51
|
Roe JL, Durfee T, Zupan JR, Repetti PP, McLean BG, Zambryski PC. TOUSLED is a nuclear serine/threonine protein kinase that requires a coiled-coil region for oligomerization and catalytic activity. J Biol Chem 1997; 272:5838-45. [PMID: 9038200 DOI: 10.1074/jbc.272.9.5838] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The TOUSLED (TSL) gene is essential for the proper morphogenesis of leaves and flowers in Arabidopsis thaliana. Protein sequence analysis predicts TSL is composed of a carboxyl-terminal protein kinase catalytic domain and a large amino-terminal regulatory domain. TSL fusion proteins, expressed in and purified from yeast, were used to demonstrate TSL protein kinase activity in vitro. TSL trans-autophosphorylates on serine and threonine residues, and phosphorylates exogenous substrates. Using the yeast two-hybrid system, TSL was found to oligomerize via its NH2-terminal domain. A deletion series indicates that a region containing two alpha-helical segments predicted to participate in a coiled-coil structure is essential for oligomerization. TSL localizes to the nucleus in plant cells through an essential NH2-terminal nuclear localization signal; however, this signal is not necessary for protein kinase activity. Finally, deletion mutants demonstrate a strict correlation between catalytic activity and the ability to oligomerize, arguing that activation of the protein kinase requires interaction between TSL molecules.
Collapse
Affiliation(s)
- J L Roe
- Department of Plant Biology, University of California, Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Wu S, Kaufman RJ. A model for the double-stranded RNA (dsRNA)-dependent dimerization and activation of the dsRNA-activated protein kinase PKR. J Biol Chem 1997; 272:1291-6. [PMID: 8995434 DOI: 10.1074/jbc.272.2.1291] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Binding of double-stranded RNA (dsRNA) to PKR induces autophosphorylation and activation. However, the requirement for dsRNA in promoting dimerization and the requirement for dimerization in PKR activation are controversial. We have studied the dsRNA binding and dimerization requirements for the activation of PKR in vivo. Co-expression and immunoprecipitation experiments detected an interaction between the K296P mutant and a bacteriophage T7-epitope-tagged K64E mutant of dsRNA binding domain. In contrast, the K64E/K296P double mutant did not form a detectable dimer with the wild-type dsRNA binding domain. These results support that dimerization of intact PKR with the isolated dsRNA binding domain requires dsRNA binding activity. Expression of the isolated PKR kinase domain (residues 228-551) reduced translation of the reporter mRNA even in the presence of PKR inhibitors. Furthermore, the isolated kinase domain (residues 228-551) undergoes autophosphorylation and sequentially transphosphorylates both mutant K296P PKR and wild-type eIF-2alpha in vitro. In contrast, the isolated kinase domain (residues 264-551) lacking the third basic region was not active. These observations lead us to propose that the dsRNA binding domains on intact PKR inhibit kinase activity and that dsRNA binding to intact PKR induces a conformational change to expose dimerization sites within the dsRNA binding domain thereby promoting dimerization and facilitating trans-phosphorylation and activation.
Collapse
Affiliation(s)
- S Wu
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109, USA
| | | |
Collapse
|
53
|
Hiraoka J, Okano I, Higuchi O, Yang N, Mizuno K. Self-association of LIM-kinase 1 mediated by the interaction between an N-terminal LIM domain and a C-terminal kinase domain. FEBS Lett 1996; 399:117-21. [PMID: 8980133 DOI: 10.1016/s0014-5793(96)01303-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
LIM-kinase 1 (LIMK1) and 2 (LIMK2) are members of a novel class of protein kinases containing two LIM motifs at the N-terminus. The LIM motif is thought to be involved in protein-protein interactions. We report here evidence that LIMK1 self-associates and also associates with LIMK2. In vivo and in vitro binding analyses using variously deleted mutants of LIMKI revealed that the self-association of LIMK1 was caused by interaction between the N-terminal LIM domain and the C-terminal kinase domain. The association of LIMK1 with itself and with LIMK2 is important for understanding how activities and functions of LIMK family kinases are regulated.
Collapse
Affiliation(s)
- J Hiraoka
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
54
|
Langland JO, Langland LA, Browning KS, Roth DA. Phosphorylation of plant eukaryotic initiation factor-2 by the plant-encoded double-stranded RNA-dependent protein kinase, pPKR, and inhibition of protein synthesis in vitro. J Biol Chem 1996; 271:4539-44. [PMID: 8626809 DOI: 10.1074/jbc.271.8.4539] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Regulation of protein synthesis by eukaryotic initiation factor-2alpha (eIF-2alpha) phosphorylation is a highly conserved phenomenon in eukaryotes that occurs in response to various stress conditions. Protein kinases capable of phosphorylating eIF-2alpha have been characterized from mammals and yeast. However, the phenomenon of eIF2-alpha-mediated regulation of protein synthesis and the presence of an eIF-2alpha kinase has not been demonstrated in higher plants. We show that plant eIF-2alpha (peIF-2alpha) and mammalian eIF-2alpha (meIF-2alpha) are phosphorylated similarly by both the double-stranded RNA-binding kinase, pPKR, present in plant ribosome salt wash fractions and the meIF-2alpha kinase, PKR. By several criteria, phosphorylation of peIF-2alpha is directly correlated with pPKR protein and autophosphorylation levels. Significantly, pPKR is capable of specifically phosphorylating Ser51 in a synthetic eIF-2alpha peptide, a key characteristic of the eIF-2alpha kinase family. Taken together, these data support the concept that pPKR is a member of the eIF-2alpha kinase family. In addition, the inhibition of brome mosaic virus RNA in vitro translation in wheat germ lysates by the addition of double-stranded RNA, phosphorylated peIF-2alpha, meIF-2alpha, or activated human PKR suggests that plant protein synthesis may be regulated via phosphorylation of eIF-2alpha.
Collapse
Affiliation(s)
- J O Langland
- Department of Plant, Soil, and Insect Sciences, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | |
Collapse
|
55
|
Wu S, Kaufman RJ. Double-stranded (ds) RNA binding and not dimerization correlates with the activation of the dsRNA-dependent protein kinase (PKR). J Biol Chem 1996; 271:1756-63. [PMID: 8576179 DOI: 10.1074/jbc.271.3.1756] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Upon binding to double-stranded (ds) RNA, the dsRNA-dependent protein kinase (PKR) sequentially undergoes autophosphorylation and activation. Activated PKR may exist as a dimer and phosphorylates the eukaryotic translation initiation factor 2 alpha subunit (cIF-2 alpha) to inhibit polypeptide chain initiation. Transfection of COS-1 cells with a plasmid cDNA expression vector encoding a marker gene, activates endogenous PKR, and selectively inhibits translation of the marker mRNA, dihydrofolate reductase (DHFR). This system was used to study the dsRNA binding and dimerization requirements for over-expressed PKR mutants and subdomains to affect DHFR translation. DHFR translation was rescued by expression of either an ATP hydrolysis defective mutant PKR K296P, the amino-terminal 1-243 fragment containing two dsRNA binding motifs, or the isolated first RNA binding motif (amino acids 1-123). Mutation of K64E within the dsRNA binding motif 1 destroyed dsRNA binding and the ability to rescue DHFR translation. Immunoprecipitation of T7 epitope-tagged PKR derivatives from cell lysates detected interaction between intact PKR and the amino-terminal 1-243 fragment as well as a 1-243 fragment harboring the K64E mutation. Expression of adenovirus VAI RNA, a potent inhibitor of PKR activity, did not disrupt this interaction. In contrast, intact PKR did not interact with fragments containing the first dsRNA binding motif (1-123), the second dsRNA binding motif (98-243), or the isolated PKR kinase catalytic domain (228-551). These results demonstrate that the translational stimulation mediated by the dominant negative PKR mutant does not require dimerization, but requires the ability to bind dsRNA and indicate these mutants act by competition for binding to activators.
Collapse
Affiliation(s)
- S Wu
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109, USA
| | | |
Collapse
|
56
|
Abstract
A model is presented for the regulation of the double-stranded RNA (dsRNA)-activated mammalian protein kinase PKR, which is involved in protein synthesis inhibition and the antiviral response in cells. A series of previous findings abut PKROs behavior are reviewed, including its effects on translation; the activation of its protein kinase activity; binding sites for PKR on RNA; PKROs protein domains, which include two double-stranded RNA binding motifs (dsRBMs); and the likelihood of PKR dimer formation. The model which emerges to account for many of these observations includes the suggestion that PKR dimers form which are stabilized and rearranged upon binding to dsRNA regions 60 bp or longer. The hypothesis includes protein conformational changes within each member of a PKR dimer bound to dsRNA which re-position an inhibitory polypeptide domain and thus allow kinase activation. Also considered are ways in which PKR interacts with imperfectly duplexed, highly structured RNA molecules.
Collapse
Affiliation(s)
- H D Robertson
- Department of Biochemistry, Cornell University Medical College, New York, NY 10021, USA
| | | |
Collapse
|
57
|
Sharp TV, Xiao Q, Justesen J, Gewert DR, Clemens MJ. Regulation of the interferon-inducible protein kinase PKR and (2'-5')oligo(adenylate) synthetase by a catalytically inactive PKR mutant through competition for double-stranded RNA binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:97-103. [PMID: 7541351 DOI: 10.1111/j.1432-1033.1995.0097i.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The interferon-inducible double-stranded RNA-dependent protein kinase PKR has been suggested to function as a tumour suppressor gene product. Catalytically inactive mutants of PKR give rise to a tumorigenic phenotype when overexpressed in NIH-3T3 fibroblasts and this has been attributed to a dominant negative effect on the activity of the wild-type enzyme. Here we show that the mutant with Lys296 replaced by Arg, [K296R]PKR, not only inhibits the protein kinase activity of wild-type PKR but is also inhibitory towards another double-stranded RNA-dependent enzyme, the 40-kDa form of (2'-5')oligo(adenylate) synthetase. Inhibition of both wild-type PKR and (2'-5')oligo(adenylate) synthetase is reversed by adding higher concentrations of double-stranded RNA. These results suggest competition between [K296R]PKR and wild-type PKR or (2'-5')oligo(adenylate) synthetase for limiting amounts of double-stranded RNA. Moreover, the data imply that the tumorigenic effect of this PKR mutant could be due to inhibition of additional pathways requiring low levels of double-stranded RNA for activation and cannot be unambiguously attributed to inhibition of endogenous PKR itself.
Collapse
Affiliation(s)
- T V Sharp
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, England
| | | | | | | | | |
Collapse
|
58
|
Prostko CR, Dholakia JN, Brostrom MA, Brostrom CO. Activation of the double-stranded RNA-regulated protein kinase by depletion of endoplasmic reticular calcium stores. J Biol Chem 1995; 270:6211-5. [PMID: 7890757 DOI: 10.1074/jbc.270.11.6211] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Perturbants of the endoplasmic reticulum (ER), including Ca(2+)-mobilizing agents, provoke a rapid suppression of translational initiation in conjunction with an increased phosphorylation of the alpha-subunit of eukaryotic initiation factor (eIF)-2. Depletion of ER Ca2+ stores was found to signal the activation of a specific eIF-2 alpha kinase. Analysis of extracts derived from cultured cells that had been pretreated with Ca2+ ionophore A23187 or thapsigargin revealed a 2-3-fold increase in eIF-2 alpha kinase activity without detectable changes in eIF-2 alpha phosphatase activity. A peptide of 65-68 kDa, which was phosphorylated concurrently with eIF-2 alpha in extracts of pretreated cells, was identified as the interferon-inducible, double-stranded RNA (dsRNA)-regulated protein kinase (PKR). Depletion of ER Ca2+ stores did not alter the PKR contents of extracts. When incubated with reovirus dsRNA, extracts derived from cells with depleted ER Ca2+ stores displayed greater degrees of phosphorylation of PKR and of eIF-2 alpha than did control extracts. The enhanced dsRNA-dependent phosphorylation of PKR was observed regardless of prior induction of the kinase with interferon. Lower concentrations of dsRNA were required for maximal phosphorylation of PKR in extracts of treated as compared to control preparations. These findings suggest that PKR mediates the translational suppression occurring in response to perturbation of ER Ca2+ homeostasis.
Collapse
Affiliation(s)
- C R Prostko
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | | | | | | |
Collapse
|
59
|
McCormack SJ, Samuel CE. Mechanism of interferon action: RNA-binding activity of full-length and R-domain forms of the RNA-dependent protein kinase PKR--determination of KD values for VAI and TAR RNAs. Virology 1995; 206:511-9. [PMID: 7530396 DOI: 10.1016/s0042-6822(95)80067-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The RNA-binding activity of the interferon-inducible, RNA-dependent protein kinase PKR, expressed from the human PKR cDNA, was quantitated using a gel mobility-shift assay. The N-terminal R-domain truncation Wt(1-243) and the full-length catalytic mutant K296R(21-551) were analyzed for their abilities to bind adenovirus VAI RNA, human immunodeficiency virus TAR RNA, and the synthetic homopolymer pI:pC RNA. The N-terminal 243 amino acid residue form of PKR [Wt(1-243)] bound VAI RNA with similar affinity as the 551 amino acid residue full-length catalytic mutant [K296R(1-551)]. The dissociation constant for VAI RNA was approximately 2 x 10(-9) M for both the K296R(1-551) and Wt(1-243) proteins. The K64E mutation significantly impaired the VAI RNA-binding activity as measured with the full-length double-point mutant PKR protein, K64E/K296R(1-551). Using a gel-shift competition assay, the dissociation constants of K296R(1-551) and Wt(1-243) for VAI(1-160) RNA and pI:pC RNA were comparable. By contrast, the dissociation constants of K296R(1-551) and Wt(1-243) for TAR(1-82) RNA were both about 1 x 10(-7) M. These results suggest that the RNA-binding affinity of PKR is approximately 100-fold lower for TAR RNA than for either VAI RNA or pI:pC RNA and that the full-length and N-terminal R-domain forms of PKR bind RNA with similar affinity.
Collapse
Affiliation(s)
- S J McCormack
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | |
Collapse
|
60
|
Jaramillo ML, Abraham N, Bell JC. The interferon system: a review with emphasis on the role of PKR in growth control. Cancer Invest 1995; 13:327-38. [PMID: 7538039 DOI: 10.3109/07357909509094468] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M L Jaramillo
- Department of Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
61
|
Mathews MB. Structure, function, and evolution of adenovirus virus-associated RNAs. Curr Top Microbiol Immunol 1995; 199 ( Pt 2):173-87. [PMID: 7555067 DOI: 10.1007/978-3-642-79499-5_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M B Mathews
- Cold Spring Harbor Laboratory, New York, NY 11724, USA
| |
Collapse
|
62
|
Langland JO, Pettiford S, Jiang B, Jacobs BL. Products of the porcine group C rotavirus NSP3 gene bind specifically to double-stranded RNA and inhibit activation of the interferon-induced protein kinase PKR. J Virol 1994; 68:3821-9. [PMID: 7514679 PMCID: PMC236887 DOI: 10.1128/jvi.68.6.3821-3829.1994] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The porcine group C rotavirus (Cowden strain) NSP3 protein (the group C equivalent of the group A gene 7 product, formerly called NS34) shares homology with known double-stranded RNA-binding proteins, such as the interferon-induced, double-stranded RNA-dependent protein kinase PKR. A clone of NSP3, expressed both in vitro and in COS-1 cells, led to the synthesis of minor amounts of a product with an M(r) of 45,000 (the expected full-length M(r) of NSP3) and major amounts of products with M(r)s of 38,000 and 8,000. Restriction enzyme digestion analysis prior to expression in vitro and amino-terminal sequence analysis suggest that the products with M(r)s of 38,000 and 8,000 are cleavage products of the protein with an M(r) of 45,000. The full-length protein and the product with an M(r) of 8,000, both of which contain the motif present in double-stranded RNA-binding proteins, bound specifically to double-stranded RNA. The products with M(r)s of 45,000 and 8,000 were also detected in Cowden strain-infected MA104 cells. NSP3 products expressed in COS-1 cells were capable of inhibiting activation of the double-stranded RNA-dependent protein kinase similar to other double-stranded RNA-binding proteins, and NSP3 products expressed in HeLa cells were capable of rescuing the replication of an interferon-sensitive deletion mutant of vaccinia virus.
Collapse
Affiliation(s)
- J O Langland
- Department of Microbiology, Arizona State University, Tempe 85287-2701
| | | | | | | |
Collapse
|
63
|
Clemens MJ. Regulation of eukaryotic protein synthesis by protein kinases that phosphorylate initiation factor eIF-2. Mol Biol Rep 1994; 19:201-10. [PMID: 7969108 DOI: 10.1007/bf00986962] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M J Clemens
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, UK
| |
Collapse
|
64
|
Clemens MJ, Laing KG, Jeffrey IW, Schofield A, Sharp TV, Elia A, Matys V, James MC, Tilleray VJ. Regulation of the interferon-inducible eIF-2 alpha protein kinase by small RNAs. Biochimie 1994; 76:770-8. [PMID: 7534482 DOI: 10.1016/0300-9084(94)90081-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review describes the structure and function of the double-stranded RNA-dependent protein kinase (PKR) and its interaction with RNA activators and inhibitors. The abilities of small virally-encoded RNAs such as VAI RNA of adenovirus, the Epstein-Barr virus encoded (EBER) RNAs and the Tat-responsive region RNA of HIV-1 to bind to and regulate PKR are reviewed, and the physiological implications of such regulation for the control of viral replication and cell growth are discussed. The potential effects on the activity of PKR of other proteins that bind double-stranded RNA and/or small viral and cellular RNAs are also considered.
Collapse
Affiliation(s)
- M J Clemens
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Petryshyn RA, Li J, Judware R. Activation of the dsRNA-dependent kinase. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1994; 14:1-14. [PMID: 7914803 DOI: 10.1007/978-3-642-78549-8_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R A Petryshyn
- Department of Biochemistry and Molecular Biology, State University of New York, Health Science Center at Syracuse 13210
| | | | | |
Collapse
|
66
|
Lee TG, Katze MG. Cellular inhibitors of the interferon-induced, dsRNA-activated protein kinase. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1994; 14:48-65. [PMID: 7914806 DOI: 10.1007/978-3-642-78549-8_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T G Lee
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
67
|
Abstract
Regulation of translation plays an important role in controlling gene expression. Recent data show that deregulation of translation factor activity leads to drastic changes in cell growth, including transformation and tumorigenesis.
Collapse
|
68
|
The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52994-x] [Citation(s) in RCA: 281] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
69
|
Koromilas AE, Roy S, Barber GN, Katze MG, Sonenberg N. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 1992; 257:1685-9. [PMID: 1382315 DOI: 10.1126/science.1382315] [Citation(s) in RCA: 466] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The double-stranded RNA-dependent protein kinase (dsRNA-PK) is thought to be a key mediator of the antiviral and antiproliferative effects of interferons (IFNs). Studies examining the physiological function of the kinase suggest that it participates in cell growth and differentiation by regulating protein synthesis. Autophosphorylation and consequent activation of dsRNA-PK in vitro and in vivo result in phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2) and inhibition of protein synthesis. Expression of a functionally defective mutant of human dsRNA-PK in NIH 3T3 cells resulted in malignant transformation, suggesting that dsRNA-PK may function as a suppressor of cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- A E Koromilas
- Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|