51
|
Salmonella pathogenicity island 2 expression negatively controlled by EIIANtr-SsrB interaction is required for Salmonella virulence. Proc Natl Acad Sci U S A 2010; 107:20506-11. [PMID: 21059960 DOI: 10.1073/pnas.1000759107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SsrA/SsrB is a primary two-component system that mediates the survival and replication of Salmonella within host cells. When activated, the SsrB response regulator directly promotes the transcription of multiple genes within Salmonella pathogenicity island 2 (SPI-2). As expression of the SsrB protein is promoted by several transcription factors, including SsrB itself, the expression of SPI-2 genes can increase to undesirable levels under activating conditions. Here, we report that Salmonella can avoid the hyperactivation of SPI-2 genes by using ptsN-encoded EIIA(Ntr), a component of the nitrogen-metabolic phosphotransferase system. Under SPI-2-inducing conditions, the levels of SsrB-regulated gene transcription increased abnormally in a ptsN deletion mutant, whereas they decreased in a strain overexpressing EIIA(Ntr). We found that EIIA(Ntr) controls SPI-2 genes by acting on the SsrB protein at the posttranscriptional level. EIIA(Ntr) interacted directly with SsrB, which prevented the SsrB protein from binding to its target promoter. Finally, the Salmonella strain, either lacking the ptsN gene or overexpressing EIIA(Ntr), was unable to replicate within macrophages, and the ptsN deletion mutant was attenuated for virulence in mice. These results indicated that normal SPI-2 gene expression maintained by an EIIA(Ntr)-SsrB interaction is another determinant of Salmonella virulence.
Collapse
|
52
|
Schwieters CD, Suh JY, Grishaev A, Ghirlando R, Takayama Y, Clore GM. Solution structure of the 128 kDa enzyme I dimer from Escherichia coli and its 146 kDa complex with HPr using residual dipolar couplings and small- and wide-angle X-ray scattering. J Am Chem Soc 2010; 132:13026-45. [PMID: 20731394 PMCID: PMC2955445 DOI: 10.1021/ja105485b] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solution structures of free Enzyme I (EI, ∼128 kDa, 575 × 2 residues), the first enzyme in the bacterial phosphotransferase system, and its complex with HPr (∼146 kDa) have been solved using novel methodology that makes use of prior structural knowledge (namely, the structures of the dimeric EIC domain and the isolated EIN domain both free and complexed to HPr), combined with residual dipolar coupling (RDC), small- (SAXS) and wide- (WAXS) angle X-ray scattering and small-angle neutron scattering (SANS) data. The calculational strategy employs conjoined rigid body/torsion/Cartesian simulated annealing, and incorporates improvements in calculating and refining against SAXS/WAXS data that take into account complex molecular shapes in the description of the solvent layer resulting in a better representation of the SAXS/WAXS data. The RDC data orient the symmetrically related EIN domains relative to the C(2) symmetry axis of the EIC dimer, while translational, shape, and size information is provided by SAXS/WAXS. The resulting structures are independently validated by SANS. Comparison of the structures of the free EI and the EI-HPr complex with that of the crystal structure of a trapped phosphorylated EI intermediate reveals large (∼70-90°) hinge body rotations of the two subdomains comprising the EIN domain, as well as of the EIN domain relative to the dimeric EIC domain. These large-scale interdomain motions shed light on the structural transitions that accompany the catalytic cycle of EI.
Collapse
Affiliation(s)
- Charles D. Schwieters
- Division of Computational Biosciences, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624
| | - Jeong-Yong Suh
- Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Alexander Grishaev
- Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of health, Bethesda, MD 20892-0530, U.S.A
| | - Yuki Takayama
- Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - G. Marius Clore
- Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| |
Collapse
|
53
|
Zurbriggen A, Schneider P, Bähler P, Baumann U, Erni B. Expression, purification, crystallization and preliminary X-ray analysis of the EIICGlc domain of the Escherichia coli glucose transporter. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:684-8. [PMID: 20516600 DOI: 10.1107/s1744309110013102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/08/2010] [Indexed: 11/11/2022]
Abstract
The glucose-import system of Escherichia coli consists of a hydrophilic EIIA(Glc) subunit and a transmembrane EIICB(Glc) subunit. EIICB(Glc) (UniProt P69786) contains two domains: the transmembrane EIIC(Glc) domain (40.6 kDa) and the cytoplasmic EIIB(Glc) domain (8.0 kDa), which are fused by a linker that is strongly conserved among its orthologues. The EIICB(Glc) subunit can be split within this motif by trypsin. Here, the crystallization of the tryptic EIIC(Glc) domain is described. A complete data set was collected to 4.5 A resolution at 100 K.
Collapse
Affiliation(s)
- Andreas Zurbriggen
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | | | | | | | | |
Collapse
|
54
|
Jung YS, Cai M, Clore GM. Solution structure of the IIAChitobiose-IIBChitobiose complex of the N,N'-diacetylchitobiose branch of the Escherichia coli phosphotransferase system. J Biol Chem 2010; 285:4173-4184. [PMID: 19959833 PMCID: PMC2823556 DOI: 10.1074/jbc.m109.080937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/30/2009] [Indexed: 11/06/2022] Open
Abstract
The solution structure of the IIA-IIB complex of the N,N'-diacetylchitobiose (Chb) transporter of the Escherichia coli phosphotransferase system has been solved by NMR. The active site His-89 of IIA(Chb) was mutated to Glu to mimic the phosphorylated state and the active site Cys-10 of IIB(Chb) was substituted by serine to prevent intermolecular disulfide bond formation. Binding is weak with a K(D) of approximately 1.3 mm. The two complementary interaction surfaces are largely hydrophobic, with the protruding active site loop (residues 9-16) of IIB(Chb) buried deep within the active site cleft formed at the interface of two adjacent subunits of the IIA(Chb) trimer. The central hydrophobic portion of the interface is surrounded by a ring of polar and charged residues that provide a relatively small number of electrostatic intermolecular interactions that serve to correctly align the two proteins. The conformation of the active site loop in unphosphorylated IIB(Chb) is inconsistent with the formation of a phosphoryl transition state intermediate because of steric hindrance, especially from the methyl group of Ala-12 of IIB(Chb). Phosphorylation of IIB(Chb) is accompanied by a conformational change within the active site loop such that its path from residues 11-13 follows a mirror-like image relative to that in the unphosphorylated state. This involves a transition of the phi/psi angles of Gly-13 from the right to left alpha-helical region, as well as smaller changes in the backbone torsion angles of Ala-12 and Met-14. The resulting active site conformation is fully compatible with the formation of the His-89-P-Cys-10 phosphoryl transition state without necessitating any change in relative translation or orientation of the two proteins within the complex.
Collapse
Affiliation(s)
- Young-Sang Jung
- From the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Mengli Cai
- From the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - G Marius Clore
- From the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
55
|
Horler RSP, Müller A, Williamson DC, Potts JR, Wilson KS, Thomas GH. Furanose-specific sugar transport: characterization of a bacterial galactofuranose-binding protein. J Biol Chem 2009; 284:31156-63. [PMID: 19744923 PMCID: PMC2781514 DOI: 10.1074/jbc.m109.054296] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/06/2009] [Indexed: 12/31/2022] Open
Abstract
The widespread utilization of sugars by microbes is reflected in the diversity and multiplicity of cellular transporters used to acquire these compounds from the environment. The model bacterium Escherichia coli has numerous transporters that allow it to take up hexoses and pentoses, which recognize the more abundant pyranose forms of these sugars. Here we report the biochemical and structural characterization of a transporter protein YtfQ from E. coli that forms part of an uncharacterized ABC transporter system. Remarkably the crystal structure of this protein, solved to 1.2 A using x-ray crystallography, revealed that YtfQ binds a single molecule of galactofuranose in its ligand binding pocket. Selective binding of galactofuranose over galactopyranose was also observed using NMR methods that determined the form of the sugar released from the protein. The pattern of expression of the ytfQRTyjfF operon encoding this transporter mirrors that of the high affinity galactopyranose transporter of E. coli, suggesting that this bacterium has evolved complementary transporters that enable it to use all the available galactose present during carbon limiting conditions.
Collapse
Affiliation(s)
| | - Axel Müller
- From the Department of Biology
- York Structural Biology Laboratory,and
| | | | - Jennifer R. Potts
- From the Department of Biology
- Department of Chemistry, University of York, York YO10 5YW, United Kingdom
| | | | | |
Collapse
|
56
|
Oberholzer AE, Schneider P, Siebold C, Baumann U, Erni B. Crystal structure of enzyme I of the phosphoenolpyruvate sugar phosphotransferase system in the dephosphorylated state. J Biol Chem 2009; 284:33169-76. [PMID: 19801641 DOI: 10.1074/jbc.m109.057612] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP) sugar phosphotransferase system mediates sugar uptake and controls the carbon metabolism in response to carbohydrate availability. Enzyme I (EI), the first component of the phosphotransferase system, consists of an N-terminal protein binding domain (EIN) and a C-terminal PEP binding domain (EIC). EI transfers phosphate from PEP by double displacement via a histidine residue on EIN to the general phosphoryl carrier protein HPr. Here we report the 2.4 A crystal structure of the homodimeric EI from Staphylococcus aureus. EIN consists of the helical hairpin HPr binding subdomain and the phosphorylatable betaalpha phospho-histidine (P-His) domain. EIC folds into an (betaalpha)(8) barrel. The dimer interface of EIC buries 1833 A(2) of accessible surface per monomer and contains two Ca(2+) binding sites per dimer. The structures of the S. aureus and Escherichia coli EI domains (Teplyakov, A., Lim, K., Zhu, P. P., Kapadia, G., Chen, C. C., Schwartz, J., Howard, A., Reddy, P. T., Peterkofsky, A., and Herzberg, O. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 16218-16223) are very similar. The orientation of the domains relative to each other, however, is different. In the present structure the P-His domain is docked to the HPr binding domain in an orientation appropriate for in-line transfer of the phosphate to the active site histidine of the acceptor HPr. In the E. coli structure the phospho-His of the P-His domain projects into the PEP binding site of EIC. In the S. aureus structure the crystallographic temperature factors are lower for the HPr binding domain in contact with the P-His domain and higher for EIC. In the E. coli structure it is the reverse.
Collapse
Affiliation(s)
- Anselm E Oberholzer
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
57
|
Brockmeier A, Skopnik M, Koch B, Herrmann C, Hengstenberg W, Welti S, Scheffzek K. Activity of the Enterococcus faecalis EIIA(gnt) PTS component and its strong interaction with EIIB(gnt). Biochem Biophys Res Commun 2009; 388:630-6. [PMID: 19703414 DOI: 10.1016/j.bbrc.2009.08.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 08/18/2009] [Indexed: 11/15/2022]
Abstract
Eubacteria can import and simultaneously phosphorylate a range of different carbohydrates by means of sugar specific phosphoenolpyruvate (PEP) dependent sugar phosphotransferase systems (PTSs). Here, we report the biochemical characterization of the gluconate specific PTS component EIIA(gnt) from Enterococcus faecalis and its unexpectedly strong complex with EIIB(gnt). We analyze the activity of the complex regarding phosphoryl transfer using kinetic measurements and demonstrate by mutagenesis that His-9 of EIIA(gnt) is essential for this process and represents most likely the phosphoryl group carrier of EIIA(gnt). With a combination of isothermal titration calorimetry (ITC), analytical ultracentrifugation (AUC), native gel electrophoresis and chemical crosslinking experiments we show that EIIA(gnt) and EIIB(gnt) form a strong 2:2 heterotetrameric complex, which seems to be destabilized upon phosphorylation of EIIB(gnt).
Collapse
Affiliation(s)
- Achim Brockmeier
- AG Physiology of Microorganisms, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
58
|
Reinelt S, Koch B, Hothorn M, Hengstenberg W, Welti S, Scheffzek K. Structure of the Enterococcus faecalis EIIA(gnt) PTS component. Biochem Biophys Res Commun 2009; 388:626-9. [PMID: 19682976 DOI: 10.1016/j.bbrc.2009.08.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/07/2009] [Indexed: 11/29/2022]
Abstract
In Eubacteria, the utilization of a number of extracellular carbohydrates is mediated by sugar specific phosphoenolepyruvate (PEP) dependent sugar phosphotransferase systems (PTSs), which simultaneously import und phosphorylate their target sugars. Here, we report the crystal structure of the EIIA(gnt) component of the so far little investigated Enterococcus faecalis gluconate specific PTS. The crystal structure shows a tightly interacting dimer of EIIA(gnt) which is structurally similar to the related EIIA(man) from Escherichia coli. Homology modeling of E. faecalis HPr, EIIB(man) and their complexes with EIIA(man) suggests that despite moderate sequence identity between EIIA(man) and EIIA(gnt), the active sites closely match the situation observed in the E. coli system with His-9 of EIIA(gnt) being the likely phosphoryl group carrier. We therefore propose that the phosphoryl transfer reactions involving EIIA(gnt) proceed according to a mechanism analog to the one described for E. coli EIIA(man).
Collapse
Affiliation(s)
- Stefan Reinelt
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
59
|
Suh JY, Cai M, Clore GM. Impact of phosphorylation on structure and thermodynamics of the interaction between the N-terminal domain of enzyme I and the histidine phosphocarrier protein of the bacterial phosphotransferase system. J Biol Chem 2008; 283:18980-9. [PMID: 18445588 PMCID: PMC2441543 DOI: 10.1074/jbc.m802211200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/28/2008] [Indexed: 11/06/2022] Open
Abstract
The structural and thermodynamic impact of phosphorylation on the interaction of the N-terminal domain of enzyme I (EIN) and the histidine phosphocarrier protein (HPr), the two common components of all branches of the bacterial phosphotransferase system, have been examined using NMR spectroscopy and isothermal titration calorimetry. His-189 is located at the interface of the alpha and alphabeta domains of EIN, resulting in rather widespread chemical shift perturbation upon phosphorylation, in contrast to the highly localized perturbations seen for HPr, where His-15 is fully exposed to solvent. Residual dipolar coupling measurements, however, demonstrate unambiguously that no significant changes in backbone conformation of either protein occur upon phosphorylation: for EIN, the relative orientation of the alpha and alphabeta domains remains unchanged; for HPr, the backbone /Psi torsion angles of the active site residues are unperturbed within experimental error. His --> Glu/Asp mutations of the active site histidines designed to mimic the phosphorylated states reveal binding equilibria that favor phosphoryl transfer from EIN to HPr. Although binding of phospho-EIN to phospho-HPr is reduced by a factor of approximately 21 relative to the unphosphorylated complex, residual dipolar coupling measurements reveal that the structures of the unphosphorylated and biphosphorylated complexes are the same. Hence, the phosphorylation states of EIN and HPr shift the binding equilibria predominantly by modulating intermolecular electrostatic interactions without altering either the backbone scaffold or binding interface. This facilitates highly efficient phosphoryl transfer between EIN and HPr, which is estimated to occur at a rate of approximately 850 s(-1) from exchange spectroscopy.
Collapse
Affiliation(s)
- Jeong-Yong Suh
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
60
|
Comas I, González-Candelas F, Zúñiga M. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context. BMC Evol Biol 2008; 8:147. [PMID: 18485189 PMCID: PMC2405797 DOI: 10.1186/1471-2148-8-147] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 05/16/2008] [Indexed: 01/16/2023] Open
Abstract
Background The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc) components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT) also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria including the development of a novel carbon catabolite repression system. Hence, this example illustrates that HGT can drive major physiological modifications in bacteria.
Collapse
Affiliation(s)
- Iñaki Comas
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain.
| | | | | |
Collapse
|
61
|
Hu J, Hu K, Williams DC, Komlosh ME, Cai M, Clore GM. Solution NMR structures of productive and non-productive complexes between the A and B domains of the cytoplasmic subunit of the mannose transporter of the Escherichia coli phosphotransferase system. J Biol Chem 2008; 283:11024-37. [PMID: 18270202 PMCID: PMC2447639 DOI: 10.1074/jbc.m800312200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Indexed: 11/06/2022] Open
Abstract
Solution structures of complexes between the isolated A (IIA(Man)) and B (IIB(Man)) domains of the cytoplasmic component of the mannose transporter of Escherichia coli have been solved by NMR. The complex of wild-type IIA(Man) and IIB(Man) is a mixture of two species comprising a productive, phosphoryl transfer competent complex and a non-productive complex with the two active site histidines, His-10 of IIA(Man) and His-175 of IIB(Man), separated by approximately 25A. Mutation of the active site histidine, His-10, of IIA(Man) to a glutamate, to mimic phosphorylation, results in the formation of a single productive complex. The apparent equilibrium dissociation constants for the binding of both wild-type and H10E IIA(Man) to IIB(Man) are approximately the same (K(D) approximately 0.5 mM). The productive complex can readily accommodate a transition state involving a pentacoordinate phosphoryl group with trigonal bipyramidal geometry bonded to the Nepsilon2 atom of His-10 of IIA(Man) and the Ndelta1 atom of His-175 of IIB(Man) with negligible (<0.2A) local backbone conformational changes in the immediate vicinity of the active site. The non-productive complex is related to the productive one by a approximately 90 degrees rotation and approximately 37A translation of IIB(Man) relative to IIA(Man), leaving the active site His-175 of IIB(Man) fully exposed to solvent in the non-productive complex. The interaction surface on IIA(Man) for the non-productive complex comprises a subset of residues used in the productive complex and in both cases involves both subunits of IIA(Man). The selection of the productive complex by IIA(Man)(H10E) can be attributed to neutralization of the positively charged Arg-172 of IIB(Man) at the center of the interface. The non-productive IIA(Man)-IIB(Man) complex may possibly be relevant to subsequent phosphoryl transfer from His-175 of IIB(Man) to the incoming sugar located on the transmembrane IIC(Man)-IID(Man) complex.
Collapse
Affiliation(s)
- Jun Hu
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
62
|
Aboulwafa M, Saier MH. Characterization of the E. coli glucose permease fused to the maltose-binding protein. J Basic Microbiol 2008; 48:3-9. [PMID: 18247392 DOI: 10.1002/jobm.200700263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ptsG gene that encodes the major glucose transporter of Escherichia coli, II Glc, was inserted into a pMALE-amp r expression vector down-stream of the malE gene which encodes the E. coli maltose-binding protein (MBP). II Glc-MBP in the 2 h high speed supernatant of cell lysates eluted from a gel filtration column showing two activity peaks. The glucose-6-phosphate-dependent transphosphorylation (TP) activity of the membrane bound oligomeric peak 1 showed substrate inhibition while that of the soluble monomeric peak 2 did not. Purification of peak 2 yielded activity with weak substrate inhibition, and further gel filtration analyses showed that upon purification, some of the monomeric II Glc-MBP associated to higher molecular size forms. Assays of the phosphoenolpyruvate-dependent and transphosphorylation reactions showed that the specific activity of the purified enzyme from peak 1 was approximately double that from peak 2. The results show that the monomeric II Glc-MBP exhibits no substrate inhibition although the oligomeric form does. Purification promotes subunit association, an increase in catalytic activity, and restoration of substrate inhibition.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
63
|
Kogure T, Wakisaka N, Takaku H, Takagi M. Efficient production of 2-deoxy-scyllo-inosose from d-glucose by metabolically engineered recombinant Escherichia coli. J Biotechnol 2007; 129:502-9. [PMID: 17368605 DOI: 10.1016/j.jbiotec.2007.01.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 01/09/2007] [Accepted: 01/22/2007] [Indexed: 11/26/2022]
Abstract
2-Deoxy-scyllo-inosose (DOI) is a six-membered carbocycle formed from d-glucose-6-phosphate catalyzed by 2-deoxy-scyllo-inosose synthase (DOIS), a key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminocyclitol antibiotics. DOI is valuable as a starting material for the benzene-free synthesis of catechol and other benzenoids. We constructed a series of metabolically engineered Escherichia coli strains by introducing a DOIS gene (btrC) from Bacillus circulans and disrupting genes for phosphoglucose isomerase, d-glucose-6-phosphate dehydrogenase, and phosphoglucomutase (pgi, zwf and pgm, respectively). It was found that deletion of the pgi gene, pgi and zwf genes, pgi and pgm genes, or all pgi, zwf and pgm genes significantly improved DOI production by recombinant E. coli in 2YTG medium (3% glucose) up to 7.4, 6.1, 11.6, and 8.4 g l(-1), respectively, compared with that achieved by wild-type recombinant E. coli (1.5 g l(-1)). Moreover, E. coli mutants with disrupted pgi, zwf and pgm genes showed strongly enhanced DOI productivity of up to 29.5 g l(-1) (99% yield) in the presence of mannitol as a supplemental carbon source. These results demonstrated that DOI production by metabolically engineered recombinant E. coli may provide a novel, efficient approach to the production of benzenoids from renewable d-glucose.
Collapse
Affiliation(s)
- Takahisa Kogure
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Niitsu, Niigata 956-8603, Japan
| | | | | | | |
Collapse
|
64
|
Suh JY, Iwahara J, Clore GM. Intramolecular domain-domain association/dissociation and phosphoryl transfer in the mannitol transporter of Escherichia coli are not coupled. Proc Natl Acad Sci U S A 2007; 104:3153-8. [PMID: 17360622 PMCID: PMC1805604 DOI: 10.1073/pnas.0609103104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli mannitol transporter (II(Mtl)) comprises three domains connected by flexible linkers: a transmembrane domain (C) and two cytoplasmic domains (A and B). II(Mtl) catalyzes three successive phosphoryl-transfer reactions: one intermolecular (from histidine phosphocarrier protein to the A domain) and two intramolecular (from the A to the B domain and from the B domain to the incoming sugar bound to the C domain). A key functional requirement of II(Mtl) is that the A and B cytoplasmic domains be able to rapidly associate and dissociate while maintaining reasonably high occupancy of an active stereospecific AB complex to ensure effective phosphoryl transfer along the pathway. We have investigated the rate of intramolecular domain-domain association and dissociation in IIBA(Mtl) by using (1)H relaxation dispersion spectroscopy in the rotating frame. The open, dissociated state (comprising an ensemble of states) and the closed, associated state (comprising the stereospecific complex) are approximately equally populated. The first-order rate constants for intramolecular association and dissociation are 1.7 (+/-0.3) x 10(4) and 1.8 (+/-0.4) x 10(4) s(-1), respectively. These values compare to rate constants of approximately 500 s(-1) for A --> B and B --> A phosphoryl transfer, derived from qualitative line-shape analysis of (1)H-(15)N correlation spectra taken during the course of active catalysis. Thus, on average, approximately 80 association/dissociation events are required to effect a single phosphoryl-transfer reaction. We conclude that intramolecular phosphoryl transfer between the A and B domains of II(Mtl) is rate-limited by chemistry and not by the rate of formation or dissociation of a stereospecific complex in which the active sites are optimally apposed.
Collapse
Affiliation(s)
- Jeong-Yong Suh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Junji Iwahara
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
65
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1040] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
66
|
Erni B. The mannose transporter complex: an open door for the macromolecular invasion of bacteria. J Bacteriol 2006; 188:7036-8. [PMID: 17015642 PMCID: PMC1636239 DOI: 10.1128/jb.01074-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Bernhard Erni
- Department of Chemistry and Biochemistry, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
67
|
Volpon L, Young CR, Matte A, Gehring K. NMR structure of the enzyme GatB of the galactitol-specific phosphoenolpyruvate-dependent phosphotransferase system and its interaction with GatA. Protein Sci 2006; 15:2435-41. [PMID: 16963640 PMCID: PMC2242383 DOI: 10.1110/ps.062337406] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The phosphoenolpyruvate-dependent carbohydrate transport system (PTS) couples uptake with phosphorylation of a variety of carbohydrates in prokaryotes. In this multienzyme complex, the enzyme II (EII), a carbohydrate-specific permease, is constituted of two cytoplasmic domains, IIA and IIB, and a transmembrane channel IIC domain. Among the five families of EIIs identified in Escherichia coli, the galactitol-specific transporter (II(gat)) belongs to the glucitol family and is structurally the least well-characterized. Here, we used nuclear magnetic resonance (NMR) spectroscopy to solve the three-dimensional structure of the IIB subunit (GatB). GatB consists of a central four-stranded parallel beta-sheet flanked by alpha-helices on both sides; the active site cysteine of GatB is located at the beginning of an unstructured loop between beta1 and alpha1 that folds into a P-loop-like structure. This structural arrangement shows similarities with other IIB subunits but also with mammalian low molecular weight protein tyrosine phosphatases (LMW PTPase) and arsenate reductase (ArsC). An NMR titration was performed to identify the GatA-interacting residues.
Collapse
Affiliation(s)
- Laurent Volpon
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| | | | | | | |
Collapse
|
68
|
Christen S, Srinivas A, Bähler P, Zeller A, Pridmore D, Bieniossek C, Baumann U, Erni B. Regulation of the Dha Operon of Lactococcus lactis. J Biol Chem 2006; 281:23129-37. [PMID: 16760471 DOI: 10.1074/jbc.m603486200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dihydroxyacetone (Dha) kinases are a novel family of kinases with signaling and metabolic functions. Here we report the x-ray structures of the transcriptional activator DhaS and the coactivator DhaQ and characterize their function. DhaQ is a paralog of the Dha binding Dha kinase subunit; DhaS belongs to the family of TetR repressors although, unlike all known members of this family, it is a transcriptional activator. DhaQ and DhaS form a stable complex that in the presence of Dha activates transcription of the Lactococcus lactis dha operon. Dha covalently binds to DhaQ through a hemiaminal bond with a histidine and thereby induces a conformational change, which is propagated to the surface via a cantilever-like structure. DhaS binding protects an inverted repeat whose sequence is GGACACATN6ATTTGTCC and renders two GC base pairs of the operator DNA hypersensitive to DNase I cleavage. The proximal half-site of the inverted repeat partially overlaps with the predicted -35 consensus sequence of the dha promoter.
Collapse
Affiliation(s)
- Sandra Christen
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Pikis A, Hess S, Arnold I, Erni B, Thompson J. Genetic requirements for growth of Escherichia coli K12 on methyl-alpha-D-glucopyranoside and the five alpha-D-glucosyl-D-fructose isomers of sucrose. J Biol Chem 2006; 281:17900-8. [PMID: 16636060 DOI: 10.1074/jbc.m601183200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Strains of Escherichia coli K12, including MG-1655, accumulate methyl-alpha-D-glucopyranoside via the phosphoenolpyruvate-dependent glucose:phosphotransferase system (IICB(Glc)/IIA(Glc)). High concentrations of intracellular methyl-alpha-D-glucopyranoside 6-phosphate are toxic, and cell growth is prevented. However, transformation of E. coli MG-1655 with a plasmid (pAP1) encoding the gene aglB from Klebsiella pneumoniae resulted in excellent growth of the transformant MG-1655 (pAP1) on the glucose analog. AglB is an unusual NAD+/Mn2+-dependent phospho-alpha-glucosidase that promotes growth of MG-1655 (pAP1) by catalyzing the in vivo hydrolysis of methyl-alpha-D-glucopyranoside 6-phosphate to yield glucose 6-phosphate and methanol. When transformed with plasmid pAP2 encoding the K. pneumoniae genes aglB and aglA (an alpha-glucoside-specific transporter AglA (IICB(Agl))), strain MG-1655 (pAP2) metabolized a variety of other alpha-linked glucosides, including maltitol, isomaltose, and the following five isomers of sucrose: trehalulose alpha(1-->1), turanose alpha(1-->3), maltulose alpha(1-->4), leucrose alpha(1-->5), and palatinose alpha(1-->6). Remarkably, MG-1655 (pAP2) failed to metabolize sucrose alpha(1-->2). The E. coli K12 strain ZSC112L (ptsG::cat manXYZ nagE glk lac) can neither grow on glucose nor transport methyl-alpha-D-glucopyranoside. However, when transformed with pTSGH11 (encoding ptsG) or pAP2, this organism provided membranes that contained either the PtsG or AglA transporters, respectively. In vitro complementation of transporter-specific membranes with purified general phosphotransferase components showed that although PtsG and AglA recognized glucose and methyl-alpha-D-glucopyranoside, only AglA accepted other alpha-D-glucosides as substrates. Complementation experiments also revealed that IIA(Glc) was required for functional activity of both PtsG and AglA transporters. We conclude that AglA, AglB, and IIA(Glc) are necessary and sufficient for growth of E. coli K12 on methyl-alpha-D-glucoside and related alpha-D-glucopyranosides.
Collapse
Affiliation(s)
- Andreas Pikis
- Microbial Biochemistry and Genetics Unit, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research/NIH, Bldg. 30, Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
70
|
Jeong H, Yim JH, Lee C, Choi SH, Park YK, Yoon SH, Hur CG, Kang HY, Kim D, Lee HH, Park KH, Park SH, Park HS, Lee HK, Oh TK, Kim JF. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res 2005; 33:7066-73. [PMID: 16352867 PMCID: PMC1312362 DOI: 10.1093/nar/gki1016] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Harmful algal blooms, caused by rapid growth and accumulation of certain microalgae in the ocean, pose considerable impacts on marine environments, aquatic industries and even public health. Here, we present the 7.2-megabase genome of the marine bacterium Hahella chejuensis including genes responsible for the biosynthesis of a pigment which has the lytic activity against a red-tide dinoflagellate. H.chejuensis is the first sequenced species in the Oceanospiralles clade, and sequence analysis revealed its distant relationship to the Pseudomonas group. The genome was well equipped with genes for basic metabolic capabilities and contained a large number of genes involved in regulation or transport as well as with characteristics as a marine heterotroph. Sequence analysis also revealed a multitude of genes of functional equivalence or of possible foreign origin. Functions encoded in the genomic islands include biosynthesis of exopolysacchrides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigmentation. Molecular structure of the algicidal pigment, which was determined through LC-ESI-MS/MS and NMR analyses, indicated that it is prodigiosin. In conclusion, our work provides new insights into mitigating algal blooms in addition to genetic make-up, physiology, biotic interactions and biological roles in the community of a marine bacterium.
Collapse
Affiliation(s)
| | - Joung Han Yim
- Korea Polar Research Institute, KORDIPO Box 29, Ansan, Seoul 425-600, Republic of Korea
| | - Choonghwan Lee
- Division of Drug Discovery, Korea Research Institute of Bioscience and Biotechnology (KRIBB)PO Box 115, Yuseong, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | - Dockyu Kim
- Division of Drug Discovery, Korea Research Institute of Bioscience and Biotechnology (KRIBB)PO Box 115, Yuseong, Daejeon 305-600, Republic of Korea
| | | | | | | | | | - Hong Kum Lee
- Korea Polar Research Institute, KORDIPO Box 29, Ansan, Seoul 425-600, Republic of Korea
| | - Tae Kwang Oh
- 21C Frontier Microbial Genomics and Applications Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)PO Box 115, Yuseong, Daejeon 305-600, Republic of Korea
| | - Jihyun F. Kim
- To whom correspondence should be addressed. Tel: +82 42 860 4412; Fax: +82 42 879 8595;
| |
Collapse
|
71
|
Meadow ND, Savtchenko RS, Nezami A, Roseman S. Transient State Kinetics of Enzyme IICBGlc, a Glucose Transporter of the Phosphoenolpyruvate Phosphotransferase System of Escherichia coli. J Biol Chem 2005; 280:41872-80. [PMID: 16204242 DOI: 10.1074/jbc.m501440200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During translocation across the cytoplasmic membrane of Escherichia coli, glucose is phosphorylated by phospho-IIA(Glc) and Enzyme IICB(Glc), the last two proteins in the phosphotransfer sequence of the phosphoenolpyruvate:glucose phosphotransferase system. Transient state (rapid quench) methods were used to determine the second order rate constants that describe the phosphotransfer reactions (phospho-IIA(Glc) to IICB(Glc) to Glc) and also the second order rate constants for the transfer from phospho-IIA(Glc) to molecularly cloned IIB(Glc), the soluble, cytoplasmic domain of IICB(Glc). The rate constants for the forward and reverse phosphotransfer reactions between IIA(Glc) and IICB(Glc) were 3.9 x 10(6) and 0.31 x 10(6) m(-1) s(-1), respectively, and the rate constant for the physiologically irreversible reaction between [P]IICB(Glc) and Glc was 3.2 x 10(6) m(-1) s(-1). From the rate constants, the equilibrium constants for the transfer of the phospho-group from His90 of [P]IIA(Glc) to the phosphorylation site Cys of IIB(Glc) or IICB(Glc) were found to be 3.5 and 12, respectively. These equilibrium constants signify that the thiophospho-group in these proteins has a high phosphotransfer potential, similar to that of the phosphohistidinyl phosphotransferase system proteins. In these studies, preparations of IICB(Glc) were invariably found to contain endogenous, firmly bound Glc (estimated K'(D) approximately 10(-7) m). The bound Glc was kinetically competent and was rapidly phosphorylated, indicating that IICB(Glc) has a random order, Bi Bi, substituted enzyme mechanism. The equilibrium constant for the binding of Glc was deduced from differences in the statistical goodness of fit of the phosphotransfer data to the kinetic model.
Collapse
Affiliation(s)
- Norman D Meadow
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
72
|
Klingenberg M. Ligand−Protein Interaction in Biomembrane Carriers. The Induced Transition Fit of Transport Catalysis†. Biochemistry 2005; 44:8563-70. [PMID: 15952762 DOI: 10.1021/bi050543r] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carrier-linked transport through biomembranes is treated under the view of catalysis. As in enzymes, substrate-protein interaction yields catalytic energy in overcoming the activation barrier. At variance with enzymes, catalytic energy is concentrated on structural changes of the carrier rather than on the substrate destabilization for facilitating the global protein rearrangements during transport. A transition state is invoked in which the binding site assumes the best fit to the substrate, whereas in the two ground (internal and external) states, the fit is poor. The maximum binding energy released in the transition state provides catalytic energy to enable the large carrier protein transformations associated with transport. This "induced transition fit" (ITF) of carrier catalysis provides a framework of rules, concerning specificity, unidirectional versus exchange type transport, directing inhibitors to the ground state instead of the transition state, and excluding simultaneous chemical and transport catalysis (vectorial group translocation). The possible role of external energy sources (ATP and Deltapsi) in supplementing the catalytic energy is elucidated. The analysis of the structure-function relationship based on new carrier structures may be challenged to account for the workings of the ITF.
Collapse
Affiliation(s)
- Martin Klingenberg
- Institute of Physiological Chemistry, University of Munich, Schillerstrasse 44, 80336 Munich, Germany.
| |
Collapse
|
73
|
Williams DC, Cai M, Suh JY, Peterkofsky A, Clore GM. Solution NMR structure of the 48-kDa IIAMannose-HPr complex of the Escherichia coli mannose phosphotransferase system. J Biol Chem 2005; 280:20775-84. [PMID: 15788390 PMCID: PMC1357268 DOI: 10.1074/jbc.m501986200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The solution structure of the 48-kDa IIA(Man)-HPr complex of the mannose branch of the Escherichia coli phosphotransferase system has been solved by NMR using conjoined rigid body/torsion angle-simulated annealing on the basis of intermolecular nuclear Overhauser enhancement data and residual dipolar couplings. IIA(Man) is dimeric and has two symmetrically related binding sites per dimer for HPr. A convex surface on HPr, formed primarily by helices 1 and 2, interacts with a deep groove at the interface of the two subunits of IIA(Man). The interaction surface on IIA(Man) is predominantly helical, comprising helix 3 from the subunit that bears the active site His-10 and helices 1, 4, and 5 from the other subunit. The total buried accessible surface area at the protein-protein interface is 1450 A(2). The binding sites on the two proteins are complementary in terms of shape and distribution of hydrophobic, hydrophilic, and charged residues. The active site histidines, His-10 of IIA(Man) and His-15 (italics indicate HPr residues) of HPr, are in close proximity. An associative transition state involving a pentacoordinate phosphoryl group with trigonal bipyramidal geometry bonded to the N-epsilon2 atom of His-10 and the N-delta1 atom of His-15 can be readily formed with negligible displacement in the backbone coordinates of the residues immediately adjacent to the active site histidines. Comparing the structures of complexes of HPr with three other structurally unrelated phosphotransferase system proteins, enzymes I, IIA(glucose), and IIA(mannitol), reveals a number of common features that provide a molecular basis for understanding how HPr specifically recognizes a wide range of diverse proteins.
Collapse
Affiliation(s)
| | - Mengli Cai
- From the Laboratory of Chemical Physics, NIDDK, and the
| | | | - Alan Peterkofsky
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
74
|
Yagur-Kroll S, Amster-Choder O. Dynamic Membrane Topology of the Escherichia coli β-Glucoside Transporter BglF. J Biol Chem 2005; 280:19306-18. [PMID: 15755739 DOI: 10.1074/jbc.m410896200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli BglF protein, a permease of the phosphoenolpyruvate-dependent phosphotransferase system, catalyzes transport and phosphorylation of beta-glucosides. In addition, BglF regulates bgl operon expression by controlling the activity of the transcriptional regulator BglG via reversible phosphorylation. BglF is composed of three domains; one is hydrophobic, which presumably forms the sugar translocation channel. We studied the topology of this domain by Cys-replacement mutagenesis and chemical modification by thiol reagents. Most Cys substitutions were well tolerated, as demonstrated by the ability of the mutant proteins to catalyze BglF activities. Our results suggest that the membrane domain contains eight transmembrane helices and an alleged cytoplasmic loop that contains two additional helices. The latter region forms a dynamic structure, as evidenced by the alternation of residues near its ends between faced-in and faced-out states. We suggest that this region, together with the two transmembrane helices encompassing it, forms the sugar translocation channel. BglF periplasmic loops are close to the membrane, the first being a reentrant loop. This is the first systematic topological study carried out with an intact phosphotransferase system permease and the first demonstration of a reentrant loop in this group of proteins.
Collapse
Affiliation(s)
- Sharon Yagur-Kroll
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
75
|
Bächler C, Flükiger-Brühwiler K, Schneider P, Bähler P, Erni B. From ATP as substrate to ADP as coenzyme: functional evolution of the nucleotide binding subunit of dihydroxyacetone kinases. J Biol Chem 2005; 280:18321-5. [PMID: 15753087 DOI: 10.1074/jbc.m500279200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dihydroxyacetone kinases are a family of sequence-related enzymes that utilize either ATP or a protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) as a source of high energy phosphate. The PTS is a multicomponent system involved in carbohydrate uptake and control of carbon metabolism in bacteria. Phylogenetic analysis suggests that the PTS-dependent dihydroxyacetone kinases evolved from an ATP-dependent ancestor. Their nucleotide binding subunit, an eight-helix barrel of regular up-down topology, retains ADP as phosphorylation site for the double displacement of phosphate from a phospho-histidine of the PTS protein to dihydroxyacetone. ADP is bound essentially irreversibly with a t((1/2)) of 100 min. Complexation with ADP increases the thermal unfolding temperature of dihydroxyacetone L from 40 (apo-form) to 65 degrees C (holoenzyme). ADP assumes the same role as histidines, cysteines, and aspartic acids in histidine kinases and PTS proteins. This conversion of a substrate binding site into a cofactor binding site reflects a remarkable instance of parsimonious evolution.
Collapse
Affiliation(s)
- Christoph Bächler
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
76
|
Tang C, Williams DC, Ghirlando R, Clore GM. Solution Structure of Enzyme IIAChitobiose from the N,N′-Diacetylchitobiose Branch of the Escherichia coli Phosphotransferase System. J Biol Chem 2005; 280:11770-80. [PMID: 15654077 DOI: 10.1074/jbc.m414300200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The solution structure of trimeric Escherichia coli enzyme IIA(Chb) (34 kDa), a component of the N,N'-diacetylchitobiose/lactose branch of the phosphotransferase signal transduction system, has been determined by NMR spectroscopy. Backbone residual dipolar couplings were used to provide long range orientational restraints, and long range (|i - j| > or = 5 residues) nuclear Overhauser enhancement restraints were derived exclusively from samples in which at least one subunit was 15N/13C/2H/(Val-Leu-Ile)-methyl-protonated. Each subunit consists of a three-helix bundle. Hydrophobic residues lining helix 3 of each subunit are largely responsible for the formation of a parallel coiled-coil trimer. The active site histidines (His-89 from each subunit) are located in three symmetrically placed deep crevices located at the interface of two adjacent subunits (A and C, C and B, and B and A). Partially shielded from bulk solvent, structural modeling suggests that phosphorylated His-89 is stabilized by electrostatic interactions with the side chains of His-93 from the same subunit and Gln-91 from the adjacent subunit. Comparison with the x-ray structure of Lactobacillus lactis IIA(Lac) reveals some substantial structural differences, particularly in regard to helix 3, which exhibits a 40 degrees kink in IIA(Lac) versus a 7 degrees bend in IIA(Chb). This is associated with the presence of an unusually large (230-angstroms3) buried hydrophobic cavity at the trimer interface in IIA(Lac) that is reduced to only 45 angstroms3) in IIA(Chb).
Collapse
Affiliation(s)
- Chun Tang
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | |
Collapse
|
77
|
Aboulwafa M, Saier MH. Characterization of soluble enzyme II complexes of the Escherichia coli phosphotransferase system. J Bacteriol 2005; 186:8453-62. [PMID: 15576795 PMCID: PMC532404 DOI: 10.1128/jb.186.24.8453-8462.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid-encoded His-tagged glucose permease of Escherichia coli, the enzyme IIBCGlc (IIGlc), exists in two physical forms, a membrane-integrated oligomeric form and a soluble monomeric form, which separate from each other on a gel filtration column (peaks 1 and 2, respectively). Western blot analyses using anti-His tag monoclonal antibodies revealed that although IIGlc from the two fractions migrated similarly in sodium dodecyl sulfate gels, the two fractions migrated differently on native gels both before and after Triton X-100 treatment. Peak 1 IIGlc migrated much more slowly than peak 2 IIGlc. Both preparations exhibited both phosphoenolpyruvate-dependent sugar phosphorylation activity and sugar phosphate-dependent sugar transphosphorylation activity. The kinetics of the transphosphorylation reaction catalyzed by the two IIGlc fractions were different: peak 1 activity was subject to substrate inhibition, while peak 2 activity was not. Moreover, the pH optima for the phosphoenolpyruvate-dependent activities differed for the two fractions. The results provide direct evidence that the two forms of IIGlc differ with respect to their physical states and their catalytic activities. These general conclusions appear to be applicable to the His-tagged mannose permease of E. coli. Thus, both phosphoenolpyruvate-dependent phosphotransferase system enzymes exist in soluble and membrane-integrated forms that exhibit dissimilar physical and kinetic properties.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
78
|
Vadyvaloo V, Snoep JL, Hastings JW, Rautenbach M. Physiological implications of class IIa bacteriocin resistance in Listeria monocytogenes strains. MICROBIOLOGY-SGM 2004; 150:335-340. [PMID: 14766911 DOI: 10.1099/mic.0.26731-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High-level resistance to class IIa bacteriocins has been directly associated with the absent EIIAB(Man) (MptA) subunit of the mannose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS) (EIIt(MAN)) in Listeria monocytogenes strains. Class IIa bacteriocin-resistant strains used in this study were a spontaneous resistant, L. monocytogenes B73-MR1, and a defined mutant, L. monocytogenes EGDe-mptA. Both strains were previously reported to have the EIIAB(Man) PTS component missing. This study shows that these class IIa bacteriocin-resistant strains have significantly decreased specific growth and glucose consumption rates, but they also have a significantly higher growth yield than their corresponding wild-type strains, L. monocytogenes B73 and L. monocytogenes EGDe, respectively. In the presence of glucose, the strains showed a shift from a predominantly lactic-acid to a mixed-acid fermentation. It is here proposed that elimination of the EIIAB(Man) in the resistant strains has caused a reduced glucose consumption rate and a reduced specific growth rate. The lower glucose consumption rate can be correlated to a shift in metabolism to a more efficient pathway with respect to ATP production per glucose, leading to a higher biomass yield. Thus, the cost involved in obtaining bacteriocin resistance, i.e. losing substrate transport capacity leading to a lower growth rate, is compensated for by a higher biomass yield.
Collapse
Affiliation(s)
- Viveka Vadyvaloo
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| | - John W Hastings
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| | - Marina Rautenbach
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| |
Collapse
|
79
|
Lakaye B, Wirtzfeld B, Wins P, Grisar T, Bettendorff L. Thiamine triphosphate, a new signal required for optimal growth of Escherichia coli during amino acid starvation. J Biol Chem 2004; 279:17142-7. [PMID: 14769791 DOI: 10.1074/jbc.m313569200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thiamine triphosphate (ThTP) is present in low amounts in most organisms from bacteria to humans, but its biological role remains unknown. Escherichia coli grown aerobically in LB medium contain no detectable amounts of ThTP, but when they are transferred to M9 minimal medium with a substrate such as glucose or pyruvate, there is a rapid but transient accumulation of relatively high amounts of ThTP (about 20% of total thiamine). If a mixture of amino acids is present in addition to glucose, ThTP accumulation is impaired, suggesting that the latter may occur in response to amino acid starvation. To test the importance of ThTP for bacterial growth, we used an E. coli strain overexpressing a specific human recombinant thiamine triphosphatase as a glutathione S-transferase (GST) fusion protein (GST-ThTPase). Those bacteria were unable to accumulate measurable amounts of ThTP. On minimal medium supplemented with glucose, pyruvate, or acetate, they exhibited an intermediate plateau in cell growth compared with control bacteria expressing GST alone or a GST fusion protein unrelated to thiamine metabolism. These results suggest that the early accumulation of ThTP initiates a reaction cascade involved in the adaptation of bacteria to stringent conditions such as amino acid starvation. This is the first demonstration of a physiological role of this ubiquitous compound in any organism.
Collapse
Affiliation(s)
- Bernard Lakaye
- Center for Cellular and Molecular Neurobiology, University of Liège, 17, place Delcour, 4020 Liège, Belgium
| | | | | | | | | |
Collapse
|
80
|
Cai M, Williams DC, Wang G, Lee BR, Peterkofsky A, Clore GM. Solution structure of the phosphoryl transfer complex between the signal-transducing protein IIAGlucose and the cytoplasmic domain of the glucose transporter IICBGlucose of the Escherichia coli glucose phosphotransferase system. J Biol Chem 2003; 278:25191-206. [PMID: 12716891 DOI: 10.1074/jbc.m302677200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The solution structure of the final phosphoryl transfer complex in the glucose-specific arm of the Escherichia coli phosphotransferase system, between enzyme IIAGlucose (IIAGlc) and the cytoplasmic B domain (IIBGlc) of the glucose transporter IICBGlc, has been solved by NMR. The interface (approximately 1200-A2 buried surface) is formed by the interaction of a concave depression on IIAGlc with a convex protrusion on IIBGlc. The phosphoryl donor and acceptor residues, His-90 of IIAGlc and Cys-35 of IIBGlc (residues of IIBGlc are denoted in italics) are in close proximity and buried at the center of the interface. Cys-35 is primed for nucleophilic attack on the phosphorus atom by stabilization of the thiolate anion (pKa approximately 6.5) through intramolecular hydrogen bonding interactions with several adjacent backbone amide groups. Hydrophobic intermolecular contacts are supplemented by peripheral electrostatic interactions involving an alternating distribution of positively and negatively charged residues on the interaction surfaces of both proteins. Salt bridges between the Asp-38/Asp-94 pair of IIAGlc and the Arg-38/Arg-40 pair of IIBGlc neutralize the accumulation of negative charge in the vicinity of both the Sgamma atom of Cys-35 and the phosphoryl group in the complex. A pentacoordinate phosphoryl transition state is readily accommodated without any change in backbone conformation, and the structure of the complex accounts for the preferred directionality of phosphoryl transfer between IIAGlc and IIBGlc. The structures of IIAGlc.IIBGlc and the two upstream complexes of the glucose phosphotransferase system (EI.HPr and IIAGlc.HPr) reveal a cascade in which highly overlapping binding sites on HPr and IIAGlc recognize structurally diverse proteins.
Collapse
Affiliation(s)
- Mengli Cai
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
81
|
Aboulwafa M, Saier MH. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidyl glycerol in Escherichia coli: studies with a pgsA mutant lacking phosphatidyl glycerophosphate synthase. Res Microbiol 2002; 153:667-77. [PMID: 12558186 DOI: 10.1016/s0923-2508(02)01376-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been reported that phosphatidyl glycerol (PG) is specifically required for the in vitro activities of the hexose-phosphorylating Enzymes II of the Escherichia coli phosphoenolpyruvate-dependent sugar transporting phosphotransferase system (PTS). We have examined this possibility by measuring the properties of a null pgsA mutant that lacks detectable PG. The mutant showed lower in vitro phosphorylation activities towards several sugars when both PEP-dependent and sugar-phosphate-dependent [14C]sugar phosphorylation reactions were measured. The order of dependency on PG for the different enzymes II was: IIMannose > IIGlucose > IIFructose > IIMannitol. Nonsedimentable (40000 rpm for 2 h) Enzymes II exhibited a greater dependency on PG than pelletable Enzymes II. Western blot analyses showed that the glucose Enzyme II is present in normal amounts. Transport and fermentation measurements revealed diminished activities for all Enzymes II. Thermal stability of all of these enzymes except the mannitol-specific Enzyme II was significantly decreased by the pgsA mutation, and sensitivity to detergent treatments was enhanced. Sugar transport proved to be the most sensitive indicator of proper Enzyme II-phospholipid association. Our results show that PG stimulates but is not required for Enzyme II function in E. coli.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
82
|
Nagakubo S, Nishino K, Hirata T, Yamaguchi A. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 2002; 184:4161-7. [PMID: 12107133 PMCID: PMC135206 DOI: 10.1128/jb.184.15.4161-4167.2002] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Overproduction of the response regulator BaeR confers resistance to novobiocin and bile salts in a DeltaacrAB mutant by stimulating drug exporter gene expression. The mdtABC (multidrug transporter ABC, formerly known as yegMNO) genes, which encode a resistance-nodulation-cell division (RND) drug efflux system, are responsible for resistance. The MdtABC system comprises the transmembrane MdtB/MdtC heteromultimer and MdtA membrane fusion protein. MdtAC also confers bile salt, but not novobiocin, resistance. This indicates that the evolution from an MdtC homomultimer to an MdtBC heteromultimer contributed to extend the drug resistance spectrum. A BLAST search suggested that such a heteromultimer-type RND exporter constitutes a unique family among gram-negative organisms.
Collapse
Affiliation(s)
- Satoshi Nagakubo
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki-shi, Japan
| | | | | | | |
Collapse
|