51
|
Goudet MMM, Orr DJ, Melkonian M, Müller KH, Meyer MT, Carmo-Silva E, Griffiths H. Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae. THE NEW PHYTOLOGIST 2020; 227:810-823. [PMID: 32249430 DOI: 10.1111/nph.16577] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/23/2020] [Indexed: 05/19/2023]
Abstract
Green algae expressing a carbon-concentrating mechanism (CCM) are usually associated with a Rubisco-containing micro-compartment, the pyrenoid. A link between the small subunit (SSU) of Rubisco and pyrenoid formation in Chlamydomonas reinhardtii has previously suggested that specific RbcS residues could explain pyrenoid occurrence in green algae. A phylogeny of RbcS was used to compare the protein sequence and CCM distribution across the green algae and positive selection in RbcS was estimated. For six streptophyte algae, Rubisco catalytic properties, affinity for CO2 uptake (K0.5 ), carbon isotope discrimination (δ13 C) and pyrenoid morphology were compared. The length of the βA-βB loop in RbcS provided a phylogenetic marker discriminating chlorophyte from streptophyte green algae. Rubisco kinetic properties in streptophyte algae have responded to the extent of inducible CCM activity, as indicated by changes in inorganic carbon uptake affinity, δ13 C and pyrenoid ultrastructure between high and low CO2 conditions for growth. We conclude that the Rubisco catalytic properties found in streptophyte algae have coevolved and reflect the strength of any CCM or degree of pyrenoid leakiness, and limitations to inorganic carbon in the aquatic habitat, whereas Rubisco in extant land plants reflects more recent selective pressures associated with improved diffusive supply of the terrestrial environment.
Collapse
Affiliation(s)
- Myriam M M Goudet
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Michael Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, 50674, Cologne, Germany
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Moritz T Meyer
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | | | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
52
|
Li C, Li N, Huang R, Chen C, Guo J, Yang X, Zhang X, Sun C, Deng X, Wang P. A single nucleotide substitution at the 3'-end of SBPase gene involved in Calvin cycle severely affects plant growth and grain yield in rice. BMC PLANT BIOLOGY 2020; 20:345. [PMID: 32698774 PMCID: PMC7374905 DOI: 10.1186/s12870-020-02541-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Calvin cycle plays a crucial role in carbon fixation which provides the precursors of organic macromolecules for plant growth and development. Currently, no gene involved in Calvin cycle has been identified in monocotyledonous plants through mutant or/and map-based cloning approach. RESULTS Here, we isolated a low-tillering mutant, c6635, in rice (Oryza sativa). The mutant displayed light green leaves and intensely declined pigment contents and photosynthetic capacity at early growth stage. Moreover, its individual plant showed a much smaller size, and most individuals produced only two tillers. At mature stage, its productive panicles, grain number and seed setting rate were significantly decreased, which lead to a sharp reduction of the grain yield. We confirmed that a single nucleotide mutation in LOC_Os04g16680 gene encoding sedoheptulose 1,7-bisphosphatase (SBPase) involved in Calvin cycle was responsible for the mutant phenotype of c6635 through map-based cloning, MutMap analysis and complementation experiments. Sequence analysis suggested that the point mutation caused an amino acid change from Gly-364 to Asp at the C-terminal of SBPase. In addition, OsSBPase gene was mainly expressed in leaf, and the encoded protein was located in chloroplast. The mutation of OsSBPase could significantly affect expression levels of some key genes involved in Calvin cycle. CONCLUSIONS We successfully identified a SBPase gene in monocotyledonous plants. Meanwhile, we demonstrated that a single nucleotide substitution at the 3'-end of this gene severely affects plant growth and grain yield, implying that the Gly-364 at the C-terminal of SBPase could play an important role in SBPase function in rice.
Collapse
Affiliation(s)
- Chun Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Na Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Rui Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Congping Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jia Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiaorong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiangyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
53
|
Rubisco accumulation factor 1 (Raf1) plays essential roles in mediating Rubisco assembly and carboxysome biogenesis. Proc Natl Acad Sci U S A 2020; 117:17418-17428. [PMID: 32636267 PMCID: PMC7382273 DOI: 10.1073/pnas.2007990117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carboxysomes are membrane-free organelles for carbon assimilation in cyanobacteria. The carboxysome consists of a proteinaceous shell that structurally resembles virus capsids and internal enzymes including ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the primary carbon-fixing enzyme in photosynthesis. The formation of carboxysomes requires hierarchical self-assembly of thousands of protein subunits, initiated from Rubisco assembly and packaging to shell encapsulation. Here we study the role of Rubisco assembly factor 1 (Raf1) in Rubisco assembly and carboxysome formation in a model cyanobacterium, Synechococcus elongatus PCC7942 (Syn7942). Cryo-electron microscopy reveals that Raf1 facilitates Rubisco assembly by mediating RbcL dimer formation and dimer-dimer interactions. Syn7942 cells lacking Raf1 are unable to form canonical intact carboxysomes but generate a large number of intermediate assemblies comprising Rubisco, CcaA, CcmM, and CcmN without shell encapsulation and a low abundance of carboxysome-like structures with reduced dimensions and irregular shell shapes and internal organization. As a consequence, the Raf1-depleted cells exhibit reduced Rubisco content, CO2-fixing activity, and cell growth. Our results provide mechanistic insight into the chaperone-assisted Rubisco assembly and biogenesis of carboxysomes. Advanced understanding of the biogenesis and stepwise formation process of the biogeochemically important organelle may inform strategies for heterologous engineering of functional CO2-fixing modules to improve photosynthesis.
Collapse
|
54
|
Zhuang K, Wang J, Jiao B, Chen C, Zhang J, Ma N, Meng Q. WHIRLY1 maintains leaf photosynthetic capacity in tomato by regulating the expression of RbcS1 under chilling stress. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3653-3663. [PMID: 32189001 DOI: 10.1093/jxb/eraa145] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Rubisco, which consists of eight large subunits (RBCLs) and eight small subunits (RBCSs), is a major photosynthetic enzyme that is sensitive to chilling stress. However, it is largely unclear how plants maintain high Rubisco content under low temperature conditions. Here, we report that tomato WHIRLY1 (SlWHY1) positively regulates the Rubisco level under chilling stress by directly binding to the promoter region of SlRbcS1, resulting in the activation of SlRbcS1 expression. SlRbcS1-overexpressing lines had higher Rubisco contents and were more resistant to chilling stress compared with the wild type. Quantitative real-time PCR analyses showed that, among the five RbcS genes, only SlRbcS1 expression is up-regulated by chilling treatment. These results indicate that SlWHIRLY1 specifically enhances the levels of SlRbcS1 and confers tolerance to chilling stress. The amino acid sequence of SlRBCS1 shows 92.67% identity with those of another two RBCS proteins and three residues are specifically found in SlRBCS1. However, mutation of these residues to alanine in SlRBCS1 does not influence its function during cold adaptation. Thus, we conclude that high levels of Rubisco, but not the specific residues in SlRBCS1, play important roles in tolerance to chilling stress in tomato.
Collapse
Affiliation(s)
- Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong, China
| | - Jieyu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong, China
| | - Baozhen Jiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong, China
| | - Chong Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong, China
| | - Junjie Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong, China
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong, China
| |
Collapse
|
55
|
Jiang T, Moriwaki K, Kobayashi O, Ishimura K, Danielache SO, Nanbu S. Theoretical analysis of the kinetic isotope effect on carboxylation in RubisCO. J Comput Chem 2020; 41:1116-1123. [PMID: 31984537 DOI: 10.1002/jcc.26156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/21/2019] [Accepted: 01/11/2020] [Indexed: 11/10/2022]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) fixes atmospheric carbon dioxide into bioavailable sugar molecules. It is also well known that a kinetic isotope effect (KIE; CO2 carbon atoms) accompanies the carboxylation process. To describe the reaction and the KIE α, two different types of molecular dynamics (MD) simulations (ab initio MD and classical MD) have been performed with an Own N-layered Integrated molecular Orbitals and molecular Mechanics (ONIOM)-hybrid model. A channel structure for CO2 transport has been observed during the MD simulation in RubisCO, and assuming the reaction path from the inlet to the product through the coordinate complex with Mg2+ , simulations have been performed on several molecular configuration models fixing several distances between CO2 and ribulose-1,5-bisphosphate along the channel. Free energy analysis and diffusion coefficient analysis have been evaluated for different phases of the process. It is confirmed that the isotopic fractionation effect for CO2 containing either 13 C or 12 C would appear through the transiting path in the channel structure identified in RubisCO. The estimated isotope fractionation constant was quite close to the experimental value.
Collapse
Affiliation(s)
- Tianlong Jiang
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | - Kenta Moriwaki
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | - Osamu Kobayashi
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan.,Department of Nanosystem Science, Yokohama City University, Yokohama, Japan
| | - Kazuya Ishimura
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Japan
| | | | - Shinkoh Nanbu
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| |
Collapse
|
56
|
Iñiguez C, Capó-Bauçà S, Niinemets Ü, Stoll H, Aguiló-Nicolau P, Galmés J. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO 2 concentrating mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:897-918. [PMID: 31820505 DOI: 10.1111/tpj.14643] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
RuBisCO-catalyzed CO2 fixation is the main source of organic carbon in the biosphere. This enzyme is present in all domains of life in different forms (III, II, and I) and its origin goes back to 3500 Mya, when the atmosphere was anoxygenic. However, the RuBisCO active site also catalyzes oxygenation of ribulose 1,5-bisphosphate, therefore, the development of oxygenic photosynthesis and the subsequent oxygen-rich atmosphere promoted the appearance of CO2 concentrating mechanisms (CCMs) and/or the evolution of a more CO2 -specific RuBisCO enzyme. The wide variability in RuBisCO kinetic traits of extant organisms reveals a history of adaptation to the prevailing CO2 /O2 concentrations and the thermal environment throughout evolution. Notable differences in the kinetic parameters are found among the different forms of RuBisCO, but the differences are also associated with the presence and type of CCMs within each form, indicative of co-evolution of RuBisCO and CCMs. Trade-offs between RuBisCO kinetic traits vary among the RuBisCO forms and also among phylogenetic groups within the same form. These results suggest that different biochemical and structural constraints have operated on each type of RuBisCO during evolution, probably reflecting different environmental selective pressures. In a similar way, variations in carbon isotopic fractionation of the enzyme point to significant differences in its relationship to the CO2 specificity among different RuBisCO forms. A deeper knowledge of the natural variability of RuBisCO catalytic traits and the chemical mechanism of RuBisCO carboxylation and oxygenation reactions raises the possibility of finding unrevealed landscapes in RuBisCO evolution.
Collapse
Affiliation(s)
- Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| | - Heather Stoll
- Department of Earth Sciences, ETH Zürich, Sonnegstrasse 5, 8092, Zürich, Switzerland
| | - Pere Aguiló-Nicolau
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
57
|
Busch FA. Photorespiration in the context of Rubisco biochemistry, CO 2 diffusion and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:919-939. [PMID: 31910295 DOI: 10.1111/tpj.14674] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 05/11/2023]
Abstract
Photorespiratory metabolism is essential for plants to maintain functional photosynthesis in an oxygen-containing environment. Because the oxygenation reaction of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often considered a wasteful process and considerable efforts are aimed at minimizing the negative impact of photorespiration on the plant's carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is important for maintaining the redox balance of the plant. The overall effect of photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to evaluate the costs and benefits of photorespiration.
Collapse
Affiliation(s)
- Florian A Busch
- Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
58
|
Yamada K, Davydov II, Besnard G, Salamin N. Duplication history and molecular evolution of the rbcS multigene family in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6127-6139. [PMID: 31498865 PMCID: PMC6859733 DOI: 10.1093/jxb/erz363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/12/2019] [Indexed: 05/22/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is considered to be the main enzyme determining the rate of photosynthesis. The small subunit of the protein, encoded by the rbcS gene, has been shown to influence the catalytic efficiency, CO2 specificity, assembly, activity, and stability of RuBisCO. However, the evolution of the rbcS gene remains poorly studied. We inferred the phylogenetic tree of the rbcS gene in angiosperms using the nucleotide sequences and found that it is composed of two lineages that may have existed before the divergence of land plants. Although almost all species sampled carry at least one copy of lineage 1, genes of lineage 2 were lost in most angiosperm species. We found the specific residues that have undergone positive selection during the evolution of the rbcS gene. We detected intensive coevolution between each rbcS gene copy and the rbcL gene encoding the large subunit of RuBisCO. We tested the role played by each rbcS gene copy on the stability of the RuBisCO protein through homology modelling. Our results showed that this evolutionary constraint could limit the level of divergence seen in the rbcS gene, which leads to the similarity among the rbcS gene copies of lineage 1 within species.
Collapse
Affiliation(s)
- Kana Yamada
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Iakov I Davydov
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Guillaume Besnard
- Laboratoire Evolution et Diversité Biologique (EDB UMR5174), CNRS-UPS-IRD, University of Toulouse III, Toulouse Cedex, France
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
59
|
Atkinson N, Velanis CN, Wunder T, Clarke DJ, Mueller-Cajar O, McCormick AJ. The pyrenoidal linker protein EPYC1 phase separates with hybrid Arabidopsis-Chlamydomonas Rubisco through interactions with the algal Rubisco small subunit. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5271-5285. [PMID: 31504763 PMCID: PMC6793452 DOI: 10.1093/jxb/erz275] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/13/2019] [Indexed: 05/21/2023]
Abstract
Photosynthetic efficiencies in plants are restricted by the CO2-fixing enzyme Rubisco but could be enhanced by introducing a CO2-concentrating mechanism (CCM) from green algae, such as Chlamydomonas reinhardtii (hereafter Chlamydomonas). A key feature of the algal CCM is aggregation of Rubisco in the pyrenoid, a liquid-like organelle in the chloroplast. Here we have used a yeast two-hybrid system and higher plants to investigate the protein-protein interaction between Rubisco and essential pyrenoid component 1 (EPYC1), a linker protein required for Rubisco aggregation. We showed that EPYC1 interacts with the small subunit of Rubisco (SSU) from Chlamydomonas and that EPYC1 has at least five SSU interaction sites. Interaction is crucially dependent on the two surface-exposed α-helices of the Chlamydomonas SSU. EPYC1 could be localized to the chloroplast in higher plants and was not detrimental to growth when expressed stably in Arabidopsis with or without a Chlamydomonas SSU. Although EPYC1 interacted with Rubisco in planta, EPYC1 was a target for proteolytic degradation. Plants expressing EPYC1 did not show obvious evidence of Rubisco aggregation. Nevertheless, hybrid Arabidopsis Rubisco containing the Chlamydomonas SSU could phase separate into liquid droplets with purified EPYC1 in vitro, providing the first evidence of pyrenoid-like aggregation for Rubisco derived from a higher plant.
Collapse
Affiliation(s)
- Nicky Atkinson
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Christos N Velanis
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tobias Wunder
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - David J Clarke
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Correspondence:
| |
Collapse
|
60
|
Majeran W, Wostrikoff K, Wollman FA, Vallon O. Role of ClpP in the Biogenesis and Degradation of RuBisCO and ATP Synthase in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2019; 8:E191. [PMID: 31248038 PMCID: PMC6681370 DOI: 10.3390/plants8070191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/17/2023]
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) associates a chloroplast- and a nucleus-encoded subunit (LSU and SSU). It constitutes the major entry point of inorganic carbon into the biosphere as it catalyzes photosynthetic CO2 fixation. Its abundance and richness in sulfur-containing amino acids make it a prime source of N and S during nutrient starvation, when photosynthesis is downregulated and a high RuBisCO level is no longer needed. Here we show that translational attenuation of ClpP1 in the green alga Chlamydomonas reinhardtii results in retarded degradation of RuBisCO during S- and N-starvation, suggesting that the Clp protease is a major effector of RubisCO degradation in these conditions. Furthermore, we show that ClpP cannot be attenuated in the context of rbcL point mutations that prevent LSU folding. The mutant LSU remains in interaction with the chloroplast chaperonin complex. We propose that degradation of the mutant LSU by the Clp protease is necessary to prevent poisoning of the chaperonin. In the total absence of LSU, attenuation of ClpP leads to a dramatic stabilization of unassembled SSU, indicating that Clp is responsible for its degradation. In contrast, attenuation of ClpP in the absence of SSU does not lead to overaccumulation of LSU, whose translation is controlled by assembly. Altogether, these results point to RuBisCO degradation as one of the major house-keeping functions of the essential Clp protease. In addition, we show that non-assembled subunits of the ATP synthase are also stabilized when ClpP is attenuated. In the case of the atpA-FUD16 mutation, this can even allow the assembly of a small amount of CF1, which partially restores phototrophy.
Collapse
Affiliation(s)
- Wojciech Majeran
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-Diderot, Université Paris-Sud, INRA, Université Evry, Université Paris-Saclay, Rue de Noetzlin, 91190 Gif-sur-Yvette, France.
| | - Katia Wostrikoff
- UMR7141 CNRS/Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Francis-André Wollman
- UMR7141 CNRS/Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Olivier Vallon
- UMR7141 CNRS/Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
61
|
Khumsupan P, Donovan S, McCormick AJ. CRISPR/Cas in Arabidopsis: overcoming challenges to accelerate improvements in crop photosynthetic efficiencies. PHYSIOLOGIA PLANTARUM 2019; 166:428-437. [PMID: 30706492 DOI: 10.1111/ppl.12937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
The rapid and widespread adoption of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas technologies has allowed genetic editing in plants to enter a revolutionary new era. In this mini review, we highlight the current CRISPR/Cas tools available in plants and the use of Arabidopsis thaliana as a model to guide future improvements in crop yields, such as enhancing photosynthetic potential. We also outline the current socio-political landscape for CRISPR/Cas research and highlight the growing need for governments to better facilitate research into plant genetic-editing technologies.
Collapse
Affiliation(s)
- Panupon Khumsupan
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sophie Donovan
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
62
|
Ryan P, Forrester TJB, Wroblewski C, Kenney TMG, Kitova EN, Klassen JS, Kimber MS. The small RbcS-like domains of the β-carboxysome structural protein CcmM bind RubisCO at a site distinct from that binding the RbcS subunit. J Biol Chem 2018; 294:2593-2603. [PMID: 30591587 DOI: 10.1074/jbc.ra118.006330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
Carboxysomes are compartments in bacterial cells that promote efficient carbon fixation by sequestering RubisCO and carbonic anhydrase within a protein shell that impedes CO2 escape. The key to assembling this protein complex is CcmM, a multidomain protein whose C-terminal region is required for RubisCO recruitment. This CcmM region is built as a series of copies (generally 3-5) of a small domain, CcmMS, joined by unstructured linkers. CcmMS domains have weak, but significant, sequence identity to RubisCO's small subunit, RbcS, suggesting that CcmM binds RubisCO by displacing RbcS. We report here the 1.35-Å structure of the first Thermosynechococcus elongatus CcmMS domain, revealing that it adopts a compact, well-defined structure that resembles that of RbcS. CcmMS, however, lacked key RbcS RubisCO-binding determinants, most notably an extended N-terminal loop. Nevertheless, individual CcmMS domains are able to bind RubisCO in vitro with 1.16 μm affinity. Two or four linked CcmMS domains did not exhibit dramatic increases in this affinity, implying that short, disordered linkers may frustrate successive CcmMS domains attempting to simultaneously bind a single RubisCO oligomer. Size-exclusion chromatography-coupled right-angled light scattering (SEC-RALS) and native MS experiments indicated that multiple CcmMS domains can bind a single RubisCO holoenzyme and, moreover, that RbcS is not released from these complexes. CcmMS bound equally tightly to a RubisCO variant in which the α/β domain of RbcS was deleted, suggesting that CcmMS binds RubisCO independently of its RbcS subunit. We propose that, instead, the electropositive CcmMS may bind to an extended electronegative pocket between RbcL dimers.
Collapse
Affiliation(s)
- Patrick Ryan
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Taylor J B Forrester
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Charles Wroblewski
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Tristan M G Kenney
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Matthew S Kimber
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| |
Collapse
|
63
|
Valegård K, Andralojc PJ, Haslam RP, Pearce FG, Eriksen GK, Madgwick PJ, Kristoffersen AK, van Lun M, Klein U, Eilertsen HC, Parry MAJ, Andersson I. Structural and functional analyses of Rubisco from arctic diatom species reveal unusual posttranslational modifications. J Biol Chem 2018; 293:13033-13043. [PMID: 29925588 DOI: 10.1074/jbc.ra118.003518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/19/2018] [Indexed: 01/09/2023] Open
Abstract
The catalytic performance of the major CO2-assimilating enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), restricts photosynthetic productivity. Natural diversity in the catalytic properties of Rubisco indicates possibilities for improvement. Oceanic phytoplankton contain some of the most efficient Rubisco enzymes, and diatoms in particular are responsible for a significant proportion of total marine primary production as well as being a major source of CO2 sequestration in polar cold waters. Until now, the biochemical properties and three-dimensional structures of Rubisco from diatoms were unknown. Here, diatoms from arctic waters were collected, cultivated, and analyzed for their CO2-fixing capability. We characterized the kinetic properties of five and determined the crystal structures of four Rubiscos selected for their high CO2-fixing efficiency. The DNA sequences of the rbcL and rbcS genes of the selected diatoms were similar, reflecting their close phylogenetic relationship. The Vmax and Km for the oxygenase and carboxylase activities at 25 °C and the specificity factors (Sc/o) at 15, 25, and 35 °C were determined. The Sc/o values were high, approaching those of mono- and dicot plants, thus exhibiting good selectivity for CO2 relative to O2 Structurally, diatom Rubiscos belong to form I C/D, containing small subunits characterized by a short βA-βB loop and a C-terminal extension that forms a β-hairpin structure (βE-βF loop). Of note, the diatom Rubiscos featured a number of posttranslational modifications of the large subunit, including 4-hydroxyproline, β-hydroxyleucine, hydroxylated and nitrosylated cysteine, mono- and dihydroxylated lysine, and trimethylated lysine. Our studies suggest adaptation toward achieving efficient CO2 fixation in arctic diatom Rubiscos.
Collapse
Affiliation(s)
- Karin Valegård
- From the Department of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| | - P John Andralojc
- Department of Plant Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Richard P Haslam
- Department of Plant Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - F Grant Pearce
- From the Department of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| | - Gunilla K Eriksen
- the Norwegian College of Fisheries Science, Arctic University of Norway, N-9037 Tromsø, Norway, and
| | - Pippa J Madgwick
- Department of Plant Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Anne K Kristoffersen
- the Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Michiel van Lun
- From the Department of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| | - Uwe Klein
- the Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Hans C Eilertsen
- the Norwegian College of Fisheries Science, Arctic University of Norway, N-9037 Tromsø, Norway, and
| | - Martin A J Parry
- Department of Plant Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Inger Andersson
- From the Department of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden,
| |
Collapse
|
64
|
ElSayed AI, Rafudeen MS, El-Hamahmy MAM, Odero DC, Hossain MS. Enhancing antioxidant systems by exogenous spermine and spermidine in wheat (Triticum aestivum) seedlings exposed to salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:745-759. [PMID: 32291049 DOI: 10.1071/fp17127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 01/22/2018] [Indexed: 05/09/2023]
Abstract
Plants have evolved complex mechanisms to mitigate osmotic and ionic stress caused by high salinity. The effect of exogenous spermine (Spm) and spermidine (Spd) on defence responses of wheat seedlings under NaCl stress was investigated by measuring antioxidant enzyme activities and the transcript expression of corresponding genes. Exogenous Spm and Spd decreased the level of malondialdehyde, increased chlorophyll and proline contents, and modulated PSII activity in wheat seedlings under salt stress. Spermidine alleviated negative effects on CO2 assimilation induced by salt stress in addition to significantly increasing the activity and content of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). It appears Spd conferred salinity tolerance in wheat seedlings by enhancing photosynthetic capacity through regulation of gene expression and the activity of key CO2 assimilation enzymes. Exogenous Spm regulated activities of different antioxidant enzymes (catalase, glutathione reductase, dehydroascorbate reductase, ascorbate peroxidase, and superoxide dismutase) and efficiently modulate their transcription levels in wheat seedlings under salt stress. It is likely that Spm plays a key role in alleviating oxidative damage of salt stress by adjusting antioxidant enzyme activities in plants. In addition, exogenous Spd increased transcript level of spermine synthase under salt stress. Salinity stress also caused an increase in transcript levels of diamine oxidase (DAO) and polyamine oxidase (PAO). Exogenous Spd application resulted in a marked increase in free Spd and Spm contents under saline conditions. These results show that exogenous Spd and Spm effectively upregulated transcriptional levels of antioxidant enzyme genes and improved the defence response of plants under salt stress.
Collapse
Affiliation(s)
- Abdelaleim I ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Mohammed S Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Mohamed A M El-Hamahmy
- Department of Agricultural Botany, Faculty of Agriculture, Suez Canal University, 41522 Ismailia, Egypt
| | - Dennis C Odero
- Everglades Research and Education Centre, University of Florida-IFAS, 3200 East Palm Beach Road, Belle Glade, FL 33430, USA
| | - M Sazzad Hossain
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, D-33615, Bielefeld, Germany
| |
Collapse
|
65
|
Pottier M, Gilis D, Boutry M. The Hidden Face of Rubisco. TRENDS IN PLANT SCIENCE 2018; 23:382-392. [PMID: 29525130 DOI: 10.1016/j.tplants.2018.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/28/2018] [Accepted: 02/06/2018] [Indexed: 05/21/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) fixes atmospheric CO2 into organic compounds and is composed of eight copies each of a large subunit (RbcL) and a small subunit (RbcS). Recent reports have revealed unusual RbcS, which are expressed in particular tissues and confer higher catalytic rate, lesser affinity for CO2, and a more acidic profile of the activity versus pH. The resulting Rubisco was proposed to be adapted to a high CO2 environment and recycle CO2 generated by the metabolism. These RbcS belong to a cluster named T (for trichome), phylogenetically distant from cluster M, which gathers well-characterized RbcS expressed in mesophyll or bundle-sheath tissues. Cluster T is largely represented in different plant phyla, including pteridophytes and bryophytes, indicating an ancient origin.
Collapse
Affiliation(s)
- Mathieu Pottier
- Institut des Sciences de la Vie, University of Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Dimitri Gilis
- Bioinformatique génomique et structurale, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Marc Boutry
- Institut des Sciences de la Vie, University of Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
66
|
Increasing metabolic potential: C-fixation. Essays Biochem 2018; 62:109-118. [PMID: 29653967 DOI: 10.1042/ebc20170014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 01/30/2023]
Abstract
Due to the growing world population, crop yields must increase to meet the rising demand. Crop plants also require adaptation to optimize performance in the changing environments caused by climate change. Improving photosynthetic carbon fixation is a promising, albeit technically challenging, strategy whose potential has only just begun to be considered in breeding programmes. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a fundamental enzyme of carbon fixation, is extremely inefficient and many strategies to improve photosynthesis focus on overcoming the limitations of this enzyme, either by improving Rubisco activity and regulation or by improving the supply of substrates. Although progress is being made, the need to tailor solutions for each crop and their respective environments has been highlighted. Even so, continuing research will be required to achieve these objectives and to grow crops more sustainably in the future.
Collapse
|
67
|
Zhao P, Gu W, Huang A, Wu S, Liu C, Huan L, Gao S, Xie X, Wang G. Effect of iron on the growth of Phaeodactylum tricornutum via photosynthesis. JOURNAL OF PHYCOLOGY 2018; 54:34-43. [PMID: 29159944 DOI: 10.1111/jpy.12607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Iron is a limiting factor that controls the phytoplankton biomass in the modern ocean, and iron fertilization of the ocean could lead to blooms dominated by diatoms. Thus, iron plays an important role in controlling the distribution of diatoms. In this study, we measured the growth rate and photosynthetic activity of the model diatom Phaeodactylum tricornutum cultured under different iron concentrations and found that it grew more rapidly and had a much higher photosynthetic efficiency under higher iron concentrations. In order to explore the unique mechanism of the response of diatoms to iron, a proteomic analysis was carried out, and the results indicated that iron promotes the Calvin cycle of P. tricornutum. Diatoms can tolerate the pressure of iron limitation by replacing iron-rich proteins with flavodoxin, and so on. Moreover, we found that the photosystem I (PSI) activity of iron-limited algae that were treated by N',N',N',N'-tetramethyl-p-phenylenediamine (TMPD) was increased significantly. As TMPD plays the role of a cytochrome b6 /f complex that transfers electrons from photosystem II to PSI, the cytochrome b6 /f complex is the key to photosynthesis regulation. Iron could influence the growth of P. tricornutum by regulating its biosynthesis. All of the results suggest that iron might affect the growth of diatoms through the Calvin cycle and the cytochrome b6 /f complex.
Collapse
Affiliation(s)
- Peipei Zhao
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
- Biology Institute of Shandong Academy of Sciences, Jinan, 250014, China
| | - Wenhui Gu
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Aiyou Huang
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Songcui Wu
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Changheng Liu
- Biology Institute of Shandong Academy of Sciences, Jinan, 250014, China
| | - Li Huan
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Shan Gao
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Xiujun Xie
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Guangce Wang
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| |
Collapse
|
68
|
Liu D, Ramya RCS, Mueller-Cajar O. Surveying the expanding prokaryotic Rubisco multiverse. FEMS Microbiol Lett 2018; 364:3983162. [PMID: 28854711 DOI: 10.1093/femsle/fnx156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 11/12/2022] Open
Abstract
The universal, but catalytically modest, CO2-fixing enzyme Rubisco is currently experiencing intense interest by researchers aiming to enhance crop photosynthesis. These efforts are mostly focused on the highly conserved hexadecameric enzyme found in land plants. In comparison, prokaryotic organisms harbor a far greater diversity in Rubisco forms. Recent work towards improving our appreciation of microbial Rubisco properties and harnessing their potential is surveyed. New structural models are providing informative glimpses into catalytic subtleties and diverse oligomeric states. Ongoing characterization is informing us about the conservation of constraints, such as sugar phosphate inhibition and the associated dependence on Rubisco activase helper proteins. Prokaryotic Rubiscos operate under a far wider range of metabolic contexts than the photosynthetic function of higher plant enzymes. Relaxed selection pressures may have resulted in the exploration of a larger volume of sequence space than permitted in organisms performing oxygenic photosynthesis. To tap into the potential of microbial Rubiscos, in vivo selection systems are being used to discover functional metagenomic Rubiscos. Various directed evolution systems to optimize their function have been developed. It is anticipated that this approach will provide access to biotechnologically valuable enzymes that cannot be encountered in the higher plant Rubisco space.
Collapse
Affiliation(s)
- Di Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
69
|
Valegård K, Hasse D, Andersson I, Gunn LH. Structure of Rubisco from Arabidopsis thaliana in complex with 2-carboxyarabinitol-1,5-bisphosphate. Acta Crystallogr D Struct Biol 2018; 74:1-9. [PMID: 29372894 PMCID: PMC5786004 DOI: 10.1107/s2059798317017132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Arabidopsis thaliana is reported at 1.5 Å resolution. In light of the importance of A. thaliana as a model organism for understanding higher plant biology, and the pivotal role of Rubisco in photosynthetic carbon assimilation, there has been a notable absence of an A. thaliana Rubisco crystal structure. A. thaliana Rubisco is an L8S8 hexadecamer comprising eight plastome-encoded catalytic large (L) subunits and eight nuclear-encoded small (S) subunits. A. thaliana produces four distinct small-subunit isoforms (RbcS1A, RbcS1B, RbcS2B and RbcS3B), and this crystal structure provides a snapshot of A. thaliana Rubisco containing the low-abundance RbcS3B small-subunit isoform. Crystals were obtained in the presence of the transition-state analogue 2-carboxy-D-arabinitol-1,5-bisphosphate. A. thaliana Rubisco shares the overall fold characteristic of higher plant Rubiscos, but exhibits an interesting disparity between sequence and structural relatedness to other Rubisco isoforms. These results provide the structural framework to understand A. thaliana Rubisco and the potential catalytic differences that could be conferred by alternative A. thaliana Rubisco small-subunit isoforms.
Collapse
Affiliation(s)
- Karin Valegård
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Laura H. Gunn
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
70
|
Soundararajan P, Manivannan A, Ko CH, Muneer S, Jeong BR. Leaf Physiological and Proteomic Analysis to Elucidate Silicon Induced Adaptive Response under Salt Stress in Rosa hybrida 'Rock Fire'. Int J Mol Sci 2017; 18:E1768. [PMID: 28805727 PMCID: PMC5578157 DOI: 10.3390/ijms18081768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Beneficial effects of silicon (Si) on growth and development have been witnessed in several plants. Nevertheless, studies on roses are merely reported. Therefore, the present investigation was carried out to illustrate the impact of Si on photosynthesis, antioxidant defense and leaf proteome of rose under salinity stress. In vitro-grown, acclimatized Rosa hybrida 'Rock Fire' were hydroponically treated with four treatments, such as control, Si (1.8 mM), NaCl (50 mM), and Si+NaCl. After 15 days, the consequences of salinity stress and the response of Si addition were analyzed. Scorching of leaf edges and stomatal damages occurred due to salt stress was ameliorated under Si supplementation. Similarly, reduction of gas exchange, photosynthetic pigments, higher lipid peroxidation rate, and accumulation of reactive oxygen species under salinity stress were mitigated in Si treatment. Lesser oxidative stress observed was correlated with the enhanced activity and expression of antioxidant enzymes, such as superoxide dismutase, catalase, and ascorbate peroxidase in Si+NaCl treatment. Importantly, sodium transportation was synergistically restricted with the stimulated counter-uptake of potassium in Si+NaCl treatment. Furthermore, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) results showed that out of 40 identified proteins, on comparison with control 34 proteins were down-accumulated and six proteins were up-accumulated due to salinity stress. Meanwhile, addition of Si with NaCl treatment enhanced the abundance of 30 proteins and downregulated five proteins. Differentially-expressed proteins were functionally classified into six groups, such as photosynthesis (22%), carbohydrate/energy metabolism (20%), transcription/translation (20%), stress/redox homeostasis (12%), ion binding (13%), and ubiquitination (8%). Hence, the findings reported in this work could facilitate a deeper understanding on potential mechanism(s) adapted by rose due to the exogenous Si supplementation during the salinity stress.
Collapse
Affiliation(s)
| | - Abinaya Manivannan
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Chung Ho Ko
- Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University, Jinju 660-701, Korea.
| | - Sowbiya Muneer
- Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University, Jinju 660-701, Korea.
| | - Byoung Ryong Jeong
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Korea.
- Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University, Jinju 660-701, Korea.
- Institute of Life Science, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
71
|
Mueller-Cajar O. The Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites. Front Mol Biosci 2017; 4:31. [PMID: 28580359 PMCID: PMC5437159 DOI: 10.3389/fmolb.2017.00031] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/29/2017] [Indexed: 11/13/2022] Open
Abstract
Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tendency has been counteracted by the recruitment of dedicated AAA+ (ATPases associated with various cellular activities) proteins that all use the energy of ATP hydrolysis to remodel inhibited Rubisco active sites leading to release of the inhibitor. Three evolutionarily distinct classes of these Rubisco activases (Rcas) have been discovered so far. Green and red-type Rca are mostly found in photosynthetic eukaryotes of the green and red plastid lineage respectively, whereas CbbQO is associated with chemoautotrophic bacteria. Ongoing mechanistic studies are elucidating how the various motors are utilizing both similar and contrasting strategies to ultimately perform their common function of cracking the inhibited Rubisco active site. The best studied mechanism utilized by red-type Rca appears to involve transient threading of the Rubisco large subunit C-terminal peptide, reminiscent of the action performed by Clp proteases. As well as providing a fascinating example of convergent molecular evolution, Rca proteins can be considered promising crop-improvement targets. Approaches aiming to replace Rubisco in plants with improved enzymes will need to ensure the presence of a compatible Rca protein. The thermolability of the Rca protein found in crop plants provides an opportunity to fortify photosynthesis against high temperature stress. Photosynthesis also appears to be limited by Rca when light conditions are fluctuating. Synthetic biology strategies aiming to enhance the autotrophic CO2 fixation machinery will need to take into consideration the requirement for Rubisco activases as well as their properties.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
72
|
Bracher A, Whitney SM, Hartl FU, Hayer-Hartl M. Biogenesis and Metabolic Maintenance of Rubisco. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:29-60. [PMID: 28125284 DOI: 10.1146/annurev-arplant-043015-111633] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) mediates the fixation of atmospheric CO2 in photosynthesis by catalyzing the carboxylation of the 5-carbon sugar ribulose-1,5-bisphosphate (RuBP). Rubisco is a remarkably inefficient enzyme, fixing only 2-10 CO2 molecules per second. Efforts to increase crop yields by bioengineering Rubisco remain unsuccessful, owing in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. The large subunit of Rubisco requires the chaperonin system for folding, and recent studies have shown that assembly of hexadecameric Rubisco is mediated by specific assembly chaperones. Moreover, Rubisco function can be inhibited by a range of sugar-phosphate ligands, including RuBP. Metabolic repair depends on remodeling of Rubisco by the ATP-dependent Rubisco activase and hydrolysis of inhibitory sugar phosphates by specific phosphatases. Here, we review our present understanding of the structure and function of these auxiliary factors and their utilization in efforts to engineer more catalytically efficient Rubisco enzymes.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ; , ,
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia;
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ; , ,
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ; , ,
| |
Collapse
|
73
|
Shang C, Zhu S, Wang Z, Qin L, Alam MA, Xie J, Yuan Z. Proteome response of Dunaliella parva induced by nitrogen limitation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
74
|
Atkinson N, Leitão N, Orr DJ, Meyer MT, Carmo‐Silva E, Griffiths H, Smith AM, McCormick AJ. Rubisco small subunits from the unicellular green alga Chlamydomonas complement Rubisco-deficient mutants of Arabidopsis. THE NEW PHYTOLOGIST 2017; 214:655-667. [PMID: 28084636 PMCID: PMC5363358 DOI: 10.1111/nph.14414] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/24/2016] [Indexed: 05/03/2023]
Abstract
Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment of Rubisco to the pyrenoid, namely the algal Rubisco small subunit (SSU, encoded by rbcS) or only the surface-exposed algal SSU α-helices. Leaves of Arabidopsis rbcs mutants expressing 'pyrenoid-competent' chimeric Arabidopsis SSUs containing the SSU α-helices from Chlamydomonas reinhardtii can form hybrid Rubisco complexes with catalytic properties similar to those of native Rubisco, suggesting that the α-helices are catalytically neutral. The growth and photosynthetic performance of complemented Arabidopsis rbcs mutants producing near wild-type levels of the hybrid Rubisco were similar to those of wild-type controls. Arabidopsis rbcs mutants expressing a Chlamydomonas SSU differed from wild-type plants with respect to Rubisco catalysis, photosynthesis and growth. This confirms a role for the SSU in influencing Rubisco catalytic properties.
Collapse
Affiliation(s)
- Nicky Atkinson
- SynthSys & Institute of Molecular Plant SciencesSchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3BFUK
| | - Nuno Leitão
- Department of Metabolic BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Douglas J. Orr
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Moritz T. Meyer
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | | | - Howard Griffiths
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Alison M. Smith
- Department of Metabolic BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Alistair J. McCormick
- SynthSys & Institute of Molecular Plant SciencesSchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3BFUK
- Department of Metabolic BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
75
|
Sharwood RE. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. THE NEW PHYTOLOGIST 2017; 213:494-510. [PMID: 27935049 DOI: 10.1111/nph.14351] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/10/2016] [Indexed: 05/19/2023]
Abstract
494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO2 fixation. Fixation of CO2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis.
Collapse
Affiliation(s)
- Robert E Sharwood
- ARC Center of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
76
|
Endow JK, Rocha AG, Baldwin AJ, Roston RL, Yamaguchi T, Kamikubo H, Inoue K. Polyglycine Acts as a Rejection Signal for Protein Transport at the Chloroplast Envelope. PLoS One 2016; 11:e0167802. [PMID: 27936133 PMCID: PMC5147994 DOI: 10.1371/journal.pone.0167802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022] Open
Abstract
PolyGly is present in many proteins in various organisms. One example is found in a transmembrane β-barrel protein, translocon at the outer-envelope-membrane of chloroplasts 75 (Toc75). Toc75 requires its N-terminal extension (t75) for proper localization. t75 comprises signals for chloroplast import (n75) and envelope sorting (c75) in tandem. n75 and c75 are removed by stromal processing peptidase and plastidic type I signal peptidase 1, respectively. PolyGly is present within c75 and its deletion or substitution causes mistargeting of Toc75 to the stroma. Here we have examined the properties of polyGly-dependent protein targeting using two soluble passenger proteins, the mature portion of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (mSS) and enhanced green fluorescent protein (EGFP). Both t75-mSS and t75-EGFP were imported into isolated chloroplasts and their n75 removed. Resultant c75-mSS was associated with the envelope at the intermembrane space, whereas c75-EGFP was partially exposed outside the envelope. Deletion of polyGly or substitution of tri-Ala for the critical tri-Gly segment within polyGly caused each passenger to be targeted to the stroma. Transient expression of t75-EGFP in Nicotiana benthamiana resulted in accumulation of c75-EGFP exposed at the surface of the chloroplast, but the majority of the EGFP passenger was found free in the cytosol with most of its c75 attachment removed. Results of circular dichroism analyses suggest that polyGly within c75 may form an extended conformation, which is disrupted by tri-Ala substitution. These data suggest that polyGly is distinct from a canonical stop-transfer sequence and acts as a rejection signal at the chloroplast inner envelope.
Collapse
Affiliation(s)
- Joshua K. Endow
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Agostinho Gomes Rocha
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Amy J. Baldwin
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Rebecca L. Roston
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Toshio Yamaguchi
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Kentaro Inoue
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| |
Collapse
|
77
|
Identification and expression analysis of non-photosynthetic Rubisco small subunit, OsRbcS1-like genes in plants. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
78
|
Yasmeen F, Raja NI, Razzaq A, Komatsu S. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1586-98. [PMID: 27530299 DOI: 10.1016/j.bbapap.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/31/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
Iron nanoparticles (Fe NPs) have stimulatory effects on the germination ratio and plant growth of wheat. To elucidate the effects of Fe NPs on shoot of drought tolerant Pakistan-13 and salt tolerant NARC-11, a gel-free/label-free proteomic technique was used. The weights/lengths of seedling, shoot, and root of wheat varieties were increased on 5ppm Fe NPs exposure. The number of proteins related to photosynthesis and protein metabolism was decreased and increased in drought tolerant variety and salt tolerant variety, respectively, treated with Fe NPs compared to untreated plants. Differentially changed proteins in drought tolerant variety and salt tolerant variety were mainly related to photosynthesis. Out of photosynthesis related proteins, light reaction was enhanced in salt tolerant variety compared to drought tolerant variety on Fe NPs exposure. The abundance of ribulose bisphosphate carboxylase/oxygenase small chain in drought tolerant variety was higher than that in salt tolerant variety; however, in salt tolerant variety, it was increased 3 fold by Fe NPs exposure compared to untreated plant. These results suggest that Fe NPs improve the growth of wheat seedling, which might be associated with the increase of protein abundance in photosynthesis in salt tolerant variety.
Collapse
Affiliation(s)
- Farhat Yasmeen
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Abdul Razzaq
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
79
|
Hanson MR, Lin MT, Carmo-Silva AE, Parry MA. Towards engineering carboxysomes into C3 plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:38-50. [PMID: 26867858 PMCID: PMC4970904 DOI: 10.1111/tpj.13139] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Photosynthesis in C3 plants is limited by features of the carbon-fixing enzyme Rubisco, which exhibits a low turnover rate and can react with O2 instead of CO2 , leading to photorespiration. In cyanobacteria, bacterial microcompartments, known as carboxysomes, improve the efficiency of photosynthesis by concentrating CO2 near the enzyme Rubisco. Cyanobacterial Rubisco enzymes are faster than those of C3 plants, though they have lower specificity toward CO2 than the land plant enzyme. Replacement of land plant Rubisco by faster bacterial variants with lower CO2 specificity will improve photosynthesis only if a microcompartment capable of concentrating CO2 can also be installed into the chloroplast. We review current information about cyanobacterial microcompartments and carbon-concentrating mechanisms, plant transformation strategies, replacement of Rubisco in a model C3 plant with cyanobacterial Rubisco and progress toward synthesizing a carboxysome in chloroplasts.
Collapse
Affiliation(s)
- Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853 USA
| | - Myat T. Lin
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853 USA
| | | | - Martin A.J. Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| |
Collapse
|
80
|
Budzinski IGF, Moon DH, Morosini JS, Lindén P, Bragatto J, Moritz T, Labate CA. Integrated analysis of gene expression from carbon metabolism, proteome and metabolome, reveals altered primary metabolism in Eucalyptus grandis bark, in response to seasonal variation. BMC PLANT BIOLOGY 2016; 16:149. [PMID: 27364638 PMCID: PMC4929727 DOI: 10.1186/s12870-016-0839-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/22/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Seasonal variation is presumed to play an important role in the regulation of tree growth, especially for Eucalyptus grandis, a fast-growing tree. This variation may induce changes in the whole tree at transcriptional, protein and metabolite levels. Bark represents an important group of tissues that protect trees from desiccation and pathogen attack, and it has been identified as potential feedstock for lignocellulosic derived biofuels. Despite the growing interest, little is known about the molecular mechanisms that regulates bark metabolism, particularly in tropical countries. RESULTS In this study we report the changes observed in the primary metabolism of E. grandis bark during two contrasting seasons in Brazil, summer (wet) and winter (dry), through the combination of transcripts (RT-qPCR), proteome (2-DE gels) and metabolome (GC-MS) analysis, in an integrated manner. Twenty-four genes, involved in carbon metabolism, were analyzed in the two seasons. Eleven were up-regulated in summer, three were up-regulated in winter and ten did not show statistical differences in the expression pattern. The proteomic analysis using 2-DE gels showed 77 proteins expressing differences in abundance, with 38 spots up-regulated in summer and 37 in winter. Different metabolites significantly accumulated during winter. CONCLUSIONS This study revealed a metabolic reconfiguration in the primary metabolism of E. grandis bark, triggered by seasonal variation. Transcripts and protein data suggests that during winter carbohydrate formation seems to be favored by tree metabolism. Glucose, fructose and sucrose accumulated at significant levels during the winter.
Collapse
Affiliation(s)
- Ilara Gabriela Frasson Budzinski
- />Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP 13418-900 Brasil
| | - David H. Moon
- />Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP 13418-900 Brasil
| | - Júlia Silva Morosini
- />Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP 13418-900 Brasil
| | - Pernilla Lindén
- />Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83 Sweden
| | - Juliano Bragatto
- />Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP 13418-900 Brasil
| | - Thomaz Moritz
- />Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83 Sweden
| | - Carlos Alberto Labate
- />Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP 13418-900 Brasil
| |
Collapse
|
81
|
Prins A, Orr DJ, Andralojc PJ, Reynolds MP, Carmo-Silva E, Parry MAJ. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1827-38. [PMID: 26798025 PMCID: PMC4783365 DOI: 10.1093/jxb/erv574] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rubisco is a major target for improving crop photosynthesis and yield, yet natural diversity in catalytic properties of this enzyme is poorly understood. Rubisco from 25 genotypes of the Triticeae tribe, including wild relatives of bread wheat (Triticum aestivum), were surveyed to identify superior enzymes for improving photosynthesis in this crop. In vitro Rubisco carboxylation velocity (V c), Michaelis-Menten constants for CO2 (K c) and O2 (K o) and specificity factor (S c/o) were measured at 25 and 35 °C. V c and K c correlated positively, while V c and S c/o were inversely related. Rubisco large subunit genes (rbcL) were sequenced, and predicted corresponding amino acid differences analysed in relation to the corresponding catalytic properties. The effect of replacing native wheat Rubisco with counterparts from closely related species was analysed by modelling the response of photosynthesis to varying CO2 concentrations. The model predicted that two Rubisco enzymes would increase photosynthetic performance at 25 °C while only one of these also increased photosynthesis at 35 °C. Thus, under otherwise identical conditions, catalytic variation in the Rubiscos analysed is predicted to improve photosynthetic rates at physiological CO2 concentrations. Naturally occurring Rubiscos with superior properties amongst the Triticeae tribe can be exploited to improve wheat photosynthesis and crop productivity.
Collapse
Affiliation(s)
- Anneke Prins
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ UK
| | - Douglas J Orr
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ UK
| | - P John Andralojc
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ UK
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco CP 56130, Mexico
| | - Elizabete Carmo-Silva
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ UK
| | - Martin A J Parry
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ UK
| |
Collapse
|
82
|
Cytonuclear Coordination Is Not Immediate upon Allopolyploid Formation in Tragopogon miscellus (Asteraceae) Allopolyploids. PLoS One 2015; 10:e0144339. [PMID: 26646761 PMCID: PMC4673006 DOI: 10.1371/journal.pone.0144339] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022] Open
Abstract
Allopolyploids, formed by hybridization and chromosome doubling, face the immediate challenge of having duplicated nuclear genomes that interact with the haploid and maternally inherited cytoplasmic (plastid and mitochondrial) genomes. Most of our knowledge of the genomic consequences of allopolyploidy has focused on the fate of the duplicated nuclear genes without regard to their potential interactions with cytoplasmic genomes. As a step toward understanding the fates of nuclear-encoded subunits that are plastid-targeted, here we examine the retention and expression of the gene encoding the small subunit of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco; rbcS) in multiple populations of allotetraploid Tragopogon miscellus (Asteraceae). These polyploids formed recently (~80 years ago) and repeatedly from T. dubius and T. pratensis in the northwestern United States. Examination of 79 T. miscellus individuals from 10 natural populations, as well as 25 synthetic allotetraploids, including reciprocally formed plants, revealed a low percentage of naturally occurring individuals that show a bias in either gene (homeolog) loss (12%) or expression (16%), usually toward maintaining the maternal nuclear copy of rbcS. For individuals showing loss, seven retained the maternally derived rbcS homeolog only, while three had the paternally derived copy. All of the synthetic polyploid individuals examined (S0 and S1 generations) retained and expressed both parental homeologs. These results demonstrate that cytonuclear coordination does not happen immediately upon polyploid formation in Tragopogon miscellus.
Collapse
|
83
|
Zhan Y, Dhaliwal JS, Adjibade P, Uniacke J, Mazroui R, Zerges W. Localized control of oxidized RNA. J Cell Sci 2015; 128:4210-9. [PMID: 26449969 DOI: 10.1242/jcs.175232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/23/2015] [Indexed: 12/23/2022] Open
Abstract
The oxidation of biological molecules by reactive oxygen species (ROS) can render them inactive or toxic. This includes the oxidation of RNA, which appears to underlie the detrimental effects of oxidative stress, aging and certain neurodegenerative diseases. Here, we investigate the management of oxidized RNA in the chloroplast of the green alga Chlamydomonas reinhardtii. Our immunofluorescence microscopy results reveal that oxidized RNA (with 8-hydroxyguanine) is localized in the pyrenoid, a chloroplast microcompartment where CO2 is assimilated by the Calvin cycle enzyme Rubisco. Results of genetic analyses support a requirement for the Rubisco large subunit (RBCL), but not Rubisco, in the management of oxidized RNA. An RBCL pool that can carry out such a 'moonlighting' function is revealed by results of biochemical fractionation experiments. We also show that human (HeLa) cells localize oxidized RNA to cytoplasmic foci that are distinct from stress granules, processing bodies and mitochondria. Our results suggest that the compartmentalization of oxidized RNA management is a general phenomenon and therefore has some fundamental significance.
Collapse
Affiliation(s)
- Yu Zhan
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - James S Dhaliwal
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - Pauline Adjibade
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University, Centre de Recherche le CHU de Quebec, Quebec, Canada G1V 4G2
| | - James Uniacke
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - Rachid Mazroui
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University, Centre de Recherche le CHU de Quebec, Quebec, Canada G1V 4G2
| | - William Zerges
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
84
|
Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ. Optimizing Rubisco and its regulation for greater resource use efficiency. PLANT, CELL & ENVIRONMENT 2015; 38:1817-32. [PMID: 25123951 DOI: 10.1111/pce.12425] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 05/19/2023]
Abstract
Rubisco catalyses the carboxylation of ribulose-1,5-bisphosphate (RuBP), enabling net CO2 assimilation in photosynthesis. The properties and regulation of Rubisco are not optimal for biomass production in current and projected future environments. Rubisco is relatively inefficient, and large amounts of the enzyme are needed to support photosynthesis, requiring large investments in nitrogen. The competing oxygenation of RuBP by Rubisco decreases photosynthetic efficiency. Additionally, Rubisco is inhibited by some sugar phosphates and depends upon interaction with Rubisco activase (Rca) to be reactivated. Rca activity is modulated by the chloroplast redox status and ADP/ATP ratios, thereby mediating Rubisco activation and photosynthetic induction in response to irradiance. The extreme thermal sensitivity of Rca compromises net CO2 assimilation at moderately high temperatures. Given its central role in carbon assimilation, the improvement of Rubisco function and regulation is tightly linked with irradiance, nitrogen and water use efficiencies. Although past attempts have had limited success, novel technologies and an expanding knowledge base make the challenge of improving Rubisco activity in crops an achievable goal. Strategies to optimize Rubisco and its regulation are addressed in relation to their potential to improve crop resource use efficiency and climate resilience of photosynthesis.
Collapse
Affiliation(s)
| | - Joanna C Scales
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Pippa J Madgwick
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Martin A J Parry
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| |
Collapse
|
85
|
|
86
|
Hauser T, Popilka L, Hartl FU, Hayer-Hartl M. Role of auxiliary proteins in Rubisco biogenesis and function. NATURE PLANTS 2015; 1:15065. [PMID: 27250005 DOI: 10.1038/nplants.2015.65] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/20/2015] [Indexed: 05/05/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the conversion of atmospheric CO2 into organic compounds during photosynthesis. Despite its pivotal role in plant metabolism, Rubisco is an inefficient enzyme and has therefore been a key target in bioengineering efforts to improve crop yields. Much has been learnt about the complex cellular machinery involved in Rubisco assembly and metabolic repair over recent years. The simple form of Rubisco found in certain bacteria and dinoflagellates comprises two large subunits, and generally requires the chaperonin system for folding. However, the evolution of hexadecameric Rubisco, which comprises eight large and eight small subunits, from its dimeric precursor has rendered Rubisco in most plants, algae, cyanobacteria and proteobacteria dependent on an array of additional factors. These auxiliary factors include several chaperones for assembly as well as ATPases of the AAA+ family for functional maintenance. An integrated view of the pathways underlying Rubisco biogenesis and repair will pave the way for efforts to improve the enzyme with the goal of increasing crop yields.
Collapse
Affiliation(s)
- Thomas Hauser
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Leonhard Popilka
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
87
|
Su L, Hou P, Song M, Zheng X, Guo L, Xiao Y, Yan L, Li W, Yang J. Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana. Int J Mol Sci 2015; 16:12199-212. [PMID: 26030677 PMCID: PMC4490439 DOI: 10.3390/ijms160612199] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022] Open
Abstract
It has been reported that Arabidopsis phytochrome (phy) A and phyB are crucial photoreceptors that display synergistic and antagonistic action during seedling de-etiolation in multiple light signaling pathways. However, the functional relationship between phyA and phyB is not fully understood under different kinds of light and in response to different intensities of such light. In this work, we compared hypocotyl elongation of the phyA-211 phyB-9 double mutant with the wild type, the phyA-211 and phyB-9 single mutants under different intensities of far-red (FR), red (R), blue (B) and white (W) light. We confirmed that phyA and phyB synergistically promote seedling de-etiolation in B-, B plus R-, W- and high R-light conditions. The correlation of endogenous ELONGATED HYPOCOTYL 5 (HY5) protein levels with the trend of hypocotyl elongation of all lines indicate that both phyA and phyB promote seedling photomorphogenesis in a synergistic manner in high-irradiance white light. Gene expression analyses of RBCS members and HY5 suggest that phyB and phyA act antagonistically on seedling development under FR light.
Collapse
Affiliation(s)
- Liang Su
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Pei Hou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Meifang Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Beijing Radiation Center, Beijing 100875, China.
| | - Xu Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yang Xiao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lei Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jianping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
88
|
Su L, Hou P, Song M, Zheng X, Guo L, Xiao Y, Yan L, Li W, Yang J. Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana. Int J Mol Sci 2015. [PMID: 26030677 DOI: 10.3390/2fijms160612199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
It has been reported that Arabidopsis phytochrome (phy) A and phyB are crucial photoreceptors that display synergistic and antagonistic action during seedling de-etiolation in multiple light signaling pathways. However, the functional relationship between phyA and phyB is not fully understood under different kinds of light and in response to different intensities of such light. In this work, we compared hypocotyl elongation of the phyA-211 phyB-9 double mutant with the wild type, the phyA-211 and phyB-9 single mutants under different intensities of far-red (FR), red (R), blue (B) and white (W) light. We confirmed that phyA and phyB synergistically promote seedling de-etiolation in B-, B plus R-, W- and high R-light conditions. The correlation of endogenous ELONGATED HYPOCOTYL 5 (HY5) protein levels with the trend of hypocotyl elongation of all lines indicate that both phyA and phyB promote seedling photomorphogenesis in a synergistic manner in high-irradiance white light. Gene expression analyses of RBCS members and HY5 suggest that phyB and phyA act antagonistically on seedling development under FR light.
Collapse
Affiliation(s)
- Liang Su
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Pei Hou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Meifang Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Beijing Radiation Center, Beijing 100875, China.
| | - Xu Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yang Xiao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lei Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jianping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
89
|
Dufoo-Hurtado MD, Huerta-Ocampo JÁ, Barrera-Pacheco A, Barba de la Rosa AP, Mercado-Silva EM. Low temperature conditioning of garlic (Allium sativum L.) "seed" cloves induces alterations in sprouts proteome. FRONTIERS IN PLANT SCIENCE 2015; 6:332. [PMID: 26029231 PMCID: PMC4429546 DOI: 10.3389/fpls.2015.00332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Low-temperature conditioning of garlic "seed" cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that "seed" bulbs from "Coreano" variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic "seed" cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic "seed" cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies.
Collapse
Affiliation(s)
- Miguel D. Dufoo-Hurtado
- Laboratorio de Fisiología y Bioquímica Poscosecha de Frutas y Hortalizas, Departamento de Investigación y Posgrado, Facultad de Química, Universidad Autónoma de QuerétaroQuerétaro, Mexico
| | - José Á. Huerta-Ocampo
- Laboratorio de Proteómica y Biomedicina Molecular, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C.San Luis Potosí, Mexico
| | - Alberto Barrera-Pacheco
- Laboratorio de Proteómica y Biomedicina Molecular, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C.San Luis Potosí, Mexico
| | - Ana P. Barba de la Rosa
- Laboratorio de Proteómica y Biomedicina Molecular, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C.San Luis Potosí, Mexico
| | - Edmundo M. Mercado-Silva
- Laboratorio de Fisiología y Bioquímica Poscosecha de Frutas y Hortalizas, Departamento de Investigación y Posgrado, Facultad de Química, Universidad Autónoma de QuerétaroQuerétaro, Mexico
| |
Collapse
|
90
|
Proteomic approaches to identify substrates of the three Deg/HtrA proteases of the cyanobacterium Synechocystis sp. PCC 6803. Biochem J 2015; 468:373-84. [PMID: 25877158 DOI: 10.1042/bj20150097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022]
Abstract
The family of Deg/HtrA proteases plays an important role in quality control of cellular proteins in a wide range of organisms. In the genome of the cyanobacterium Synechocystis sp. PCC 6803, a model organism for photosynthetic research and renewable energy products, three Deg proteases are encoded, termed HhoA, HhoB and HtrA. In the present study, we compared wild-type (WT) Synechocystis cells with the single insertion mutants ΔhhoA, ΔhhoB and ΔhtrA. Protein expression of the remaining Deg/HtrA proteases was strongly affected in the single insertion mutants. Detailed proteomic studies using DIGE (difference gel electrophoresis) and N-terminal COFRADIC (N-terminal combined fractional diagonal chromatography) revealed that inactivation of a single Deg protease has similar impact on the proteomes of the three mutants; differences to WT were observed in enzymes involved in the major metabolic pathways. Changes in the amount of phosphate permease system Pst-1 were observed only in the insertion mutant ΔhhoB. N-terminal COFRADIC analyses on cell lysates of ΔhhoB confirmed changed amounts of many cell envelope proteins, including the phosphate permease systems, compared with WT. In vitro COFRADIC studies were performed to identify the specificity profiles of the recombinant proteases rHhoA, rHhoB or rHtrA added to the Synechocystis WT proteome. The combined in vivo and in vitro N-terminal COFRADIC datasets propose RbcS as a natural substrate for HhoA, PsbO for HhoB and HtrA and Pbp8 for HtrA. We therefore suggest that each Synechocystis Deg protease protects the cell through different, but connected mechanisms.
Collapse
|
91
|
Fukayama H, Koga A, Hatanaka T, Misoo S. Small subunit of a cold-resistant plant, Timothy, does not significantly alter the catalytic properties of Rubisco in transgenic rice. PHOTOSYNTHESIS RESEARCH 2015; 124:57-65. [PMID: 25595546 DOI: 10.1007/s11120-015-0085-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
Effects of overexpression of high activity-type Rubisco small subunit (RbcS) from a cold-resistant plant, timothy (Phleum pratense), on kinetic properties of Rubisco were studied in rice (Oryza sativa). The full-length mRNA sequence of timothy RbcS (PpRbcS1) was determined by 5'RACE and 3'RACE. The coding sequence of PpRbcS1 was fused to the chlorophyll a/b-binding protein promoter and introduced into rice. PpRbcS was highly expressed in leaf blade and accounted for approximately 30 % of total RbcS in homozygous transgenic lines. However, the catalytic turnover rate and K m for CO2 of Rubisco did not significantly change in these transgenic lines compared to non-transgenic rice, suggesting that PpRbcS1 is not effective for improvement of catalytic efficiency of rice Rubisco. The photosynthetic rate and growth were essentially unchanged, whereas the photosynthetic rate at low CO2 condition was marginally increased in transgenic lines. Rubisco content was significantly increased, whereas soluble protein, nitrogen, and chlorophyll contents were unchanged in transgenic lines compared to non-transgenic rice. Because the kinetic properties were similar, observed slight increase in photosynthetic rate at low CO2 is considered to be large due to increase in Rubisco content in transgenic lines. Introduction of foreign RbcS is an effective approach for the improvement of Rubisco kinetics and photosynthesis. However, in this study, it was suggested that RbcS of high activity-type Rubisco, even showing higher amino acid identity with rice RbcS, did not always enhance the catalytic turnover rate of Rubisco in rice. Thus, we should carefully select RbcS to be overexpressed before introduction.
Collapse
Affiliation(s)
- Hiroshi Fukayama
- Graduate School of Agricultural Science, Laboratory of Crop Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan,
| | | | | | | |
Collapse
|
92
|
Joshi J, Mueller-Cajar O, Tsai YCC, Hartl FU, Hayer-Hartl M. Role of small subunit in mediating assembly of red-type form I Rubisco. J Biol Chem 2014; 290:1066-74. [PMID: 25371207 DOI: 10.1074/jbc.m114.613091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco.
Collapse
Affiliation(s)
- Jidnyasa Joshi
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Oliver Mueller-Cajar
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Yi-Chin C Tsai
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - F Ulrich Hartl
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Manajit Hayer-Hartl
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
93
|
Recuenco-Muñoz L, Offre P, Valledor L, Lyon D, Weckwerth W, Wienkoop S. Targeted quantitative analysis of a diurnal RuBisCO subunit expression and translation profile in Chlamydomonas reinhardtii introducing a novel Mass Western approach. J Proteomics 2014; 113:143-53. [PMID: 25301535 DOI: 10.1016/j.jprot.2014.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 08/26/2014] [Accepted: 09/26/2014] [Indexed: 01/12/2023]
Abstract
UNLABELLED RuBisCO catalyzes the rate-limiting step of CO2 fixation in photosynthesis. Hypothetical mechanisms for the regulation of rbcL and rbcS gene expression assume that both large (LSU) and small (SSU) RuBisCO subunit proteins (RSUs) are present in equimolar amounts to fit the 1:1 subunit stoichiometry of the holoenzyme. However, the actual quantities of the RSUs have never been determined in any photosynthetic organism. In this study the absolute amount of rbc transcripts and RSUs was quantified in Chlamydomonas reinhardtii grown during a diurnal light/dark cycle. A novel approach utilizing more reliable protein stoichiometry quantification is introduced. The rbcL:rbcS transcript and protein ratios were both 5:1 on average during the diurnal time course, indicating that SSU is the limiting factor for the assembly of the holoenzyme. The oscillation of the RSUs was 9h out of phase relative to the transcripts. The amount of rbc transcripts was at its maximum in the dark while that of RSUs was at its maximum in the light phase suggesting that translation of the rbc transcripts is activated by light as previously hypothesized. A possible post-translational regulation that might be involved in the accumulation of a 37-kDa N-terminal LSU fragment during the light phase is discussed. BIOLOGICAL SIGNIFICANCE A novel MS based approach enabling the exact stoichiometric analysis and absolute quantification of protein complexes is presented in this article. The application of this method revealed new insights in RuBisCO subunit dynamics.
Collapse
Affiliation(s)
- Luis Recuenco-Muñoz
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Pierre Offre
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Luis Valledor
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - David Lyon
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
94
|
Galmés J, Andralojc PJ, Kapralov MV, Flexas J, Keys AJ, Molins A, Parry MAJ, Conesa MÀ. Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae). THE NEW PHYTOLOGIST 2014; 203:989-99. [PMID: 24861241 DOI: 10.1111/nph.12858] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/23/2014] [Indexed: 05/22/2023]
Abstract
Carbon assimilation by most ecosystems requires ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Its kinetic parameters are likely to have evolved in parallel with intracellular CO2 availability, with the result that faster forms of Rubisco occur in species with CO2 -concentrating mechanisms. The Rubisco catalytic properties were determined and evaluated in relation to growth and carbon assimilation capacity in Mediterranean Limonium species, inhabiting severe stress environments. Significant kinetic differences between closely related species depended on two amino acid substitutions at functionally important residues 309 and 328 within the Rubisco large subunit. The Rubisco of species facing the largest CO2 restrictions during drought had relatively high affinity for CO2 (low Michaelis-Menten constant for CO2 Kc) but low maximum rates of carboxylation (kcatc), while the opposite was found for species that maintained higher CO2 concentrations under similar conditions. Rubisco kinetic characteristics were correlated with photosynthetic rate in both well-watered and drought-stressed plants. Moreover, the drought-mediated decrease in plant biomass accumulation was consistently lower in species with higher Rubisco carboxylase catalytic efficiency (kcatc/Kc). The present study is the first demonstration of Rubisco adaptation during species diversification within closely related C3 plants, revealing a direct relationship between Rubisco molecular evolution and the biomass accumulation of closely related species subjected to unfavourable conditions.
Collapse
Affiliation(s)
- Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Balearic Islands, Spain
| | | | | | | | | | | | | | | |
Collapse
|
95
|
O’Donnelly K, Zhao G, Patel P, Butt MS, Mak LH, Kretschmer S, Woscholski R, Barter LMC. Isolation and kinetic characterisation of hydrophobically distinct populations of form I Rubisco. PLANT METHODS 2014; 10:17. [PMID: 24987448 PMCID: PMC4076768 DOI: 10.1186/1746-4811-10-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) is a Calvin Cycle enzyme involved in CO2 assimilation. It is thought to be a major cause of photosynthetic inefficiency, suffering from both a slow catalytic rate and lack of specificity due to a competing reaction with oxygen. Revealing and understanding the engineering rules that dictate Rubisco's activity could have a significant impact on photosynthetic efficiency and crop yield. RESULTS This paper describes the purification and characterisation of a number of hydrophobically distinct populations of Rubisco from both Spinacia oleracea and Brassica oleracea extracts. The populations were obtained using a novel and rapid purification protocol that employs hydrophobic interaction chromatography (HIC) as a form I Rubisco enrichment procedure, resulting in distinct Rubisco populations of expected enzymatic activities, high purities and integrity. CONCLUSIONS We demonstrate here that HIC can be employed to isolate form I Rubisco with purities and activities comparable to those obtained via ion exchange chromatography (IEC). Interestingly, and in contrast to other published purification methods, HIC resulted in the isolation of a number of hydrophobically distinct Rubisco populations. Our findings reveal a so far unaccounted diversity in the hydrophobic properties within form 1 Rubisco. By employing HIC to isolate and characterise Spinacia oleracea and Brassica oleracea, we show that the presence of these distinct Rubisco populations is not species specific, and we report for the first time the kinetic properties of Rubisco from Brassica oleracea extracts. These observations may aid future studies concerning Rubisco's structural and functional properties.
Collapse
Affiliation(s)
- Kerry O’Donnelly
- Institute of Chemical Biology, Department of Chemistry, Imperial College, Flowers Building, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Guangyuan Zhao
- Department of Chemistry, Imperial College, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Priya Patel
- Department of Chemistry, Imperial College, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - M Salman Butt
- Institute of Chemical Biology, Department of Chemistry, Imperial College, Flowers Building, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Lok Hang Mak
- Department of Chemistry, Imperial College, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Simon Kretschmer
- Department of Chemistry, Imperial College, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Rudiger Woscholski
- Institute of Chemical Biology, Department of Chemistry, Imperial College, Flowers Building, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Laura M C Barter
- Institute of Chemical Biology, Department of Chemistry, Imperial College, Flowers Building, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
96
|
van Lun M, Hub JS, van der Spoel D, Andersson I. CO2 and O2 Distribution in Rubisco Suggests the Small Subunit Functions as a CO2 Reservoir. J Am Chem Soc 2014; 136:3165-71. [DOI: 10.1021/ja411579b] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michiel van Lun
- Department
of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, S-751 24 Uppsala, Sweden
| | - Jochen S. Hub
- Department
of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
- Institute
for Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg
11, 37077 Göttingen, Germany
| | - David van der Spoel
- Department
of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| | - Inger Andersson
- Department
of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| |
Collapse
|
97
|
Silicon enhances the growth of Phaeodactylum tricornutum Bohlin under green light and low temperature. Sci Rep 2014; 4:3958. [PMID: 24492482 PMCID: PMC5379240 DOI: 10.1038/srep03958] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/07/2014] [Indexed: 01/12/2023] Open
Abstract
Phaeodactylum tricornutum Bohlin is an ideal model diatom; its complete genome is known, and it is an important economic microalgae. Although silicon is not required in laboratory and factory culture of this species, previous studies have shown that silicon starvation can lead to differential expression of miRNAs. The role that silicon plays in P. tricornutum growth in nature is poorly understood. In this study, we compared the growth rate of silicon starved P. tricornutum with that of normal cultured cells under different culture conditions. Pigment analysis, photosynthesis measurement, lipid analysis, and proteomic analysis showed that silicon plays an important role in P. tricornutum growth and that its presence allows the organism to grow well under green light and low temperature.
Collapse
|
98
|
Mueller-Cajar O, Stotz M, Bracher A. Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. PHOTOSYNTHESIS RESEARCH 2014; 119:191-201. [PMID: 23543331 DOI: 10.1007/s11120-013-9819-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/19/2013] [Indexed: 05/19/2023]
Abstract
The key photosynthetic, CO2-fixing enzyme Rubisco forms inactivated complexes with its substrate ribulose 1,5-bisphosphate (RuBP) and other sugar phosphate inhibitors. The independently evolved AAA+ proteins Rubisco activase and CbbX harness energy from ATP hydrolysis to remodel Rubisco complexes, facilitating release of these inhibitors. Here, we discuss recent structural and mechanistic advances towards the understanding of protein-mediated Rubisco activation. Both activating proteins appear to form ring-shaped hexameric arrangements typical for AAA+ ATPases in their functional form, but display very different regulatory and biochemical properties. Considering the thermolability of the plant enzyme, an improved understanding of the mechanism for Rubisco activation may help in developing heat-resistant plants adapted to the challenge of global warming.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore,
| | | | | |
Collapse
|
99
|
Cavanagh AP, Kubien DS. Can phenotypic plasticity in Rubisco performance contribute to photosynthetic acclimation? PHOTOSYNTHESIS RESEARCH 2014; 119:203-214. [PMID: 23543330 DOI: 10.1007/s11120-013-9816-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Photosynthetic acclimation varies among species, which likely reveals variations at the biochemical level in the pathways that constitute carbon assimilation and energy transfer. Local adaptation and phenotypic plasticity affect the environmental response of photosynthesis. Phenotypic plasticity allows for a wide array of responses from a single individual, encouraging fitness in a broad variety of environments. Rubisco catalyses the first enzymatic step of photosynthesis, and is thus central to life on Earth. The enzyme is well conserved, but there is habitat-dependent variation in kinetic parameters, indicating that local adaptation may occur. Here, we review evidence suggesting that land plants can adjust Rubisco's intrinsic biochemical characteristics during acclimation. We show that this plasticity can theoretically improve CO2 assimilation; the effect is non-trivial, but small relative to other acclimation responses. We conclude by discussing possible mechanisms that could account for biochemical plasticity in land plant Rubisco.
Collapse
Affiliation(s)
- Amanda P Cavanagh
- Department of Biology, University of New Brunswick, 10 Bailey Dr., Fredericton, NB, Canada
| | | |
Collapse
|
100
|
Morita K, Hatanaka T, Misoo S, Fukayama H. Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of rubisco in rice. PLANT PHYSIOLOGY 2014; 164:69-79. [PMID: 24254313 PMCID: PMC3875826 DOI: 10.1104/pp.113.228015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity.
Collapse
|