51
|
Kumagai K, Toyoda F, Staunton C, Maeda T, Okumura N, Matsuura H, Matsusue Y, Imai S, Barrett-Jolley R. Activation of a chondrocyte volume-sensitive Cl(-) conductance prior to macroscopic cartilage lesion formation in the rabbit knee anterior cruciate ligament transection osteoarthritis model. Osteoarthritis Cartilage 2016; 24:1786-1794. [PMID: 27266646 PMCID: PMC5756537 DOI: 10.1016/j.joca.2016.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The anterior cruciate ligament transection (ACLT) rabbit osteoarthritis (OA) model confers permanent knee instability and induces joint degeneration. The degeneration process is complex, but includes chondrocyte apoptosis and OA-like loss of cartilage integrity. Previously, we reported that activation of a volume-sensitive Cl(-) current (ICl,vol) can mediate cell shrinkage and apoptosis in rabbit articular chondrocytes. Our objective was therefore to investigate whether ICl,vol was activated in the early stages of the rabbit ACLT OA model. DESIGN Adult Rabbits underwent unilateral ACLT and contralateral arthrotomy (sham) surgery. Rabbits were euthanized at 2 or 4 weeks. Samples were analyzed histologically and with assays of cell volume, apoptosis and electrophysiological characterization of ICl,vol. RESULTS At 2 and 4 weeks post ACLT cartilage appeared histologically normal, nevertheless cell swelling and caspase 3/7 activity were both significantly increased compared to sham controls. In cell-volume experiments, exposure of chondrocytes to hypotonic solution led to a greater increase in cell size in ACLT compared to controls. Caspase-3/7 activity, an indicator of apoptosis, was elevated in both ACLT 2wk and 4wk. Whole-cell currents were recorded with patch clamp of chondrocytes in iso-osmotic and hypo-osmotic external solutions under conditions where Na(+), K(+) and Ca(2+) currents were minimized. ACLT treatment resulted in a large increase in hypotonic-activated chloride conductance. CONCLUSION Changes in chondrocyte ion channels take place prior to the onset of apparent cartilage loss in the ACLT rabbit model of OA. Further studies are needed to investigate if pharmacological inhibition of ICl,vol decreases progression of OA in animal models.
Collapse
Affiliation(s)
- K. Kumagai
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK,Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - F. Toyoda
- Department of Physiology, Shiga University of Medical Science, Japan
| | - C.A. Staunton
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK
| | - T. Maeda
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - N. Okumura
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - H. Matsuura
- Department of Physiology, Shiga University of Medical Science, Japan
| | - Y. Matsusue
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - S. Imai
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - R. Barrett-Jolley
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK,Address correspondence and reprint requests to: R. Barrett-Jolley, Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK.Department of Musculoskeletal BiologyInstitute of Aging and Chronic DiseaseUniversity of LiverpoolUK
| |
Collapse
|
52
|
Byun S, Hecht VC, Manalis SR. Characterizing Cellular Biophysical Responses to Stress by Relating Density, Deformability, and Size. Biophys J 2016; 109:1565-73. [PMID: 26488647 DOI: 10.1016/j.bpj.2015.08.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/23/2015] [Accepted: 08/24/2015] [Indexed: 01/28/2023] Open
Abstract
Cellular physical properties are important indicators of specific cell states. Although changes in individual biophysical parameters, such as cell size, density, and deformability, during cellular processes have been investigated in great detail, relatively little is known about how they are related. Here, we use a suspended microchannel resonator (SMR) to measure single-cell density, volume, and passage time through a narrow constriction of populations of cells subjected to a variety of environmental stresses. Osmotic stress significantly affects density and volume, as previously shown. In contrast to density and volume, the effect of an osmotic challenge on passage time is relatively small. Deformability, as determined by comparing passage times for cells with similar volume, exhibits a strong dependence on osmolarity, indicating that passage time alone does not always provide a meaningful proxy for deformability. Finally, we find that protein synthesis inhibition, cell-cycle arrest, protein kinase inhibition, and cytoskeletal disruption result in unexpected relationships among deformability, density, and volume. Taken together, our results suggest that by measuring multiple biophysical parameters, one can detect unique characteristics that more specifically reflect cellular behaviors.
Collapse
Affiliation(s)
- Sangwon Byun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Vivian C Hecht
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Scott R Manalis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
53
|
Walser J, Stok KS, Caversaccio MD, Ferguson SJ. Direct electrospinning of 3D auricle-shaped scaffolds for tissue engineering applications. Biofabrication 2016; 8:025007. [PMID: 27171651 DOI: 10.1088/1758-5090/8/2/025007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thirty-two poly(ε)caprolactone (PCL) scaffolds have been produced by electrospinning directly into an auricle-shaped mould and seeded with articular chondrocytes harvested from bovine ankle joints. After seeding, the auricle shaped constructs were cultured in vitro and analysed at days 1, 7, 14 and 21 for regional differences in total DNA, glycosaminoglycan (GAG) and collagen (COL) content as well as the expression of aggrecan (AGG), collagen type I and type II (COL1/2) and matrix metalloproteinase 3 and 13 (MMP3/13). Stress-relaxation indentation testing was performed to investigate regional mechanical properties of the electrospun constructs. Electrospinning into a conductive mould yielded stable 3D constructs both initially and for the whole in vitro culture period, with an equilibrium modulus in the MPa range. Rapid cell proliferation and COL accumulation was observed until week 3. Quantitative real time PCR analysis showed an initial increase in AGG, no change in COL2, a persistent increase in COL1, and only a slight decrease initially for MMP3. Electrospinning of fibrous scaffolds directly into an auricle-shape represents a promising option for auricular tissue engineering, as it can reduce the steps needed to achieve an implantable structure.
Collapse
Affiliation(s)
- Jochen Walser
- ETH Zurich, Institute for Biomechanics, Zurich, CH, Switzerland
| | | | | | | |
Collapse
|
54
|
Sliogeryte K, Botto L, Lee DA, Knight MM. Chondrocyte dedifferentiation increases cell stiffness by strengthening membrane-actin adhesion. Osteoarthritis Cartilage 2016; 24:912-20. [PMID: 26706702 DOI: 10.1016/j.joca.2015.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/23/2015] [Accepted: 12/06/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocyte dedifferentiation is known to influence cell mechanics leading to alterations in cell function. This study examined the influence of chondrocyte dedifferentiation in monolayer on cell viscoelastic properties and associated changes in actin organisation, bleb formation and membrane-actin cortex interaction. METHOD Micropipette aspiration was used to estimate the viscoelastic properties of freshly isolated articular chondrocytes and the same cells after passage in monolayer. Studies quantified the cell membrane-actin cortex adhesion by measuring the critical pressure required for membrane detachment and bleb formation. We then examined the expression of ezrin, radixin and moesin (ERM) proteins which are involved in linking the membrane and actin cortex and combined this with theoretical modelling of bleb dynamics. RESULTS Dedifferentiated chondrocytes at passage 1 (P1) were found to be stiffer compared to freshly isolated chondrocytes (P0), with equilibrium modulus values of 0.40 and 0.16 kPa respectively. The critical pressure increased from 0.59 kPa at P0 to 0.74 kPa at P1. Dedifferentiated cells at P1 exhibited increased cortical F-actin organisation and increased expression of total and phosphorylated ERM proteins compared to cells at P0. Theoretical modelling confirmed the importance of membrane-actin cortex adhesion in regulating bleb formation and effective cellular elastic modulus. CONCLUSION This study demonstrates that chondrocyte dedifferentiation in monolayer strengthens membrane-actin cortex adhesion associated with increased F-actin organisation and up-regulation of ERM protein expression. Thus dedifferentiated cells have reduced susceptibility to bleb formation which increases cell modulus and may also regulate other fundamental aspects of cell function such as mechanotransduction and migration.
Collapse
Affiliation(s)
- K Sliogeryte
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom; Laboratoire Physico-chimie Curie-UMR 168, Institut Curie, Centre de Recherche, Paris, F-75248, France
| | - L Botto
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - D A Lee
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - M M Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom.
| |
Collapse
|
55
|
Antimicrobial ε-poly-l-lysine induced changes in cell membrane compositions and properties of Saccharomyces cerevisiae. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.09.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
56
|
Mechanobiology of TGFβ signaling in the skeleton. Matrix Biol 2016; 52-54:413-425. [PMID: 26877077 DOI: 10.1016/j.matbio.2016.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Physical and biochemical cues play fundamental roles in the skeleton at both the tissue and cellular levels. The precise coordination of these cues is essential for skeletal development and homeostasis, and disruption of this coordination can drive disease progression. The growth factor TGFβ is involved in both the regulation of and cellular response to the physical microenvironment. It is essential to summarize the current findings regarding the mechanisms by which skeletal cells integrate physical and biochemical cues so that we can identify and address remaining gaps that could ultimately improve skeletal health. In this review, we describe the role of TGFβ in mechanobiological signaling in bone and cartilage at the tissue and cellular levels. We provide detail on how static and dynamic physical cues at the macro-level are transmitted to the micro-level, ultimately leading to regulation at each level of the TGFβ pathway and to cell differentiation. The continued integration of engineering and biological approaches is needed to answer many remaining questions, such as the mechanisms by which cells generate a coordinated response to physical and biochemical cues. We propose one such mechanism, through which the combination of TGFβ and an optimal physical microenvironment leads to synergistic induction of downstream TGFβ signaling.
Collapse
|
57
|
Investigation of the Effects of Extracellular Osmotic Pressure on Morphology and Mechanical Properties of Individual Chondrocyte. Cell Biochem Biophys 2016; 74:229-40. [PMID: 26831866 DOI: 10.1007/s12013-016-0721-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
Abstract
It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic force microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate-dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young's modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young's modulus. Moreover, using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.
Collapse
|
58
|
Abstract
Chondrocytes, the single cell type in adult articular cartilage, have conventionally been considered to be non-excitable cells. However, recent evidence suggests that their resting membrane potential (RMP) is less negative than that of excitable cells, and they are fully equipped with channels that control ion, water and osmolyte movement across the chondrocyte membrane. Amongst calcium-specific ion channels, members of the voltage-dependent calcium channel (VDCC) family are expressed in chondrocytes where they are functionally active. L-type VDCC inhibitors such as nifedipine and verapamil have contributed to our understanding of the roles of these ion channels in chondrogenesis, chondrocyte signalling and mechanotransduction. In this narrative review, we discuss published data indicating that VDCC function is vital for chondrocyte health, especially in regulating proliferation and maturation. We also highlight the fact that activation of VDCC function appears to accompany various inflammatory aspects of osteoarthritis (OA) and, based on in vitro data, the application of nifedipine and/or verapamil may be a promising approach for ameliorating OA severity. However, very few studies on clinical outcomes are available regarding the influence of calcium antagonists, which are used primarily for treating cardiovascular conditions in OA patients. This review is intended to stimulate further research on the chondrocyte 'channelome', contribute to the development of novel therapeutic strategies and facilitate the retargeting and repositioning of existing pharmacological agents currently used for other comorbidities for the treatment of OA.
Collapse
|
59
|
Osteoarthritis year in review 2015: mechanics. Osteoarthritis Cartilage 2016; 24:27-35. [PMID: 26707990 PMCID: PMC4693146 DOI: 10.1016/j.joca.2015.08.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/13/2015] [Accepted: 08/29/2015] [Indexed: 02/02/2023]
Abstract
Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poro-viscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA.
Collapse
|
60
|
Zhou Y, David MA, Chen X, Wan LQ, Duncan RL, Wang L, Lu XL. Effects of Osmolarity on the Spontaneous Calcium Signaling of In Situ Juvenile and Adult Articular Chondrocytes. Ann Biomed Eng 2015. [PMID: 26219403 DOI: 10.1007/s10439-015-1406-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calcium is a universal second messenger that mediates the metabolic activity of chondrocytes in articular cartilage. Spontaneous intracellular calcium ([Ca(2+)]i) oscillations, similar to those in neurons and myocytes, have recently been observed in chondrocytes. This study analyzed and compared the effects of different osmotic environments (hypertonic, hypotonic, and isotonic) on the spontaneous [Ca(2+)]i signaling of in situ chondrocytes residing in juvenile and adult cartilage explants. In spite of a lower cell density, a significantly higher percentage of chondrocytes in adult cartilage under all osmotic environments demonstrated spontaneous [Ca(2+)]i oscillations than chondrocytes in juvenile cartilage. For both juvenile and adult chondrocytes, hypotonic stress increased while hypertonic stress decreased the response rates. Furthermore, the spatiotemporal characteristics of the [Ca(2+)]i peaks vary in an age-dependent manner. In the hypotonic environment, the [Ca(2+)]i oscillation frequency of responsive adult cells is almost tripled whereas the juvenile cells respond with an increased duration and magnitude of each [Ca(2+)]i peak. Both juvenile and adult chondrocytes demonstrated significantly slower [Ca(2+)]i oscillations with longer rising and recovery time under the hypertonic condition. Taken together, these results shed new insights into the interplay between age and osmotic environment that may regulate the fundamental metabolism of chondrocytes.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA
| | - Michael A David
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xingyu Chen
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA.
| |
Collapse
|
61
|
Plaza GR, Uyeda TQP, Mirzaei Z, Simmons CA. Study of the influence of actin-binding proteins using linear analyses of cell deformability. SOFT MATTER 2015; 11:5435-5446. [PMID: 26059185 DOI: 10.1039/c5sm00125k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, α-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of α-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over cross-links during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actin-binding proteins, deformability and mechanosensing.
Collapse
Affiliation(s)
- Gustavo R Plaza
- Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
62
|
Vilborg A, Passarelli MC, Yario TA, Tycowski KT, Steitz JA. Widespread Inducible Transcription Downstream of Human Genes. Mol Cell 2015; 59:449-61. [PMID: 26190259 DOI: 10.1016/j.molcel.2015.06.016] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/29/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
Pervasive transcription of the human genome generates RNAs whose mode of formation and functions are largely uncharacterized. Here, we combine RNA-seq with detailed mechanistic studies to describe a transcript type derived from protein-coding genes. The resulting RNAs, which we call DoGs for downstream of gene containing transcripts, possess long non-coding regions (often >45 kb) and remain chromatin bound. DoGs are inducible by osmotic stress through an IP3 receptor signaling-dependent pathway, indicating active regulation. DoG levels are increased by decreased termination of the upstream transcript, a previously undescribed mechanism for rapid transcript induction. Relative depletion of polyA signals in DoG regions correlates with increased levels of DoGs after osmotic stress. We detect DoG transcription in several human cell lines and provide evidence for thousands of DoGs genome wide.
Collapse
Affiliation(s)
- Anna Vilborg
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Maria C Passarelli
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Therese A Yario
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| |
Collapse
|
63
|
Sabuncu AC, Asmar AJ, Stacey MW, Beskok A. Differential dielectric responses of chondrocyte and Jurkat cells in electromanipulation buffers. Electrophoresis 2015; 36:1499-506. [PMID: 25958778 PMCID: PMC4555997 DOI: 10.1002/elps.201500119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/17/2022]
Abstract
Electromanipulation of cells as a label-free cell manipulation and characterization tool has gained particular interest recently. However, the applicability of electromanipulation, particularly dielectrophoresis (DEP), to biological cells is limited to cells suspended in buffers containing lower amounts of salts relative to the physiological buffers. One might question the use of low conductivity buffers (LCBs) for DEP separation, as cells are stressed in buffers lacking physiological levels of salt. In LCB, cells leak ions and undergo volume regulation. Therefore, cells exhibit time-dependent DEP response in LCB. In this work, cellular changes in LCB are assessed by dielectric spectroscopy, cell viability assay, and gene expression of chondrocytes and Jurkats. Results indicate leakage of ions from cells, increases in cytoplasmic conductivity, membrane capacitance, and conductance. Separability factor, which defines optimum conditions for DEP cell separation, for the two cell types is calculated using the cellular dielectric data. Optimum DEP separation conditions change as cellular dielectric properties evolve in LCB. Genetic analyses indicate no changes in expression of ionic channel proteins for chondrocytes suspended in LCB. Retaining cellular viability might be important during dielectrophoretic separation, especially when cells are to be biologically tested at a downstream microfluidic component.
Collapse
Affiliation(s)
- Ahmet C. Sabuncu
- Department of Mechanical Engineering, Southern Methodist University, Dallas, VA, 75275, USA
| | - Anthony J. Asmar
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23529, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Michael W. Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23529, USA
| | - Ali Beskok
- Department of Mechanical Engineering, Southern Methodist University, Dallas, VA, 75275, USA
| |
Collapse
|
64
|
Zelenski NA, Leddy HA, Sanchez-Adams J, Zhang J, Bonaldo P, Liedtke W, Guilak F. Type VI Collagen Regulates Pericellular Matrix Properties, Chondrocyte Swelling, and Mechanotransduction in Mouse Articular Cartilage. Arthritis Rheumatol 2015; 67:1286-94. [PMID: 25604429 DOI: 10.1002/art.39034] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Mechanical factors play a critical role in the physiology and pathology of articular cartilage, although the mechanisms of mechanical signal transduction are not fully understood. We undertook this study to test the hypothesis that type VI collagen is necessary for mechanotransduction in articular cartilage by determining the effects of type VI collagen knockout on the activation of the mechano-osmosensitive, calcium-permeable channel TRPV4 (transient receptor potential vanilloid channel 4) as well as on osmotically induced chondrocyte swelling and pericellular matrix (PCM) mechanical properties. METHODS Confocal laser scanning microscopy was used to image TRPV4-mediated calcium signaling and osmotically induced cell swelling in intact femora from 2- and 9-month-old wild-type (WT) and type VI collagen-deficient (Col6a1(-/-)) mice. Immunofluorescence-guided atomic force microscopy was used to map PCM mechanical properties based on the presence of perlecan. RESULTS Hypo-osmotic stress-induced TRPV4-mediated calcium signaling was increased in Col6a1(-/-) mice relative to WT controls at 2 months. Col6a1(-/-) mice exhibited significantly increased osmotically induced cell swelling and decreased PCM moduli relative to WT controls at both ages. CONCLUSION In contrast to our original hypothesis, type VI collagen was not required for TRPV4-mediated Ca(2+) signaling; however, knockout of type VI collagen altered the mechanical properties of the PCM, which in turn increased the extent of cell swelling and osmotically induced TRPV4 signaling in an age-dependent manner. These findings emphasize the role of the PCM as a transducer of mechanical and physicochemical signals, and they suggest that alterations in PCM properties, as may occur with aging or osteoarthritis, can influence mechanotransduction via TRPV4 or other ion channels.
Collapse
|
65
|
On-Chip Method to Measure Mechanical Characteristics of a Single Cell by Using Moiré Fringe. MICROMACHINES 2015. [DOI: 10.3390/mi6060660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
66
|
Nguyen TD, Oloyede A, Singh S, Gu Y. Microscale consolidation analysis of relaxation behavior of single living chondrocytes subjected to varying strain-rates. J Mech Behav Biomed Mater 2015; 49:343-54. [PMID: 26093345 DOI: 10.1016/j.jmbbm.2015.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 11/19/2022]
Abstract
Besides the elastic stiffness, the relaxation behavior of single living cells is also of interest of various researchers when studying cell mechanics. It is hypothesized that the relaxation response of the cells is governed by both intrinsic viscoelasticity of the solid phase and fluid-solid interactions mechanisms. There are a number of mechanical models have been developed to investigate the relaxation behavior of single cells. However, there is lack of model enable to accurately capture both of the mechanisms. Therefore, in this study, the porohyperelastic (PHE) model, which is an extension of the consolidation theory, combined with inverse Finite Element Analysis (FEA) technique was used at the first time to investigate the relaxation response of living chondrocytes. This model was also utilized to study the dependence of relaxation behavior of the cells on strain-rates. The stress-relaxation experiments under the various strain-rates were conducted with the Atomic Force Microscopy (AFM). The results have demonstrated that the PHE model could effectively capture the stress-relaxation behavior of the living chondrocytes, especially at intermediate to high strain-rates. Although this model gave some errors at lower strain-rates, its performance was acceptable. Therefore, the PHE model is properly a promising model for single cell mechanics studies. Moreover, it has been found that the hydraulic permeability of living chondrocytes reduced with decreasing of strain-rates. It might be due to the intracellular fluid volume fraction and the fluid pore pressure gradients of chondrocytes were higher when higher strain-rates applied.
Collapse
Affiliation(s)
- Trung Dung Nguyen
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adekunle Oloyede
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sanjleena Singh
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - YuanTong Gu
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
67
|
Zhang M, Liu Z, Yu Q, Mao J, Zhang B, Xing L, Li M. Deletion of genes encoding fatty acid desaturases leads to alterations in stress sensitivity in Pichia pastoris. FEMS Yeast Res 2015; 15:fov020. [DOI: 10.1093/femsyr/fov020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
|
68
|
Tanska P, Mononen ME, Korhonen RK. A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking. J Biomech 2015; 48:1397-406. [PMID: 25795269 DOI: 10.1016/j.jbiomech.2015.02.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Mechanical signals experienced by chondrocytes (articular cartilage cells) modulate cell synthesis and cartilage health. Multi-scale modeling can be used to study how forces are transferred from joint surfaces through tissues to chondrocytes. Therefore, estimation of chondrocyte behavior during certain physical activities, such as walking, could provide information about how cells respond to normal and abnormal loading in joints. In this study, a 3D multi-scale model was developed for evaluating chondrocyte and surrounding peri- and extracellular matrix responses during gait loading within healthy and medial meniscectomy knee joints. The knee joint geometry was based on MRI, whereas the input used for gait loading was obtained from the literature. Femoral and tibial cartilages were modeled as fibril-reinforced poroviscoelastic materials, whereas menisci were considered as transversely isotropic. Fluid pressures in the chondrocyte and cartilage tissue increased up to 2MPa (an increase of 30%) in the meniscectomy joint compared to the normal, healthy joint. The elevated level of fluid pressure was observed during the entire stance phase of gait. A medial meniscectomy caused substantially larger (up to 60%) changes in maximum principal strains in the chondrocyte compared to those in the peri- or extracellular matrices. Chondrocyte volume or morphology did not change substantially due to a medial meniscectomy. Current findings suggest that during walking chondrocyte deformations are not substantially altered due to a medial meniscectomy, while abnormal joint loading exposes chondrocytes to elevated levels of fluid pressure and maximum principal strains (compared to strains in the peri- or extracellular matrices). These might contribute to cell viability and the onset of osteoarthritis.
Collapse
Affiliation(s)
- Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
69
|
Abstract
Articular cartilage is a unique load-bearing connective tissue with a low intrinsic capacity for repair and regeneration. Its avascularity makes it relatively hypoxic and its unique extracellular matrix is enriched with cations, which increases the interstitial fluid osmolarity. Several physicochemical and biomechanical stimuli are reported to influence chondrocyte metabolism and may be utilized for regenerative medical approaches. In this review article, we summarize the most relevant stimuli and describe how ion channels may contribute to cartilage homeostasis, with special emphasis on intracellular signaling pathways. We specifically focus on the role of calcium signaling as an essential mechanotransduction component and highlight the role of phosphatase signaling in this context.
Collapse
Affiliation(s)
- Holger Jahr
- Department of Orthopaedic Surgery, University Hospital RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
| | - Csaba Matta
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032 Hungary
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH UK
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, 21589 Kingdom of Saudi Arabia
| |
Collapse
|
70
|
The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes. Osteoarthritis Cartilage 2015; 23:289-99. [PMID: 25450844 DOI: 10.1016/j.joca.2014.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/23/2014] [Accepted: 11/03/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) is associated with a gradual reduction in the interstitial osmotic pressure within articular cartilage. The aim of this study was to compare the effects of sudden and gradual hypo-osmotic challenge on chondrocyte morphology and biomechanics. METHODS Bovine articular chondrocytes were exposed to a reduction in extracellular osmolality from 327 to 153 mOsmol/kg applied either suddenly (<5 s) or gradually (over 180 min). Temporal changes in cell diameter and the existence of regulatory volume decrease (RVD) were quantified along with changes in cortical actin and chromatin condensation. The cellular viscoelastic mechanical properties were determined by micropipette aspiration. RESULTS In response to a sudden hypo-osmotic stress, 66% of chondrocytes exhibited an increase in diameter followed by RVD, whilst 25% showed no RVD. By contrast, cells exposed to gradual hypo-osmotic stress exhibited reduced cell swelling without subsequent RVD. There was an increase in the equilibrium modulus for cells exposed to sudden hypo-osmotic stress. However, gradual hypo-osmotic challenge had no effect on cell mechanical properties. This cell stiffening response to sudden hypo-osmotic challenge was abolished when actin organization was disrupted with cytochalasin D or RVD inhibited with REV5901. Both sudden and gradual hypo-osmotic challenge reduced cortical F-actin distribution and caused chromatin decondensation. CONCLUSIONS Sudden hypo-osmotic challenge increases chondrocyte mechanics by activation of RVD and interaction with the actin cytoskeleton. Moreover, the rate of hypo-osmotic challenge is shown to have a profound effect on chondrocyte morphology and biomechanics. This important phenomenon needs to be considered when studying the response of chondrocytes to pathological hypo-osmotic stress.
Collapse
|
71
|
Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues. J Biomech 2015; 48:573-577. [PMID: 25638034 DOI: 10.1016/j.jbiomech.2015.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/31/2014] [Accepted: 01/11/2015] [Indexed: 11/23/2022]
Abstract
The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix.
Collapse
|
72
|
Seyedpour SM, Pachenari M, Janmaleki M, Alizadeh M, Hosseinkhani H. Effects of an antimitotic drug on mechanical behaviours of the cytoskeleton in distinct grades of colon cancer cells. J Biomech 2014; 48:1172-8. [PMID: 25678199 DOI: 10.1016/j.jbiomech.2014.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022]
Abstract
Biomechanical behaviours of cells change during cancer progression due to alterations in the main cytoskeletal proteins. Microtubules play a vital role in mitosis and in supporting the integrity of the cell due to their ability to withstand high compressive loads. Accordingly, microtubule-targeting agents (MTAs) have become one of the most promising classes of drugs in cancer therapy. This study evaluated changes in visco-elastic parameters induced by an appropriate concentration of an antimitotic drug in two different grades of colon cancer cells. Actin microfilaments and microtubules contents in the cells were evaluated by Western blot analysis and fluorescence intensity calculation. Micropipette aspiration experiments showed that the MTA had distinct mechanical effects on different cell lines. The more aggressive the cells, the greater the reduction in elasticity and viscosity. Invasive cells had a higher initial instantaneous Young's modulus than primary cells, but this reduced to approximately one half of the values for primary cells after 48 h of drug treatment. A considerable association was seen between the changes in mechanical properties and the microtubule to F-actin microfilament content ratio, which decreased with MTA treatment.
Collapse
Affiliation(s)
- S M Seyedpour
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Pachenari
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Janmaleki
- Medical Nanotechnology and Tissue Engineering Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - M Alizadeh
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - H Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
73
|
Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A 2014; 111:E5114-22. [PMID: 25385580 DOI: 10.1073/pnas.1414298111] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca(2+) signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca(2+) transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains.
Collapse
|
74
|
Maloney JM, Van Vliet KJ. Chemoenvironmental modulators of fluidity in the suspended biological cell. SOFT MATTER 2014; 10:8031-8042. [PMID: 25160132 DOI: 10.1039/c4sm00743c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biological cells can be characterized as "soft matter" with mechanical characteristics potentially modulated by external cues such as pharmaceutical dosage or fever temperature. Further, quantifying the effects of chemical and physical stimuli on a cell's mechanical response informs models of living cells as complex materials. Here, we investigate the mechanical behavior of single biological cells in terms of fluidity, or mechanical hysteresivity normalized to the extremes of an elastic solid or a viscous liquid. This parameter, which complements stiffness when describing whole-cell viscoelastic response, can be determined for a suspended cell within subsecond times. Questions remain, however, about the origin of fluidity as a conserved parameter across timescales, the physical interpretation of its magnitude, and its potential use for high-throughput sorting and separation of interesting cells by mechanical means. Therefore, we exposed suspended CH27 lymphoma cells to various chemoenvironmental conditions--temperature, pharmacological agents, pH, and osmolarity--and measured cell fluidity with a non-contact technique to extend familiarity with suspended-cell mechanics in the context of both soft-matter physics and mechanical flow cytometry development. The actin-cytoskeleton-disassembling drug latrunculin exacted a large effect on mechanical behavior, amenable to dose-dependence analysis of coupled changes in fluidity and stiffness. Fluidity was minimally affected by pH changes from 6.5 to 8.5, but strongly modulated by osmotic challenge to the cell, where the range spanned halfway from solid to liquid behavior. Together, these results support the interpretation of fluidity as a reciprocal friction within the actin cytoskeleton, with implications both for cytoskeletal models and for expectations when separating interesting cell subpopulations by mechanical means in the suspended state.
Collapse
Affiliation(s)
- John M Maloney
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | |
Collapse
|
75
|
Huang X, He J, Liu M, Zhou C. The influence of aminophylline on the nanostructure and nanomechanics of T lymphocytes: an AFM study. NANOSCALE RESEARCH LETTERS 2014; 9:518. [PMID: 25258618 PMCID: PMC4174535 DOI: 10.1186/1556-276x-9-518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
Although much progress has been made in the illustration of the mechanism of aminophylline (AM) treating asthma, there is no data about its effect on the nanostructure and nanomechanics of T lymphocytes. Here, we presented atomic force spectroscopy (AFM)-based investigations at the nanoscale level to address the above fundamental biophysical questions. As increasing AM treatment time, T lymphocytes' volume nearly double increased and then decreased. The changes of nanostructural features of the cell membrane, i.e., mean height of particles, root-mean-square roughness (Rq), crack and fragment appearance, increased with AM treatment time. T lymphocytes were completely destroyed with 96-h treatment, and they existed in the form of small fragments. Analysis of force-distance curves showed that the adhesion force of cell surface decreased significantly with the increase of AM treatment time, while the cell stiffness increased firstly and then decreased. These changes were closely correlated to the characteristics and process of cell oncosis. In total, these quantitative and qualitative changes of T lymphocytes' structure and nanomechanical properties suggested that AM could induce T lymphocyte oncosis to exert anti-inflammatory effects for treating asthma. These findings provide new insights into the T lymphocyte oncosis and the anti-inflammatory mechanism and immune regulation actions of AM.
Collapse
Affiliation(s)
- Xun Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510630, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510630, China
| | - Jiexiang He
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510630, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510630, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510630, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510630, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510630, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510630, China
| |
Collapse
|
76
|
Nguyen TD, Gu Y. Determination of Strain-Rate-Dependent Mechanical Behavior of Living and Fixed Osteocytes and Chondrocytes Using Atomic Force Microscopy and Inverse Finite Element Analysis. J Biomech Eng 2014; 136:101004. [DOI: 10.1115/1.4028098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 07/30/2014] [Indexed: 11/08/2022]
Abstract
The aim of this paper is to determine the strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes, in vitro. First, atomic force microscopy (AFM) was used to obtain the force–indentation curves of these single cells at four different strain-rates. These results were then employed in inverse finite element analysis (FEA) using modified standard neo-Hookean solid (MSnHS) idealization of these cells to determine their mechanical properties. In addition, a FEA model with a newly developed spring element was employed to accurately simulate AFM evaluation in this study. We report that both cytoskeleton (CSK) and intracellular fluid govern the strain-rate-dependent mechanical property of living cells whereas intracellular fluid plays a predominant role on fixed cells' behavior. In addition, through the comparisons, it can be concluded that osteocytes are stiffer than chondrocytes at all strain-rates tested indicating that the cells could be the biomarker of their tissue origin. Finally, we report that MSnHS is able to capture the strain-rate-dependent mechanical behavior of osteocyte and chondrocyte for both living and fixed cells. Therefore, we concluded that the MSnHS is a good model for exploration of mechanical deformation responses of single osteocytes and chondrocytes. This study could open a new avenue for analysis of mechanical behavior of osteocytes and chondrocytes as well as other similar types of cells.
Collapse
Affiliation(s)
- Trung Dung Nguyen
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - YuanTong Gu
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia e-mail:
| |
Collapse
|
77
|
Huttu M, Turunen S, Sokolinski V, Tiitu V, Lammi M, Korhonen RK. Effects of medium and temperature on cellular responses in the superficial zone of hypo-osmotically challenged articular cartilage. J Funct Biomater 2014; 3:544-55. [PMID: 23807905 PMCID: PMC3691548 DOI: 10.3390/jfb3030544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osmotic loading of articular cartilage has been used to study cell-tissue interactions and mechanisms in chondrocyte volume regulation in situ. Since cell volume changes are likely to affect cell’s mechanotransduction, it is important to understand how environmental factors, such as composition of the immersion medium and temperature affect cell volume changes in situ in osmotically challenged articular cartilage. In this study, chondrocytes were imaged in situ with a confocal laser scanning microscope (CLSM) through cartilage surface before and 3 min and 120 min after a hypo-osmotic challenge. Samples were measured either in phosphate buffered saline (PBS, without glucose and Ca2+) or in Dulbecco’s modified Eagle’s medium (DMEM, with glucose and Ca2+), and at 21 °C or at 37 °C. In all groups, cell volumes increased shortly after the hypotonic challenge and then recovered back to the original volumes. At both observation time points, cell volume changes as a result of the osmotic challenge were similar in PBS and DMEM in both temperatures. Our results indicate that the initial chondrocyte swelling and volume recovery as a result of the hypo-osmotic challenge of cartilage are not dependent on commonly used immersion media or temperature.
Collapse
Affiliation(s)
- Mari Huttu
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Siru Turunen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Viktoria Sokolinski
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Virpi Tiitu
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland;
- SIB-Labs, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Mikko Lammi
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland;
- Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
- Author to whom correspondence should be addressed; ; Tel.: +358-40-355-3027; Fax: +358-17-162-131
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| |
Collapse
|
78
|
Madden RMJ, Han SK, Herzog W. The effect of compressive loading magnitude on in situ chondrocyte calcium signaling. Biomech Model Mechanobiol 2014; 14:135-42. [PMID: 24853775 PMCID: PMC4282695 DOI: 10.1007/s10237-014-0594-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/06/2014] [Indexed: 12/19/2022]
Abstract
Chondrocyte metabolism is stimulated by deformation and is associated with structural changes in the cartilage extracellular matrix (ECM), suggesting that these cells are involved in maintaining tissue health and integrity. Calcium signaling is an initial step in chondrocyte mechanotransduction that has been linked to many cellular processes. Previous studies using isolated chondrocytes proposed loading magnitude as an important factor regulating this response. However, calcium signaling in the intact cartilage differs compared to isolated cells. The purpose of this study was to investigate the effect of loading magnitude on chondrocyte calcium signaling in intact cartilage. We hypothesized that the percentage of cells exhibiting at least one calcium signal increases with increasing load. Fully intact rabbit femoral condyle and patellar bone/cartilage samples were incubated in calcium-sensitive dyes and imaged continuously under compressive loads of 10-40 % strain. Calcium signaling was primarily associated with the dynamic loading phase and greatly increased beyond a threshold deformation of about 10 % nominal tissue strain. There was a trend toward more cells exhibiting calcium signaling as loading magnitude increased (p = 0.133). These results provide novel information toward identifying mechanisms underlying calcium-dependent signaling pathways related to cartilage homeostasis and possibly the onset and progression of osteoarthritis.
Collapse
Affiliation(s)
- Ryan M J Madden
- Human Performance Laboratory, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada,
| | | | | |
Collapse
|
79
|
Nava MM, Raimondi MT, Pietrabissa R. Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells. Biomech Model Mechanobiol 2014; 13:929-43. [DOI: 10.1007/s10237-014-0558-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
|
80
|
Moo E, Amrein M, Epstein M, Duvall M, Abu Osman N, Pingguan-Murphy B, Herzog W. The properties of chondrocyte membrane reservoirs and their role in impact-induced cell death. Biophys J 2013; 105:1590-600. [PMID: 24094400 PMCID: PMC3822719 DOI: 10.1016/j.bpj.2013.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/12/2013] [Accepted: 08/26/2013] [Indexed: 02/01/2023] Open
Abstract
Impact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3-4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3-4%. However, experimental support for this proposal is lacking. The purpose of this study was to measure the accessible membrane reservoir size for different membrane strain rates using membrane tethering techniques with atomic force microscopy. We conducted atomic force spectroscopy on isolated chondrocytes (n = 87). A micron-sized cantilever was used to extract membrane tethers from cell surfaces at constant pulling rates. Membrane tethers could be identified as force plateaus in the resulting force-displacement curves. Six pulling rates were tested (1, 5, 10, 20, 40, and 80 μm/s). The size of the membrane reservoir, represented by the membrane tether surface areas, decreased exponentially with increasing pulling rates. The current results support our theoretical findings that chondrocytes exposed to impact loading die because of membrane ruptures caused by high tensile membrane strain rates.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Alberta, Canada
| | - Matthias Amrein
- Departments of Cell Biology and Anatomy and Pathology and Laboratory Medicine, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Marcelo Epstein
- Department of Mechanical and Manufacturing Engineering, The University of Calgary, Calgary, Alberta, Canada
| | - Mike Duvall
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Alberta, Canada
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Alberta, Canada
- Department of Mechanical and Manufacturing Engineering, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
81
|
Chen C, Tambe DT, Deng L, Yang L. Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol Cell Physiol 2013; 305:C1202-8. [PMID: 24067919 DOI: 10.1152/ajpcell.00242.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To withstand physiological loading over a lifetime, human synovial joints are covered and protected by articular cartilage, a layer of low-friction, load-bearing tissue. The unique mechanical function of articular cartilage largely depends on the composition and structural integrity of the cartilage matrix. The matrix is produced by highly specialized resident cells called chondrocytes. Under physiological loading, chondrocytes maintain the balance between degradation and synthesis of matrix macromolecules. Under excessive loading or injury, however, degradation exceeds synthesis, causing joint degeneration and, eventually, osteoarthritis (OA). Hence, the mechanoresponses of chondrocytes play an important role in the development of OA. Despite its clear importance, the mechanobiology of articular chondrocytes is not well understood. To summarize our current understanding, here we review studies of the effect of mechanical forces on mechanical and biological properties of articular chondrocytes. First, we present the viscoelastic properties of the cell nucleus, chondrocyte, pericellular matrix, and chondron. Then we discuss how these properties change in OA. Finally, we discuss the responses of normal and osteoarthritic chondrocytes to a variety of mechanical stimuli. Studies reviewed here may provide novel insights into the pathogenesis of OA and may help in development of effective biophysical treatment.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | |
Collapse
|
82
|
Abstract
Tissue engineered cartilage constructs have potential clinical applications in human healthcare. Their effective utilization is, however, hampered by the lack of an optimal cryopreservation procedure that ensures their availability as and when required at the patient’s bedside. Cryopreservation-induced stress represents a major barrier towards the cryopreservation of such tissue constructs, and they remain a scientific challenge despite the significant progress in the long-term storage and banking of isolated chondrocytes and thin cartilage tissue slices. These stresses are caused by intra- and extracellular ice crystallization, cryoprotectant (CPA) toxicity, suboptimal rates of cooling and warming, osmotic imbalance, and altered intracellular pH that might cause cellular death and/or a disruption of extracellular matrix (ECM). This paper reviews the cryopreservation-induced stresses on tissue engineered cartilages and discusses how they influence the integrity of the tissue during its long-term preservation. We have also reported how various antioxidants, vitamins, and plant extracts have been used to inhibit and overcome the stress during cryopreservation and provide promising results.
Based on the reviewed information, the paper has also proposed some novel ways which might help in increasing the postthawing cell viability of cryopreserved cartilage.
Collapse
|
83
|
Irianto J, Swift J, Martins RP, McPhail GD, Knight MM, Discher DE, Lee DA. Osmotic challenge drives rapid and reversible chromatin condensation in chondrocytes. Biophys J 2013; 104:759-69. [PMID: 23442954 DOI: 10.1016/j.bpj.2013.01.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/20/2012] [Accepted: 01/07/2013] [Indexed: 02/02/2023] Open
Abstract
Changes in extracellular osmolality have been shown to alter gene expression patterns and metabolic activity of various cell types, including chondrocytes. However, mechanisms by which physiological or pathological changes in osmolality impact chondrocyte function remain unclear. Here we use quantitative image analysis, electron microscopy, and a DNase I assay to show that hyperosmotic conditions (>400 mOsm/kg) induce chromatin condensation, while hypoosmotic conditions (100 mOsm/kg) cause decondensation. Large density changes (p < 0.001) occur over a very narrow range of physiological osmolalities, which suggests that chondrocytes likely experience chromatin condensation and decondensation during a daily loading cycle. The effect of changes in osmolality on nuclear morphology (p < 0.01) and chromatin condensation (p < 0.001) also differed between chondrocytes in monolayer culture and three-dimensional agarose, suggesting a role for cell adhesion. The relationship between condensation and osmolality was accurately modeled by a polymer gel model which, along with the rapid nature of the chromatin condensation (<20 s), reveals the basic physicochemical nature of the process. Alterations in chromatin structure are expected to influence gene expression and thereby regulate chondrocyte activity in response to osmotic changes.
Collapse
Affiliation(s)
- Jerome Irianto
- Institute of Bioengineering, School of Engineering and Material Science, Queen Mary, University of London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
84
|
Musumeci G, Leonardi R, Carnazza ML, Cardile V, Pichler K, Weinberg AM, Loreto C. Aquaporin 1 (AQP1) expression in experimentally induced osteoarthritic knee menisci: an in vivo and in vitro study. Tissue Cell 2013; 45:145-152. [PMID: 23164158 DOI: 10.1016/j.tice.2012.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 01/01/2023]
Abstract
Osteoarthritis (OA) of the knee is a major problem in our society. The development of new treatment options for OA is limited, because the pathophysiological mechanisms are not clearly understood, especially on the molecular level. Aquaporin 1 (AQP1) is a specific protein channels for water transport; it is expressed in articular chondrocytes, human synovitis, in chondrocytes of patients with rheumatoid arthritis or OA and in chondrocyte-like cells of human intervertebral disc. The aim of this study was to investigate the expression of AQP1, through immunohistochemistry, immunocytochemistry and Western blot, in experimentally induced OA knee menisci. AQP1 was studied in vivo in knee OA menisci from 36 rats that underwent medial or lateral meniscectomy, and in vitro on fibrochondrocytes derived from knee OA menisci rats. OA in rats was experimentally induced and tested by histomorphometric analysis. Histological results demonstrated structural alterations in OA menisci accompanied by a very strong AQP1 immunohistochemical and immunocytochemical staining. The Western blot analysis confirmed a strong expression of AQP1 in OA fibrochondrocytes cells. The results of the present research suggest that an activation of AQP1, induced by the OA process, may represent an endogenous mechanism, which can be used to control the tissue degeneration within OA articular joints.
Collapse
Affiliation(s)
- G Musumeci
- Department of Bio-Medical Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
85
|
Superficial collagen fibril modulus and pericellular fixed charge density modulate chondrocyte volumetric behaviour in early osteoarthritis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:164146. [PMID: 23634175 PMCID: PMC3619633 DOI: 10.1155/2013/164146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/07/2013] [Accepted: 01/22/2013] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior.
Collapse
|
86
|
Immunolocalization of water channel aquaporins in human knee articular cartilage with intact and early degenerative regions. Med Mol Morphol 2013; 46:104-8. [DOI: 10.1007/s00795-013-0014-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/30/2012] [Indexed: 12/14/2022]
|
87
|
Ragoonanan V, Less R, Aksan A. Response of the cell membrane-cytoskeleton complex to osmotic and freeze/thaw stresses. Part 2: The link between the state of the membrane-cytoskeleton complex and the cellular damage. Cryobiology 2012; 66:96-104. [PMID: 23261886 DOI: 10.1016/j.cryobiol.2012.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/04/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022]
Abstract
In an earlier paper [35], we examined the mutual interaction between the actin cytoskeleton and the cell membrane and explored the role this interaction plays during freeze/thaw. In this follow-up paper, we investigate the physical and chemical stresses induced by freeze/thaw and explore the different mechanisms of damage caused by these stresses. Our results showed that changes in cell volume during freeze/thaw and the unfrozen water content in the solution alter the cytoskeleton stiffness, and the available membrane material. Combined with unfavorable ice-membrane interactions and increasing membrane stiffness, increased de-structuring of the membrane (such as bleb and microvilli formation) synergistically act on the membrane-cytoskeleton system generating irreversible damage.
Collapse
Affiliation(s)
- Vishard Ragoonanan
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
88
|
Pietuch A, Brückner BR, Janshoff A. Membrane tension homeostasis of epithelial cells through surface area regulation in response to osmotic stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012. [PMID: 23178740 DOI: 10.1016/j.bbamcr.2012.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Osmotic stress poses one of the most fundamental challenges to living cells. Particularly, the largely inextensible plasma membrane of eukaryotic cells easily ruptures under in-plane tension calling for sophisticated strategies to readily respond to osmotic stress. We describe how epithelial cells react and adapt mechanically to the exposure to hypotonic and hypertonic solutions in the context of a confluent monolayer. Site-specific indentation experiments in conjunction with tether pulling on individual cells have been carried out with an atomic force microscope to reveal spatio-temporal changes in membrane tension and surface area. We found that cells compensate for an increase in lateral tension due to hypoosmotic stress by sacrificing excess of membrane area stored in protrusions and invaginations such as microvilli and caveolae. At mild hypotonic conditions lateral tension increases partly compensated by surface are regulation, i.e. the cell sacrifices some of its membrane reservoirs. A loss of membrane-actin contacts occurs upon exposure to stronger hypotonic solutions giving rise to a drop in lateral tension. Tension release recovers on longer time scales by an increasing endocytosis, which efficiently removes excess membrane from the apical side to restore the initial pre-stress. Hypertonic solutions lead to shrinkage of cells and collapse of the apical membrane onto the cortex. Exposure to distilled water leads to stiffening of cells due to removal of excess surface area and tension increase due to elevated osmotic pressure across the plasma membrane.
Collapse
Affiliation(s)
- Anna Pietuch
- Institute of Physical Chemistry, Georg-August-University of Goettingen, Tammannstrasse 6, 37077 Goettingen, Germany.
| | | | | |
Collapse
|
89
|
Loreto C, Lo Castro E, Musumeci G, Loreto F, Rapisarda G, Rezzani R, Castorina S, Leonardi R, Rusu MC. Aquaporin 1 expression in human temporomandibular disc. Acta Histochem 2012; 114:744-8. [PMID: 22269467 DOI: 10.1016/j.acthis.2012.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/21/2011] [Accepted: 01/04/2012] [Indexed: 01/28/2023]
Abstract
Aquaporins (AQPs) are a family of hydrophobic membrane channel proteins. The expression of several AQP isoforms has been investigated in different human tissues, including the orofacial region. However, information on the role and localization of AQP1 in joints is limited, and no data are available on aquaporins in the normal temporomandibular joint (TMJ) disc. Sixteen human TMJ discs without degenerative changes were taken from fresh cadavers to investigate the presence and distribution of AQP1 by immunohistochemistry. The aim of the study was to gain additional insights into the biomolecular composition of aquaporins and their role in homeostasis of the TMJ. Porcine TMJ discs were also studied by Western blotting for comparison. Scattered AQP1 immunoexpression was detected in human disc cells, documenting its constitutive expression, but differences amongst the three disc regions were not significant. AQP1 expression was demonstrated in porcine TMJ disc by Western blotting. Our findings suggest that AQP1 is normally expressed in the TMJ disc and confirm a role for it in the maintenance of TMJ homeostasis. Further studies are needed to elucidate expression patterns of aquaporins in diseased TMJ discs.
Collapse
Affiliation(s)
- Carla Loreto
- Anatomy Section, Department of Biomedical Sciences, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
MacQueen LA, Thibault M, Buschmann MD, Wertheimer MR. Electromechanical deformation of mammalian cells in suspension depends on their cortical actin thicknesses. J Biomech 2012; 45:2797-803. [DOI: 10.1016/j.jbiomech.2012.08.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/07/2023]
|
91
|
Pravincumar P, Bader DL, Knight MM. Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure. PLoS One 2012; 7:e43938. [PMID: 22984454 PMCID: PMC3439462 DOI: 10.1371/journal.pone.0043938] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/27/2012] [Indexed: 12/11/2022] Open
Abstract
Background Living cells are subjected to external and internal mechanical stresses. The effects of these stresses on the deformation and subsequent biological response of the cells remains unclear. This study tested the hypothesis that the rate at which pressure (or stress) is applied influence the viscoelastic properties of the cell associated with differences in the dynamics of the actin cytoskeleton. Principal Finding Micropipette aspiration was used to determine the instantaneous and equilibrium moduli and the viscosity of isolated chondrocytes based on the standard linear solid (SLS) model and a variation of this incorporating Boltzmann superposition. Cells were visualised for 180 seconds following aspiration to 7 cmH2O at 0.35, 0.70 and 5.48 cmH2O/sec. Cell recovery was then examined for a further 180 seconds once the pressure had been removed. Reducing the rate of application of pressure reduced the levels of cell deformation and recovery associated with a significant increase in modulus and viscosity. Using GFP transfection and confocal microscopy, we show that chondrocyte deformation involves distortion, disassembly and subsequent reassembly of the cortical actin cytoskeleton. At faster pressure rates, cell deformation produced an increase in cell volume associated with membrane bleb formation. GFP-actin transfection inhibited the pressure rate dependent variation in cell mechanics indicating that this behaviour is regulated by GFP-sensitive actin dynamics. Conclusion We suggest that slower rates of aspiration pressure enable greater levels of cortical actin distortion. This is partially inhibited by GFP or faster aspiration rates leading to membrane bleb formation and an increase in cell volume. Thus the rate of application of pressure regulates the viscoelastic mechanical properties of living cells through pressure rate sensitive differences in actin dynamics. Therefore cells appear softer when aspirated at a faster rate in contrast to what is expected of a normal viscoelastic material.
Collapse
Affiliation(s)
- Priyanka Pravincumar
- Institute of Bioengineering, School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
| | - Dan L. Bader
- Institute of Bioengineering, School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
| | - Martin M. Knight
- Institute of Bioengineering, School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
92
|
Wang K, Sun D. Influence of semiflexible structural features of actin cytoskeleton on cell stiffness based on actin microstructural modeling. J Biomech 2012; 45:1900-8. [PMID: 22695639 DOI: 10.1016/j.jbiomech.2012.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/09/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
Abstract
A new actin cytoskeleton microstructural model based on the semiflexible polymer nature of the actin filament is proposed. The relationship between the stretching force and the mechanical properties of cells was examined. Experiments on deforming hematopoietic cells with distinct primitiveness from normal and leukemic sources were conducted via optical tweezer manipulation at single-cell level. The modeling results were demonstrated to be in good agreement with the experimental data. We characterized how the structural properties of the actin cytoskeleton, such as prestress, density of cross-links, and actin concentration, affect the mechanical behavior of cells based on the proposed model. Increasing prestress, actin concentration, and density of cross-links reduced cell deformation, and the cell also exhibited strain stiffening behavior with an increase in the stretching force. Compared with existing models, the proposed model exhibits a distinct feature in probing the influence of semiflexible polymer nature of the actin filament on cell mechanical behavior.
Collapse
Affiliation(s)
- Kaiqun Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
| | | |
Collapse
|
93
|
Martins RP, Finan JD, Guilak F, Lee DA. Mechanical regulation of nuclear structure and function. Annu Rev Biomed Eng 2012; 14:431-55. [PMID: 22655599 DOI: 10.1146/annurev-bioeng-071910-124638] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate.
Collapse
Affiliation(s)
- Rui P Martins
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | | | | | | |
Collapse
|
94
|
Loreto C, Galanti C, Almeida LE, Leonardi R, Pannone G, Musumeci G, Carnazza ML, Caltabiano R. Expression and localization of aquaporin-1 in temporomandibular joint disc with internal derangement. J Oral Pathol Med 2012; 41:642-7. [DOI: 10.1111/j.1600-0714.2012.01156.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
95
|
Qusous A, Parker E, Geewan C, Kapasi A, Getting SJ, Hucklebridge F, Keshavarz T, Kerrigan MJP. Novel methods for the quantification of changes in actin organization in chondrocytes using fluorescent imaging and linear profiling. Microsc Res Tech 2012; 75:991-9. [PMID: 22514026 DOI: 10.1002/jemt.22055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 03/18/2012] [Indexed: 11/11/2022]
Abstract
We present three novel reproducible methodologies for the quantification of changes in actin organization from microscope images. Striation and integrative analysis were devised for the investigation of trans-cellular filaments and F-actin localization, respectively, in response to physiological or mechanical actin-modulatory conditions. Additionally, the Parker-Qusous (PQ) formula was developed as a measure of total quantity of F-actin, independent of cell volume changes, whereby fluorescence intensity was divided by the cube root of cell volume, squared. Values obtained were quantified in Mauricean Units (Mu; pixel/μm(3)). Upon isolation, there was a 49% decrease in total F-actin fluorescence from 1.91 ± 0.16 pixel/μm(3) (Mu) to 0.95 ± 0.55 Mu, whereas upon culture, an apparent increase in total fluorescence was deemed insignificant due to an increase in average cell volume, with a rise, however, in striation units (StU) from 1 ± 1 to 5 ± 1 StU/cell, and a decrease in percentage cortical fluorescence to 30.45% ± 1.52% (P = 7.8 × 10(-5)). Freshly isolated chondrocytes exhibited a decrease in total F-actin fluorescence to 0.61 ± 0.05 Mu and 0.32 ± 0.02 Mu, 10 min posthypertonic and hypotonic challenges, respectively. Regulatory volume decrease was inhibited in the presence of REV5901 with maintenance of actin levels at 1.15 Mu. Following mechanical impact in situ, there was a reduction in total F-actin fluorescence to 0.95 ± 0.08 Mu and 0.74 ± 0.06 Mu under isotonic and hypotonic conditions, respectively, but not under hypertonic conditions. We report simple methodologies for quantification of changes in actin organization, which will further our understanding of the role of actin in various cellular stress responses. These techniques can be applied to better quantify changes in localization of various proteins using fluorescent labeling.
Collapse
Affiliation(s)
- Ala Qusous
- School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Wilson MJ, Villar RN. Hip replacement in the athlete: is there a role? Knee Surg Sports Traumatol Arthrosc 2011; 19:1524-30. [PMID: 21484390 DOI: 10.1007/s00167-011-1492-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/21/2011] [Indexed: 12/12/2022]
Abstract
Sport and total hip arthroplasty (THA) have been regarded by many as being mutually exclusive. The primary indication for hip arthroplasty has always been pain. With advances in the technology surrounding hip replacement surgery and increasing patient expectations of what THA can offer, there is a growing demand for hip replacement with the aim of returning to sporting activity. The aim of this review article is to report the advances in hip replacement surgery that aim to make the procedure more suitable for the sporting individual and to summarise the literature on the subject of returning to sports after THA.
Collapse
Affiliation(s)
- M J Wilson
- Royal Devon and Exeter Hospital, Barrack Road, Exeter, Devon EX2 5DW, UK.
| | | |
Collapse
|
97
|
Vernerey FJ, Farsad M. An Eulerian/XFEM formulation for the large deformation of cortical cell membrane. Comput Methods Biomech Biomed Engin 2011; 14:433-45. [PMID: 21516528 DOI: 10.1080/10255842.2010.531273] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Most animal cells are surrounded by a thin layer of actin meshwork below their membrane, commonly known as the actin cortex (or cortical membrane). An increasing number of studies have highlighted the role of this structure in many cell functions including contraction and locomotion, but modelling has been limited by the fact that the membrane thickness (about 1 μm) is usually much smaller than the typical size of a cell (10-100 μm). To overcome theoretical and numerical issues resulting from this observation, we introduce in this paper a continuum formulation, based on surface elasticity, that views the cortex as an infinitely thin membrane that can resists tangential deformation. To accurately model the large deformations of cells, we introduced equilibrium equations and constitutive relations within the Eulerian viewpoint such that all quantities (stress, rate of deformation) lie in the current configuration. A solution procedure is then introduced based on a coupled extended finite element approach that enables a continuum solution to the boundary value problem in which discontinuities in both strain and displacement (due to cortical elasticity) are easily handled. We validate the approach by studying the effect of cortical elasticity on the deformation of a cell adhering on a stiff substrate and undergoing internal contraction. Results show very good prediction of the proposed method when compared with experimental observations and analytical solutions for simple cases. In particular, the model can be used to study how cell properties such as stiffness and contraction of both cytoskeleton and cortical membrane lead to variations in cell's surface curvature. These numerical results show that the proposed method can be used to gain critical insights into how the cortical membrane affects cell deformation and how it may be used as a means to determine a cell's mechanical properties by measuring curvatures of its membrane.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, CO, USA.
| | | |
Collapse
|
98
|
Mechanics of chondrocyte hypertrophy. Biomech Model Mechanobiol 2011; 11:655-64. [DOI: 10.1007/s10237-011-0340-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/29/2011] [Indexed: 12/20/2022]
|
99
|
Cheng NC, Estes BT, Young TH, Guilak F. Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix. Regen Med 2011; 6:81-93. [PMID: 21175289 DOI: 10.2217/rme.10.87] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To investigate the cell growth, matrix accumulation and mechanical properties of neocartilage formed by human or porcine articular chondrocytes on a porous, porcine cartilage-derived matrix (CDM) for use in cartilage tissue engineering. MATERIALS & METHODS We examined the physical properties, cell infiltration and matrix accumulation in different formulations of CDM and selected a CDM made of homogenized cartilage slurry as an appropriate scaffold for long-term culture of human and porcine articular chondrocytes. RESULTS The CDM scaffold supported growth and proliferation of both human and porcine chondrocytes. Histology and immunohistochemistry showed abundant cartilage-specific macromolecule deposition at day 28. Human chondrocytes migrated throughout the CDM, showing a relatively homogeneous distribution of new tissue accumulation, whereas porcine chondrocytes tended to form a proteoglycan-rich layer primarily on the surfaces of the scaffold. Human chondrocyte-seeded scaffolds had a significantly lower aggregate modulus and hydraulic permeability at day 28. CONCLUSIONS These data show that a scaffold derived from native porcine articular cartilage can support neocartilage formation in the absence of exogenous growth factors. The overall characteristics and properties of the constructs depend on factors such as the concentration of CDM used, the porosity of the scaffold, and the species of chondrocytes.
Collapse
Affiliation(s)
- Nai-Chen Cheng
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
100
|
McCarthy-Keith DM, Malik M, Britten J, Segars J, Catherino WH. Gonadotropin-releasing hormone agonist increases expression of osmotic response genes in leiomyoma cells. Fertil Steril 2011; 95:2383-7. [PMID: 21496801 DOI: 10.1016/j.fertnstert.2011.03.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To characterize hyperosmolarity-responsive genes in leiomyoma cells and determine whether gonadotropin-releasing hormone (GnRH) agonist treatment altered their expression. DESIGN Laboratory study. SETTING University hospital. PATIENT(S) None. INTERVENTION(S) Cell culture under hypertonic conditions and with GnRH agonist treatment, RNA isolation, and real-time reverse-transcriptase polymerase chain reaction (RT-PCR). MAIN OUTCOME MEASURE(S) Expression of nuclear factor of activated T cells 5 (NFAT5), aldose reductase (AR), and sodium myo-inositol transporter 1 (SMIT) messenger RNA (mRNA) in immortalized leiomyoma and patient-matched myometrial cells. RESULT(S) Leiomyoma cells had increased basal expression of NFAT5 mRNA (1.7±0.08-fold) compared with myometrial cells. The NFAT5 increased further in leiomyoma cells cultured under hyperosmolar conditions (3.0±0.46-fold at 50 mM NaCl and 3.3±0.48-fold at 100 mM NaCl). The NFAT5-regulated mRNA transcripts for AR and SMIT were increased in untreated leiomyoma cells compared with myometrial cells and further increased in leiomyoma cells exposed to osmotic stress. The NFAT5 transcripts were decreased with low-dose GnRH agonist treatment but increased with supraphysiologic doses. CONCLUSION(S) Expression of hyperosmolarity genes was increased in leiomyoma cells relative to myometrial cells. Pharmacologic concentrations of GnRH agonist decreased NFAT5 expression, suggesting that water flows out of leiomyoma cells at pharmacologic doses.
Collapse
Affiliation(s)
- Desireé M McCarthy-Keith
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20814-4799, USA
| | | | | | | | | |
Collapse
|