were found up to 7 years, suggesting that sex differentiation was triggered by growth rather than aging. gsdf, amh, foxl2b and foxl3b were highly expressed in the testes, whereas figla, sox3, foxn5, zar1, and zp3 were highly expressed in the ovaries. The expression of cyp19a1a and foxl2a did not differ significantly between the testis and ovary. In the ovaries, the cyp19a1a and foxl2a levels were highest in the early stages, suggesting that their function is limited to early ovarian differentiation. The foxn5, zar1 and zp3 levels tended to increase in the later stages, suggesting that they function after the initiation of ovarian differentiation. In undifferentiated gonads, dimorphic gene expression was not observed, suggesting that the molecular sex differentiation phase is short and difficult to detect. These findings provide the first demonstration of the whole course of natural gonadal sex differentiation in eels at molecular and morphological levels.
Collapse
Affiliation(s)
- Moemi Horiuchi
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan; (M.H.); (D.C.); (Y.H.); (S.A.)
| | - Seishi Hagihara
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan; (S.H.); (H.I.)
| | - Manabu Kume
- Field Science Education and Research Center, Kyoto University, Kyoto 606-8502, Kyoto, Japan; (M.K.); (Y.Y.)
| | - Daichi Chushi
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan; (M.H.); (D.C.); (Y.H.); (S.A.)
| | - Yuya Hasegawa
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan; (M.H.); (D.C.); (Y.H.); (S.A.)
| | - Hikaru Itakura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan; (S.H.); (H.I.)
| | - Yoh Yamashita
- Field Science Education and Research Center, Kyoto University, Kyoto 606-8502, Kyoto, Japan; (M.K.); (Y.Y.)
| | - Shinji Adachi
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan; (M.H.); (D.C.); (Y.H.); (S.A.)
| | - Shigeho Ijiri
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan; (M.H.); (D.C.); (Y.H.); (S.A.)
- Correspondence:
| |
Collapse
|
79
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Chourasia TK, Chaube R, Joy KP. Seasonal dynamics, kinetics, and effects of 2-hydroxyestradiol-17β on some steroidogenic enzymes in the ovary of the catfish Heteropneustes fossilis. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
81
|
Jiang DN, Peng YX, Liu XY, Mustapha UF, Huang YQ, Shi HJ, Li MH, Li GL, Wang DS. Homozygous Mutation of gsdf Causes Infertility in Female Nile Tilapia ( Oreochromis niloticus). Front Endocrinol (Lausanne) 2022; 13:813320. [PMID: 35242110 PMCID: PMC8886716 DOI: 10.3389/fendo.2022.813320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Gonadal somatic cell-derived factor (Gsdf) is a member of the TGF-β superfamily, which exists mainly in fishes. Homozygous gsdf mutations in Japanese medaka and zebrafish resulted in infertile females, and the reasons for their infertility remain unknown. This study presents functional studies of Gsdf in ovary development using CRISPR/Cas9 in Nile tilapia (Oreochromis niloticus). The XX wild type (WT) female fish regularly reproduced from 12 months after hatching (mah), while the XX gsdf-/- female fish never reproduced and were infertile. Histological observation showed that at 24 mah, number of phase IV oocyte in the XX gsdf-/- female fish was significantly lower than that of the WT fish, although their gonadosomatic index (GSI) was similar. However, the GSI of the XX gsdf-/- female at 6 mah was higher than that of the WT. The mutated ovaries were hyperplastic with more phase I oocytes. Transcriptome analysis identified 344 and 51 up- and down-regulated genes in mutants compared with the WT ovaries at 6 mah. Some TGF-β signaling genes that are critical for ovary development in fish were differentially expressed. Genes such as amh and amhr2 were up-regulated, while inhbb and acvr2a were down-regulated in mutant ovaries. The cyp19a1a, the key gene for estrogen synthesis, was not differentially expressed. Moreover, the serum 17β-estradiol (E2) concentrations between XX gsdf-/- and WT were similar at 6 and 24 mah. Results from real-time PCR and immunofluorescence experiments were similar and validated the transcriptome data. Furthermore, Yeast-two-hybrid assays showed that Gsdf interacts with TGF-β type II receptors (Amhr2 and Bmpr2a). Altogether, these results suggest that Gsdf functions together with TGF-β signaling pathway to control ovary development and fertility. This study contributes to knowledge on the function of Gsdf in fish oogenesis.
Collapse
Affiliation(s)
- Dong-Neng Jiang
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - You-Xing Peng
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Xing-Yong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Umar Farouk Mustapha
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Yuan-Qing Huang
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Hong-Juan Shi
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Ming-Hui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Guang-Li Li
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - De-Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
82
|
Ma DD, Jiang YX, Zhang JG, Fang GZ, Huang GY, Shi WJ, Ying GG. Transgenerational effects of androstadienedione and androstenedione at environmentally relevant concentrations in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127261. [PMID: 34844370 DOI: 10.1016/j.jhazmat.2021.127261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Androgens androstadienedione (ADD) and androstenedione (AED) are predominant steroid hormones in surface water, and can disrupt the endocrine system in fish. However, little is known about the transgenerational effects of ADD and AED in fish. In the present study, F0 generation was exposed to ADD and AED from 21 to 144 days post-fertilization (dpf) at nominal concentrations of 5 (L), 50 (M) and 500 (H) ng L-1, and F1 generation was domesticated in clear water for 144 dpf. The sex ratio, histology and transcription in F0 and F1 generations were examined. In the F0 generation, ADD and AED tended to be estrogenic in zebrafish, resulting in female biased zebrafish populations. In the F1 generation, ADD at the H level caused 63.5% females, while AED at the H level resulted in 78.7% males. In brain, ADD and AED had similar effects on circadian rhythm in the F0 and F1 generations. In the F1 eleutheroembryos, transcriptomic analysis indicated that neuromast hair cell related biological processes (BPs) were overlapped in the ADD and AED groups. Taken together, ADD and AED at environmentally relevant concentrations had transgenerational effects on sex differentiation and transcription in zebrafish.
Collapse
Affiliation(s)
- Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xia Jiang
- Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Gui-Zhen Fang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
83
|
Tian H, Liu R, Zhang S, Wei S, Wang W, Ru S. 17β-Trenbolone binds to androgen receptor, decreases number of primordial germ cells, modulates expression of genes related to sexual differentiation, and affects sexual differentiation in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150959. [PMID: 34662611 DOI: 10.1016/j.scitotenv.2021.150959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Exposure to 17β-trenbolone caused a skewed sex ratio in fish. However, the molecular initiating event and key molecular event(s) remain unknown. In this study, zebrafish were exposed to 17β-trenbolone at nominal concentrations of 2 ng/L, 20 ng/L, 200 ng/L, and 2000 ng/L from fertilization to 60 days post fertilization (dpf). First, the sex ratio at 60 dpf was calculated to evaluate adverse outcomes on sexual differentiation. 17β-Trenbolone caused a skewed sex ratio toward males, with intersex individuals observed in the 20 ng/L group and all-male populations found in the 200 ng/L and 2000 ng/L groups. Then, the distribution and number of primordial germ cells, the expression of sex differentiation-related genes, and plasma vitellogenin concentrations were detected in wild-type zebrafish and the EGFP-nanos-3'UTR transgenic line using whole-mount in situ hybridization, real-time PCR, EGFP fluorescence quantification, and enzyme-linked immunosorbent assay. The results indicated that 17β-trenbolone exposure decreased the number of primordial germ cells at 1 dpf and 3 dpf, decreased expression of ovarian differentiation-related genes foxl2 and cyp19a1a at 60 dpf, increased expression of testis differentiation-related genes dmrt1, sox9a, and amh at 60 dpf, and decreased plasma vitellogenin levels at 60 dpf, revealing the key molecular events at different time points involved in affected sexual differentiation by 17β-trenbolone. Finally, molecular docking showed that 17β-trenbolone docked into ligand-binding domain of zebrafish androgen receptor with high binding energy (-3.72 kcal/mol), suggesting that binding to androgen receptor is the molecular initiating event affecting sexual differentiation by 17β-trenbolone. We found that 17β-trenbolone can bind to the zebrafish androgen receptor, decrease the number of primordial germ cells during the early embryonic stage, modulate the expression of genes related to sexual differentiation during gonadal differentiation, and eventually cause a skewed sex ratio toward males in adults.
Collapse
Affiliation(s)
- Hua Tian
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Rui Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Suqiu Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China..
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| |
Collapse
|
84
|
Rucker HR, Parker MR. Decreased attractivity in female garter snakes treated with an aromatase inhibitor. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:171-180. [PMID: 34533896 DOI: 10.1002/jez.2546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Most experimental studies on sexual signal regulation via hormone manipulation have focused on male signals, yet female signals demonstrate substantial phenotypic variation and hormone-dependent expression. Female red-sided garter snakes (Thamnophis sirtalis parietalis) produce a skin-based sex pheromone used by males in mate selection. The principle female sex steroid, 17 β-estradiol, controls pheromone production in snakes, but studies manipulating female garter snakes have produced conflicting results, relied on behavioral tests with males in the laboratory, and did not quantify pheromone expression. Because aromatase is the terminal enzyme in estradiol biosynthesis, we hypothesized that female garter snakes rely on aromatase to ultimately control pheromone production during the annual cycle of this species. To test this, we used a known pharmacological inhibitor of aromatase, fadrozole (FAD). Wild-caught female garter snakes were chronically treated via subcutaneous injections of either FAD (1.0 mg kg-1 ) or saline (control) for six months in the laboratory during the active period of the annual cycle then hibernated. In two separate field bioassays the next spring at the den site, FAD females received approximately 50% less courtship from wild, sexually active male garter snakes compared to SHAM females. Pheromone analysis revealed that four of the largest, unsaturated methyl ketones were specifically downregulated in FAD females, indicating that aromatase action is a crucial, permissive step in the maintenance of female attractivity.
Collapse
Affiliation(s)
- Holly R Rucker
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - M Rockwell Parker
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| |
Collapse
|
85
|
Jolivet G, Daniel-Carlier N, Harscoët E, Airaud E, Dewaele A, Pierson C, Giton F, Boulanger L, Daniel N, Mandon-Pépin B, Pannetier M, Pailhoux E. Fetal Estrogens are not Involved in Sex Determination But Critical for Early Ovarian Differentiation in Rabbits. Endocrinology 2022; 163:6382335. [PMID: 34614143 PMCID: PMC8598387 DOI: 10.1210/endocr/bqab210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/31/2022]
Abstract
AROMATASE is encoded by the CYP19A1 gene and is the cytochrome enzyme responsible for estrogen synthesis in vertebrates. In most mammals, a peak of CYP19A1 gene expression occurs in the fetal XX gonad when sexual differentiation is initiated. To elucidate the role of this peak, we produced 3 lines of TALEN genetically edited CYP19A1 knockout (KO) rabbits that were devoid of any estradiol production. All the KO XX rabbits developed as females with aberrantly small ovaries in adulthood, an almost empty reserve of primordial follicles, and very few large antrum follicles. Ovulation never occurred. Our histological, immunohistological, and transcriptomic analyses showed that the estradiol surge in the XX fetal rabbit gonad is not essential to its determination as an ovary, or for meiosis. However, it is mandatory for the high proliferation and differentiation of both somatic and germ cells, and consequently for establishment of the ovarian reserve.
Collapse
Affiliation(s)
- Geneviève Jolivet
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
- Correspondence: Geneviève Jolivet, domaine de Vilvert, INRAE, 78350 Jouy-en-Josas, France.
| | | | - Erwana Harscoët
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Eloïse Airaud
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Aurélie Dewaele
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Cloé Pierson
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Frank Giton
- AP-HP, Pôle biologie-Pathologie Henri Mondor, Créteil, France; INSERM IMRB U955, Créteil, France
| | - Laurent Boulanger
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Nathalie Daniel
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | | | - Maëlle Pannetier
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Eric Pailhoux
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| |
Collapse
|
86
|
Ji X, Bu S, Zhu Y, Wang Y, Wen X, Song F, Luo J. Identification of SF-1 and FOXL2 and Their Effect on Activating P450 Aromatase Transcription via Specific Binding to the Promoter Motifs in Sex Reversing Cheilinus undulatus. Front Endocrinol (Lausanne) 2022; 13:863360. [PMID: 35620392 PMCID: PMC9127060 DOI: 10.3389/fendo.2022.863360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The giant wrasse Cheilinus undulatus is a protogynous socially hermaphroditic fish. However, the physiological basis of its sex reversal remains largely unknown. cyp19 is a key gender-related gene encoding P450 aromatase, which converts androgens to estrogens. cyp19 transcription regulation is currently unknown in socially sexually reversible fish. We identified NR5A1 by encoding SF-1, and FOXL2 from giant wrasse cDNA and cyp19a1a and cyp19a1b promoter regions were cloned from genomic DNA to determine the function of both genes in cyp19a1 regulation. Structural analysis showed that SF-1 contained a conserved DNA-binding domain (DBD) and a C-terminal ligand-binding domain (LBD). FOXL2 was comprised of an evolutionarily conserved Forkhead domain. In vitro transfection assays showed that SF-1 could upregulate cyp19a1 promoter activities, but FOXL2 could only enhance cyp19a1b promoter transcriptional activity in the HEK293T cell line. Furthermore, HEK293T and COS-7 cell lines showed that co-transfecting the two transcription factors significantly increased cyp19a1 promoter activity. The -120 to -112 bp (5'-CAAGGGCAC-3') and -890 to -872 bp (5'-AGAGGAGAACAAGGGGAG-3') regions of the cyp19a1a promoter were the core regulatory elements for SF-1 and FOXL2, respectively, to regulate cyp19a1b promoter transcriptional activity. Collectively, these results suggest that both FOXL2 and SF-1 are involved in giant wrasse sex reversal.
Collapse
|
87
|
Prim JH, Phillips MC, Lamm MS, Brady J, Cabral I, Durden S, Dustin E, Hazellief A, Klapheke B, Lamb AD, Lukowsky A, May D, Sanchez SG, Thompson KC, Tyler WA, Godwin J. Estrogenic signaling and sociosexual behavior in wild sex-changing bluehead wrasses, Thalassoma bifasciatum. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:24-34. [PMID: 34752686 DOI: 10.1002/jez.2558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Estrogenic signaling is an important focus in studies of gonadal and brain sexual differentiation in fishes and vertebrates generally. This study examined variation in estrogenic signaling (1) across three sexual phenotypes (female, female-mimic initial phase [IP] male, and terminal phase [TP] male), (2) during socially-controlled female-to-male sex change, and (3) during tidally-driven spawning cycles in the protogynous bluehead wrasse (Thalassoma bifasciatum). We analyzed relative abundances of messenger RNAs (mRNAs) for the brain form of aromatase (cyp19a1b) and the three nuclear estrogen receptors (ER) (ERα, ERβa, and ERβb) by qPCR. Consistent with previous reports, forebrain/midbrain cyp19a1b was highest in females, significantly lower in TP males, and lowest in IP males. By contrast, ERα and ERβb mRNA abundances were highest in TP males and increased during sex change. ERβa mRNA did not vary significantly. Across the tidally-driven spawning cycle, cyp19a1b abundances were higher in females than TP males. Interestingly, cyp19a1b levels were higher in TP males close (~1 h) to the daily spawning period when sexual and aggressive behaviors rise than males far from spawning (~10-12 h). Together with earlier findings, our results suggest alterations in neural estrogen signaling are key regulators of socially-controlled sex change and sexual phenotype differences. Additionally, these patterns suggest TP male-typical sociosexual behaviors may depend on intermediate rather than low estrogenic signaling. We discuss these results and the possibility that an inverted-U shaped relationship between neural estrogen and male-typical behaviors is more common than presently appreciated.
Collapse
Affiliation(s)
- Julianna H Prim
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Marshall C Phillips
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Melissa S Lamm
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jeannie Brady
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Itze Cabral
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Shelby Durden
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Elizabeth Dustin
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Allison Hazellief
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Brandon Klapheke
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - April D Lamb
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Alison Lukowsky
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Dianna May
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Sidney G Sanchez
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kelly C Thompson
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - William A Tyler
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - John Godwin
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
88
|
Dong Y, Lyu L, Wen H, Shi B. Brain and Pituitary Transcriptome Analyses Reveal the Differential Regulation of Reproduction-Related LncRNAs and mRNAs in Cynoglossus semilaevis. Front Genet 2021; 12:802953. [PMID: 34956338 PMCID: PMC8696122 DOI: 10.3389/fgene.2021.802953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been identified to be involved in half-smooth tongue sole (Cynoglossus semilaevis) reproduction. However, studies of their roles in reproduction have focused mainly on the ovary, and their expression patterns and potential roles in the brain and pituitary are unclear. Thus, to explore the mRNAs and lncRNAs that are closely associated with reproduction in the brain and pituitary, we collected tongue sole brain and pituitary tissues at three stages for RNA sequencing (RNA-seq), the 5,135 and 5,630 differentially expressed (DE) mRNAs and 378 and 532 DE lncRNAs were identified in the brain and pituitary, respectively. The RNA-seq results were verified by RT-qPCR. Moreover, enrichment analyses were performed to analyze the functions of DE mRNAs and lncRNAs. Interestingly, their involvement in pathways related to metabolism, signal transduction and endocrine signaling was revealed. LncRNA-target gene interaction networks were constructed based on antisense, cis and trans regulatory mechanisms. Moreover, we constructed competing endogenous RNA (ceRNA) networks. In summary, this study provides mRNA and lncRNA expression profiles in the brain and pituitary to understand the molecular mechanisms regulating tongue sole reproduction.
Collapse
Affiliation(s)
- Yani Dong
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean Unversity of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean Unversity of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean Unversity of China, Qingdao, China
| | - Bao Shi
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
89
|
Liu X, Dai S, Wu J, Wei X, Zhou X, Chen M, Tan D, Pu D, Li M, Wang D. Roles of anti-Müllerian hormone and its duplicates in sex determination and germ cell proliferation of Nile tilapia. Genetics 2021; 220:6486528. [PMID: 35100374 PMCID: PMC9208641 DOI: 10.1093/genetics/iyab237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
Duplicates of amh are crucial for fish sex determination and differentiation. In Nile tilapia, unlike in other teleosts, amh is located on X chromosome. The Y chromosome amh (amhΔ-y) is mutated with 5 bp insertion and 233 bp deletion in the coding sequence, and tandem duplicate of amh on Y chromosome (amhy) has been identified as the sex determiner. However, the expression of amh, amhΔ-y, and amhy, their roles in germ cell proliferation and the molecular mechanism of how amhy determines sex is still unclear. In this study, expression and functions of each duplicate were analyzed. Sex reversal occurred only when amhy was mutated as revealed by single, double, and triple mutation of the 3 duplicates in XY fish. Homozygous mutation of amhy in YY fish also resulted in sex reversal. Earlier and higher expression of amhy/Amhy was observed in XY gonads compared with amh/Amh during sex determination. Amhy could inhibit the transcription of cyp19a1a through Amhr2/Smads signaling. Loss of cyp19a1a rescued the sex reversal phenotype in XY fish with amhy mutation. Interestingly, mutation of both amh and amhy in XY fish or homozygous mutation of amhy in YY fish resulted in infertile females with significantly increased germ cell proliferation. Taken together, these results indicated that up-regulation of amhy during the critical period of sex determination makes it the sex-determining gene, and it functions through repressing cyp19a1a expression via Amhr2/Smads signaling pathway. Amh retained its function in controlling germ cell proliferation as reported in other teleosts, while amhΔ-y was nonfunctionalized.
Collapse
Affiliation(s)
- Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiahong Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xueyan Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xin Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mimi Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dejie Tan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deyong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China,Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China. ; Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China,Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China. ; Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
90
|
Shi H, Ru X, Pan S, Jiang D, Huang Y, Zhu C, Li G. Transcriptomic analysis of pituitary in female and male spotted scat (Scatophagus argus) after 17β-estradiol injection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 41:100949. [PMID: 34942522 DOI: 10.1016/j.cbd.2021.100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Spotted scat (Scatophagus argus) is a popular species of marine fish cultured in China. It shows normal sexual growth dimorphism. Female spotted scat grows quicker and bigger than males. Growth and reproduction are the most important traits in aquaculture. In vertebrates, the pituitary gland occupies an important position in the growth and reproduction axis. Estrogen is involved in regulating growth and reproduction in the pituitary gland in an endocrine fashion. Transcriptome sequencing of the pituitary was performed in female and male fish at 6 h after 17β-estradiol injection (4.0 μg E2/g body weight, BW). Compared with the pituitary of female and male groups, 144 and 64 genes [|log2(fold change)| ≥ 1.0 and false discovery rate (FDR) < 0.05] were significantly differentially expressed in E2-injected females and males, respectively (p < 0.05). Of these, 59 and 48 were up-regulated, and 85 and 16 were down-regulated. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analyses, DEGs were involved in signal pathways, such as growth, reproduction, oocyte meiosis and steroid biosynthesis. Of these, estrogen affected the expression of some sex steroid synthesis and receptor genes in the pituitary gland through feedback, such as hsd17b7, pgr and cyp19a1b, regulating the reproductive activities. Besides, some growth-related genes, such as gap43, junbb, mstn2 and insm1a responded to estrogen. E2 might affect the expression level of gh mRNA by regulating the expression levels of growth-related genes. Our results provide a theoretical basis for studying the molecular mechanism of growth and reproduction regulation at the pituitary level of spotted scat responded to E2.
Collapse
Affiliation(s)
- Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoying Ru
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang 524088, China
| | - Shuhui Pan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
91
|
Papadaki M, Mandalakis M, Anastasiou TI, Pouli M, Asderis M, Katharios P, Papandroulakis N, Mylonas CC. Histological evaluation of sex differentiation and early sex identification in hatchery-produced greater amberjack (Seriola dumerili) reared in sea cages. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1777-1792. [PMID: 34515893 DOI: 10.1007/s10695-021-01007-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The histological process of gonadal differentiation, together with the endocrine changes of sex steroid hormones and some of their precursors, was studied in hatchery-produced greater amberjack Seriola dumerili from 101 until 408 days post-hatching (dph), with samplings conducted every 50 days. Histological processing showed that sex differentiation began at 101 dph with the formation of the ovarian cavity in females, while the presumptive males did not yet contain any germ cells in their gonad. At 150 dph, we observed the first germ cells in the developing testes. Sex differentiation in almost all sampled individuals was complete at 408 dph. No size dimorphism was observed between the sexes, and the sex ratio was 1:1, suggesting that there was no influence of early rearing in captivity on sex differentiation. Plasma concentrations of adrenosterone (Ad), androstenedione (Δ4), 11-ketotestosterone (11ΚΤ), testosterone (Τ), estradiol (Ε2), progesterone (P4) and 17,20β-dihydroxy-4-pregnen-3-one (17,20βP) were measured in males and females with the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) to examine their role in the sex differentiation process. From the seven hormones, the only one that exhibited differences between the sexes was 11-KT and the plasma 11-KT concentration was found to be a useful indication of greater amberjack sex. Variations were observed in the mean values of Ad, Δ4, 11-KT, T, P4 and 17,20βP over time in one or both sexes, indicating their involvement in the sex differentiation process.
Collapse
Affiliation(s)
- Maria Papadaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
- Department of Biology, University of Crete, P.O. Box 2208, 71409, Heraklion, Crete, Greece
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Thekla I Anastasiou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Marina Pouli
- Department of Biology, University of Crete, P.O. Box 2208, 71409, Heraklion, Crete, Greece
| | - Michalis Asderis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece.
| |
Collapse
|
92
|
Shen X, Yan H, Jiang J, Li W, Xiong Y, Liu Q, Liu Y. Profile of gene expression changes during estrodiol-17β-induced feminization in the Takifugu rubripes brain. BMC Genomics 2021; 22:851. [PMID: 34819041 PMCID: PMC8614003 DOI: 10.1186/s12864-021-08158-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background As the critical tissue of the central nervous system, the brain has been found to be involved in gonad development. Previous studies have suggested that gonadal fate may be affected by the brain. Identifying brain-specific molecular changes that occur during estrodiol-17β (E2) -induced feminization is crucial to our understanding of the molecular control of sex differentiation by the brains of fish. Results In this study, the differential transcriptomic responses of the Takifugu rubripes larvae brain were compared after E2 treatment for 55 days. Our results showed that 514 genes were differentially expressed between E2-treated-XX (E-XX) and Control-XX (C-XX) T. rubripes, while 362 genes were differentially expressed between E2-treated-XY (E-XY) and Control-XY (C-XY). For example, the expression of cyp19a1b, gnrh1 and pgr was significantly up-regulated, while st, sl, tshβ, prl and pit-1, which belong to the growth hormone/prolactin family, were significantly down-regulated after E2 treatment, in both sexes. The arntl1, bhlbe, nr1d2, per1b, per3, cry1, cipc and ciart genes, which are involved in the circadian rhythm, were also found to be altered. Differentially expressed genes (DEGs), which were identified between E-XX and C-XX, were significantly enriched in neuroactive ligand-receptor interaction, arachidonic acid metabolism, cytokine-cytokine receptor interaction and the calcium signaling pathway. The DEGs that were identified between E-XY and C-XY were significantly enriched in tyrosine metabolism, phenylalanine metabolism, arachidonic acid metabolism and linoleic acid metabolism. Conclusion A number of genes and pathways were identified in the brain of E2-treated T. rubripes larvae by RNA-seq. It provided the opportunity for further study on the possible involvement of networks in the brain-pituitary-gonadal axis in sex differentiation in T. rubripes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08158-0.
Collapse
Affiliation(s)
- Xufang Shen
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China.,Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China
| | - Hongwei Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, Liaoning, China.
| | - Jieming Jiang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Weiyuan Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Yuyu Xiong
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.,College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Qi Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, Liaoning, China.
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.,College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, Liaoning, China
| |
Collapse
|
93
|
Goikoetxea A, Muncaster S, Todd EV, Lokman PM, Robertson HA, De Farias E Moraes CE, Damsteegt EL, Gemmell NJ. A new experimental model for the investigation of sequential hermaphroditism. Sci Rep 2021; 11:22881. [PMID: 34819550 PMCID: PMC8613207 DOI: 10.1038/s41598-021-02063-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
The stunning sexual transformation commonly triggered by age, size or social context in some fishes is one of the best examples of phenotypic plasticity thus far described. To date our understanding of this process is dominated by studies on a handful of subtropical and tropical teleosts, often in wild settings. Here we have established the protogynous New Zealand spotty wrasse, Notolabrus celidotus, as a temperate model for the experimental investigation of sex change. Captive fish were induced to change sex using aromatase inhibition or manipulation of social groups. Complete female-to-male transition occurred over 60 days in both cases and time-series sampling was used to quantify changes in hormone production, gene expression and gonadal cellular anatomy. Early-stage decreases in plasma 17β-estradiol (E2) concentrations or gonadal aromatase (cyp19a1a) expression were not detected in spotty wrasse, despite these being commonly associated with the onset of sex change in subtropical and tropical protogynous (female-to-male) hermaphrodites. In contrast, expression of the masculinising factor amh (anti-Müllerian hormone) increased during early sex change, implying a potential role as a proximate trigger for masculinisation. Collectively, these data provide a foundation for the spotty wrasse as a temperate teleost model to study sex change and cell fate in vertebrates.
Collapse
Affiliation(s)
- A Goikoetxea
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - S Muncaster
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand.
- School of Science, University of Waikato, Tauranga, New Zealand.
| | - E V Todd
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - P M Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - H A Robertson
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - C E De Farias E Moraes
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - E L Damsteegt
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - N J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
94
|
Lin CJ, Jeng SR, Lei ZY, Yueh WS, Dufour S, Wu GC, Chang CF. Involvement of Transforming Growth Factor Beta Family Genes in Gonadal Differentiation in Japanese Eel, Anguilla japonica, According to Sex-Related Gene Expressions. Cells 2021; 10:cells10113007. [PMID: 34831230 PMCID: PMC8616510 DOI: 10.3390/cells10113007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
The gonochoristic feature with environmental sex determination that occurs during the yellow stage in the eel provides an interesting model to investigate the mechanisms of gonadal development. We previously studied various sex-related genes during gonadal sex differentiation in Japanese eels. In the present study, the members of transforming growth factor beta (TGF-β) superfamily were investigated. Transcript levels of anti-Müllerian hormone, its receptor, gonadal soma-derived factor (amh, amhr2, and gsdf, respectively) measured by real-time polymerase chain reaction (qPCR) showed a strong sexual dimorphism. Transcripts were dominantly expressed in the testis, and their levels significantly increased with testicular differentiation. In contrast, the expressions of amh, amhr2, and gsdf transcripts were low in the ovary of E2-feminized female eels. In situ hybridization detected gsdf (but not amh) transcript signals in undifferentiated gonads. amh and gsdf signals were localized to Sertoli cells and had increased significantly with testicular differentiation. Weak gsdf and no amh signals were detected in early ovaries of E2-feminized female eels. Transcript levels of amh and gsdf (not amhr2) decreased during human chorionic gonadotropin (HCG)-induced spermatogenesis in males. This study suggests that amh, amhr2, and especially gsdf might be involved in the gene pathway regulating testicular differentiation of Japanese eels.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Zhen-Yuan Lei
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, CEDEX 05, 75231 Paris, France;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guan-Chung Wu
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| |
Collapse
|
95
|
Zhou L, Li M, Wang D. Role of sex steroids in fish sex determination and differentiation as revealed by gene editing. Gen Comp Endocrinol 2021; 313:113893. [PMID: 34454946 DOI: 10.1016/j.ygcen.2021.113893] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The involvement of sex steroids in sex determination and differentiation is relatively conserved among non-mammalian vertebrates, especially in fish. Thanks to the advances in genome sequencing and genome editing, significant progresses have been made in the understanding of steroidogenic pathway and hormonal regulation of sex determination and differentiation in fish. It seems that loss of function study of single gene challenges the traditional views that estrogen is required for ovarian differentiation and androgen is needed for testicular development, but it is not so in essence. Steroidogenic enzymes can be classified into two categories based on expression and enzyme activities in fish. One type, encoded by star2, cyp17a1 and cyp19a1a, is involved in estrogen production and exclusively expressed in the gonads. Mutation of these genes results in the up-regulation of male pathway genes and sex reversal from genetic female to male. The other type, encoded by the duplicated paralogs of the above genes, including star1, cyp11a1, cyp17a2 and cyp19a1b, as well as cyp11c1 gene, is dominantly expressed both in gonads and extra-gonadal tissues. Mutation of these genes alters the steroids (androgen, DHP and cortisol) production and spermatogenesis, fertility, secondary sexual characteristics and sexual behavior, but usually does not affect the sex differentiation. For the estrogen receptors (esr1, esr2a and esr2b), single mutation failed to, but double and triple mutation leads to sex reversal from female to male, indicating that at least Esr2a and Esr2b are required to mediate the role of estrogen in sex determination proved by gene editing experiments. Taken together, results from gene editing enrich our understanding of steroid synthesis pathways and further confirm the critical role of estrogen in female sex determination by antagonizing the male pathway in fish.
Collapse
Affiliation(s)
- Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
96
|
Identification and expression analysis of thyroid-stimulating hormone β subunit, and effects of T3 on gonadal differentiation-related gene expression in rice field eel, Monopterus albus. Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110681. [PMID: 34688906 DOI: 10.1016/j.cbpb.2021.110681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/12/2023]
Abstract
Thyroid-stimulating hormone (TSH) is an important glycoprotein in hypothalamic-pituitary-thyroid axis, which plays a crucial role in the synthesis and release of thyroid hormones in vertebrates. Rice field eel, Monopterus albus, a protogynous hermaphroditic fish, which undergoes sex reversal from a functional female to a male, is an ideal model to investigate the regulation of sex differentiation. In this study, we obtained the cDNA sequence of thyroid-stimulating hormone β subunit (tshβ) from rice field eel, which contained a complete open reading frame and encoded a putative protein of 151 amino acids. Multiple alignment of protein sequences showed that tshβ was highly conserved in teleost. The tissue distribution indicated that tshβ showed high expression in the pituitary, moderate expression in the brain region, gonad, intestine and liver, and low expression in other peripheral tissues. During natural sex reversal, the expression of tshβ had no significant difference in the pituitary. Compared to that in the ovary, the expression of tshβ increased significantly in the gonad at late intersexual and male stages. After treatment by different doses of triiodothyronine (T3) (1 μg/g, 10 μg/g and 100 μg/g body weight), serum T3 and free triiodothyronine (FT3) increased sharply, while the expression of tshβ were inhibited significantly in the pituitary. Although T3 had no significant effect on the levels of serum E2, it stimulated the release of serum 11-KT at high-dose group. We also detected the effects of T3 on the expression of gonadal differentiation-related genes in rice field eel. T3 treatment inhibited the expression of foxl2, cyp19a1a and dax1, while stimulated the expression of sox9a1. These results indicate that TSH may be involved in sex differentiation, and THs may play roles in the regulation of male development and sex reversal in rice field eel.
Collapse
|
97
|
Lockley EC, Eizaguirre C. Effects of global warming on species with temperature-dependent sex determination: Bridging the gap between empirical research and management. Evol Appl 2021; 14:2361-2377. [PMID: 34745331 PMCID: PMC8549623 DOI: 10.1111/eva.13226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
Global warming could threaten over 400 species with temperature-dependent sex determination (TSD) worldwide, including all species of sea turtle. During embryonic development, rising temperatures might lead to the overproduction of one sex and, in turn, could bias populations' sex ratios to an extent that threatens their persistence. If climate change predictions are correct, and biased sex ratios reduce population viability, species with TSD may go rapidly extinct unless adaptive mechanisms, whether behavioural, physiological or molecular, exist to buffer these temperature-driven effects. Here, we summarize the discovery of the TSD phenomenon and its still elusive evolutionary significance. We then review the molecular pathways underpinning TSD in model species, along with the hormonal mechanisms that interact with temperatures to determine an individual's sex. To illustrate evolutionary mechanisms that can affect sex determination, we focus on sea turtle biology, discussing both the adaptive potential of this threatened TSD taxon, and the risks associated with conservation mismanagement.
Collapse
Affiliation(s)
- Emma C. Lockley
- School of Biological and Chemical SciencesQueen Mary University LondonLondonUK
| | | |
Collapse
|
98
|
Yan T, Lu H, Sun C, Peng Y, Meng F, Gan R, Cui X, Wu C, Zhang S, Yang Y, Zhang L, Zhang W. Nr5a homologues in the ricefield eel Monopterus albus: Alternative splicing, tissue-specific expression, and differential roles on the activation of cyp19a1a promoter in vitro. Gen Comp Endocrinol 2021; 312:113871. [PMID: 34324842 DOI: 10.1016/j.ygcen.2021.113871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
Nr5a (Fushi tarazu factor 1, Ftz-F1) homologues belong to the nuclear receptor superfamily, and are involved in the regulation of reproduction in vertebrates. Four genes encoding Nr5a homologues were present in the genome of ricefield eel, which are designated as nr5a1a, nr5a1b, nr5a2, and nr5a5 in the present study. Alternatively spliced transcripts were identified for nr5a1a and nr5a1b genes. Sequence analysis indicated that nr5a5 is possibly a paralog of nr5a2, and nr5a1b is lost during evolution in some teleosts including tilapia and medaka. Ricefield eel nr5a genes exhibit tissue-specific expression patterns, with nr5a1a and nr5a1b resembling that of the SF-1/Ad4BP (NR5A1) subfamily, and nr5a2 and nr5a5 resembling that of the NR5A2/LRH/FTF subfamily. Transcriptomic analysis revealed parallel expression profiles of nr5a1a, foxl2, and cyp19a1a in ovarian follicles during vitellogenesis, with peak values at the late vitellogenic stage. Real-time PCR indicated that the expression levels of nr5a1a and foxl2 in gonads were decreased significantly during the sexual transition from female to the late intersexual stage. In vitro transient transfection assay showed that Nr5a1a up-regulated ricefield eel cyp19a1a promoter activities synergistically with Foxl2. However, Nr5a1b, Nr5a2, and Nr5a5 could neither activate ricefield eel cyp19a1a promoter alone nor enhance the stimulatory effects of Foxl2 on cyp19a1a promoter activities. Collectively, the above data suggest that Nr5a homologues may have diverse and differential roles in the tissues of ricefield eels. The up-regulation of gonadal nr5a1a and foxl2 during vitellogenesis may be important for the ovarian development whereas their down-regulation during the sexual transition period may be important for the sex change process of ricefield eels, possibly through the regulation of cyp19a1a gene expression.
Collapse
Affiliation(s)
- Tao Yan
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huijie Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chao Sun
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yalian Peng
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Feiyan Meng
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Riping Gan
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xin Cui
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chengxiang Wu
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shen Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yumei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lihong Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
99
|
Yan H, Shen X, Jiang J, Zhang L, Yuan Z, Wu Y, Liu Q, Liu Y. Gene Expression of Takifugu rubripes Gonads During AI- or MT-induced Masculinization and E2-induced Feminization. Endocrinology 2021; 162:6218011. [PMID: 33831176 DOI: 10.1210/endocr/bqab068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 01/27/2023]
Abstract
Elucidating the global molecular changes that occur during aromatase inhibitor (AI)- or 17α-methyltestosterone (MT)-induced masculinization and estradiol-17β (E2)-induced feminization is critical to understanding the roles that endocrine and genetic factors play in regulating the process of sex differentiation in fish. Here, fugu larvae were treated with AI (letrozole), MT, or E2 from 25 to 80 days after hatching (dah), and gonadal transcriptomic analysis at 80 dah was performed. The expression of dmrt1, gsdf, foxl2, and other key genes (star, hsd3b1, cyp11c1, cyp19a1a, etc.) involved in the steroid hormone biosynthesis pathway were found be altered. The expression of dmrt1, gsdf, cyp19a1a, and foxl2 was further verified by quantitative polymerase chain reaction. In the control group, the expression of dmrt1 and gsdf was significantly higher in XY larvae than in XX larvae, while the expression of foxl2 and cyp19a1a was significantly higher in XX larvae than in XY larvae (P < .05). AI treatment suppressed the expression of foxl2 and cyp19a1a, and induced the expression of dmrt1 and gsdf in XX larvae. MT treatment suppressed the expression of foxl2, cyp19a1a, dmrt1, and gsdf in XX larvae. E2 treatment suppressed the expression of dmrt1 and gsdf, but did not restore the expression of foxl2 and cyp19a1a in XY larvae. The shared response following AI, MT, and E2 treatment suggested that these genes are essential for sex differentiation. This finding offers some insight into AI or MT-induced masculinization, and E2-induced femininization in fugu.
Collapse
Affiliation(s)
- Hongwei Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xufang Shen
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Life Sciences, Liaoning Normal university, Dalian, Liaoning 116000, China
| | - Jieming Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, 116023, Dalian, Liaoning, China
| | - Zhen Yuan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
| | - Yumeng Wu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, 116023, Dalian, Liaoning, China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, 116023, Dalian, Liaoning, China
| |
Collapse
|
100
|
Sex Determination and Differentiation in Teleost: Roles of Genetics, Environment, and Brain. BIOLOGY 2021; 10:biology10100973. [PMID: 34681072 PMCID: PMC8533387 DOI: 10.3390/biology10100973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
The fish reproductive system is a complex biological system. Nonetheless, reproductive organ development is conserved, which starts with sex determination and then sex differentiation. The sex of a teleost is determined and differentiated from bipotential primordium by genetics, environmental factors, or both. These two processes are species-specific. There are several prominent genes and environmental factors involved during sex determination and differentiation. At the cellular level, most of the sex-determining genes suppress the female pathway. For environmental factors, there are temperature, density, hypoxia, pH, and social interaction. Once the sexual fate is determined, sex differentiation takes over the gonadal developmental process. Environmental factors involve activation and suppression of various male and female pathways depending on the sexual fate. Alongside these factors, the role of the brain during sex determination and differentiation remains elusive. Nonetheless, GnRH III knockout has promoted a male sex-biased population, which shows brain involvement during sex determination. During sex differentiation, LH and FSH might not affect the gonadal differentiation, but are required for regulating sex differentiation. This review discusses the role of prominent genes, environmental factors, and the brain in sex determination and differentiation across a few teleost species.
Collapse
|