51
|
Corton JC, Brown-Borg HM. Peroxisome Proliferator-Activated Receptor Coactivator 1 in Caloric Restriction and Other Models of Longevity. J Gerontol A Biol Sci Med Sci 2005; 60:1494-509. [PMID: 16424281 DOI: 10.1093/gerona/60.12.1494] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dietary restriction of calories (caloric restriction [CR]) increases longevity in phylogenetically diverse species. CR retards or prevents age-dependent deterioration of tissues and an array of spontaneous and chemically induced diseases associated with obesity including cardiovascular disease, diabetes, and cancer. An understanding of the molecular mechanisms that underlie the beneficial effects of CR will help identify novel dietary, pharmacological, and lifestyle strategies for slowing the rate of aging and preventing these diseases as well as identify factors which modulate chemical toxicity. Here, we review the involvement of transcriptional coactivator proteins, peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1 (PGC-1) alpha and beta, and regulated nuclear receptors (NR) in mediating the phenotypic changes found in models of longevity which include rodent CR models and mouse mutants in which insulin and/or insulin-like growth factor-I signaling is attenuated. PGC-1alpha is transcriptionally or posttranslationally regulated in mammals by: 1) forkhead box "other" (FoxO) transcription factors through an insulin/insulin-like growth factor-I -dependent pathway, 2) glucagon-stimulated cellular AMP (cAMP) response element binding protein, 3) stress-activated kinase signaling through p38 mitogen-activated protein kinase, and 4) the deacetylase and longevity factor sirtuin 1 (SIRT1). PGC-1alpha and PGC-1beta regulate the ligand-dependent and -independent activation of a large number of NR including PPARalpha and constitutive activated receptor (CAR). These NR regulate genes involved in nutrient and xenobiotic transport and metabolism as well as resistance to stress. CR reverses age-dependent decreases in PGC-1alpha, PPARalpha, and regulated genes. Strategies that target one or multiple PGC-1-regulated NR could be used to mimic the beneficial health effects found in models of longevity.
Collapse
Affiliation(s)
- J Christopher Corton
- United States Environmental Protection Agency, Division of Environmental Carcinogenesis, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
52
|
Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 2005; 115:547-55. [PMID: 15765136 PMCID: PMC1052011 DOI: 10.1172/jci24405] [Citation(s) in RCA: 390] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mitochondrion serves a critical role as a platform for energy transduction, signaling, and cell death pathways relevant to common diseases of the myocardium such as heart failure. This review focuses on the molecular regulatory events and downstream effector pathways involved in mitochondrial energy metabolic derangements known to occur during the development of heart failure.
Collapse
Affiliation(s)
- Janice M Huss
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
53
|
Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 2005. [PMID: 15765136 DOI: 10.1172/jci200524405] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mitochondrion serves a critical role as a platform for energy transduction, signaling, and cell death pathways relevant to common diseases of the myocardium such as heart failure. This review focuses on the molecular regulatory events and downstream effector pathways involved in mitochondrial energy metabolic derangements known to occur during the development of heart failure.
Collapse
Affiliation(s)
- Janice M Huss
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
54
|
Zuercher WJ, Gaillard S, Orband-Miller LA, Chao EYH, Shearer BG, Jones DG, Miller AB, Collins JL, McDonnell DP, Willson TM. Identification and Structure−Activity Relationship of Phenolic Acyl Hydrazones as Selective Agonists for the Estrogen-Related Orphan Nuclear Receptors ERRβ and ERRγ. J Med Chem 2005; 48:3107-9. [PMID: 15857113 DOI: 10.1021/jm050161j] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first small molecule agonists of the estrogen-related receptors have been identified. GSK4716 (3) and GSK9089 (4) show binding to ERRgamma with remarkable selectivity over the classical estrogen receptors. Notably, in cell-based reporter assays, 3 mimics the protein ligand PGC-1alpha in activation of human ERRbeta and ERRgamma.
Collapse
Affiliation(s)
- William J Zuercher
- Discovery Research, GlaxoSmithKline, Five Moore Drive, Research Triangle Park, North Carolina 27707, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Koohi MK, Ivell R, Walther N. Transcriptional activation of the oxytocin promoter by oestrogens uses a novel non-classical mechanism of oestrogen receptor action. J Neuroendocrinol 2005; 17:197-207. [PMID: 15842231 DOI: 10.1111/j.1365-2826.2005.01298.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transcriptional activation of the gene coding for the neuropeptide hormone oxytocin by oestrogens does not follow the classical model of oestrogen receptor action. The oxytocin promoter does not contain an oestrogen response element (ERE), but instead a high-affinity binding site for nuclear orphan receptors. In the present study, the oestrogen-dependent up-regulation of the bovine oxytocin promoter is investigated in MDA-MB 231 cells. Control by oestrogen is shown to be dependent on the integrity of the nuclear orphan receptor binding site and the presence of ligand-activated oestrogen receptor, but independent of oestrogen receptor binding to DNA. Partial agonists tamoxifen and raloxifen and the pure antagonist ICI 182 780 all show agonistic activities on transcription, while exhibiting normal binding affinities to oestrogen receptor (ER)alpha. Nuclear orphan receptors oestrogen receptor-related receptor alpha (ERRalpha) and germ cell nuclear factor (GCNF) are expressed to significant levels in MDA-MB 231 cells. Binding of ERRalpha to the oxytocin promoter binding site can be demonstrated, suggesting the involvement of this nuclear orphan receptor in oestrogen-dependent up-regulation. The oestrogenic stimulation of the oxytocin promoter apparently is dependent on the stimulation of the transcriptional activity of this nuclear orphan receptor by ERK-1/ERK-2 mitogen-activated protein kinases (MAP kinases). This novel nonclassical mechanism of oestrogen action most probably is not restricted to the regulation of neuropeptide hormone expression, but may further contribute to the multitude of tissue-specific effects of oestrogenic substances.
Collapse
Affiliation(s)
- M K Koohi
- Institute for Hormone and Fertility Research, University of Hamburg, Hamburg, Germany
| | | | | |
Collapse
|
56
|
Huss JM, Torra IP, Staels B, Giguère V, Kelly DP. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol 2004; 24:9079-91. [PMID: 15456881 PMCID: PMC517878 DOI: 10.1128/mcb.24.20.9079-9091.2004] [Citation(s) in RCA: 397] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 04/23/2004] [Accepted: 07/26/2004] [Indexed: 01/19/2023] Open
Abstract
Estrogen-related receptors (ERRs) are orphan nuclear receptors activated by the transcriptional coactivator peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha (PGC-1alpha), a critical regulator of cellular energy metabolism. However, metabolic target genes downstream of ERRalpha have not been well defined. To identify ERRalpha-regulated pathways in tissues with high energy demand such as the heart, gene expression profiling was performed with primary neonatal cardiac myocytes overexpressing ERRalpha. ERRalpha upregulated a subset of PGC-1alpha target genes involved in multiple energy production pathways, including cellular fatty acid transport, mitochondrial and peroxisomal fatty acid oxidation, and mitochondrial respiration. These results were validated by independent analyses in cardiac myocytes, C2C12 myotubes, and cardiac and skeletal muscle of ERRalpha-/- mice. Consistent with the gene expression results, ERRalpha increased myocyte lipid accumulation and fatty acid oxidation rates. Many of the genes regulated by ERRalpha are known targets for the nuclear receptor PPARalpha, and therefore, the interaction between these regulatory pathways was explored. ERRalpha activated PPARalpha gene expression via direct binding of ERRalpha to the PPARalpha gene promoter. Furthermore, in fibroblasts null for PPARalpha and ERRalpha, the ability of ERRalpha to activate several PPARalpha targets and to increase cellular fatty acid oxidation rates was abolished. PGC-1alpha was also shown to activate ERRalpha gene expression. We conclude that ERRalpha serves as a critical nodal point in the regulatory circuitry downstream of PGC-1alpha to direct the transcription of genes involved in mitochondrial energy-producing pathways in cardiac and skeletal muscle.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Energy Metabolism
- Fatty Acids/metabolism
- Fibroblasts/cytology
- Fibroblasts/physiology
- Gene Expression Regulation
- Heart/physiology
- Humans
- Lipid Metabolism
- Mice
- Mice, Knockout
- Mitochondria/metabolism
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/physiology
- Oxidation-Reduction
- PPAR alpha/genetics
- PPAR alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Signal Transduction/physiology
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- Transcription, Genetic
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Janice M Huss
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
57
|
Abstract
The heart has a tremendous capacity for ATP generation, allowing it to function as an efficient pump throughout the life of the organism. The adult myocardium uses either fatty acid or glucose oxidation as its main energy source. Under normal conditions, the adult heart derives most of its energy through oxidation of fatty acids in mitochondria. However, the myocardium has a remarkable ability to switch between carbohydrate and fat fuel sources so that ATP production is maintained at a constant rate in diverse physiological and dietary conditions. This fuel selection flexibility is important for normal cardiac function. Although cardiac energy conversion capacity and metabolic flux is modulated at many levels, an important mechanism of regulation occurs at the level of gene expression. The expression of genes involved in multiple energy transduction pathways is dynamically regulated in response to developmental, physiological, and pathophysiological cues. This review is focused on gene transcription pathways involved in short- and long-term regulation of myocardial energy metabolism. Much of our knowledge about cardiac metabolic regulation comes from studies focused on mitochondrial fatty acid oxidation. The genes involved in this key energy metabolic pathway are transcriptionally regulated by members of the nuclear receptor superfamily, specifically the fatty acid-activated peroxisome proliferator-activated receptors (PPARs) and the nuclear receptor coactivator, PPARgamma coactivator-1alpha (PGC-1alpha). The dynamic regulation of the cardiac PPAR/PGC-1 complex in accordance with physiological and pathophysiological states will be described.
Collapse
Affiliation(s)
- Janice M Huss
- Center for Cardiovascular Research and Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
58
|
Greschik H, Flaig R, Renaud JP, Moras D. Structural Basis for the Deactivation of the Estrogen-related Receptor γ by Diethylstilbestrol or 4-Hydroxytamoxifen and Determinants of Selectivity. J Biol Chem 2004; 279:33639-46. [PMID: 15161930 DOI: 10.1074/jbc.m402195200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The estrogen-related receptor (ERR) gamma behaves as a constitutive activator of transcription. Although no natural ligand is known, ERRgamma is deactivated by the estrogen receptor (ER) agonist diethylstilbestrol and the selective ER modulator 4-hydroxytamoxifen but does not significantly respond to estradiol or raloxifene. Here we report the crystal structures of the ERRgamma ligand binding domain (LBD) complexed with diethylstilbestrol or 4-hydroxytamoxifen. Antagonist binding to ERRgamma results in a rotation of the side chain of Phe-435 that partially fills the cavity of the apoLBD. The new rotamer of Phe-435 displaces the "activation helix" (helix 12) from the agonist position observed in the absence of ligand. In contrast to the complexes of the ERalpha LBD with 4-hydroxytamoxifen or raloxifene, helix 12 of antagonist-bound ERRgamma does not occupy the coactivator groove but appears to be completely dissociated from the LBD body. Comparison of the ligand-bound LBDs of ERRgamma and ERalpha reveals small but significant differences in the architecture of the ligand binding pockets that result in a slightly shifted binding position of diethylstilbestrol and a small rotation of 4-hydroxytamoxifen in the cavity of ERRgamma relative to ERalpha. Our results provide detailed molecular insight into the conformational changes occurring upon binding of synthetic antagonists to the constitutive orphan receptor ERRgamma and reveal structural differences with ERs that explain why ERRgamma does not bind estradiol or raloxifene and will help to design new selective antagonists.
Collapse
Affiliation(s)
- Holger Greschik
- Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, B. P. 10142, 67404 Illkirch, France
| | | | | | | |
Collapse
|
59
|
Hentschke M, Borgmeyer U. Identification of PNRC2 and TLE1 as activation function-1 cofactors of the orphan nuclear receptor ERRgamma. Biochem Biophys Res Commun 2004; 312:975-82. [PMID: 14651967 DOI: 10.1016/j.bbrc.2003.11.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Estrogen-related receptor gamma (ERRgamma) is an orphan nuclear receptor highly expressed in heart, skeletal muscle, kidney, and brain. To identify activation function-1 (AF-1)-dependent cofactors involved in the transcriptional function of ERRgamma, we screened for human cDNAs coding for proteins that bind to the bacterial expressed AF-1 by biopanning of a phage display library. Phages displaying fusion proteins with full-length PNRC2 (proline-rich nuclear receptor co-regulatory protein 2), already shown to be a cofactor for other nuclear receptors, and with a polypeptide of the bHLH corepressor TLE1 bound to the AF-1 containing bait. Pull-down analyses demonstrated a direct interaction of the receptor with the newly identified full-length proteins. Surprisingly, not only PNRC2 but also the corepressor TLE1 functioned as ERRgamma coactivator in a reporter gene analysis.
Collapse
MESH Headings
- Animals
- Binding Sites
- Brain/metabolism
- Brain Chemistry
- Cells, Cultured
- Chlorocebus aethiops
- Co-Repressor Proteins
- Humans
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/chemistry
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Interferon/chemistry
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/physiology
- Transcriptional Activation
Collapse
Affiliation(s)
- Moritz Hentschke
- Zentrum für Molekulare Neurobiologie, Institut für Entwicklungsneurobiologie, Universität Hamburg, Martinistrasse 52, D-20246, Hamburg, Germany
| | | |
Collapse
|
60
|
Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, Takahashi N, Kawada T, Miyoshi M, Ezaki O, Kakizuka A. PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci U S A 2003; 100:12378-83. [PMID: 14530391 PMCID: PMC218766 DOI: 10.1073/pnas.2135217100] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Indexed: 11/18/2022] Open
Abstract
A well balanced body energy budget controlled by limitation of calorie uptake and/or increment of energy expenditure, which is typically achieved by proper physical exercise, is most effective against obesity and diabetes mellitus. Recently, peroxisome proliferator-activated receptor (PPAR) gamma, a member of the nuclear receptor, and its cofactors have been shown to be involved in lipid metabolism and in the control of energy expenditure. Here we show that PPARgamma coactivator 1 (PGC-1) beta functions as ERRL1 (for ERR ligand 1), which can bind and activate orphan ERRs (estrogen receptor-related receptors) in vitro. Consistently, PGC-1beta/ERRL1 transgenic mice exhibit increased expression of the medium-chain acyl CoA dehydrogenase, a known ERR target and a pivotal enzyme of mitochondrial beta-oxidation in skeletal muscle. As a result, the PGC-1beta/ERRL1 mice show a state similar to an athlete; namely, the mice are hyperphagic and of elevated energy expenditure and are resistant to obesity induced by a high-fat diet or by a genetic abnormality. These results demonstrate that PGC-1beta/ERRL1 can function as a protein ligand of ERR, and that its level contributes to the control of energy balance in vivo, and provide a strategy for developing novel antiobesity drugs.
Collapse
Affiliation(s)
- Yasutomi Kamei
- Department of Molecular Medical Science, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Hentschke M, Schulze C, Süsens U, Borgmeyer U. Characterization of calmodulin binding to the orphan nuclear receptor Errgamma. Biol Chem 2003; 384:473-82. [PMID: 12715898 DOI: 10.1515/bc.2003.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The estrogen receptor-related receptor gamma (ERRgamma/ ERR3/NR3B3), a member of the nuclear receptor superfamily, activates transcription in the absence of ligands. In order to identify ligand-independent mechanisms of activation, we tested whether calmodulin (CaM), a key regulator of numerous cellular processes and a predominant intracellular receptor for Ca2+-signals, interacts with ERRgamma. In vitro pull-down experiments with calmodulin-Sepharose demonstrated a Ca2+-dependent interaction with cellularly expressed ERRgamma. As shown by truncation analysis, the CaM binding site is highly unusual in that it is composed of two discontinuous elements. Moreover, by surface plasmon resonance (SPR) biosensor technology, we detected a direct interaction of immobilized bacterially expressed ERR-gamma fusion protein with Ca2+-calmodulin. This is best described by a model which assumes a conformational change of the initially formed complex to a more stable form. Whereas in vitro DNA binding was calmodulin-independent, transient transfection analysis revealed a Ca2+-influx-dependent ERRgamma-mediated transcriptional activation of a luciferase reporter gene. Thus, we propose that CaM acts as a mediator in the Ca2+-dependent modulation of ERRgamma.
Collapse
Affiliation(s)
- Moritz Hentschke
- Zentrum für Molekulare Neurobiologie Hamburg (ZMNH), Universität Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|