51
|
Herzog IM, Fridman M. Design and synthesis of membrane-targeting antibiotics: from peptides- to aminosugar-based antimicrobial cationic amphiphiles. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00012a] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections caused by drug resistant and/or slow-growing bacteria are increasingly becoming some of the greatest challenges of health organizations worldwide.
Collapse
Affiliation(s)
- Ido M. Herzog
- School of Chemistry
- Raymond and Beverley Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Micha Fridman
- School of Chemistry
- Raymond and Beverley Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|
52
|
Langmuir–Blodgett Approach to Investigate Antimicrobial Peptide–Membrane Interactions. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2014. [DOI: 10.1016/b978-0-12-418698-9.00003-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
53
|
Wang S, Larson RG. Water channel formation and ion transport in linear and branched lipid bilayers. Phys Chem Chem Phys 2014; 16:7251-62. [DOI: 10.1039/c3cp55116d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lipid bilayer stability and water channel morphologies are affected by the presence of methyl branches on lipid tails.
Collapse
Affiliation(s)
- Shihu Wang
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor, USA
| | - Ronald G. Larson
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor, USA
| |
Collapse
|
54
|
Kim C. A solid-state NMR study on the hydration effect on the lipid phase change in the presence of an antimicrobial peptide. ANALYTICAL SCIENCE AND TECHNOLOGY 2013. [DOI: 10.5806/ast.2013.26.6.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
55
|
de Oliveira Junior NG, e Silva Cardoso MH, Franco OL. Snake venoms: attractive antimicrobial proteinaceous compounds for therapeutic purposes. Cell Mol Life Sci 2013; 70:4645-58. [PMID: 23657358 PMCID: PMC11113393 DOI: 10.1007/s00018-013-1345-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 12/27/2022]
Abstract
Gram-positive and -negative bacteria are dangerous pathogens that may cause human infection diseases, especially due to the increasingly high prevalence of antibiotic resistance, which is becoming one of the most alarming clinical problems. In the search for novel antimicrobial compounds, snake venoms represent a rich source for such compounds, which are produced by specialized glands in the snake's jawbone. Several venom compounds have been used for antimicrobial effects. Among them are phospholipases A2, which hydrolyze phospholipids and could act on bacterial cell surfaces. Moreover, metalloproteinases and L-amino acid oxidases, which represent important enzyme classes with antimicrobial properties, are investigated in this study. Finally, antimicrobial peptides from multiple classes are also found in snake venoms and will be mentioned. All these molecules have demonstrated an interesting alternative for controlling microorganisms that are resistant to conventional antibiotics, contributing in medicine due to their differential mechanisms of action and versatility. In this review, snake venom antimicrobial compounds will be focused on, including their enormous biotechnological applications for drug development.
Collapse
Affiliation(s)
- Nelson Gomes de Oliveira Junior
- Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF Brazil
- Programa em Biologia Animal, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF CEP 70910-900 Brazil
| | - Marlon Henrique e Silva Cardoso
- Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF Brazil
| | - Octavio Luiz Franco
- Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF Brazil
| |
Collapse
|
56
|
Mulder KCL, Lima LA, Miranda VJ, Dias SC, Franco OL. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 2013; 4:321. [PMID: 24198814 PMCID: PMC3813893 DOI: 10.3389/fmicb.2013.00321] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/11/2013] [Indexed: 01/21/2023] Open
Abstract
Cationic antimicrobial peptides (AMPs) and host defense peptides (HDPs) show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their biochemical features, selectivity against extra targets, and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the current scenario for production and the use of nanotechnology as delivery tool for both classes of cationic peptides, as well as the perspectives on improving them is considered.
Collapse
Affiliation(s)
- Kelly C L Mulder
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília Brasília, Brazil
| | | | | | | | | |
Collapse
|
57
|
He Y, Lazaridis T. Activity determinants of helical antimicrobial peptides: a large-scale computational study. PLoS One 2013; 8:e66440. [PMID: 23776672 PMCID: PMC3680375 DOI: 10.1371/journal.pone.0066440] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/09/2013] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs), produced by a wide range of organisms, have attracted attention due to their potential use as novel antibiotics. The majority of these peptides are cationic and are thought to function by permeabilizing the bacterial membrane, either by making pores or by dissolving it ('carpet' model). A key hypothesis in the literature is that antimicrobial and hemolytic activity correlate with binding affinity to anionic and zwitterionic membranes, respectively. Here we test this hypothesis by using binding free energy data collected from the literature and theoretical binding energies calculated from implicit membrane models for 53 helical AMPs. We indeed find a correlation between binding energy and biological activity, depending on membrane anionic content: antibacterial activity correlates best with transfer energy to membranes with anionic lipid fraction higher than 30% and hemolytic activity correlates best with transfer energy to a 10% anionic membrane. However, the correlations are weak, with correlation coefficient up to 0.4. Weak correlations of the biological activities have also been found with other physical descriptors of the peptides, such as surface area occupation, which correlates significantly with antibacterial activity; insertion depth, which correlates significantly with hemolytic activity; and structural fluctuation, which correlates significantly with both activities. The membrane surface coverage by many peptides at the MIC is estimated to be much lower than would be required for the 'carpet' mechanism. Those peptides that are active at low surface coverage tend to be those identified in the literature as pore-forming. The transfer energy from planar membrane to cylindrical and toroidal pores was also calculated for these peptides. The transfer energy to toroidal pores is negative in almost all cases while that to cylindrical pores is more favorable in neutral than in anionic membranes. The transfer energy to pores correlates with the deviation from predictions of the 'carpet' model.
Collapse
Affiliation(s)
- Yi He
- Department of Chemistry, City College of New York, New York, New York, United States of America
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York, United States of America
| |
Collapse
|
58
|
Maisetta G, Vitali A, Scorciapino MA, Rinaldi AC, Petruzzelli R, Brancatisano FL, Esin S, Stringaro A, Colone M, Luzi C, Bozzi A, Campa M, Batoni G. pH-dependent disruption of Escherichia coli ATCC 25922 and model membranes by the human antimicrobial peptides hepcidin 20 and 25. FEBS J 2013; 280:2842-54. [PMID: 23587102 DOI: 10.1111/febs.12288] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/19/2013] [Accepted: 04/05/2013] [Indexed: 12/12/2022]
Abstract
The human hepcidin 25 (hep-25) and its isoform hepcidin 20 (hep-20) are histidine-containing, cystein rich, β-sheet structured peptides endowed with antimicrobial activity. We previously reported that, similar to other histidine-containing peptides, the microbicidal effects of hep-25 and hep-20 are highly enhanced at acidic pH. In the present study, we investigated whether pH influences the mode of action of hep-25 and hep-20 on Escherichia coli American Type Culture Collection 25922 and model membranes. A striking release of β-galactosidase by hepcidin-treated E. coli was observed at pH 5.0, whereas no inner membrane permeabilization capacity was seen at pH 7.4, even at bactericidal concentrations. Similar results were obtained by flow cytometry when assessing the internalization of propidium iodide by hepcidin-treated E. coli. Scanning electron microscope imaging revealed that both peptides induced the formation of numerous blebs on the surface of bacterial cells at acidic pH but not at neutral pH. Moreover, a phospholipid/polydiacetylene colourimetric vesicle assay revealed a more evident membrane damaging effect at pH 5.0 than at pH 7.4. The leakage of entrapped dextrans of increasing molecular size from liposomes was also assessed at pH 7.4. Consistent with the lack of β-galactosidase release from whole E. coli observed at such a pH value, evident leakage of only the smallest 4-kDa dextran (and not of dextrans of 20 or 70 kDa) was observed, indicating a poor ability of hepcidin peptides to permeabilize liposome vesicles at pH 7.4. Altogether, the data obtained in the present study using different approaches strongly suggest that the ability of hepcidins to perturb bacterial membranes is markedly pH-dependent.
Collapse
Affiliation(s)
- Giuseppantonio Maisetta
- Dipartimento di Ricerca Traslazionale e delle nuove Tecnologie in Medicina e Chirurgia, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Lee DK, Brender JR, Sciacca MFM, Krishnamoorthy J, Yu C, Ramamoorthy A. Lipid composition-dependent membrane fragmentation and pore-forming mechanisms of membrane disruption by pexiganan (MSI-78). Biochemistry 2013; 52:3254-63. [PMID: 23590672 DOI: 10.1021/bi400087n] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The potency and selectivity of many antimicrobial peptides (AMPs) are correlated with their ability to interact with and disrupt the bacterial cell membrane. In vitro experiments using model membranes have been used to determine the mechanism of membrane disruption of AMPs. Because the mechanism of action of an AMP depends on the ability of the model membrane to accurately mimic the cell membrane, it is important to understand the effect of membrane composition. Anionic lipids that are present in the outer membrane of prokaryotes but are less common in eukaryotic membranes are usually thought to be key for the bacterial selectivity of AMPs. We show by fluorescence measurements of peptide-induced membrane permeabilization that the presence of anionic lipids at high concentrations can actually inhibit membrane disruption by the AMP MSI-78 (pexiganan), a representative of a large class of highly cationic AMPs. Paramagnetic quenching studies suggest MSI-78 is in a surface-associated inactive mode in anionic sodium dodecyl sulfate micelles but is in a deeply buried and presumably more active mode in zwitterionic dodecylphosphocholine micelles. Furthermore, a switch in mechanism occurs with lipid composition. Membrane fragmentation with MSI-78 can be observed in mixed vesicles containing both anionic and zwitterionic lipids but not in vesicles composed of a single lipid of either type. These findings suggest membrane affinity and membrane permeabilization are not always correlated, and additional effects that may be more reflective of the actual cellular environment can be seen as the complexity of the model membranes is increased.
Collapse
Affiliation(s)
- Dong-Kuk Lee
- Departments of Biophysics and Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | | | | |
Collapse
|
60
|
Balakrishnan VS, Vad BS, Otzen DE. Novicidin's membrane permeabilizing activity is driven by membrane partitioning but not by helicity: a biophysical study of the impact of lipid charge and cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:996-1002. [PMID: 23562965 DOI: 10.1016/j.bbapap.2013.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 12/11/2022]
Abstract
We have investigated the interactions between the antimicrobial peptide Novicidin (Nc) and vesicles containing the phospholipid DOPC, with various amounts of DOPG and cholesterol using circular dichroism spectroscopy, calcein release, equilibrium dialysis and isothermal titration calorimetry. Nc adopts a random coil structure in the absence of lipids and in the presence of vesicles containing 100% DOPC. Lipids with 25-40% DOPG induce the highest level of helicity in Nc; higher DOPG levels lead to lower helicity levels and an altered tertiary arrangement of the peptide. However, the ability of Nc to permeabilize vesicles correlates not with helicity but rather with its overall membrane affinity, which is enthalpically favorable but opposed by entropy. Permeabilization declines with increasing mole percentage PG. Changes in helicity correlate with changes in enthalpy, reflecting the enthalpy of helix formation, but not with affinity. There is also a large favorable enthalpic interaction between Nc and lipids in the absence of negative charge and structural changes. Cholesterol slightly reduces membrane permeabilization but has little effect on Nc affinity and secondary structure, and probably protects the membrane by inducing the liquid ordered state. We conclude that helicity is not a prerequisite for activity, and charge-charge interactions are not the only major driving force for AMP interactions with membranes. Our data are compatible with a model in which a superficial binding mode with a large membrane surface binding area per peptide is more efficient than a more intimate embedding within the membrane environment.
Collapse
Affiliation(s)
- Vijay S Balakrishnan
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | | |
Collapse
|
61
|
Wiedman G, Herman K, Searson P, Wimley WC, Hristova K. The electrical response of bilayers to the bee venom toxin melittin: evidence for transient bilayer permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1357-64. [PMID: 23384418 DOI: 10.1016/j.bbamem.2013.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/09/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Melittin is a 26-residue bee venom peptide that folds into amphipathic α-helix and causes membrane permeabilization via a mechanism that is still disputed. While an equilibrium transmembrane pore model has been a central part of the mechanistic dialogue for decades, there is growing evidence that a transmembrane pore is not required for melittin's activity. In part, the controversy is due to limited experimental tools to probe the bilayer's response to melittin. Electrochemical impedance spectroscopy (EIS) is a technique that can reveal details of molecular mechanism of peptide activity, as it yields direct, real-time measurements of membrane resistance and capacitance of supported bilayers. In this work, EIS was used in conjunction with vesicle leakage studies to characterize the response of bilayers of different lipid compositions to melittin. Experiments were carried out at low peptide to lipid ratios between 1:5000 and 1:100. The results directly demonstrate that the response of the bilayer to melittin at these concentrations cannot be explained by an equilibrium transmembrane pore model.
Collapse
Affiliation(s)
- Gregory Wiedman
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
62
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
63
|
Abstract
Antimicrobial peptides (AMPs) provide a primordial source of immunity, conferring upon eukaryotic cells resistance against bacteria, protozoa, and viruses. Despite a few examples of anionic peptides, AMPs are usually relatively short positively charged polypeptides, consisting of a dozen to about a hundred amino acids, and exhibiting amphipathic character. Despite significant differences in their primary and secondary structures, all AMPs discovered to date share the ability to interact with cellular membranes, thereby affecting bilayer stability, disrupting membrane organization, and/or forming well-defined pores. AMPs selectively target infectious agents without being susceptible to any of the common pathways by which these acquire resistance, thereby making AMPs prime candidates to provide therapeutic alternatives to conventional drugs. However, the mechanisms of AMP actions are still a matter of intense debate. The structure-function paradigm suggests that a better understanding of how AMPs elicit their biological functions could result from atomic resolution studies of peptide-lipid interactions. In contrast, more strict thermodynamic views preclude any roles for three-dimensional structures. Indeed, the design of selective AMPs based solely on structural parameters has been challenging. In this chapter, we will focus on selected AMPs for which studies on the corresponding AMP-lipid interactions have helped reach an understanding of how AMP effects are mediated. We will emphasize the roles of both liquid- and solid-state NMR spectroscopy for elucidating the mechanisms of action of AMPs.
Collapse
|
64
|
Chen T, Wang R, Xu LQ, Neoh KG, Kang ET. Carboxymethyl Chitosan-Functionalized Magnetic Nanoparticles for Disruption of Biofilms of Staphylococcus aureus and Escherichia coli. Ind Eng Chem Res 2012. [DOI: 10.1021/ie301522w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore
117576, Singapore
| | - Rong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore
117576, Singapore
| | - Li Qun Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore
117576, Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore
117576, Singapore
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore
117576, Singapore
| |
Collapse
|
65
|
Mura M, Dennison SR, Zvelindovsky AV, Phoenix DA. Aurein 2.3 functionality is supported by oblique orientated α-helical formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:586-94. [PMID: 22960040 DOI: 10.1016/j.bbamem.2012.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
In this study, an amphibian antimicrobial peptide, aurein 2.3, was predicted to use oblique orientated α-helix formation in its mechanism of membrane destabilisation. Molecular dynamic (MD) simulations and circular dichroism (CD) experimental data suggested that aurein 2.3 exists in solution as unstructured monomers and folds to form predominantly α-helical structures in the presence of a dimyristoylphosphatidylcholine membrane. MD showed that the peptide was highly surface active, which supported monolayer data where the peptide induced surface pressure changes>34 mNm(-1). In the presence of a lipid membrane MD simulations suggested that under hydrophobic mismatch the peptide is seen to insert via oblique orientation with a phenylalanine residue (PHE3) playing a key role in the membrane interaction. There is evidence of snorkelling leucine residues leading to further membrane disruption and supporting the high level of lysis observed using calcein release assays (76%). Simulations performed at higher peptide/lipid ratio show peptide cooperativity is key to increased efficiency leading to pore-formation.
Collapse
Affiliation(s)
- Manuela Mura
- Computational Physics Group and Institute for nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, UK
| | | | | | | |
Collapse
|
66
|
Wu SP, Huang TC, Lin CC, Hui CF, Lin CH, Chen JY. Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs 2012; 10:1852-1872. [PMID: 23015777 PMCID: PMC3447341 DOI: 10.3390/md10081852] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/18/2012] [Accepted: 08/14/2012] [Indexed: 12/11/2022] Open
Abstract
The antitumor activity of pardaxin, a fish antimicrobial peptide, has not been previously examined in in vitro and in vivo systems for treating murine fibrosarcoma. In this study, the antitumor activity of synthetic pardaxin was tested using murine MN-11 tumor cells as the study model. We show that pardaxin inhibits the proliferation of MN-11 cells and reduces colony formation in a soft agar assay. Transmission electron microscopy (TEM) showed that pardaxin altered the membrane structure similar to what a lytic peptide does, and also produced apoptotic features, such as hollow mitochondria, nuclear condensation, and disrupted cell membranes. A qRT-PCR and ELISA showed that pardaxin induced apoptosis, activated caspase-7 and interleukin (IL)-7r, and downregulated caspase-9, ATF 3, SOCS3, STAT3, cathelicidin, p65, and interferon (IFN)-γ suggesting that pardaxin induces apoptosis through the death receptor/nuclear factor (NF)-κB signaling pathway after 14 days of treatment in tumor-bearing mice. An antitumor effect was observed when pardaxin (25 mg/kg; 0.5 mg/day) was used to treat mice for 14 days, which caused significant inhibition of MN-11 cell growth in mice. Overall, these results indicate that pardaxin has the potential to be a novel therapeutic agent to treat fibrosarcomas.
Collapse
Affiliation(s)
- Shu-Ping Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; (S.-P.W.); (C.-H.L.)
| | - Tsui-Chin Huang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan;
| | - Ching-Chun Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan;
| | - Cho-Fat Hui
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan;
- Authors to whom correspondence should be addressed; (J.-Y.C.); (C.-F.H.); Tel.: +886-920802111 (J.-Y.C.); +886-987836032 (C.-F.H.); Fax: +886-39871035
| | - Cheng-Hui Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; (S.-P.W.); (C.-H.L.)
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan;
- Authors to whom correspondence should be addressed; (J.-Y.C.); (C.-F.H.); Tel.: +886-920802111 (J.-Y.C.); +886-987836032 (C.-F.H.); Fax: +886-39871035
| |
Collapse
|
67
|
Dennison SR, Phoenix AJ, Phoenix DA. Effect of salt on the interaction of Hal18 with lipid membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:769-76. [PMID: 22893009 DOI: 10.1007/s00249-012-0840-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/02/2012] [Accepted: 07/10/2012] [Indexed: 11/25/2022]
Abstract
One of the major obstacles in the development of new antimicrobial peptides as novel antibiotics is salt sensitivity. Hal18, an α-helical subunit of Halocidin isolated from Halocynthia aurantium, has been previously shown to maintain its antimicrobial activity in high salt conditions. The α-helicity of Hal18 in the presence and absence of salt was demonstrated by circular dichroism spectroscopy, which showed that the peptide was mainly unordered containing β-strands and β-turns. However, in the presence of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS) vesicles, Hal18 folded to form α-helices (circa 42 %). Furthermore, the structure was not significantly affected by pH or the presence of metal ions. These data were supported by monolayer results showing Hal18 induced stable surface pressure changes in monolayers composed of DMPC (5 mN m(-1)) and DMPS (8.5 mN m(-1)), which again were not effected by the presence of metal ions or pH. It is proposed that the hydrophobic groove within its molecular architecture enables the peptide to form stable associations with lipid membranes. The balance of hydrophobicity along the Hal18 long axis would also support oblique orientation of the peptide at the membrane interface. Hence, this model of membrane interaction would enable the peptide to penetrate deep into the membrane. This concept is supported by lysis data. Overall, it would appear that this peptide is a potential candidate for future AMP design for use in high salt environments.
Collapse
Affiliation(s)
- Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | | | | |
Collapse
|
68
|
Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3019-24. [PMID: 22885355 DOI: 10.1016/j.bbamem.2012.07.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 11/20/2022]
Abstract
The activity of antimicrobial peptides has been shown to depend on the composition of the target cell membrane. The bacterial selectivity of most antimicrobial peptides has been attributed to the presence of abundant acidic phospholipids and the absence of cholesterol in bacterial membranes. The high amount of cholesterol present in eukaryotic cell membranes is thought to prevent peptide-induced membrane disruption by increasing the cohesion and stiffness of the lipid bilayer membrane. While the role of cholesterol on an antimicrobial peptide-induced membrane disrupting activity has been reported for simple, homogeneous lipid bilayer systems, it is not well understood for complex, heterogeneous lipid bilayers exhibiting phase separation (or "lipid rafts"). In this study, we show that cholesterol does not inhibit the disruption of raft-containing 1,2-dioleoyl-sn-glycero-3-phosphocholine:1,2-dipalmitoyol-sn-glycero-3-phosphocholine model membranes by four different cationic antimicrobial peptides, MSI-78, MSI-594, MSI-367 and MSI-843 which permeabilize membranes. Conversely, the presence of cholesterol effectively inhibits the disruption of non-raft containing 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyol-sn-glycero-3-phosphocholine lipid bilayers, even for antimicrobial peptides that do not show a clear preference between the ordered gel and disordered liquid-crystalline phases. Our results show that the peptide selectivity is not only dependent on the lipid phase but also on the presence of phase separation in heterogeneous lipid systems.
Collapse
|
69
|
Brender JR, McHenry AJ, Ramamoorthy A. Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front Immunol 2012; 3:195. [PMID: 22822405 PMCID: PMC3398343 DOI: 10.3389/fimmu.2012.00195] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 06/21/2012] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jeffrey R Brender
- Biophysics and Department of Chemistry, University of Michigan Ann Arbor, MI, USA
| | | | | |
Collapse
|
70
|
Strandberg E, Tiltak D, Ehni S, Wadhwani P, Ulrich AS. Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1764-76. [DOI: 10.1016/j.bbamem.2012.02.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/22/2012] [Accepted: 02/27/2012] [Indexed: 02/07/2023]
|
71
|
Role of molecular architecture on the relative efficacy of aurein 2.5 and modelin 5. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2094-102. [PMID: 22617856 DOI: 10.1016/j.bbamem.2012.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 11/22/2022]
Abstract
In order to gain an insight into the mechanism of antimicrobial peptide action, aurein 2.5 and modelin-5 were studied. When tested against Staphylococcus aureus, aurein 2.5 showed approximately 5-fold greater efficacy even though the higher net positive charge and higher helix stability shown by modelin-5 would have predicated modelin-5 to be the more effective antimicrobial. However, in the presence of S. aureus membrane mimics, aurein 2.5 showed greater helical content (75% helical) relative to modelin-5 (51% helical) indicative of increase in membrane association. This was supported by monolayer data showing that aurein 2.5 (6.6mNm(-1)) generated greater pressure changes than modelin-5 (5.3mNm(-1)). Peptide monolayers indicted that modelin-5 formed a helix horizontal to the plane of an asymmetric interface which would be supported by the even distribution of charge and hydrophobicity along the helical long axis and facilitate lysis by non-specific membrane binding. In contrast, a groove structure observed on the surface of aurein 2.5 was predicted to be the cause of enhanced lipid binding (K(d)=75μM) relative to modelin-5 (K(d)=118μM) and the balance of hydrophobicity along the aurein 2.5 long axis supported deep penetration into the membrane in a tilt formation. This oblique orientation generates greater lytic efficacy in high anionic lipid (71%) compared to modelin-5 (32%).
Collapse
|
72
|
Bechinger B, Salnikov ES. The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Chem Phys Lipids 2012; 165:282-301. [DOI: 10.1016/j.chemphyslip.2012.01.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/29/2023]
|
73
|
Cardoso AM, Trabulo S, Cardoso AL, Lorents A, Morais CM, Gomes P, Nunes C, Lúcio M, Reis S, Padari K, Pooga M, Pedroso de Lima MC, Jurado AS. S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: Implications for cell internalization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:877-88. [DOI: 10.1016/j.bbamem.2011.12.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/05/2011] [Accepted: 12/21/2011] [Indexed: 01/09/2023]
|
74
|
Kim C, Wi S. A Solid-state NMR Study of the Kinetics of the Activity of an Antimicrobial Peptide, PG-1 on Lipid Membranes. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.2.426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
75
|
Kim C. A solid-state NMR study on the activity of an antimicrobial peptide, magainin 2. ANALYTICAL SCIENCE AND TECHNOLOGY 2011. [DOI: 10.5806/ast.2011.24.6.460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
76
|
De Angelis AA, Grant CV, Baxter MK, McGavin JA, Opella SJ, Cotten ML. Amphipathic antimicrobial piscidin in magnetically aligned lipid bilayers. Biophys J 2011; 101:1086-94. [PMID: 21889445 DOI: 10.1016/j.bpj.2011.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 06/29/2011] [Accepted: 07/01/2011] [Indexed: 10/17/2022] Open
Abstract
The amphipathic antimicrobial peptide piscidin 1 was studied in magnetically aligned phospholipid bilayers by oriented-sample solid-state NMR spectroscopy. (31)P NMR and double-resonance (1)H/(15)N NMR experiments performed between 25 °C and 61 °C enabled the lipid headgroups as well as the peptide amide sites to be monitored over a range of temperatures. The α-helical peptide dramatically affects the phase behavior and structure of anionic bilayers but not those of zwitterionic bilayers. Piscidin 1 stabilizes anionic bilayers, which remain well aligned up to 61 °C when piscidin 1 is on the membrane surface. Two-dimensional separated-local-field experiments show that the tilt angle of the peptide is 80 ± 5°, in agreement with previous results on mechanically aligned bilayers. The peptide undergoes fast rotational diffusion about the bilayer normal under these conditions, and these studies demonstrate that magnetically aligned bilayers are well suited for structural studies of amphipathic peptides.
Collapse
Affiliation(s)
- Anna A De Angelis
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
77
|
Dennison SR, Phoenix DA. Effect of cholesterol on the membrane interaction of Modelin-5 isoforms. Biochemistry 2011; 50:10898-909. [PMID: 22082130 DOI: 10.1021/bi201267v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modelin-5 isoforms were used to gain an insight into the effects of amidation on antimicrobial selectivity. When tested against Escherichia coli, amidation increased toxicity 10-fold (MIC = 31.25 μM) while showing limited increased hemolytic activity (2% lysis). Our results show that both the amidated and non-amidated peptides had a disordered structure in aqueous solution (<18% helical) and folded to form helices at the membrane interface (for example, >43% in the presence of DMPC). The stabilization of the helical structure by amidation has previously been shown to play a key role in increasing antibacterial efficacy. The presence of cholesterol in the membrane increases the packing density (C(s)(-1) values 25-33 mN m(-1)) and so prevents the peptide from forming stable association with the membrane, which is evidenced by the higher binding coefficient (K(d)) in the presence of cholesterol: 57.70 μM for Modelin-5-COOH and 35.64 μM for Modelin-5-CONH(2) compared to the presence of E. coli lipid extract (10 μM), which would prevent local concentration of the peptide at the bilayer interface as seen by reduction in monolayer interaction. This in turn would be predicted to inhibit activity.
Collapse
Affiliation(s)
- Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | | |
Collapse
|
78
|
Dubovskii PV, Vassilevski AA, Samsonova OV, Egorova NS, Kozlov SA, Feofanov AV, Arseniev AS, Grishin EV. Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin. FEBS J 2011; 278:4382-93. [PMID: 21933345 DOI: 10.1111/j.1742-4658.2011.08361.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A unique 30-residue cationic peptide oxyopinin 4a (Oxt 4a) was identified in the venom of the lynx spider Oxyopes takobius (Oxyopidae). Oxt 4a contains a single N-terminally located disulfide bond, Cys4-Cys10, and is structurally different from any spider toxin studied so far. According to NMR findings, the peptide is disordered in water, but assumes a peculiar torpedo-like structure in detergent micelles. It features a C-terminal amphipathic α-helical segment (body; residues 12-25) and an N-terminal disulfide-stabilized loop (head; residues 1-11), and has an unusually high density of positive charge in the head region. Synthetic Oxt 4a was produced and shown to possess strong and broad-spectrum cytolytic and antimicrobial activity. cDNA cloning showed that the peptide is synthesized in the form of a conventional prepropeptide with an acidic prosequence. Unlike other arachnid toxins, Oxt 4a exhibits striking similarity with defense peptides from the skin of ranid frogs that contain the so-called Rana-box motif (a C-terminal disulfide-enclosed loop). Parallelism or convergence is apparent on several levels: the structure, function and biosynthesis of a lynx spider toxin are mirrored by those of Rana-box peptides from frogs.
Collapse
Affiliation(s)
- Peter V Dubovskii
- M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Yang P, Ramamoorthy A, Chen Z. Membrane orientation of MSI-78 measured by sum frequency generation vibrational spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7760-7. [PMID: 21595453 PMCID: PMC3119716 DOI: 10.1021/la201048t] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Antimicrobial peptides (AMPs) selectively disrupt bacterial cell membranes to kill bacteria whereas they either do not or weakly interact with mammalian cells. The orientations of AMPs in lipid bilayers mimicking bacterial and mammalian cell membranes are related to their antimicrobial activity and selectivity. To understand the role of AMP-lipid interactions in the functional properties of AMPs better, we determined the membrane orientation of an AMP (MSI-78 or pexiganan) in various model membranes using sum frequency generation (SFG) vibrational spectroscopy. A solid-supported single 1,2-dipalmitoyl-an-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) bilayer or 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) bilayer was used as a model bacterial cell membrane. A supported 1,2-dipalmitoyl-an-glycero-3-phosphocholine (DPPC) bilayer or a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer was used as a model mammalian cell membrane. Our SFG results indicate that the helical MSI-78 molecules are associated with the bilayer surface with ∼70° deviation from the bilayer normal in the negatively charged gel-phase DPPG bilayer at 400 nM peptide concentration. However, when the concentration was increased to 600 nM, MSI-78 molecules changed their orientation to make a 25° tilt from the lipid bilayer normal whereas multiple orientations were observed for an even higher peptide concentration in agreement with toroidal-type pore formation as reported in a previous solid-state NMR study. In contrary, no interaction between MSI-78 and a zwitterionic DPPC bilayer was observed even at a much higher peptide concentration (∼12,000 nM). These results demonstrate that SFG can provide insights into the antibacterial activity and selectivity of MSI-78. Interestingly, the peptide exhibits a concentration-dependent membrane orientation in the lamellar-phase POPG bilayer and was also found to induce toroidal-type pore formation. The deduced lipid flip-flop from SFG signals observed from lipids also supports MSI-78-induced toroidal-type pore formation.
Collapse
Affiliation(s)
- Pei Yang
- Biophysics and Department of Chemistry, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109
| | - Zhan Chen
- Biophysics and Department of Chemistry, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
80
|
Hsu JC, Lin LC, Tzen JTC, Chen JY. Pardaxin-induced apoptosis enhances antitumor activity in HeLa cells. Peptides 2011; 32:1110-6. [PMID: 21557975 DOI: 10.1016/j.peptides.2011.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 04/24/2011] [Accepted: 04/24/2011] [Indexed: 11/22/2022]
Abstract
Pardaxin, a pore-forming antimicrobial peptide that encodes 33 amino acids was isolated from the Red Sea Moses sole, Pardachirus mamoratus. In this study, we investigated its antitumor activity in human fibrosarcoma (HT-1080) cells and epithelial carcinoma (HeLa) cells. In vitro results showed that the synthetic pardaxin peptide had antitumor activity in these two types of cancer cells and that 15μg/ml pardaxin did not lyse human red blood cells. Moreover, this synthetic pardaxin inhibited the proliferation of HT1080 cells in a dose-dependent manner and induced programmed cell death in HeLa cells. DNA fragmentation and increases in the subG1 phase and caspase 8 activities suggest that pardaxin caused HeLa cell death by inducing apoptosis, but had a different mechanism in HT1080 cells.
Collapse
Affiliation(s)
- Jung-Chieh Hsu
- Graduate Institute of Biotechnology, National Chung-Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan
| | | | | | | |
Collapse
|
81
|
Cheng JTJ, Hale JD, Elliott M, Hancock REW, Straus SK. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:622-33. [PMID: 21144817 DOI: 10.1016/j.bbamem.2010.11.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/08/2010] [Accepted: 11/20/2010] [Indexed: 11/29/2022]
Abstract
For cationic antimicrobial peptides to become useful therapeutic agents, it is important to understand their mechanism of action. To obtain high resolution data, this involves studying the structure and membrane interaction of these peptides in tractable model bacterial membranes rather than directly utilizing more complex bacterial surfaces. A number of lipid mixtures have been used as bacterial mimetics, including a range of lipid headgroups, and different ratios of neutral to negatively charged headgroups. Here we examine how the structure and membrane interaction of aurein 2.2 and some of its variants depend on the choice of lipids, and how these models correlate with activity data in intact bacteria (MICs, membrane depolarization). Specifically, we investigated the structure and membrane interaction of aurein 2.2 and aurein 2.3 in 1:1 cardiolipin/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (CL/POPG) (mol/mol), as an alternative to 1:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)/POPG and a potential model for Gram positive bacteria such as S. aureus. The structure and membrane interaction of aurein 2.2, aurein 2.3, and five variants of aurein 2.2 were also investigated in 1:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE)/POPG (mol/mol) lipids as a possible model for other Gram positive bacteria, such as Bacillus cereus. Solution circular dichroism (CD) results demonstrated that the aurein peptides adopted α-helical structure in all lipid membranes examined, but demonstrated a greater helical content in the presence of POPE/POPG membranes. Oriented CD and ³¹P NMR results showed that the aurein peptides had similar membrane insertion profiles and headgroup disordering effects on POPC/POPG and CL/POPG bilayers, but demonstrated reduced membrane insertion and decreased headgroup disordering on mixing with POPE/POPG bilayers at low peptide concentrations. Since the aurein peptides behaved very differently in POPE/POPG membrane, minimal inhibitory concentrations (MICs) of the aurein peptides in B. cereus strain C737 were determined. The MIC results indicated that all aurein peptides are significantly less active against B. cereus than against S. aureus and S. epidermidis. Overall, the data suggest that it is important to use a relevant model for bacterial membranes to gain insight into the mode of action of a given antimicrobial peptide in specific bacteria.
Collapse
Affiliation(s)
- John T J Cheng
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1, Canada
| | | | | | | | | |
Collapse
|
82
|
Khelashvili G, Mondal S, Andersen OS, Weinstein H. Cholesterol modulates the membrane effects and spatial organization of membrane-penetrating ligands for G-protein coupled receptors. J Phys Chem B 2010; 114:12046-57. [PMID: 20804205 PMCID: PMC2943214 DOI: 10.1021/jp106373r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ligands of certain G-protein coupled receptors (GPCRs) are membrane soluble and reach their target from the lipid bilayer. Lipid composition and dynamics will therefore modulate the activity of these receptors, but specific roles of lipid components, including the ubiquitous cholesterol (Chol), are not clear. We have probed the organization and dynamics of such a lipid-bilayer-penetrating ligand, the endogenous ligand for the κ-opioid receptor (KOR) dynorphin A (1-17) (DynA), using molecular dynamics (MD) simulations of DynA in cholesterol-depleted and cholesterol-enriched model membranes. DynA is found to penetrate deep inside fluid dimyristoylphosphatidylcholine (DMPC) bilayers, and resides with its N-terminal helix at ∼6 Å away from the bilayer midplane, in a tilted orientation, at an ∼50° angle with respect to the membrane normal. In contrast, DynA inside DMPC/Chol membranes with 20% cholesterol (DMPC/Chol) is situated with its helical segment ∼5 A higher, i.e., closer to the lipid/water interface and in a relatively vertical orientation. The DMPC membrane shows greater thinning around the insertion and permits a stronger influx of water inside the hydrocarbon core than the DMPC/Chol membranes. Relating these results to data about key GPCR residues that have been implicated in interactions with membrane-inserting GPCR ligands, we conclude that the position of DynA in DMPC/Chol, but not in pure DMPC, correlates with generally proposed GPCR ligand entry pathways. Our predictions provide a possible mechanistic explanation as to why DynA binding to KOR, and the subsequent activation of the receptor, is facilitated in cholesterol-enriched environments. A quantitative description of DynA-induced membrane deformations is obtained with a continuum theory of membrane deformations (CTMD) that is based on hydrophobic matching. Comparison with the MD data reveals the significance of the lipid tail packing energy contribution in the DMPC/Chol mixtures in predicting equilibrium membrane shape around DynA. On this basis, specific corrections are introduced to this energy term within the CTMD framework, thereby extending the applicability of the CTMD framework to lipid raft mixtures and their interactions with GPCR proteins and their ligands.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA.
| | | | | | | |
Collapse
|
83
|
Chen CC, Krüger J, Sramala I, Hsu HJ, Henklein P, Chen YMA, Fischer WB. ORF8a of SARS-CoV forms an ion channel: experiments and molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:572-9. [PMID: 20708597 PMCID: PMC7094593 DOI: 10.1016/j.bbamem.2010.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/27/2010] [Accepted: 08/02/2010] [Indexed: 12/12/2022]
Abstract
ORF8a protein is 39 residues long and contains a single transmembrane domain. The protein is synthesized using solid phase peptide synthesis and reconstituted into artificial lipid bilayers that forms cation-selective ion channels with a main conductance level of 8.9±0.8pS at elevated temperature (38.5°C). Computational modeling studies including multi nanosecond molecular dynamics simulations in a hydrated POPC lipid bilayer are done with a 22 amino acid transmembrane helix to predict a putative homooligomeric helical bundle model. A structural model of a pentameric bundle is proposed with cysteines, serines and threonines facing the pore.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, 155, Li-Nong St., Sec. 2, Taipei, 112, Taiwan
| | | | | | | | | | | | | |
Collapse
|
84
|
Saitô H, Ando I, Ramamoorthy A. Chemical shift tensor - the heart of NMR: Insights into biological aspects of proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2010; 57:181-228. [PMID: 20633363 PMCID: PMC2905606 DOI: 10.1016/j.pnmrs.2010.04.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/26/2010] [Indexed: 05/19/2023]
Affiliation(s)
- Hazime Saitô
- Department of Life Science, Himeji Institute of Technology, University of Hyogo, Kamigori, Hyog, 678-1297, Japan
| | - Isao Ando
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-0033, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
85
|
Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL, Ramamoorthy A. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Biophys J 2010; 98:248-57. [PMID: 20338846 DOI: 10.1016/j.bpj.2009.09.060] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/14/2009] [Accepted: 09/29/2009] [Indexed: 02/01/2023] Open
Abstract
A 21-residue peptide segment, LL7-27 (RKSKEKIGKEFKRIVQRIKDF), corresponding to residues 7-27 of the only human cathelicidin antimicrobial peptide, LL37, is shown to exhibit potent activity against microbes (particularly Gram-positive bacteria) but not against erythrocytes. The structure, membrane orientation, and target membrane selectivity of LL7-27 are characterized by differential scanning calorimetry, fluorescence, circular dichroism, and NMR experiments. An anilinonaphthalene-8-sulfonic acid uptake assay reveals two distinct modes of Escherichia coli outer membrane perturbation elicited by LL37 and LL7-27. The circular dichroism results show that conformational transitions are mediated by lipid-specific interactions in the case of LL7-27, unlike LL37. It folds into an alpha-helical conformation upon binding to anionic (but not zwitterionic) vesicles, and also does not induce dye leakage from zwitterionic lipid vesicles. Differential scanning calorimetry thermograms show that LL7-27 is completely integrated with DMPC/DMPG (3:1) liposomes, but induces peptide-rich and peptide-poor domains in DMPC liposomes. (15)N NMR experiments on mechanically aligned lipid bilayers suggest that, like the full-length peptide LL37, the peptide LL7-27 is oriented close to the bilayer surface, indicating a carpet-type mechanism of action for the peptide. (31)P NMR spectra obtained from POPC/POPG (3:1) bilayers containing LL7-27 show substantial disruption of the lipid bilayer structure and agree with the peptide's ability to induce dye leakage from POPC/POPG (3:1) vesicles. Cholesterol is shown to suppress peptide-induced disorder in the lipid bilayer structure. These results explain the susceptibility of bacteria and the resistance of erythrocytes to LL7-27, and may have implications for the design of membrane-selective therapeutic agents.
Collapse
Affiliation(s)
- Sathiah Thennarasu
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
86
|
Wessman P, Morin M, Reijmar K, Edwards K. Effect of α-helical peptides on liposome structure: A comparative study of melittin and alamethicin. J Colloid Interface Sci 2010; 346:127-35. [DOI: 10.1016/j.jcis.2010.02.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 11/28/2022]
|
87
|
Pardaxin permeabilizes vesicles more efficiently by pore formation than by disruption. Biophys J 2010; 98:576-85. [PMID: 20159154 DOI: 10.1016/j.bpj.2009.08.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/02/2009] [Accepted: 08/06/2009] [Indexed: 12/28/2022] Open
Abstract
Pardaxin is a 33-amino-acid neurotoxin from the Red Sea Moses sole Pardachirus marmoratus, whose mode of action shows remarkable sensitivity to lipid chain length and charge, although the effect of pH is unclear. Here we combine optical spectroscopy and dye release experiments with laser scanning confocal microscopy and natural abundance (13)C solid-state nuclear magnetic resonance to provide a more complete picture of how pardaxin interacts with lipids. The kinetics and efficiency of release of entrapped calcein is highly sensitive to pH. In vesicles containing zwitterionic lipids (PC), release occurs most rapidly at low pH, whereas in vesicles containing 20% anionic lipid (PG), release occurs most rapidly at high pH. Pardaxin forms stable or transient pores in PC vesicles that allow release of contents without loss of vesicle integrity, whereas the inclusion of PG promotes total vesicle collapse. In agreement with this, solid-state nuclear magnetic resonance reveals that pardaxin takes up a trans-membrane orientation in 14-O-PC/6-O-PC bicelles, whereas the inclusion of 14-0-PG restricts it to contacts with lipid headgroups, promoting membrane lysis. Pore formation in zwitterionic vesicles is more efficient than lysis of anionic vesicles, suggesting that electrostatic interactions may trap pardaxin in several suboptimal interconverting conformations on the membrane surface.
Collapse
|
88
|
Nielsen SB, Otzen DE. Impact of the antimicrobial peptide Novicidin on membrane structure and integrity. J Colloid Interface Sci 2010; 345:248-56. [DOI: 10.1016/j.jcis.2010.01.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 11/24/2022]
|
89
|
Bhunia A, Domadia PN, Torres J, Hallock KJ, Ramamoorthy A, Bhattacharjya S. NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. J Biol Chem 2010; 285:3883-3895. [PMID: 19959835 PMCID: PMC2823531 DOI: 10.1074/jbc.m109.065672] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 11/02/2009] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, is an important element against permeability of bactericidal agents, including antimicrobial peptides. However, structural determinants of antimicrobial peptides for LPS recognition are not clearly understood. Pardaxins (Pa1, Pa2, Pa3, and Pa4) are a group of pore-forming bactericidal peptides found in the mucous glands of sole fishes. Despite having a low net positive charge, pardaxins contain a broad spectrum of antibacterial activities. To elucidate the structural basis of LPS interactions of pardaxins, herein, we report the first three-dimensional structure of Pa4 bound to LPS micelles. The binding kinetics of Pa4 with LPS is estimated using [(15)N-Leu-19] relaxation dispersion NMR experiments. LPS/Pa4 interactions are further characterized by a number of biophysical methods, including isothermal titration calorimetry, (31)P NMR, saturation transfer difference NMR, dynamic light scattering, and IR spectroscopy. In the LPS-Pa4 complex, Pa4 adopts a unique helix-turn-helix conformation resembling a "horseshoe." Interestingly, the LPS-bound structure of Pa4 shows striking differences with the structures determined in lipid micelles or organic solvents. Saturation transfer difference NMR identifies residues of Pa4 that are intimately associated with LPS micelles. Collectively, our results provide mechanistic insights into the outer membrane permeabilization by pardaxin.
Collapse
Affiliation(s)
- Anirban Bhunia
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 and
| | - Prerna N Domadia
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 and
| | - Jaume Torres
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 and
| | - Kevin J Hallock
- the Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Ayyalusamy Ramamoorthy
- the Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055.
| | - Surajit Bhattacharjya
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 and.
| |
Collapse
|
90
|
Salnikov E, Aisenbrey C, Vidovic V, Bechinger B. Solid-state NMR approaches to measure topological equilibria and dynamics of membrane polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:258-65. [DOI: 10.1016/j.bbamem.2009.06.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/12/2009] [Accepted: 06/29/2009] [Indexed: 01/20/2023]
|
91
|
Ramamoorthy A, Lee DK, Narasimhaswamy T, Nanga RPR. Cholesterol reduces pardaxin's dynamics-a barrel-stave mechanism of membrane disruption investigated by solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1798:223-7. [PMID: 19716800 PMCID: PMC2812650 DOI: 10.1016/j.bbamem.2009.08.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/11/2009] [Accepted: 08/15/2009] [Indexed: 10/20/2022]
Abstract
While high-resolution 3D structures reveal the locations of all atoms in a molecule, it is the dynamics that correlates the structure with the function of a biological molecule. The complete characterization of dynamics of a membrane protein is in general complex. In this study, we report the influence of dynamics on the channel-forming function of pardaxin using chemical shifts and dipolar couplings measured from 2D broadband-PISEMA experiments on mechanically aligned phospholipids bilayers. Pardaxin is a 33-residue antimicrobial peptide originally isolated from the Red Sea Moses sole, Pardachirus marmoratus, which functions via either a carpet-type or barrel-stave mechanism depending on the membrane composition. Our results reveal that the presence of cholesterol significantly reduces the backbone motion and the tilt angle of the C-terminal amphipathic helix of pardaxin. In addition, a correlation between the dynamics-induced heterogeneity in the tilt of the C-terminal helix and the membrane disrupting activity of pardaxin by the barrel-stave mechanism is established. This correlation is in excellent agreement with the absence of hemolytic activity for the derivatives of pardaxin. These results explain the role of cholesterol in the selectivity of the broad-spectrum of antimicrobial activities of pardaxin.
Collapse
Affiliation(s)
- Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | |
Collapse
|
92
|
Can antimicrobial peptides scavenge around a cell in less than a second? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:228-34. [DOI: 10.1016/j.bbamem.2009.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/19/2009] [Accepted: 08/31/2009] [Indexed: 11/20/2022]
|
93
|
Membrane association and pore formation by alpha-helical peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:24-30. [PMID: 20687478 DOI: 10.1007/978-1-4419-6327-7_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane-active peptides exhibit antimicrobial, channel-forming and transport activities and have therefore early on been interesting targets for biophysical investigations. When the peptide-lipid interactions are studied a dynamic view emerges in which the peptides change conformation upon membrane insertion, can adopt a variety of topologies and change the macroscopic phase properties of the membrane locally or globally. Interestingly several proteins have been identified that also interact with the membrane in a dynamic fashion and where the lessons learned from peptides may add to our understanding of the ways these proteins function.
Collapse
|
94
|
Bourbigot S, Fardy L, Waring AJ, Yeaman MR, Booth V. Structure of chemokine-derived antimicrobial Peptide interleukin-8alpha and interaction with detergent micelles and oriented lipid bilayers. Biochemistry 2009; 48:10509-21. [PMID: 19813761 DOI: 10.1021/bi901311p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interleukin-8alpha (IL-8alpha) is an antimicrobial peptide derived from the chemokine IL-8. Solution NMR was used to determine the atomic-resolution structure of IL-8alpha in SDS micelles. Solid-state NMR and tryptophan fluorescence were used to probe the interaction of IL-8alpha with model membranes. The peptide interacted differently with anionic versus purely zwitterionic micelles or bilayers. Tryptophan fluorescence demonstrated a deeper position of Trp4 in SDS micelles and POPC/POPG bilayers compared to pure POPC bilayers, consistent with (2)H order parameters, which also indicated a deeper position of the peptide in POPC/POPG bilayers compared to POPC bilayers. Paramagnetic probe data showed that IL-8alpha was situated roughly parallel to the SDS micelle surface, with a slight tilt that positioned the N-terminus more deeply in the micelle compared to the C-terminus. (15)N solid-state NMR spectra indicated a similar, nearly parallel position for the peptide in POPC/POPG bilayers. (31)P and (2)H solid-state NMR demonstrated that the peptide did not induce the formation of any nonlamellar phases and did not significantly disrupt bilayer orientation in aligned model membranes composed of POPC or POPC and POPG.
Collapse
Affiliation(s)
- Sarah Bourbigot
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | | | | | | | | |
Collapse
|
95
|
Bhattacharjya S, Ramamoorthy A. Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS J 2009; 276:6465-73. [DOI: 10.1111/j.1742-4658.2009.07357.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
96
|
Bechinger B. Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Curr Opin Colloid Interface Sci 2009. [DOI: 10.1016/j.cocis.2009.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
97
|
Domenech O, Francius G, Tulkens PM, Van Bambeke F, Dufrêne Y, Mingeot-Leclercq MP. Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: Effect on membrane permeability and nanoscale lipid membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1832-40. [DOI: 10.1016/j.bbamem.2009.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/25/2009] [Accepted: 05/05/2009] [Indexed: 11/25/2022]
|
98
|
Structure, dynamics and mapping of membrane-binding residues of micelle-bound antimicrobial peptides by natural abundance (13)C NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:114-21. [PMID: 19682427 DOI: 10.1016/j.bbamem.2009.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/08/2009] [Accepted: 07/30/2009] [Indexed: 12/23/2022]
Abstract
Worldwide bacterial resistance to traditional antibiotics has drawn much research attention to naturally occurring antimicrobial peptides (AMPs) owing to their potential as alternative antimicrobials. Structural studies of AMPs are essential for an in-depth understanding of their activity, mechanism of action, and in guiding peptide design. Two-dimensional solution proton NMR spectroscopy has been the major tool. In this article, we describe the applications of natural abundance (13)C NMR spectroscopy that provides complementary information to 2D (1)H NMR. The correlation of (13)Calpha secondary shifts with both 3D structure and heteronuclear (15)N NOE values indicates that natural abundance carbon chemical shifts are useful probes for backbone structure and dynamics of membrane peptides. Using human LL-37-derived peptides (GF-17, KR-12, and RI-10), as well as amphibian antimicrobial and anticancer peptide aurein 1.2 and its analog LLAA, as models, we show that the cross peak intensity plots of 2D (1)H-(13)Calpha HSQC spectra versus residue number present a wave-like pattern (HSQC wave) where key hydrophobic residues of micelle-bound peptides are located in the troughs with weaker intensities, probably due to fast exchange between the free and bound forms. In all the cases, the identification of aromatic phenylalanines as a key membrane-binding residue is consistent with previous intermolecular Phe-lipid NOE observations. Furthermore, mutation of one of the key hydrophobic residues of KR-12 to Ala significantly reduced the antibacterial activity of the peptide mutants. These results illustrate that natural abundance heteronuclear-correlated NMR spectroscopy can be utilized to probe backbone structure and dynamics, and perhaps to map key membrane-binding residues of peptides in complex with micelles. (1)H-(13)Calpha HSQC wave, along with other NMR waves such as dipolar wave and chemical shift wave, offers novel insights into peptide-membrane interactions from different angles.
Collapse
|
99
|
Biophysical studies of the interactions between the phage varphiKZ gp144 lytic transglycosylase and model membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:263-76. [PMID: 19669132 DOI: 10.1007/s00249-009-0530-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 07/14/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
The use of naturally occurring lytic bacteriophage proteins as specific antibacterial agents is a promising way to treat bacterial infections caused by antibiotic-resistant pathogens. The opportunity to develop bacterial resistance to these agents is minimized by their broad mechanism of action on bacterial membranes and peptidoglycan integrity. In the present study, we have investigated lipid interactions of the gp144 lytic transglycosylase from the Pseudomonas aeruginosa phage varphiKZ. Interactions with zwitterionic lipids characteristic of eukaryotic cells and with anionic lipids characteristic of bacterial cells were studied using fluorescence, solid-state nuclear magnetic resonance, Fourier transform infrared, circular dichroism, Langmuir monolayers, and Brewster angle microscopy (BAM). Gp144 interacted preferentially with anionic lipids, and the presence of gp144 in anionic model systems induced membrane disruption and lysis. Lipid domain formation in anionic membranes was observed by BAM. Gp144 did not induce disruption of zwitterionic membranes but caused an increase in rigidity of the lipid polar head group. However, gp144 interacted with zwitterionic and anionic lipids in a model membrane system containing both lipids. Finally, the gp144 secondary structure was not significantly modified upon lipid binding.
Collapse
|
100
|
Gottler LM, Ramamoorthy A. Structure, membrane orientation, mechanism, and function of pexiganan--a highly potent antimicrobial peptide designed from magainin. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1680-6. [PMID: 19010301 PMCID: PMC2726618 DOI: 10.1016/j.bbamem.2008.10.009] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 11/23/2022]
Abstract
The growing problem of bacterial resistance to conventional antibiotic compounds and the need for new antibiotics have stimulated interest in the development of antimicrobial peptides (AMPs) as human therapeutics. Development of topically applied agents, such as pexiganan (also known as MSI-78, an analog of the naturally occurring magainin2, extracted from the skin of the African frog Xenopus laevis) has been the focus of pharmaceutical development largely because of the relative safety of topical therapy and the uncertainty surrounding the long-term toxicology of any new class of drug administered systemically. The main hurdle that has hindered the development of antimicrobial peptides is that many of the naturally occurring peptides (such as magainin), although active in vitro, are effective in animal models of infection only at very high doses, often close to the toxic doses of the peptide, reflecting an unacceptable margin of safety. Though MSI-78 did not pass the FDA approval, it is still the best-studied AMP to date for therapeutic purposes. Biophysical studies have shown that this peptide is unstructured in solution, forms an antiparallel dimer of amphipathic helices upon binding to the membrane, and disrupts membrane via toroidal-type pore formation. This article covers functional, biophysical, biochemical and structural studies on pexiganan.
Collapse
Affiliation(s)
- Lindsey M. Gottler
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| |
Collapse
|