51
|
Lo WC, Liao LJ, Wang CT, Young YH, Chang YL, Cheng PW. Dose-dependent effects of d-methionine for rescuing noise-induced permanent threshold shift in guinea-pigs. Neuroscience 2013; 254:222-9. [DOI: 10.1016/j.neuroscience.2013.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/01/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022]
|
52
|
Ahn JH, Shin JE, Chung BY, Lee HM, Kang HH, Chung JW, Pak JH. Involvement of retinoic acid-induced peroxiredoxin 6 expression in recovery of noise-induced temporary hearing threshold shifts. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:463-471. [PMID: 23792233 DOI: 10.1016/j.etap.2013.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 06/02/2023]
Abstract
All-trans retinoic acid (ATRA) is reported to reduce hair cell loss and hearing deterioration caused by noise-induced hearing loss (NIHL). The present study investigates the involvement of peroxiredoxin 6 (Prdx 6) in ATRA-mediated protection of temporary threshold shift of hearing. Mice fed with ATRA before or after exposure to white noise showed a faster recovery than untreated controls within 1 week, with a concomitant increase of cochlear Prdx 6 expression. Treatment of mouse auditory cells with ATRA induced Prdx 6 expression. A putative retinoic acid (RA)-response element (RARE) was identified in a murine Prdx 6 promoter region. Prdx 6 promoter activities were elevated in wild-type reporter plasmid-transfected cells, whereas no significant change in activity was in those with RARE-disrupted mutant reporter. RA receptor α (RARα) functions as a transactivator of Prdx 6 gene expression. These findings suggest that ATRA-induced Prdx 6 expression may be associated with rapid recovery from temporary NIHL.
Collapse
MESH Headings
- Animals
- Auditory Fatigue/drug effects
- Binding Sites
- Cell Line
- Cochlea/drug effects
- Cochlea/metabolism
- Cochlea/physiopathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Hearing/drug effects
- Hearing Loss, Noise-Induced/etiology
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/physiopathology
- Mice
- Mice, Inbred BALB C
- Mutation
- Peroxiredoxin VI/genetics
- Peroxiredoxin VI/metabolism
- Promoter Regions, Genetic
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Recovery of Function
- Response Elements
- Retinoic Acid Receptor alpha
- Signal Transduction
- Time Factors
- Transcriptional Activation
- Transfection
- Tretinoin/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Joong Ho Ahn
- Department of Otolaryngology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Jung-Eun Shin
- Department of Otolaryngology (Head and Neck Surgery), Konkuk University Hospital, Seoul 143-729, Republic of Korea
| | - Bom Yi Chung
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Hye Mi Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Hun Hee Kang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Jong Woo Chung
- Department of Otolaryngology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Republic of Korea.
| | - Jhang Ho Pak
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Republic of Korea.
| |
Collapse
|
53
|
Kang HH, Wang CH, Chen HC, Li IH, Cheng CY, Liu RS, Huang WS, Shiue CY, Ma KH. Investigating the effects of noise-induced hearing loss on serotonin transporters in rat brain using 4-[18F]-ADAM/small animal PET. Neuroimage 2013; 75:262-269. [DOI: 10.1016/j.neuroimage.2012.06.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 06/08/2012] [Accepted: 06/26/2012] [Indexed: 01/10/2023] Open
|
54
|
Bao J, Hungerford M, Luxmore R, Ding D, Qiu Z, Lei D, Yang A, Liang R, Ohlemiller KK. Prophylactic and therapeutic functions of drug combinations against noise-induced hearing loss. Hear Res 2013; 304:33-40. [PMID: 23792074 DOI: 10.1016/j.heares.2013.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 01/01/2023]
Abstract
Noise is the most common occupational and environmental hazard. Noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit, after age-related hearing loss (presbycusis). Although promising approaches have been identified for reducing NIHL, currently there are no effective medications to prevent NIHL. Development of an efficacious treatment has been hampered by the complex array of cellular and molecular pathways involved in NIHL. We turned this difficulty into an advantage by asking whether NIHL could be effectively prevented by targeting multiple signaling pathways with a combination of drugs already approved by U.S. Food and Drug Administration (FDA). We previously found that antiepileptic drugs blocking T-type calcium channels had both prophylactic and therapeutic effects for NIHL. NIHL can also be reduced by an up-regulation of glucocorticoid (GC) signaling pathways. Based on these findings, we tested a combination therapy for NIHL that included ethosuximide and zonisamide (anticonvulsants) and dexamethasone and methylprednisolone (synthetic GCs) in mice under exposure conditions typically associated with dramatic permanent threshold shifts (PTS). We first examined possible prophylactic effects for each drug when administered alone 2 h before noise, and calculated the median effective dose (ED50). We then tested for synergistic effects of two-drug combinations (anticonvulsant + GC), and identified combinations with the strongest synergy against NIHL, based on a previously established combination index (CI) metric. We repeated similar tests to determine their therapeutic effects when administered the same drugs 24 h after the noise exposure. Our study shows the feasibility of developing pharmacological intervention in multiple pathways, and discovering drug combinations with optimal synergistic effects in preventing permanent NIHL.
Collapse
Affiliation(s)
- Jianxin Bao
- Department of Otolaryngology, Center for Aging, Washington University School of Medicine, 4560 Clayton Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus. Brain Res 2013; 1499:80-108. [DOI: 10.1016/j.brainres.2013.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
|
56
|
Motalebi Kashani M, Saberi H, Hannani M. Prevention of Acoustic Trauma-Induced Hearing Loss by N-acetylcysteine Administration in Rabbits. ARCHIVES OF TRAUMA RESEARCH 2013; 1:145-50. [PMID: 24396768 PMCID: PMC3876495 DOI: 10.5812/atr.7839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/20/2022]
Abstract
Background Acoustic trauma is an injury to the hearing mechanisms in the inner ear due to excessive noise. This injury is the most prevalent cause of sensorineural hearing loss in humans, especially from occupational exposure. Previous studies have shown the essential role of free radical formation in the inner ear hearing loss caused by acoustic trauma. Objectives This study was performed to determine the effect of N-acetylcysteine (NAC) administration for reducing acute acoustic trauma in rabbits. Materials and Methods Twenty four rabbits were assigned to four groups including: control, noise plus saline, noise plus NAC administration (325 mg/kg body weight by intraperitoneal injection (IP), three days before exposure to noise and three days after noise exposure), and NAC alone. Auditory brain stem response (ABR) threshold was measured before exposure and one hour and 14 days after exposure. Results The saline plus noise group had on average a 49 decibel (dB) temporary threshold shift (TTS) and 23.9 dB permanent threshold shift (PTS) at the studied frequencies, while rabbits in the NAC administration plus noise group had a 31.5 dB TTS and 10.7 dB PTS averaged across the frequencies. Conclusions Administration of NAC can provide appropriate protection against acoustic trauma-induced hearing loss in rabbits at all studied frequencies.
Collapse
Affiliation(s)
- Masoud Motalebi Kashani
- Occupational Health Department, Health Faculty, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Hamidreza Saberi
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Mitra Hannani
- Occupational Health Department, Health Faculty, Kashan University of Medical Sciences, Kashan, IR Iran
- Corresponding author: Mitra Hannani, Occupational Health Department, Health Faculty, Kashan University of Medical Sciences, Kashan, IR Iran. Tel.: +98-3615550111, Fax: +98-3615550111, E-mail: .
| |
Collapse
|
57
|
Baker K, Staecker H. Low dose oxidative stress induces mitochondrial damage in hair cells. Anat Rec (Hoboken) 2012; 295:1868-76. [PMID: 23044977 DOI: 10.1002/ar.22594] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 11/08/2022]
Abstract
Oxidative stress has been implicated as a cause of hair cell damage after ischemia reperfusion injury, noise trauma, and ototoxic injury. Oxidative stress can induce both apoptosis or necrosis depending on the degree of exposure. To study how reactive oxygen species (ROS) interacts with hair cells, we have developed an in vitro model of oxidative stress using organ of Corti cultures exposed to physiologically relevant concentrations of hydrogen peroxide (H(2) O(2) ). Treatment of organ of Corti cultures with low concentrations of H(2) O(2) results in loss of outer hair cells in the basal turn of the explant. Higher concentrations of peroxide result in more extensive outer hair cell injury as well as loss of inner hair cells. Early outer hair cell death appears to occur though apoptosis as demonstrated by staining of activated caspase. The effect of oxidative stress on mitochondrial function is a key determinant of degree of damage. Oxidative stress results in reduction of the mitochondrial membrane potential and reduction of mitochondrial produced antioxidants. Low doses of oxidative stress induce changes in mitochondrial gene expression and induce mitochondrial DNA deletions. Recurrent oxidative stress or inhibition of mitochondrial function significantly enhanced hair cell death. This tissue culture model of oxidative hair cell injury maintains a pattern of injury similar to what is observed in vivo after oxidative injury and can be used to study the effects of ROS on hair cells over the time period of the culture.
Collapse
Affiliation(s)
- Kim Baker
- Department of Otolaryngology, Children's Mercy Medical Center, Kansas City, Missouri, USA
| | | |
Collapse
|
58
|
Xiong M, Lai H, He Q, Wang J. Astragaloside IV attenuates impulse noise-induced trauma in guinea pig. Acta Otolaryngol 2011; 131:809-16. [PMID: 21526907 DOI: 10.3109/00016489.2011.568524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
CONCLUSION These results suggest that the beneficial effect of astragaloside IV on impulse noise-induced hearing loss may be due to its ability to inhibit inducible nitric oxide synthase (iNOS) and prevent the formation of reactive nitrogen species (RNS). OBJECTIVE Astragaloside IV is the major active constituent of Astragalus membranaceus, which has been widely used for the treatment of diseases in China due to its antioxidant properties. iNOS and RNS are involved in damage induced by impulse noise trauma. The purpose of the present study was to investigate if astragaloside IV has the potential to reduce cochlear damage from impulse noise. METHODS Guinea pigs in the experimental group were administered astragaloside IV intragastrically. Auditory thresholds were assessed by sound-evoked auditory brainstem response (ABR) at click and tone bursts of 8, 16 and 32 kHz, 72 h before and after exposure to impulse noise. iNOS and nitrotyrosine were determined immunohistochemically. Hair cell damage was analyzed by scanning electron microscopy. RESULTS Astragaloside IV significantly reduced ABR deficits, reduced hair cell damage, and decreased the expression of iNOS and RNS formation.
Collapse
Affiliation(s)
- Min Xiong
- Department of Otolaryngology, General Hospital of PLA Guangzhou Command, Liu Hua Road 111, Guangzhou, China.
| | | | | | | |
Collapse
|
59
|
Op de Beeck K, Schacht J, Van Camp G. Apoptosis in acquired and genetic hearing impairment: the programmed death of the hair cell. Hear Res 2011; 281:18-27. [PMID: 21782914 DOI: 10.1016/j.heares.2011.07.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 02/07/2023]
Abstract
Apoptosis is an important physiological process. Normally, a healthy cell maintains a delicate balance between pro- and anti-apoptotic factors, allowing it to live and proliferate. It is thus not surprising that disturbance of this delicate balance may result in disease. It is a well known fact that apoptosis also contributes to several acquired forms of hearing impairment. Noise-induced hearing loss is the result of prolonged exposure to excessive noise, triggering apoptosis in terminally differentiated sensory hair cells. Moreover, hearing loss caused by the use of therapeutic drugs such as aminoglycoside antibiotics and cisplatin potentially may result in the activation of apoptosis in sensory hair cells leading to hearing loss due to the "ototoxicity" of the drugs. Finally, apoptosis is a key contributor to the development of presbycusis, age-related hearing loss. Recently, several mutations in apoptosis genes were identified as the cause of monogenic hearing impairment. These genes are TJP2, DFNA5 and MSRB3. This implies that apoptosis not only contributes to the pathology of acquired forms of hearing impairment, but also to genetic hearing impairment as well. We believe that these genes constitute a new functional class within the hearing loss field. Here, the contribution of apoptosis in the pathology of both acquired and genetic hearing impairment is reviewed.
Collapse
Affiliation(s)
- Ken Op de Beeck
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
60
|
Clifford RE, Coleman JKM, Balough BJ, Liu J, Kopke RD, Jackson RL. Low-Dose D-Methionine and N-Acetyl-L-Cysteine for Protection from Permanent Noise-Induced Hearing Loss in Chinchillas. Otolaryngol Head Neck Surg 2011; 145:999-1006. [DOI: 10.1177/0194599811414496] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective. Despite efforts at public health awareness and stringent industrial standards for hearing protection, noise-induced hearing loss (NIHL) remains a formidable public health concern. Although many antioxidants have proven to be beneficial in the laboratory for prevention of permanent NIHL, low-dose combinations of compounds with different biochemical mechanisms of action may allow long-term administration with fewer side effects and equal efficacy. The mixture of D-methionine and N-acetyl-L-cysteine administered at levels less than 10% of standard dosing has not been previously reported. Study Design. Twenty-six female adult Chinchilla laniger were placed in 4 study groups, consisting of (1) a group receiving combination 12.5 mg/kg each D-methionine and N-acetyl-L-cysteine (DMET/NAC group), (2) a group receiving 12.5 mg/kg D-methionine (DMET-only group), (3) a group receiving 12.5 mg/kg N-acetyl-L-cysteine (NAC-only group), and (4) saline controls. Setting. Laboratory. Subjects and Methods. All groups received twice-daily intraperitoneal injections 2 days prior to noise exposure, 1 hour before and after exposure on day 3, and for 2 days subsequently, totaling 10 doses of 125 mg/kg for each antioxidant over 5 days. Results. Although NAC-only animals paralleled saline control recovery during 3 weeks, the DMET-only group revealed gradual improvement with statistically significant recovery in the middle frequencies. The DMET/NAC group showed significant improvement at most frequencies compared with controls ( P < .001 and P < .05). Conclusion. Significant recovery of hearing was observed following continuous noise exposure with either DMET only or a combination of low-dose DMET/NAC, demonstrating a considerably lower dose of antioxidants required than previously reported for hearing recovery following acoustic trauma.
Collapse
Affiliation(s)
- Royce E. Clifford
- Department of Otolaryngology–Head and Neck Surgery, Naval Medical Center, San Diego, California, USA
| | - John K. M. Coleman
- Department of Otolaryngology–Head and Neck Surgery, Naval Medical Center, San Diego, California, USA
| | - Ben J. Balough
- Department of Otolaryngology–Head and Neck Surgery, Naval Medical Center, San Diego, California, USA
| | - Jianzhong Liu
- Department of Otolaryngology–Head and Neck Surgery, Naval Medical Center, San Diego, California, USA
| | - Richard D. Kopke
- Hough Ear Institute, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Departments of Physiology and Otolaryngology, Oklahoma City, Oklahoma, USA
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Ronald L. Jackson
- Department of Otolaryngology–Head and Neck Surgery, Naval Medical Center, San Diego, California, USA
| |
Collapse
|
61
|
Le Prell CG, Gagnon PM, Bennett DC, Ohlemiller KK. Nutrient-enhanced diet reduces noise-induced damage to the inner ear and hearing loss. Transl Res 2011; 158:38-53. [PMID: 21708355 PMCID: PMC3132794 DOI: 10.1016/j.trsl.2011.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 01/13/2023]
Abstract
Oxidative stress has been implicated broadly as a cause of cell death and neural degeneration in multiple disease conditions; however, the evidence for successful intervention with dietary antioxidant manipulations has been mixed. In this study, we investigated the potential for protection of cells in the inner ear using a dietary supplement with multiple antioxidant components, which were selected for their potential interactive effectiveness. Protection against permanent threshold shift (PTS) was observed in CBA/J mice maintained on a diet supplemented with a combination of β-carotene, vitamins C and E, and magnesium when compared with PTS in control mice maintained on a nutritionally complete control diet. Although hair cell survival was not enhanced, noise-induced loss of type II fibrocytes in the lateral wall was significantly reduced (P < 0.05), and there was a trend toward less noise-induced loss in strial cell density in animals maintained on the supplemented diet. Taken together, our data suggest that prenoise oral treatment with the high-nutrient diet can protect cells in the inner ear and reduce PTS in mice. The demonstration of functional and morphologic preservation of cells in the inner ear with oral administration of this antioxidant supplemented diet supports the possibility of translation to human patients and suggests an opportunity to evaluate antioxidant protection in mouse models of oxidative stress-related disease and pathology.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Box 100174, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
62
|
Le Prell CG, Dolan DF, Bennett DC, Boxer PA. Nutrient plasma levels achieved during treatment that reduces noise-induced hearing loss. Transl Res 2011; 158:54-70. [PMID: 21708356 PMCID: PMC3125531 DOI: 10.1016/j.trsl.2011.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
Hearing loss encompasses both temporary and permanent deficits. If temporary threshold shift (TTS) and permanent threshold shift (PTS) share common pathological mechanisms, then agents that reduce PTS also should reduce TTS. Several antioxidant agents have reduced PTS in rodent models; however, reductions in TTS have been inconsistent. This study first determined whether dietary antioxidants (beta-carotene and vitamins C and E) delivered in combination with magnesium (Mg) reliably increase plasma concentrations of the active agents. Then, additional manipulations tested the hypothesis that these nutrients reduce acute TTS insult in the first 24 h after loud sound as well as longer lasting changes in hearing measured up to 7 days postnoise. Saline or nutrients were administered to guinea pigs prior to and after noise exposure. Sound-evoked electrophysiological responses were measured before noise, with tests repeated 1-h postnoise, as well as 1-day, 3-days, 5-days, and 7-days postnoise. All subjects showed significant functional recovery; subjects treated with nutrients recovered more rapidly and had better hearing outcomes at early postnoise times as well as the final test time. Thus, this combination of nutrients, which produced significant increases in plasma concentrations of vitamins C and E and Mg, effectively reduced hearing loss at multiple postnoise times. These data suggest that free radical formation contributes to TTS as well as PTS insults and suggest a potential opportunity to prevent TTS in human populations.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
63
|
Schachtele SJ, Mutnal MB, Schleiss MR, Lokensgard JR. Cytomegalovirus-induced sensorineural hearing loss with persistent cochlear inflammation in neonatal mice. J Neurovirol 2011; 17:201-11. [PMID: 21416394 PMCID: PMC3098308 DOI: 10.1007/s13365-011-0024-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/25/2011] [Accepted: 03/02/2011] [Indexed: 12/20/2022]
Abstract
Congenital cytomegalovirus (CMV) infection is the leading cause of sensorineural hearing loss (SNHL) in children. During murine (M)CMV-induced encephalitis, the immune response is important for both the control of viral dissemination and the clearance of virus from the brain. While the importance of CMV-induced SNHL has been described, the mechanisms surrounding its pathogenesis and the role of inflammatory responses remain unclear. This study presents a neonatal mouse model of profound SNHL in which MCMV preferentially infected both cochlear perilymphatic epithelial cells and spiral ganglion neurons. Interestingly, MCMV infection induced cochlear hair cell death by 21 days post-infection, despite a clear lack of direct infection of hair cells and the complete clearance of the virus from the cochlea by 14 dpi. Flow cytometric, immunohistochemical, and quantitative PCR analysis of MCMV-infected cochlea revealed a robust and chronic inflammatory response, including a prolonged increase in reactive oxygen species production by infiltrating macrophages. These data support a pivotal role for inflammation during MCMV-induced SNHL.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, CD/analysis
- Child
- Cloning, Molecular
- Cochlea/immunology
- Cochlea/pathology
- Cochlea/virology
- Cytomegalovirus/genetics
- Cytomegalovirus/growth & development
- Cytomegalovirus/immunology
- Cytomegalovirus Infections/complications
- Cytomegalovirus Infections/immunology
- Cytomegalovirus Infections/pathology
- Cytomegalovirus Infections/virology
- Disease Models, Animal
- Epithelial Cells/pathology
- Epithelial Cells/virology
- Escherichia coli
- Evoked Potentials, Auditory, Brain Stem
- Female
- Flow Cytometry
- Hearing Loss, Sensorineural/etiology
- Hearing Loss, Sensorineural/immunology
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/virology
- Humans
- Immunohistochemistry
- Inflammation/immunology
- Inflammation/pathology
- Inflammation/virology
- Lymphocytes/immunology
- Lymphocytes/virology
- Macrophages/immunology
- Macrophages/virology
- Mice
- Muromegalovirus/genetics
- Muromegalovirus/growth & development
- Muromegalovirus/immunology
- Neurons/pathology
- Neurons/virology
- Polymerase Chain Reaction
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- Scott J. Schachtele
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Manohar B. Mutnal
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Mark R. Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - James R. Lokensgard
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
64
|
Abstract
INTRODUCTION Approximately 5% of the population worldwide suffers from industrial, military or recreational noise-induced hearing loss (NIHL) at a great economic cost and detriment to the quality of life of the affected individuals. This review discusses pharmacological strategies to attenuate NIHL that have been developed in animal models and that are now beginning to be tested in field trials. AREAS COVERED The review describes the epidemiology, pathology and pathophysiology of NIHL in experimental animals and humans. The underlying molecular mechanisms of damage are then discussed as a basis for therapeutic approaches to ameliorate the loss of auditory function. Finally, studies in military, industrial and recreational settings are evaluated. Literature was searched using the terms 'noise-induced hearing loss' and 'noise trauma'. EXPERT OPINION NIHL, in principle, can be prevented. With the current pace of development, oral drugs to protect against NIHL should be available within the next 5-10 years. Positive results from ongoing trials combined with additional laboratory tests might accelerate the time from the bench to clinical treatment.
Collapse
Affiliation(s)
- Naoki Oishi
- Kresge Hearing Research Institute, Medical Sciences Bldg I, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, USA
| | | |
Collapse
|
65
|
Hong BN, You YO, Kang TH. Curculigo orchioides, natural compounds for the treatment of noise-induced hearing loss in mice. Arch Pharm Res 2011; 34:653-9. [DOI: 10.1007/s12272-011-0416-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/30/2010] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
|
66
|
Fetoni AR, Eramo S, Troiani D, Paludetti G. Therapeutic window for ferulic acid protection against noise-induced hearing loss in the guinea pig. Acta Otolaryngol 2011; 131:419-27. [PMID: 21198344 DOI: 10.3109/00016489.2010.539263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONCLUSION Our results are in agreement with the general idea that natural antioxidants achieve their best cytoprotective capacity if given before and soon after the stressor. OBJECTIVE We focused on ferulic acid (FA, 4-hydroxy 3-methoxycinnamic acid), a phenolic compound that is known to exhibit antioxidant properties. Our study was designed to evaluate the effectiveness of FA for different schedules of treatment to establish the 'therapeutic window' for FA protection. METHODS Guinea pigs were exposed to acoustic trauma (6 kHz at 120 dB for 60 min) and received a total dose of 600 mg/kg of FA. Group I, noise control; group II, noise + FA (150 mg/kg) for 4 days starting 24 h post exposure; group III, noise + FA (60 mg/kg) 1 h before and 9 days post exposure; group IV, noise + FA (60 mg/kg) given 3 days before and 7 days post exposure; group V, noise + FA (150 mg/kg) 1 h before and 3 days post noise exposure. Auditory brainstem response (ABR) test and immunohistochemical and morphological studies were performed. RESULTS Group V had significantly decreased noise-induced hearing loss at day 21 from noise exposure. The improvement of auditory function by FA was paralleled by a significant reduction in oxidative stress marker. The other schedules of drug administration showed a minor degree of protection.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Institutes of Otolaryngology, School of Medicine, Catholic University, Rome, Italy.
| | | | | | | |
Collapse
|
67
|
N-acetylcysteine and N-nitroarginine methyl ester attenuate Carboplatin-induced ototoxicity in dissociated spiral ganglion neuron cultures. Clin Exp Otorhinolaryngol 2011; 4:11-7. [PMID: 21461057 PMCID: PMC3062221 DOI: 10.3342/ceo.2011.4.1.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 10/22/2010] [Indexed: 01/20/2023] Open
Abstract
Objectives Carboplatin, a platinum-containing anti-cancer drug used to treat a variety of cancers, induces ototoxicity. Since, reactive oxygen species (ROS) and nitric oxide (NO) seem to be responsible for this toxicity, the antioxidant, N-acetyl-L-cysteine (L-NAC), and NO synthetase inhibitor, N-nitro-L-arginine methyl ester (L-NAME) were predicted to have protective effects against carboplatin ototoxicity. The aim of this study was to test for the protective effects of L-NAC and L-NAME on cochlear hair cells and spiral ganglion neurons (SGNs). Methods Cochlear organotypic cultures and dissociated spiral ganglion neuron cultures, from mice postnatal day 5 cultures were used in this study. The cultures were treated with carboplatin alone or in combination with L-NAC or L-NAME, and carboplatin-induced damage was monitored. Results Treatment with carboplatin induced a significant loss of outer hair cells, while inner hair cells were preserved in the cochlear organotypic cultures. Addition of L-NAC or L-NAME reduced the amount of carboplatin-induced hair cell damage; the differences did not reach statistical significance. However, carboplatin significantly decreased the number of surviving SGNs in dissociated cultures. The toxic effects were significantly reduced by addition of L-NAC or L-NAME. In addition, carboplatin induced the loss of neurites from the SGN somata, and this was not blocked with L-NAC or L-NAME. Conclusion The results of this study suggest that ROS and NO are involved in carboplatin-induced damage to hair cells and SGNs, and administration of L-NAC/L-NAME can be used to attenuate the toxicity.
Collapse
|
68
|
N-Acetyl-cysteine against noise-induced temporary threshold shift in male workers. Hear Res 2010; 269:42-7. [PMID: 20638463 DOI: 10.1016/j.heares.2010.07.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 02/07/2023]
Abstract
Previous animal studies showed protective effects of antioxidant medicines against noise-induced hearing loss (NIHL). It is unclear whether antioxidants would protect humans from NIHL. We conducted a study to determine whether N-Acetyl-cysteine (NAC) protected men against noise-induced temporary threshold shift (TTS), and whether subgroups with genetic polymorphisms of glutathione S-transferase (GST) T1 and M1 responded to NAC differently. In this prospective, double-blind, crossover study, 53 male workers were randomly assigned to receive either NAC (1200 mg/day, 14 days) during the first period and placebo during the second period, or placebo during the first period and NAC during the second period. Dosing periods were separated by a washout period of 2 weeks. The hearing threshold changes were determined before and after each dosing period. Pre-shift hearing threshold for high frequencies was 19.1 dB. Daily exposure to noise ranged from 88.4 to 89.4 dB. The noise levels of different frequencies ranged from 80.0 to 89.4 dB with a peak-value at 4 kHz. NAC significantly reduced TTS (p = 0.03). When the participants were grouped by GST M1/T1 genotypes, the NAC effect was only significant among workers with null genotypes in both GSTM1 and GSTT1 (p = 0.004). NAC may prevent noise-induced TTS among occupationally noise-exposed men. The protective effect of NAC was more prominent in subjects with both GSTM1-null and GSTT1-null genotypes. (clinicaltrials.gov Identifier: NCT00552786).
Collapse
|
69
|
In vivo protective effect of ferulic acid against noise-induced hearing loss in the guinea-pig. Neuroscience 2010; 169:1575-88. [PMID: 20600667 DOI: 10.1016/j.neuroscience.2010.06.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 02/07/2023]
Abstract
Ferulic acid (FA) is a phenolic compound whose neuroprotective activity was extensively studied in vitro. In this study, we provided functional in vivo evidence that FA limits noise-induced hearing loss. Guinea-pigs exposed to acoustic trauma for 1 h exhibited a significant impairment in auditory function; this injury was evident as early as 1 day from noise exposure and persisted over 21 days. Ferulic acid (150 mg/kg i.p. for 4 days) counteracted noise-induced hearing loss at days 1, 3, 7 and 21 from noise exposure. The improvement of auditory function by FA was paralleled by a significant reduction in oxidative stress, apoptosis and increase in hair cell viability in the organ of Corti. Interestingly in the guinea-pig cochleae, the neuroprotective effect of FA was functionally related not only to its scavenging ability in the peri-traumatic period but also to the up-regulation of the cytoprotective enzyme heme oxygenase-1 (HO-1); in fact, FA-induced improvement of auditory function was counteracted by the HO inhibitor zinc-protoporphyrin-IX and paralleled the time-course of HO-1 induction over 3-7 days. These results confirm the antioxidant properties of FA as free-radical scavenger and suggest a role of HO-1 as an additional mediator against noise-induced ototoxicity.
Collapse
|
70
|
Permanent and transient effects of locally delivered n-acetyl cysteine in a guinea pig model of cochlear implantation. Hear Res 2010; 259:24-30. [DOI: 10.1016/j.heares.2009.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 08/28/2009] [Accepted: 08/29/2009] [Indexed: 12/14/2022]
|
71
|
Kang TH, Hong BN, Park C, Kim SY, Park R. Effect of baicalein from Scutellaria baicalensis on prevention of noise-induced hearing loss. Neurosci Lett 2010; 469:298-302. [DOI: 10.1016/j.neulet.2009.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 11/24/2022]
|
72
|
Nagashima R, Yamaguchi T, Tanaka H, Ogita K. Mechanism Underlying the Protective Effect of Tempol and Nω-Nitro-L-arginine Methyl Ester on Acoustic Injury: Possible Involvement of c-Jun N-Terminal Kinase Pathway and Connexin26 in the Cochlear Spiral Ligament. J Pharmacol Sci 2010; 114:50-62. [DOI: 10.1254/jphs.10113fp] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
73
|
Static magnetic field affects oxidative stress in mouse cochlea. Int J Occup Med Environ Health 2010; 23:377-84. [DOI: 10.2478/v10001-010-0041-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
74
|
Vlajkovic SM, Housley GD, Thorne PR. Adenosine and the auditory system. Curr Neuropharmacol 2009; 7:246-56. [PMID: 20190966 PMCID: PMC2769008 DOI: 10.2174/157015909789152155] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/03/2009] [Accepted: 03/20/2009] [Indexed: 02/06/2023] Open
Abstract
Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A(1), A(2A), A(2B), and A(3). This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A(1) adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A(1) and A(2A) receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | | | | |
Collapse
|
75
|
Kopke RD. Pharmacological approaches to the prevention and treatment of cochlear injury due to noise. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/16513860601181046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
76
|
Matsunobu T, Satoh Y, Ogawa K, Shiotani A. Heme oxygenase-1 expression in the guinea pig cochlea induced by intense noise stimulation. Acta Otolaryngol 2009:18-23. [PMID: 19848234 DOI: 10.1080/00016480902933056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONCLUSION These results suggest that noise induces free radical formation in the cochlea and that, in the guinea pig, heme oxygenase-1 (HO-1) may play an important role in the recovery from noise trauma in the organ of Corti. OBJECTIVE Free radicals are involved in noise-induced hearing loss. It has been demonstrated that the induction of HO-1 may protect cells exposed to oxidative challenge. The present study was designed to investigate the effect of intense noise exposure on HO-1 induction. MATERIALS AND METHODS A total of 25 adult guinea pigs (body weight 200-300 g) with a normal Preyers's reflex were used as subjects. Based on preliminary tests, the appropriate intensities and durations of noise were determined that were adequate to induce apparent threshold shifts and lead to various recovery patterns to initial thresholds. The sound was routed through a power amplifier to a speaker, which was positioned directly over the animals in a sound chamber. Auditory brainstem response (ABR) testing, Western blot analysis for HO-1, and immunohistochemical testing were done. RESULTS Exposure of the guinea pigs to 115 dB SPL octave band noise for 5 h induced HO-1 expression in the organ of Corti. In the organ of Corti, HO-1 expression increased mainly in the outer hair cells. Some expression of HO-1 was observed before and after noise exposure in the supporting cells. HO-1 expression in the organ of Corti was definitely increased in guinea pigs with an intense noise exposure which causes a temporary threshold shift.
Collapse
|
77
|
Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae. Brain Res 2008; 1244:1-12. [DOI: 10.1016/j.brainres.2008.09.050] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/27/2008] [Accepted: 09/11/2008] [Indexed: 01/11/2023]
|
78
|
Wang J, Menchenton T, Yin S, Yu Z, Bance M, Morris DP, Moore CS, Korneluk RG, Robertson GS. Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice. Neurobiol Aging 2008; 31:1238-49. [PMID: 18755525 DOI: 10.1016/j.neurobiolaging.2008.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/05/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Apoptosis of cochlear cells plays a significant role in age-related hearing loss or presbycusis. In this study, we evaluated whether over-expression of the anti-apoptotic protein known as X-linked Inhibitor of Apoptosis Protein (XIAP) slows the development of presbycusis. We compared the age-related hearing loss between transgenic (TG) mice that over-express human XIAP tagged with 6-Myc (Myc-XIAP) on a pure C57BL/6J genetic background with wild-type (WT) littermates by measuring auditory brainstem responses. The result showed that TG mice developed hearing loss considerably more slowly than WT littermates, primarily within the high-frequency range. The average total hair cell loss was significantly less in TG mice than WT littermates. Although levels of Myc-XIAP in the ear remained constant at 2 and 14 months, there was a marked increase in the amount of endogenous XIAP from 2 to 14 months in the cochlea, but not in the brain, in both genotypes. These results suggest that XIAP over-expression reduces age-related hearing loss and hair cell death in the cochlea.
Collapse
Affiliation(s)
- Jian Wang
- The Affiliated Sixth People's Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Samson J, Wiktorek-Smagur A, Politanski P, Rajkowska E, Pawlaczyk-Luszczynska M, Dudarewicz A, Sha SH, Schacht J, Sliwinska-Kowalska M. Noise-induced time-dependent changes in oxidative stress in the mouse cochlea and attenuation by D-methionine. Neuroscience 2008; 152:146-50. [PMID: 18234425 DOI: 10.1016/j.neuroscience.2007.11.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/11/2007] [Accepted: 11/13/2007] [Indexed: 02/07/2023]
Abstract
Oxidative stress in the cochlea is considered to play an important role in noise-induced hearing loss. This study determined changes in superoxide dismutase (SOD), catalase, lipid peroxidation (LPO) and the auditory brainstem response (ABR) in the cochlea of C57BL/6 mice prior to and immediately, 1, 3, 7, 10, 14 and 21 days after noise exposure (4 kHz octave band at the intensity of 110 dB SPL for 4 h). A significant increase in SOD activity immediately and on 1st day after noise exposure, without a concomitant increase in catalase activity suggested a difference in the time dependent changes in the scavenging enzymes, which facilitates the increase in LPO observed on day 7. The ABR indicated significant noise-induced functional deficits which stabilized in 2 weeks with a permanent threshold shift (PTS) of 15 dB at both 4 kHz and 8 kHz. The antioxidant D-methionine (D-Met) reversed the noise-induced changes in LPO levels and enzyme activities. It also significantly reduced the PTS observed on the 14th day from 15 dB to 5 dB for 4 kHz. In summary, the findings indicate that time-dependent alterations in scavenging enzymes facilitate the production of reactive oxygen species and that D-met effectively attenuates noise-induced oxidative stress and the associated functional loss in the mouse cochlea.
Collapse
Affiliation(s)
- J Samson
- Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Lodz, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Hendricks JL, Chikar JA, Crumling MA, Raphael Y, Martin DC. Localized cell and drug delivery for auditory prostheses. Hear Res 2008; 242:117-31. [PMID: 18573323 PMCID: PMC3073348 DOI: 10.1016/j.heares.2008.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/09/2008] [Accepted: 06/02/2008] [Indexed: 12/20/2022]
Abstract
Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness.
Collapse
Affiliation(s)
- Jeffrey L Hendricks
- Department of Biomedical Engineering, The University of Michigan, 1107 Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA.
| | | | | | | | | |
Collapse
|
81
|
Yamashita D, Minami SB, Kanzaki S, Ogawa K, Miller JM. Bcl-2 genes regulate noise-induced hearing loss. J Neurosci Res 2008; 86:920-8. [PMID: 17943992 DOI: 10.1002/jnr.21533] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Proteins of the Bcl-2 family have been implicated in control of apoptotic pathways modulating neuronal cell death, including noise-induced hearing loss. In this study, we assessed the expressions of anti- and proapoptotic Bcl-2 genes, represented by Bcl-xL and Bak following noise exposures, which yielded temporary threshold shift (TTS) or permanent threshold shift (PTS). Auditory brainstem responses (ABRs) were assessed at 4, 8, and 16 kHz before exposure and on days 1, 3, 7, and 10 following exposure to 100 dB SPL, 4 kHz OBN, 1 hr (TTS) or 120 dB SPL, 4 kHz OBN, 5 hr (PTS). On day 10, subjects were euthanized. ABR thresholds increased following both exposures, fully recovered following the TTS exposure, and showed a 22.6 dB (4 kHz), 42.5 dB (8 kHz), and 44.9 dB (16 kHz) mean shift on day 10 following the PTS exposure. PTS was accompanied by outer hair cell loss progressing epically and basally from the 4-kHz region. Additional animals were euthanized for immunohistochemical assessment. BcL-xL was robustly expressed in outer hair cells following TTS exposure, whereas Bak was expressed following PTS exposure. These results indicate an important role of the Bcl-2 family proteins in regulating sensory cell survival or death following intense noise. Bcl-xL plays an essential role in prevention of sensory cell death following TTS levels of noise, and PTS exposure provokes the expression of Bak and, with that, cell death.
Collapse
Affiliation(s)
- Daisuke Yamashita
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0506, USA
| | | | | | | | | |
Collapse
|
82
|
Shi X, Han W, Yamamoto H, Omelchenko I, Nuttall A. Nitric oxide and mitochondrial status in noise-induced hearing loss. Free Radic Res 2008; 41:1313-25. [PMID: 17963121 DOI: 10.1080/10715760701687117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The study investigated the distribution of nitric oxide (NO) within isolated outer hair cells (OHCs) from the cochlea, its relationship to mitochondria and its modulation of mitochondrial function. Using two fluorescent dyes--4,5-diamino-fluorescein diacetate (DAF-2DA), which detects NO, and tetramethyl rhodamine methyl ester (TMRM+), a mitochondrial membrane potential dye--it was found that a relatively greater amount of the DAF fluorescence in OHCs co-localized with mitochondria in comparison to DAF fluorescence in the cytosole. This study also observed reduced mitochondrial membrane potential of OHCs and increased DAF fluorescence following exposure of the cells to noise (120 dB SPL for 4 h) and to an exogenous NO donor, NOC-7 (>350 mm). Antibody label for nitrotyrosine was also increased, indicating NO-related formation of peroxynitrite in both mitochondria and the cytosol. The results suggest that NO may play an important physiological role in regulating OHC energy status and act as a potential agent in OHC pathology.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center (NRC04), Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
83
|
Laurell GF, Teixeira M, Duan M, Sterkers O, Ferrary E. Intact blood-perilymph barrier in the rat after impulse noise trauma. Acta Otolaryngol 2008; 128:608-12. [PMID: 18568492 DOI: 10.1080/00016480701644102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONCLUSION The permeability of the blood-labyrinth barrier for radioactive mannitol was unchanged after impulse noise trauma. The present findings are contradictory to the theory of an increased permeability in the blood-labyrinth barrier as a result of extensive noise exposure. OBJECTIVE Noise trauma is reported to cause multiple effects on the cochlea including mechanical and metabolic damage. The aim of the study was to observe the effects of impulse noise on cochlear homeostasis. MATERIALS AND METHODS A well-established rat model was used for evaluation of the early effects of impulse noise trauma on the integrity of the blood-perilymph barrier. To evaluate whether a blood-perilymph barrier disruption contributes to cochlear injury after impulse noise, the paracellular transport of radioactive mannitol into scala vestibuli perilymph (PLV) and electrolyte concentration in perilymph were estimated. Thirteen animals exposed to synthesized impulses of 160 dB SPL peak value, at a rate of 100 pulses, were designed as the study group and 15 rats not exposed to noise were designed as the control group. After mannitol infusion each ear of the animal in the study group was separately exposed to impulse noise and PLV samples were taken during 2 h post-infusion. In the control group, corresponding PLV samples were taken after mannitol injection. RESULTS At 2 h after mannitol infusion there was no difference in PLV mannitol concentration in the study group and control group (21.5%+/-2.2 and 20.5%+/-2.1, respectively). Impulse noise had no effect on the electrochemical composition of PLV.
Collapse
|
84
|
Halmos G, Horváth T, Polony G, Fekete Á, Kittel A, Vizi E, van der Laan B, Zelles T, Lendvai B. The role of N-methyl-d-aspartate receptors and nitric oxide in cochlear dopamine release. Neuroscience 2008; 154:796-803. [DOI: 10.1016/j.neuroscience.2008.03.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 03/27/2008] [Accepted: 03/27/2008] [Indexed: 11/26/2022]
|
85
|
Protection from noise-induced temporary threshold shift by D-methionine is associated with preservation of ATPase activities. Ear Hear 2008; 29:65-75. [PMID: 18091106 DOI: 10.1097/aud.0b013e31815d635b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The present study was designed to test whether noise-induced temporary threshold shift (TTS) could be attenuated by D-methionine and its possible relation to the biochemical changes of cochlear lateral walls such as ATPase activities and oxidative stress in guinea pigs. DESIGN Thirty-two normal-hearing male guinea pigs were randomly divided into saline-treated and D-methionine-treated (300 mg/kg) experimental groups. One hour after treatment, they were exposed to a continuous broadband white noise at 105 +/- 2 dB sound pressure level for 10 min, causing TTS. Each group was then divided into four subgroups based on the number of survival days after noise exposure (0, 1, 2, and 7 days). Each subgroup had four animals and eight ears included. By means of click-evoked auditory brain stem responses (ABR), auditory thresholds of guinea pigs were measured before noise exposure, immediately after noise exposure, and before killing. After animals were killed, cochlear lateral walls were immediately harvested and assayed for enzyme-specific activities of Na+, K+-ATPase and Ca2+-ATPase, lipid peroxidation, and nitric oxide. RESULTS A 15.31 +/- 3.80 dB threshold shift was found immediately after noise exposure in saline-pretreated guinea pigs. In contrast, ABR threshold shift was significantly attenuated to 4.06 +/- 2.35 dB in D-methionine-treated animals. Furthermore, D-methionine enhanced the restoration of ABR threshold to baseline level by 1 day. In addition, noise significantly decreased Na+, K+-ATPase, and Ca2+-ATPase activities and increased lipid peroxidation and nitric oxide levels of the cochlear lateral walls. D-methionine significantly protected against all of these changes. CONCLUSIONS Noise not only induced TTS but also inhibited ATPase activities as well as increased oxidative stress in guinea-pig cochlear lateral walls; all of these changes could be attenuated by d-methionine through its antioxidative property. These results suggest the potential usefulness of d-methionine in protecting from noise-induced ototoxicity.
Collapse
|
86
|
Hamernik RP, Qiu W, Davis B. The effectiveness of N-acetyl-L-cysteine (L-NAC) in the prevention of severe noise-induced hearing loss. Hear Res 2008; 239:99-106. [PMID: 18329204 DOI: 10.1016/j.heares.2008.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 01/10/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
Three groups of chinchillas were exposed to a nonGaussian continuous broadband noise at an Leq=10 5dB SPL, 8h/d for 5d. One group (N=6) received only the noise. A second group (N=6) received the noise and was additionally treated with L-NAC (325 mg/kg, i.p.). Treatment was administered twice daily for 2d prior to exposure and for 2d following the exposure. During exposure the animals received the L-NAC just prior to and immediately after each daily exposure. The third group (N=4) was exposed to the noise and received saline injections on the same schedule as the L-NAC treated animals. Auditory evoked potential recordings from the inferior colliculus were used to estimate pure tone thresholds and surface preparations of the organ of Corti quantified the sensory cell population. In all three groups PTS exceeded 50 dB at 2.0k Hz and above with severe sensory cell loss in the basal half of the cochlea. There was no statistically significant difference among the three groups in all measures of noise-induced trauma. Treatment with L-NAC did not reduce the trauma produced by a high-level, long duration, broadband noise exposure.
Collapse
Affiliation(s)
- Roger P Hamernik
- Auditory Research Laboratory, Plattsburgh State University of New York, 107 Beaumont Hall, 101 Broad Street, Plattsburgh, NY 12901, United States.
| | | | | |
Collapse
|
87
|
Diao M, Gao W, Sun J. Nitric oxide synthase inhibitor reduces noise-induced cochlear damage in guinea pigs. Acta Otolaryngol 2007; 127:1162-7. [PMID: 17851886 DOI: 10.1080/00016480701242436] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONCLUSION The results obtained in this study indicate that NG-nitro-L-arginine methyl ester (L-NAME) protects cochlear damage from acoustic trauma through reducing the production of nitric oxide (NO). OBJECTIVES This study aimed to explore whether NO synthase inhibitor L-NAME could reduce cochlear damage in acoustic trauma. MATERIALS AND METHODS Seventy guinea pigs (300-350g) were divided randomly into four groups (n=20 in groups I, III, and IV; n=10 in group II). Two days consecutively and 30min before noise exposure (4kHz octave band, 115dB SPL 5h), subjects received an injection of 5ml saline/kg (groups I and III) or 10mg/kg L-NAME (groups II and IV). Sham-exposed guinea pigs were listed as groups I and II. Protection was assessed physiologically by the change in auditory brainstem response (ABR) threshold and histologically by survival of outer hair cells (OHCs). NO level of cochlear tissue was assayed 3days after noise exposure. RESULTS Group III showed significantly greater OHC loss, threshold shifts and NO level compared with group I and group IV. Compared with group III, noise-induced elevation in NO level in the cochlea was significantly attenuated by L-NAME (p<0.001).
Collapse
Affiliation(s)
- Mingfang Diao
- Center of Otolaryngology of PLA, Navy General Hospital, Beijing, 100037, PR China
| | | | | |
Collapse
|
88
|
Bielefeld EC, Kopke RD, Jackson RL, Coleman JKM, Liu J, Henderson D. Noise protection with N-acetyl-l-cysteine (NAC) using a variety of noise exposures, NAC doses, and routes of administration. Acta Otolaryngol 2007; 127:914-9. [PMID: 17712668 DOI: 10.1080/00016480601110188] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONCLUSION These studies extend previous work on N-acetyl-l-cysteine (NAC) and noise, showing protection with NAC against a high-kurtosis noise, showing protection with NAC at low doses, as well as protection by oral gavage. The studies further reveal the potential for the use of NAC in a clinical population exposed to noise. OBJECTIVE To extend previous work on NAC protection from noise, the current study examined the effectiveness of NAC against a high-kurtosis noise that combined continuous and impact noise, tested the effectiveness of NAC at varying doses, and tested NAC when administered by gavage. MATERIALS AND METHODS Chinchillas were tested for auditory brainstem responses (ABRs) at five frequencies before and at three time points after one of three noise exposures: high-kurtosis (2 h, 108 dB L(eq)), impulse (75 pairs of 155 dB pSPL impulses), or continuous (4 kHz octave band, 105 dB SPL for 6 h). Animals were treated with NAC or saline vehicle before and after noise. RESULTS The NAC was protective against the high-kurtosis noise both at low doses and when given orally by gavage.
Collapse
Affiliation(s)
- Eric C Bielefeld
- Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | | | | | | | | | | |
Collapse
|
89
|
Minami SB, Yamashita D, Ogawa K, Schacht J, Miller JM. Creatine and tempol attenuate noise-induced hearing loss. Brain Res 2007; 1148:83-9. [PMID: 17359945 PMCID: PMC2680083 DOI: 10.1016/j.brainres.2007.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 02/07/2007] [Accepted: 02/12/2007] [Indexed: 11/28/2022]
Abstract
To define the role of free radical formation and potential energy depletion in noise induced hearing loss (NIHL), we measured the effectiveness of tempol (free radical scavenger) and creatine (enhances cellular energy storage) alone and in combination to attenuate NIHL. Guinea pigs were divided into four treatment groups: controls, 3% creatine diet (2 weeks prior to noise exposure), tempol (3 mM in drinking water 2 weeks prior to exposure), and creatine plus tempol and exposed to 120 dB SPL one-octave band noise centered at 4 kHz for 5 h. The noise-only control group showed frequency-dependent auditory threshold shifts (measured by auditory brainstem response, ABR) of up to 73 dB (16 kHz) on day 1, and up to 50 dB (8 kHz) on day 10. Creatine-treated subjects had significantly smaller ABR threshold shifts on day 1 and on day 10. Tempol alone significantly reduced ABR threshold shifts on day 10 but not on day 1. ABR shifts after combination treatment were similar to those in the creatine group. Hair cell loss on day 10 was equally attenuated by creatine and tempol alone or in combination. Our results indicate that the maintenance of ATP levels is important in attenuating both temporary and permanent NIHL, while the scavenging of free radicals provides protection from permanent NIHL.
Collapse
Affiliation(s)
- Shujiro B. Minami
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI
- Department of Otolaryngology, Keio University, Tokyo, Japan
| | | | - Kaoru Ogawa
- Department of Otolaryngology, Keio University, Tokyo, Japan
| | - Jochen Schacht
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI
| | - Josef M. Miller
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI
- Center for Hearing and Communication, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
90
|
Le Prell CG, Hughes LF, Miller JM. Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma. Free Radic Biol Med 2007; 42:1454-63. [PMID: 17395018 PMCID: PMC1950331 DOI: 10.1016/j.freeradbiomed.2007.02.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 01/05/2007] [Accepted: 02/06/2007] [Indexed: 12/20/2022]
Abstract
Free radical formation in the cochlea plays a key role in the development of noise-induced hearing loss (NIHL). The amount, distribution, and time course of free radical formation have been defined, including a clinically significant formation of both reactive oxygen species and reactive nitrogen species 7-10 days after noise exposure. Reduction in cochlear blood flow as a result of free radical formation has also been described. Here we report that the antioxidant agents vitamins A, C, and E act in synergy with magnesium to effectively prevent noise-induced trauma. Neither the antioxidant agents nor the magnesium reliably reduced NIHL or sensory cell death with the doses we used when these agents were delivered alone. In combination, however, they were highly effective in reducing both hearing loss and cell death even with treatment initiated just 1 h before noise exposure. This study supports roles for both free radical formation and noise-induced vasoconstriction in the onset and progression of NIHL. Identification of this safe and effective antioxidant intervention that attenuates NIHL provides a compelling rationale for human trials in which free radical scavengers are used to eliminate this single major cause of acquired hearing loss.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109-0506, USA.
| | | | | |
Collapse
|
91
|
Chen GD, Zhao HB. Effects of intense noise exposure on the outer hair cell plasma membrane fluidity. Hear Res 2007; 226:14-21. [PMID: 16870367 DOI: 10.1016/j.heares.2006.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 06/06/2006] [Accepted: 06/12/2006] [Indexed: 11/28/2022]
Abstract
Outer hair cells (OHCs) play an important role in cochlear amplification via their length changes (electromotility). A noise-induced cochlear amplification loss leading to a permanent threshold shift (PTS) was observed without a significant hair cell loss in rats [Chen, G.D., Liu, Y., 2005. Mechanisms of noise-induced hearing loss potentiation by hypoxia. Hear. Res. 200, 1-9.]. Since motor proteins are inserted in the OHC lateral membrane, any change in the OHC plasma membrane may result in a loss of OHC electromotility, leading to a loss of cochlear amplification. In this study, the lateral diffusion in the OHC plasma membrane was determined in vitro in guinea pigs by fluorescent recovery after photobleaching (FRAP) after an in vivo noise exposure. The lateral diffusion in the OHC plasma membrane demonstrated a length-dependence, which increased as OHC length increased. A reduction in the lateral diffusion was observed in those OHCs with lengths of 50-70 microm after exposure to an 8-kHz octave band noise at 110 dB SPL for 3h. This membrane fluidity change was associated with the selective PTS at frequencies around 8 kHz. The reduction of the lateral diffusion in the OHC lateral wall indicated that noise could impair the micromechanics of the OHC lateral wall and might consequently impair OHC electromotility to induce threshold shift.
Collapse
Affiliation(s)
- Guang-Di Chen
- Center for Hearing and Deafness, 137 Cary Hall, 3435 Main Street, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | | |
Collapse
|
92
|
Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res 2007; 226:22-43. [PMID: 17141991 PMCID: PMC1995566 DOI: 10.1016/j.heares.2006.10.006] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 12/20/2022]
Abstract
Recent research has shown the essential role of reduced blood flow and free radical formation in the cochlea in noise-induced hearing loss (NIHL). The amount, distribution, and time course of free radical formation have been defined, including a clinically significant late formation 7-10 days following noise exposure, and one mechanism underlying noise-induced reduction in cochlear blood flow has finally been identified. These new insights have led to the formulation of new hypotheses regarding the molecular mechanisms of NIHL; and, from these, we have identified interventions that prevent NIHL, even with treatment onset delayed up to 3 days post-noise. It is essential to now assess the additive effects of agents intervening at different points in the cell death pathway to optimize treatment efficacy. Finding safe and effective interventions that attenuate NIHL will provide a compelling scientific rationale to justify human trials to eliminate this single major cause of acquired hearing loss.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109-0506, USA.
| | | | | | | | | |
Collapse
|
93
|
Pouyatos B, Gearhart C, Nelson-Miller A, Fulton S, Fechter L. Oxidative stress pathways in the potentiation of noise-induced hearing loss by acrylonitrile. Hear Res 2007; 224:61-74. [PMID: 17222524 DOI: 10.1016/j.heares.2006.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 10/23/2006] [Accepted: 11/15/2006] [Indexed: 11/30/2022]
Abstract
We hypothesize that the disruption of antioxidant defenses is a key mechanism whereby chemical contaminants can potentiate noise-induced hearing loss (NIHL). This hypothesis was tested using acrylonitrile (ACN), a widely used industrial chemical whose metabolism is associated with glutathione (GSH) depletion and cyanide (CN) generation. CN, in turn, can inhibit Cu/Zn superoxide dismutase (SOD). We have shown previously that ACN potentiates NIHL, even with noise exposure approaching permissible occupational levels. However, the relative involvement of GSH depletion and/or CN production in this potentiation is still unknown. In this study, we altered these metabolic pathways pharmacologically in order to further delineate the role of specific antioxidants in the protection of the cochlea. We investigated the effects of sodium thiosulfate (STS), a CN inhibitor, 4-methylpyrazole (4MP), a drug that blocks CN generation by competing with CYP2E1, and l-N-acetylcysteine (l-NAC), a pro-GSH drug, in order to distinguish between GSH depletion and CN production as the mechanism responsible for potentiation of NIHL by ACN. Long-Evans rats were exposed to an octave-band noise (97 dB SPL, 4h/day, 5 days) and ACN (50 mg/kg). Separate pre-treatments with STS (150 mg/kg), 4MP (100 mg/kg) and l-NAC (4 x 400 mg/kg) all dramatically reduced blood CN levels, but only l-NAC significantly protected GSH levels in both the liver and the cochlea. Concurrently, only l-NAC treatment decreased the auditory loss and hair cell loss resulting from ACN + noise, suggesting that GSH is involved in the protection of the cochlea against reactive oxygen species generated by moderate noise levels. On the other hand, CN does not seem to be involved in this potentiation.
Collapse
Affiliation(s)
- Benoît Pouyatos
- Jerry Pettis Memorial Veterans Medical Center, Department of Veterans Affairs Medical Center, 11201 Benton Street, Loma Linda, CA 92357, United States.
| | | | | | | | | |
Collapse
|
94
|
Shibata SB, Osumi Y, Yagi M, Kanda S, Kawamoto K, Kuriyama H, Nishiyama T, Yamashita T. Administration of amitriptyline attenuates noise-induced hearing loss via glial cell line-derived neurotrophic factor (GDNF) induction. Brain Res 2007; 1144:74-81. [PMID: 17331482 DOI: 10.1016/j.brainres.2007.01.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 12/20/2022]
Abstract
Antidepressant treatments have been described to induce neurotrophic factors (NTFs) and reverse the cell loss observed in rodent stress models. Amitriptyline (AT), a tricyclic antidepressant agent, has been reported in recent studies to induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. GDNF has shown protection against acoustic trauma in previous studies. Therefore, we investigated whether AT could induce GDNF synthesis in the cochlea and attenuate cochlea damage against acoustic trauma. We used Hartley guinea pigs and injected AT (30 mg/kg) or saline into the peritoneum. Subjects were exposed to 117 dB SPL octave band noise centered at 4 kHz for 24 h. Noise-induced hearing loss (NIHL) was assessed with auditory brain stem response (ABR) at 4, 8 and 16 kHz measured prior to the injection, 3 days and 7 days after noise exposure. For histological assessment, we observed the sensory epithelium using a surface preparation technique and assessed the quantitative hair cell (HC) damage. We evaluated GDNF synthesis with or without intense noise exposure at 3, 12 and 24 h after the administration of AT in the cochlea using Western blot analysis. GDNF expression was shown 3 h and 12 h after the injection without noise, whereas with noise the GDNF expression lasted for 24 h. The AT-administrated group showed significantly reduced ABR threshold shift and less HC damage than the saline-administrated group. These findings suggest that the administration of AT-induced GDNF levels in the cochlea and attenuated cochlea damage from NIHL.
Collapse
MESH Headings
- Amitriptyline/administration & dosage
- Analgesics, Non-Narcotic/administration & dosage
- Animals
- Auditory Threshold/drug effects
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Gene Expression Regulation/radiation effects
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Guinea Pigs
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/physiology
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
Collapse
Affiliation(s)
- Seiji Bruce Shibata
- Department of Otolaryngology, Kansai Medical University Takii Hospital, 10-15 Fumizonocho Moriguchi-shi, Osaka 570-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Kopke RD, Jackson RL, Coleman JKM, Liu J, Bielefeld EC, Balough BJ. NAC for noise: from the bench top to the clinic. Hear Res 2006; 226:114-25. [PMID: 17184943 DOI: 10.1016/j.heares.2006.10.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 10/30/2006] [Accepted: 10/31/2006] [Indexed: 02/07/2023]
Abstract
Noise-induced hearing loss (NIHL) is an important etiology of deafness worldwide. Hearing conservation programs are in place and have reduced the prevalence of NIHL, but this disorder is still far too common. Occupational and recreational pursuits expose people to loud noise and ten million persons in the US have some degree of noise-induced hearing impairment. It is estimated that 50 million in the US and 600 million people worldwide are exposed to noise hazards occupationally. Noise deafness is still an important and frequent cause of battlefield injury in the US military. A mainstay of hearing conservation programs is personal mechanical hearing protection devices which are helpful but have inherent limitations. Research has shown that oxidative stress plays an important role in noise-induced cochlear injury resulting in the discovery that a number of antioxidant and cell death inhibiting compounds can ameliorate deafness associated with acoustic trauma. This article reviews one such compound, N-acetylcysteine (NAC), in terms of its efficacy in reducing hearing loss in a variety of animal models of acute acoustic trauma and hypothesizes what its therapeutic mechanisms of action might be based on the known actions of NAC. Early clinical trials with NAC are mentioned.
Collapse
Affiliation(s)
- Richard D Kopke
- Hough Ear Institute, 3400 N.W. 56th Street, Oklahoma City, OK 73112, USA.
| | | | | | | | | | | |
Collapse
|
96
|
Nagashima R, Ogita K. Enhanced biosynthesis of glutathione in the spiral ganglion of the cochlea after in vivo treatment with dexamethasone in mice. Brain Res 2006; 1117:101-8. [PMID: 16949561 DOI: 10.1016/j.brainres.2006.07.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 07/27/2006] [Accepted: 07/31/2006] [Indexed: 11/23/2022]
Abstract
Glucocorticoids have been widely used as a therapeutic drug for sudden sensorineural hearing loss. However, very little is known about the mechanism(s) underlying the protective effect of glucocorticoids against hearing loss. As an approach toward elucidating the mechanism(s), we evaluated the effects of dexamethasone (DEX) treatment on the biosynthesis of GSH in the mouse cochlea in vivo. The systemic administration of DEX led to a significant increase in the total GSH level in the cochlea 2 to 24 h later. This DEX-induced increase in GSH occurred selectively in the spiral ganglion, but not significantly in the lateral wall tissues or in the organ of Corti. Furthermore, RT-PCR analysis revealed that DEX treatment resulted in enhanced expression of gamma-glutamylcysteine synthetase (gamma-GCS), which is the rate-limiting enzyme for de novo GSH synthesis, 1 to 24 h after the treatment. In addition to enhancing GSH biosynthesis, DEX treatment was effective in reducing lipid peroxidation in the cochlea. Taken together, DEX has the ability to facilitate GSH biosynthesis through enhanced expression of gamma-GCS in the cochlear spiral ganglion.
Collapse
Affiliation(s)
- Reiko Nagashima
- Department of Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | | |
Collapse
|
97
|
Kirkegaard M, Murai N, Risling M, Suneson A, Järlebark L, Ulfendahl M. Differential gene expression in the rat cochlea after exposure to impulse noise. Neuroscience 2006; 142:425-35. [PMID: 16887274 DOI: 10.1016/j.neuroscience.2006.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 12/20/2022]
Abstract
Understanding the molecular biology of noise trauma is vital to developing effective and timely interventions. In a model of explosion-mediated impulse noise injury, differential gene expression was studied in whole rat cochlea preparations at 3 and 24 h following the exposure. We developed a technique using mRNA from a single cochlea on each oligonucleotide microarray to avoid pooling of mRNA samples. Application of a conservative statistical analysis approach resulted in the identification of 61 differentially expressed genes. Within 3 h after the exposure, there was an up-regulation of immediate early genes, mainly transcription factors and genes involved in the tissue's response to oxidative stress. No genes were found to be significantly down-regulated. At 24 h following the exposure, up-regulated genes included members of inflammatory and antioxidant pathways and one gene involved in glutathione metabolism was down-regulated. A subset of genes was confirmed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The present study demonstrates the power of the microarray technique in providing a global view of the gene regulation following noise exposure, and in identifying genes that may be mechanistically important in hearing loss, and thereby serve as a basis for the development of therapeutic interventions.
Collapse
Affiliation(s)
- M Kirkegaard
- Center for Hearing and Communication Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
In experimental studies, the old mucolytic agent N-acetylcysteine (NAC) has had beneficial effects in disorders supposedly linked to oxidative stress. Numerous, mainly small clinical trials with variable doses have yielded inconsistent results in a wide variety of diseases. NAC added to the conventional therapy of human immunodeficiency virus infection might be of benefit; in respect of chronic obstructive pulmonary disease, systematic reviews and meta-analyses suggested that prolonged treatment with NAC is efficacious, but a recent multicentre study has questioned this. In a large intervention trial on cancer recurrence, NAC was ineffective. NAC infusions have been widely used in acute hepatic failure but convincing evidence of its benefits is lacking. A preliminary study reported that NAC is effective in preventing radiocontrast-induced nephropathy but thereafter highly mixed results have been published, and even meta-analyses disagree on its efficacy. In intensive care NAC has mostly been a disappointment but recently it has 'given promises' in surgery with cardiopulmonary bypass. NAC therapy is routine only in paracetamol intoxication.
Collapse
|
99
|
Abstract
Modern research has provided new insights into the biological mechanisms of noise-induced hearing loss, and with these new insights comes hope for possible prevention or treatment. Underlying the classic set of cochlear pathologies that occur as a result of noise exposure are increased levels of reactive oxygen species (ROS) that play a significant role in noise-induced hair cell death. Both necrotic and apoptotic cell death have been identified in the cochlea. Included in the current review is a brief review of ROS, along with a description of sources of cochlear ROS generation and how ROS can damage cochlear tissue. The pathways of necrotic and apoptotic cell death are also reviewed. Interventions are discussed that target the prevention of noise-induced hair cell death: the use of antioxidants to scavenge and eliminate the damaging ROS, pharmacological interventions to limit the damage resulting from ROS, and new techniques aimed at interrupting the apoptotic biochemical cascade that results in the death of irreplaceable hair cells.
Collapse
Affiliation(s)
- Donald Henderson
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA.
| | | | | | | |
Collapse
|
100
|
Masuda M, Nagashima R, Kanzaki S, Fujioka M, Ogita K, Ogawa K. Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation. Brain Res 2005; 1068:237-47. [PMID: 16376312 DOI: 10.1016/j.brainres.2005.11.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 11/01/2005] [Accepted: 11/02/2005] [Indexed: 12/15/2022]
Abstract
There is increasing evidence to suggest that the expression of many molecules in the lateral wall of the cochlea plays an important role in noise-induced stress responses. In this study, activation of the nuclear transcription factor nuclear factor-kappa B (NF-kappaB) was investigated in the cochlea of mice treated with intense noise exposure (4 kHz, octave band, 124 dB, for 2 h). The present noise exposure led to remarkable auditory brainstem response threshold shifts and cochlear damage on surface preparations. To assess the effects of noise exposure on NF-kappaB/DNA binding activity in the cochlea, we prepared nuclear extracts from the cochlea at different time points after noise exposure and carried out an electrophoretic mobility shift assay using a probe specific to NF-kappaB. NF-kappaB/DNA binding was significantly enhanced in the cochlea 2-6 h after noise exposure and returned to basal levels after 12 h. Supershift analysis using antibodies against p65 and p50 proteins, which are components of NF-kappaB, demonstrated that enhancement of NF-kappaB/DNA binding was at least in part due to nuclear translocation of p65. An immunohistochemical study also showed that nuclear translocation of both p65 and p50 was observed in the lateral wall after noise exposure and that there may be a possible close association between p65 and enhanced inducible nitric oxide synthase expression. These results suggest that NF-kappaB may have a detrimental role in the response to acoustic overstimulation in the cochlea of mice.
Collapse
Affiliation(s)
- Masatsugu Masuda
- Department of Otolaryngology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|