51
|
The extraordinary biology and development of marsupial frogs (Hemiphractidae) in comparison with fish, mammals, birds, amphibians and other animals. Mech Dev 2018; 154:2-11. [DOI: 10.1016/j.mod.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 11/20/2022]
|
52
|
Subcellular Specialization and Organelle Behavior in Germ Cells. Genetics 2018; 208:19-51. [PMID: 29301947 DOI: 10.1534/genetics.117.300184] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Gametes, eggs and sperm, are the highly specialized cell types on which the development of new life solely depends. Although all cells share essential organelles, such as the ER (endoplasmic reticulum), Golgi, mitochondria, and centrosomes, germ cells display unique regulation and behavior of organelles during gametogenesis. These germ cell-specific functions of organelles serve critical roles in successful gamete production. In this chapter, I will review the behaviors and roles of organelles during germ cell differentiation.
Collapse
|
53
|
Roovers EF, Kaaij LJT, Redl S, Bronkhorst AW, Wiebrands K, de Jesus Domingues AM, Huang HY, Han CT, Riemer S, Dosch R, Salvenmoser W, Grün D, Butter F, van Oudenaarden A, Ketting RF. Tdrd6a Regulates the Aggregation of Buc into Functional Subcellular Compartments that Drive Germ Cell Specification. Dev Cell 2018; 46:285-301.e9. [PMID: 30086300 PMCID: PMC6084408 DOI: 10.1016/j.devcel.2018.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/23/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Phase separation represents an important form of subcellular compartmentalization. However, relatively little is known about how the formation or disassembly of such compartments is regulated. In zebrafish, the Balbiani body (Bb) and the germ plasm (Gp) are intimately linked phase-separated structures essential for germ cell specification and home to many germ cell-specific mRNAs and proteins. Throughout development, these structures occur as a single large aggregate (Bb), which disperses throughout oogenesis and upon fertilization accumulates again into relatively large assemblies (Gp). Formation of the Bb requires Bucky ball (Buc), a protein with prion-like properties. We found that the multi-tudor domain-containing protein Tdrd6a interacts with Buc, affecting its mobility and aggregation properties. Importantly, lack of this regulatory interaction leads to significant defects in germ cell development. Our work presents insights into how prion-like protein aggregations can be regulated and highlights the biological relevance of such regulatory events. Tdrd6a is required for Bucky ball mobility within aggregates, and for PGC formation Maternal Tdrd6a coordinates transcript deposition into future PGCs A dimethylated tri-RG motif in Bucky ball mediates interaction with Tdrd6a The tri-RG motif is essential for Balbiani body and germ cell formation
Collapse
Affiliation(s)
- Elke F Roovers
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Lucas J T Kaaij
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Stefan Redl
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Alfred W Bronkhorst
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Kay Wiebrands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | | | - Hsin-Yi Huang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Chung-Ting Han
- Genomics Core Facility, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany; CeGaT GmbH, Center for Genomics and Transcriptomics, Paul-Ehrlich-Straße 23, 72076 Tübingen, Germany
| | - Stephan Riemer
- Institute of Developmental Biochemistry, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Roland Dosch
- Institute of Developmental Biochemistry, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Willi Salvenmoser
- Institute of Zoology, Center of Molecular Bioscience, University of Innsbruck, Technikerstraβe 25, 6020 Innsbruck, Austria
| | - Dominic Grün
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Max Planck Institute of Immunology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Falk Butter
- Quantitative Proteomics Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
54
|
Kaufman OH, Lee K, Martin M, Rothhämel S, Marlow FL. rbpms2 functions in Balbiani body architecture and ovary fate. PLoS Genet 2018; 14:e1007489. [PMID: 29975683 PMCID: PMC6049948 DOI: 10.1371/journal.pgen.1007489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/17/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
The most prominent developmental regulators in oocytes are RNA-binding proteins (RNAbps) that assemble their targets into ribonucleoprotein granules where they are stored, transported and translationally regulated. RNA-binding protein of multiple splice forms 2, or Rbpms2, interacts with molecules that are essential to reproduction and egg patterning, including bucky ball, a key factor for Bb formation. Rbpms2 is localized to germ granules in primordial germ cells (PGCs) and to the Balbiani body (Bb) of oocytes, although the mechanisms regulating Rbpms2 localization to these structures are unknown. Using mutant Rbpms2 proteins, we show that Rbpms2 requires distinct protein domains to localize within germ cells and somatic cells. Accumulation and localization to subcellular compartments in the germline requires an intact RNA binding domain. Whereas in zebrafish somatic blastula cells, the conserved C-terminal domain promotes localization to the bipolar centrosomes/spindle. To investigate Rbpms2 functions, we mutated the duplicated and functionally redundant zebrafish rbpms2 genes. The gonads of rbpms2a;2b (rbpms2) mutants initially contain early oocytes, however definitive oogenesis ultimately fails during sexual differentiation and, rbpms2 mutants develop as fertile males. Unlike other genes that promote oogenesis, failure to maintain oocytes in rbpms2 mutants was not suppressed by mutation of Tp53. These findings reveal a novel and essential role for rbpms2 in oogenesis. Ultrastructural and immunohistochemical analyses revealed that rbpms2 is not required for the asymmetric accumulation of mitochondria and Buc protein in oocytes, however its absence resulted in formation of abnormal Buc aggregates and atypical electron-dense cytoplasmic inclusions. Our findings reveal novel and essential roles for rbpms2 in Buc organization and oocyte differentiation. Oocyte development relies on posttranscriptional regulation by RNA binding proteins (RNAbps). RNAbps form large multi-molecular structures called RNPs (ribonucleoproteins) that further aggregate into regulatory granules within germ cells. In zebrafish primary oocytes, a large transient RNP aggregate called the Balbiani body (Bb) is essential for localizing patterning molecules and germline determinants within oocytes. RNA-binding protein of multiple splice forms 2, or Rbpms2, localizes to germ granules and the Bb, and interacts with bucky ball, a key factor for Bb formation. We show that Rbpms2 requires RNA binding for localization within germ cells, and that the C-term and RRM contribute to Rbpms2 subcellular localization in distinct somatic cell types. To investigate Rbpms2 functions we mutated the duplicated zebrafish rbpms2 genes. Consistent with redundant functions, rbpms2a and rbpms2b gene expression overlaps, and single mutants have no discernible phenotypes. Although rbpms2a;2b double mutants have cardiac phenotypes, those that reach adulthood are exclusively fertile males. Genetic analysis shows that rbpms2 mutant oocytes are not maintained even when Tp53, a regulator of cell death is absent. Initial oocyte polarity is established in rbpms2 mutants based on asymmetric distribution of Buc protein and mitochondria; however, abnormal Buc structures and atypical cytoplasmic inclusions form. This work reveals independent Rbpms2 functions in promoting Bb integrity, and as a novel regulator of ovary fate.
Collapse
Affiliation(s)
- Odelya H. Kaufman
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - KathyAnn Lee
- Department of Cell, Developmental and Regenerative Biology Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Manon Martin
- Department of Cell, Developmental and Regenerative Biology Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sophie Rothhämel
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Florence L. Marlow
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience. Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
55
|
Pocherniaieva K, Sidova M, Havelka M, Saito T, Psenicka M, Sindelka R, Kaspar V. Comparison of oocyte mRNA localization patterns in sterlet Acipenser ruthenus and African clawed frog Xenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:181-187. [PMID: 29682883 DOI: 10.1002/jez.b.22802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 01/13/2018] [Accepted: 03/13/2018] [Indexed: 11/09/2022]
Abstract
In oocytes, RNA localization has critical implications, as assembly of proteins in particular subcellular domains is crucial to embryo development. The distribution of mRNA molecules can identify and characterize localized transcripts. The goal of this study was to clarify the origin of primordial germ cells in the oocyte body plan and to reveal the generation of cell lineages by localized RNAs. The distribution of 12 selected mRNAs in sterlet Acipenser ruthenus oocytes was investigated by qPCR tomography and compared with known patterns of mRNA localization in Xenopus laevis. We investigated the distribution of two gene clusters in the ooplasm along the animal-vegetal axis of the sturgeon oocyte, both of which showed clearly defined intracellular gradient pattern remarkably similar to their distribution in the frog oocyte. We elucidated the localization of sturgeon egg germplasm markers belonging to the vegetal group of mRNAs. The mRNAs coding otx1, wnt11, and veg1 found to be localized in the sturgeon animal hemisphere are, in contrast, distributed in the vegetal hemisphere in amphibian. Actinopterygii and Sarcopterygii, two major lineages of osteichthyan vertebrates, split about 476 Ma (Blair & Hedges, ), albeit basal lineages share conserved biological features. Acipenseriformes is one the most basal living lineages of Actinopterygii, having evolved about 200 Ma (Bemis, Birstein, & Waldman, ), contemporaneous with modern amphibians (Roelants et al., ).
Collapse
Affiliation(s)
- Kseniia Pocherniaieva
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Monika Sidova
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Milos Havelka
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic.,Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Taiju Saito
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Martin Psenicka
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vojtech Kaspar
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| |
Collapse
|
56
|
Abstract
Prion-like proteins overlap with intrinsically disordered and low-complexity sequence families. These proteins are widespread, especially among mRNA-binding proteins. A salient feature of these proteins is the ability to form protein assemblies with distinct biophysical and functional properties. While prion-like proteins are involved in myriad of cellular processes, we propose potential roles for protein assemblies in regulated protein synthesis. Since proteins are the ultimate functional output of gene expression, when, where, and how much of a particular protein is made dictates the functional state of a cell. Recent finding suggests that the prion-like proteins offer unique advantages in translation regulation and also raises questions regarding formation and regulation of protein assemblies.
Collapse
Affiliation(s)
- Liying Li
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | - J P McGinnis
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | - Kausik Si
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| |
Collapse
|
57
|
Molecular characterization, tissue distribution, localization and mRNA expression of the bucky ball gene in the Dabry's sturgeon (Acipenser dabryanus) during oogenesis. Gene Expr Patterns 2018; 28:62-71. [PMID: 29481878 DOI: 10.1016/j.gep.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/24/2018] [Accepted: 02/22/2018] [Indexed: 01/08/2023]
Abstract
In many organisms, germ cells are specified during embryogenesis by the inheritance of maternally deposited RNAs and proteins termed germ plasm. In vertebrates, the bucky ball (buc) gene plays an essential role in the germ plasm aggregation. In this study, the full-length cDNA of buc homologue in Dabry's sturgeon, Adbuc, was isolated and characterized. Multiple sequence alignments showed that the BUVE domain of Buc was highly conserved in vertebrates, despite exhibiting low identities with each other across the whole protein. By quantitative real-time PCR analysis, we found that Adbuc RNAs were only detected in the gonad with a high level in the ovary and a very low level in the testis. During embryogenesis, these RNAs were highly expressed from the unfertilized eggs to blastula, declined dramatically from the gastrula stage, and hardly found after the neurula stage. Moreover, with the development of ovary, the expression level of Adbuc was increasing. By in situ hybridization, the signal of Adbuc was not found in the oogonia, increased slightly in the stage I oocytes, and extremely strong in the stage II oocytes, suggesting that the signal became much stronger with increasing size of oocytes. Additionally, Adbuc co-localized with the mitochondrial cloud. Thus, we conclude that Dabry's sturgeon buc gene might also function in germplasm formation.
Collapse
|
58
|
Sun YC, Wang YY, Sun XF, Cheng SF, Li L, Zhao Y, Shen W, Chen H. The role of autophagy during murine primordial follicle assembly. Aging (Albany NY) 2018; 10:197-211. [PMID: 29410391 PMCID: PMC5842841 DOI: 10.18632/aging.101376] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022]
Abstract
It is generally accepted that significant germ cell loss occurs during the establishment of the primordial follicle pool in most mammalian ovaries around the time of birth. However, the underlying mechanisms responsible for these processes remain largely unknown. In this investigation, we explored the role of autophagy during the establishment of the primordial follicle pool and found that autophagy was active in this process. Our data suggested that 17.5 dpc ovaries treated with rapamycin displayed a delay in germ cell cyst breakdown resulting in more oocytes at day 5 of treatment, while, ovaries that treated with 3-MA showed the opposite effect. We found that rapamycin treatment promoted autophagy and depressed cell apoptosis increasing the number of NOBOX positive oocytes. Furthermore, our results also revealed that epigenetic regulator, Sirt1, plays a role in germ cell loss. An epigenetic inhibitor or RNAi treatment of Sirt1, showed an increased level of H4K16ac and a decreased level of autophagy. Thus, these data indicate that autophagy prevents germ cell over loss during the establishment of primordial follicle pool, and this process may be influenced by Sirt1-invovled epigenetic regulation.
Collapse
Affiliation(s)
- Yuan-Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi, China
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong-Yong Wang
- Department of Reproductive Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Xiao-Feng Sun
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shun-Feng Cheng
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lan Li
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi, China
| |
Collapse
|
59
|
Lai AG, Aboobaker AA. EvoRegen in animals: Time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Dev Biol 2018; 433:118-131. [PMID: 29198565 DOI: 10.1016/j.ydbio.2017.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023]
Abstract
How do animals regenerate specialised tissues or their entire body after a traumatic injury, how has this ability evolved and what are the genetic and cellular components underpinning this remarkable feat? While some progress has been made in understanding mechanisms, relatively little is known about the evolution of regenerative ability. Which elements of regeneration are due to lineage specific evolutionary novelties or have deeply conserved roots within the Metazoa remains an open question. The renaissance in regeneration research, fuelled by the development of modern functional and comparative genomics, now enable us to gain a detailed understanding of both the mechanisms and evolutionary forces underpinning regeneration in diverse animal phyla. Here we review existing and emerging model systems, with the focus on invertebrates, for studying regeneration. We summarize findings across these taxa that tell us something about the evolution of adult stem cell types that fuel regeneration and the growing evidence that many highly regenerative animals harbor adult stem cells with a gene expression profile that overlaps with germline stem cells. We propose a framework in which regenerative ability broadly evolves through changes in the extent to which stem cells generated through embryogenesis are maintained into the adult life history.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| |
Collapse
|
60
|
Bilinski SM, Kloc M, Tworzydlo W. Selection of mitochondria in female germline cells: is Balbiani body implicated in this process? J Assist Reprod Genet 2017; 34:1405-1412. [PMID: 28755153 PMCID: PMC5699987 DOI: 10.1007/s10815-017-1006-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/21/2017] [Indexed: 11/13/2022] Open
Abstract
Early oocytes of nearly all animal species contain a transient organelle assemblage termed the Balbiani body. Structure and composition of this assemblage may vary even between closely related species. Despite this variability, the Balbiani body always comprises of numerous tightly clustered mitochondria and accumulations of nuage material. It has been suggested that the Balbiani body is an evolutionarily ancestral structure, which plays a role in various processes such as the localization of organelles and macromolecules to the germ plasm, lipidogenesis, as well as the selection/elimination of dysfunctional mitochondria from female germline cells. We suggest that the selection/elimination of mitochondria is a primary and evolutionarily ancestral function of Balbiani body, and that the other functions are secondary, evolutionarily derived additions. We propose a simple model explaining the role of the Balbiani body in the selection of mitochondria, i.e., in the mitochondrial DNA (mtDNA) bottleneck phenomenon.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Malgorzata Kloc
- The Houston Methodist Research Institute and The Houston Methodist Hospital, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
61
|
DeHaan H, McCambridge A, Armstrong B, Cruse C, Solanki D, Trinidad JC, Arkov AL, Gao M. An in vivo proteomic analysis of the Me31B interactome in Drosophila germ granules. FEBS Lett 2017; 591:3536-3547. [PMID: 28945271 DOI: 10.1002/1873-3468.12854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022]
Abstract
Drosophila Me31B is a conserved protein of germ granules, ribonucleoprotein complexes essential for germ cell development. Me31B post-transcriptionally regulates mRNAs by interacting with other germ granule proteins. However, a Me31B interactome is lacking. Here, we use an in vivo proteomics approach to show that the Me31B interactome contains polypeptides from four functional groups: RNA regulatory proteins, glycolytic enzymes, cytoskeleton/motor proteins, and germ plasm components. We further show that Me31B likely colocalizes with the germ plasm components Tudor (Tud), Vasa, and Aubergine in the nuage and germ plasm and provide evidence that Me31B may directly bind to Tud in a symmetrically dimethylated arginine-dependent manner. Our study supports the role of Me31B in RNA regulation and suggests its novel roles in germ granule assembly and function.
Collapse
Affiliation(s)
- Hunter DeHaan
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | | | - Carlie Cruse
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Dhruv Solanki
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, USA
| |
Collapse
|
62
|
Kulkarni A, Extavour CG. Convergent evolution of germ granule nucleators: A hypothesis. Stem Cell Res 2017; 24:188-194. [PMID: 28801028 DOI: 10.1016/j.scr.2017.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/18/2017] [Accepted: 07/15/2017] [Indexed: 11/26/2022] Open
Abstract
Germ cells have been considered "the ultimate stem cell" because they alone, during normal development of sexually reproducing organisms, are able to give rise to all organismal cell types. Morphological descriptions of a specialized cytoplasm termed 'germ plasm' and associated electron dense ribonucleoprotein (RNP) structures called 'germ granules' within germ cells date back as early as the 1800s. Both germ plasm and germ granules are implicated in germ line specification across metazoans. However, at a molecular level, little is currently understood about the molecular mechanisms that assemble these entities in germ cells. The discovery that in some animals, the gene products of a small number of lineage-specific genes initiate the assembly (also termed nucleation) of germ granules and/or germ plasm is the first step towards facilitating a better understanding of these complex biological processes. Here, we draw on research spanning over 100years that supports the hypothesis that these nucleator genes may have evolved convergently, allowing them to perform analogous roles across animal lineages.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
63
|
Hurd TR, Herrmann B, Sauerwald J, Sanny J, Grosch M, Lehmann R. Long Oskar Controls Mitochondrial Inheritance in Drosophila melanogaster. Dev Cell 2017; 39:560-571. [PMID: 27923120 DOI: 10.1016/j.devcel.2016.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
Abstract
Inherited mtDNA mutations cause severe human disease. In most species, mitochondria are inherited maternally through mechanisms that are poorly understood. Genes that specifically control the inheritance of mitochondria in the germline are unknown. Here, we show that the long isoform of the protein Oskar regulates the maternal inheritance of mitochondria in Drosophila melanogaster. We show that, during oogenesis, mitochondria accumulate at the oocyte posterior, concurrent with the bulk streaming and churning of the oocyte cytoplasm. Long Oskar traps and maintains mitochondria at the posterior at the site of primordial germ cell (PGC) formation through an actin-dependent mechanism. Mutating long oskar strongly reduces the number of mtDNA molecules inherited by PGCs. Therefore, Long Oskar ensures germline transmission of mitochondria to the next generation. These results provide molecular insight into how mitochondria are passed from mother to offspring, as well as how they are positioned and asymmetrically partitioned within polarized cells.
Collapse
Affiliation(s)
- Thomas Ryan Hurd
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Beate Herrmann
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Julia Sauerwald
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Justina Sanny
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Markus Grosch
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Ruth Lehmann
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
64
|
Gonobobleva EL, Efremova SM. Germ cell determinants in the oocytes of freshwater sponges. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417030043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
65
|
Mitochondrial matters: Mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline. Stem Cell Res 2017; 21:178-186. [PMID: 28336253 DOI: 10.1016/j.scr.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/22/2016] [Accepted: 03/10/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial replacement therapy, a procedure to generate embryos with the nuclear genome of a donor mother and the healthy mitochondria of a recipient egg, has recently emerged as a promising strategy to prevent transmission of devastating mitochondrial DNA diseases and infertility. The procedure may produce an embryo that is free of diseased mitochondria. A recent study addresses important fundamental questions about the mechanisms underlying maternal inheritance and translational questions regarding the transgenerational effectiveness of this promising therapeutic strategy. This review considers recent advances in our understanding of maternal inheritance of mitochondria, implications for fertility and mitochondrial disease, and potential roles for the Balbiani body, an ancient oocyte structure, in mitochondrial selection in oocytes, with emphasis on therapies to remedy mitochondrial disorders.
Collapse
|
66
|
Sun YC, Sun XF, Dyce PW, Shen W, Chen H. The role of germ cell loss during primordial follicle assembly: a review of current advances. Int J Biol Sci 2017; 13:449-457. [PMID: 28529453 PMCID: PMC5436565 DOI: 10.7150/ijbs.18836] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
In most female mammals, early germline development begins with the appearance of primordial germ cells (PGCs), and develops to form mature oocytes following several vital processes. It remains well accepted that significant germ cell apoptosis and oocyte loss takes place around the time of birth. The transition of the ovarian environment from fetal to neonatal, coincides with the loss of germ cells and the timing of follicle formation. All told it is common to lose approximately two thirds of germ cells during this transition period. The current consensus is that germ cell loss can be attributed, at least in part, to programmed cell death (PCD). Recently, autophagy has been implicated as playing a part in germ cell loss during the time of parturition. In this review, we discuss the major opinions and mechanisms of mammalian ovarian PCD during the process of germ cell loss. We also pay close attention to the function of autophagy in germ cell loss, and speculate that autophagy may also serve as a critical and necessary process during the establishment of primordial follicle pool.
Collapse
Affiliation(s)
- Yuan-Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi 712100, China
| | - Xiao-Feng Sun
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wei Shen
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi 712100, China
| |
Collapse
|
67
|
Tworzydlo W, Marek M, Kisiel E, Bilinski SM. Meiosis, Balbiani body and early asymmetry of Thermobia oocyte. PROTOPLASMA 2017; 254:649-655. [PMID: 27180195 PMCID: PMC5309285 DOI: 10.1007/s00709-016-0978-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
The meiotic division guarantees maintenance of a genetic diversity; it consists of several stages, with prophase I being the longest and the most complex. We decided to follow the course of initial stages of meiotic division in ovaries of Thermobia domestica using modified techniques of squash preparations, semithin sections, and electron microscopy. We show that germaria contain numerous germline cells that can be classified into three categories: cystoblasts, meiotic oocytes, and growing previtellogenic oocytes. The cystoblasts are located most apically. The meiotic oocytes occupy the middle part of the germarium, and the previtellogenic oocytes can be found in the most basal part, near the vitellarium. Analyses of the semithin sections and squash preparations show that post leptotene meiotic chromosomes gather in one region of the nucleoplasm where they form the so-called bouquet. The telomeres of the bouquet chromosomes are attached to a relatively small area (segment) of the nuclear envelope. Next to this envelope segment, the nucleolar organizers are also located. We show that in concert to sequential changes inside the oocyte nuclei, rearrangement of organelles within the ooplasm (oocyte cytoplasm) takes place. This leads to the formation of the Balbiani body and consequent asymmetry of the ooplasm. These early nuclear and cytoplasmic asymmetries, however, are transient. During diplotene, the chromosome bouquet disappears, while the Balbiani body gradually disperses throughout the ooplasm. Finally, our observations indicate the presence of lampbrush chromosomes in the nuclei of previtellogenic oocytes. In the close vicinity to lampbrush chromosomes, characteristic spherical nuclear bodies are present.
Collapse
Affiliation(s)
- Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| | - Magdalena Marek
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Elzbieta Kisiel
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
68
|
Ikami K, Nuzhat N, Lei L. Organelle transport during mouse oocyte differentiation in germline cysts. Curr Opin Cell Biol 2017; 44:14-19. [PMID: 28038435 DOI: 10.1016/j.ceb.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
During mammalian oogenesis, germ cells undergo oocyte differentiation and oocyte development to form mature oocytes that contain essential components for supporting early embryogenesis. However, only a small fraction of germ cells become mature oocytes and the mechanism of this massive germ cell loss has been unclear. Our recent studies suggested that the formation of functional oocytes and germ cell loss are interlinked by a 'nursing' process in germline cysts during oocyte differentiation in mouse fetal ovaries. 80% of the fetal germ cells sacrifice themselves by donating their cytoplasmic contents to the remaining sister germ cells that differentiate into primary oocytes with augmented developmental potential. In this review, we will summarize the process of mouse oocyte differentiation with a particular focus on organelle transport in germline cysts.
Collapse
Affiliation(s)
- Kanako Ikami
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3045, Ann Arbor, MI 48109, United States
| | - Nafisa Nuzhat
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3045, Ann Arbor, MI 48109, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3045, Ann Arbor, MI 48109, United States.
| |
Collapse
|
69
|
Abstract
Acquisition of oocyte polarity involves complex translocation and aggregation of intracellular organelles, RNAs, and proteins, along with strict posttranscriptional regulation. While much is still unknown regarding the formation of the animal-vegetal axis, an early marker of polarity, animal models have contributed to our understanding of these early processes controlling normal oogenesis and embryo development. In recent years, it has become clear that proteins with self-assembling properties are involved in assembling discrete subcellular compartments or domains underlying subcellular asymmetries in the early mitotic and meiotic cells of the female germline. These include asymmetries in duplication of the centrioles and formation of centrosomes and assembly of the organelle and RNA-rich Balbiani body, which plays a critical role in oocyte polarity. Notably, at specific stages of germline development, these transient structures in oocytes are temporally coincident and align with asymmetries in the position and arrangement of nuclear components, such as the nuclear pore and the chromosomal bouquet and the centrioles and cytoskeleton in the cytoplasm. Formation of these critical, transient structures and arrangements involves microtubule pathways, intrinsically disordered proteins (proteins with domains that tend to be fluid or lack a rigid ordered three-dimensional structure ranging from random coils, globular domains, to completely unstructured proteins), and translational repressors and activators. This review aims to examine recent literature and key players in oocyte polarity.
Collapse
Affiliation(s)
- Mara Clapp
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA.
- Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA.
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029-6574, USA.
| |
Collapse
|
70
|
Abstract
Fully grown oocytes arrest meiosis at prophase I and deposit maternal RNAs. A subset of maternal transcripts is stored in a dormant state in the oocyte, and the timely driven translation of specific mRNAs guides meiotic progression, the oocyte-embryo transition, and early embryo development. In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization and at the level of protein synthesis.This chapter focuses on the recent findings on RNA distribution related to the temporal and spatial translational control of the meiotic cycle progression in mammalian oocytes. We discuss the most relevant mechanisms involved in the organization of the oocyte's maternal transcriptome storage and localization, and the regulation of translation, in correlation with the regulation of oocyte meiotic progression.
Collapse
|
71
|
Mechanisms of Vertebrate Germ Cell Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:383-440. [PMID: 27975276 DOI: 10.1007/978-3-319-46095-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two unique characteristics of the germ line are the ability to persist from generation to generation and to retain full developmental potential while differentiating into gametes. How the germ line is specified that allows it to retain these characteristics within the context of a developing embryo remains unknown and is one focus of current research. Germ cell specification proceeds through one of two basic mechanisms: cell autonomous or inductive. Here, we discuss how germ plasm driven germ cell specification (cell autonomous) occurs in both zebrafish and the frog Xenopus. We describe the segregation of germ cells during embryonic development of solitary and colonial ascidians to provide an evolutionary context to both mechanisms. We conclude with a discussion of the inductive mechanism as exemplified by both the mouse and axolotl model systems. Regardless of mechanism, several general themes can be recognized including the essential role of repression and posttranscriptional regulation of gene expression.
Collapse
|
72
|
Abstract
In the majority of animals, the oocyte/egg is structurally, molecularly, and functionally asymmetric. Such asymmetry is a prerequisite for a flawless fertilization and faithful segregation of maternal determinants during subsequent embryonic development. The oocyte asymmetry develops during oogenesis and must be maintained during consecutive and obligatorily asymmetric oogonial divisions, which depending on the species lead to the formation of either oocyte alone or oocyte and nurse cell complex. In the following chapter, we summarize current knowledge on the asymmetric oogonial divisions in invertebrate (insects) and vertebrate (Xenopus) species.
Collapse
|
73
|
Localization in Oogenesis of Maternal Regulators of Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:173-207. [DOI: 10.1007/978-3-319-46095-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
Baronsky T, Dzementsei A, Oelkers M, Melchert J, Pieler T, Janshoff A. Reduction in E-cadherin expression fosters migration of Xenopus laevis primordial germ cells. Integr Biol (Camb) 2016; 8:349-58. [PMID: 26907205 DOI: 10.1039/c5ib00291e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transition from passive to active migration of primordial germ cells in Xenopus embryos correlates with a reduction in overall adhesion to surrounding endodermal cells as well as with reduced E-cadherin expression. Single cell force spectroscopy, in which cells are brought into brief contact with a gold surface functionalized with E-cadherin constructs, allows for a quantitative estimate of functional E-cadherin molecules on the cell surface. The adhesion force between migratory PGCs and the cadherin-coated surface was almost identical to cells where E-cadherin was knocked down by morpholino oligonucleotides (180 pN). In contrast, non-migratory PGCs display significantly higher adhesion forces (270 pN) on E-cadherin functionalised surfaces. On the basis of these observations, we propose that migration of PGCs in Xenopus embryos is regulated via modulation of E-cadherin expression levels, allowing these cells to move more freely if the level of E-cadherin is reduced.
Collapse
Affiliation(s)
- Thilo Baronsky
- Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
| | | | - Marieelen Oelkers
- Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
| | - Juliane Melchert
- Department of Developmental Biochemistry, Göttingen Center for Molecular Biosciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | - Tomas Pieler
- Department of Developmental Biochemistry, Göttingen Center for Molecular Biosciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | - Andreas Janshoff
- Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
| |
Collapse
|
75
|
Boke E, Ruer M, Wühr M, Coughlin M, Lemaitre R, Gygi SP, Alberti S, Drechsel D, Hyman AA, Mitchison TJ. Amyloid-like Self-Assembly of a Cellular Compartment. Cell 2016; 166:637-650. [PMID: 27471966 DOI: 10.1016/j.cell.2016.06.051] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/06/2016] [Accepted: 06/29/2016] [Indexed: 01/08/2023]
Abstract
Most vertebrate oocytes contain a Balbiani body, a large, non-membrane-bound compartment packed with RNA, mitochondria, and other organelles. Little is known about this compartment, though it specifies germline identity in many non-mammalian vertebrates. We show Xvelo, a disordered protein with an N-terminal prion-like domain, is an abundant constituent of Xenopus Balbiani bodies. Disruption of the prion-like domain of Xvelo, or substitution with a prion-like domain from an unrelated protein, interferes with its incorporation into Balbiani bodies in vivo. Recombinant Xvelo forms amyloid-like networks in vitro. Amyloid-like assemblies of Xvelo recruit both RNA and mitochondria in binding assays. We propose that Xenopus Balbiani bodies form by amyloid-like assembly of Xvelo, accompanied by co-recruitment of mitochondria and RNA. Prion-like domains are found in germ plasm organizing proteins in other species, suggesting that Balbiani body formation by amyloid-like assembly could be a conserved mechanism that helps oocytes function as long-lived germ cells.
Collapse
Affiliation(s)
- Elvan Boke
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Martine Ruer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Martin Wühr
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Margaret Coughlin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Regis Lemaitre
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Drechsel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
76
|
Sen A, Cox RT. Fly Models of Human Diseases: Drosophila as a Model for Understanding Human Mitochondrial Mutations and Disease. Curr Top Dev Biol 2016; 121:1-27. [PMID: 28057297 DOI: 10.1016/bs.ctdb.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are a prevalent, heterogeneous class of diseases caused by defects in oxidative phosphorylation, whose severity depends upon particular genetic mutations. These diseases can be difficult to diagnose, and current therapeutics have limited efficacy, primarily treating only symptoms. Because mitochondria play a pivotal role in numerous cellular functions, especially ATP production, their diminished activity has dramatic physiological consequences. While this in and of itself makes treating mitochondrial disease complex, these organelles contain their own DNA, mtDNA, whose products are required for ATP production, in addition to the hundreds of nucleus-encoded proteins. Drosophila offers a tractable whole-animal model to understand the mechanisms underlying loss of mitochondrial function, the subsequent cellular and tissue damage that results, and how these organelles are inherited. Human and Drosophila mtDNAs encode the same set of products, and the homologous nucleus-encoded genes required for mitochondrial function are conserved. In addition, Drosophila contain sufficiently complex organ systems to effectively recapitulate many basic symptoms of mitochondrial diseases, yet are relatively easy and fast to genetically manipulate. There are several Drosophila models for specific mitochondrial diseases, which have been recently reviewed (Foriel, Willems, Smeitink, Schenck, & Beyrath, 2015). In this review, we highlight the conservation between human and Drosophila mtDNA, the present and future techniques for creating mtDNA mutations for further study, and how Drosophila has contributed to our current understanding of mitochondrial inheritance.
Collapse
Affiliation(s)
- A Sen
- Uniformed Services University, Bethesda, MD, United States
| | - R T Cox
- Uniformed Services University, Bethesda, MD, United States.
| |
Collapse
|
77
|
Goulding MQ, Lambert JD. Mollusc models I. The snail Ilyanassa. Curr Opin Genet Dev 2016; 39:168-174. [PMID: 27497839 DOI: 10.1016/j.gde.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022]
Abstract
Ilyanassa obsoleta has been a model system for experimental embryology for over a century. Here we highlight new insight into early cell lineage specification in Ilyanassa. As in all molluscs and other spiralians, stereotyped cleavage patterns establish a homunculus of regional founder cells. Ongoing studies are beginning to dissect mechanisms of asymmetric cell division that specify these cells' fates. This is only part of the story: overlaid on intrinsic cell identities is a graded 'organizer' signal, and emerging evidence suggests wider roles for short-range intercellular signaling. Modern methods, combined with the intrinsic experimental advantages of Ilyanassa, offer attractive opportunities for studying basic developmental cell biology as well as its evolution over a wide range of phylogenetic scales.
Collapse
Affiliation(s)
- Morgan Q Goulding
- Division of Natural Science, Bethel University, McKenzie, TN 38201, United States.
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
78
|
Tworzydlo W, Kisiel E, Jankowska W, Witwicka A, Bilinski SM. Exclusion of dysfunctional mitochondria from Balbiani body during early oogenesis of Thermobia. Cell Tissue Res 2016; 366:191-201. [PMID: 27164893 PMCID: PMC5031756 DOI: 10.1007/s00441-016-2414-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/12/2016] [Indexed: 01/08/2023]
Abstract
Oocytes of many invertebrate and vertebrate species contain a characteristic organelle complex known as the Balbiani body (Bb). Until now, three principal functions have been ascribed to this complex: delivery of germ cell determinants and localized RNAs to the vegetal cortex/posterior pole of the oocyte, transport of the mitochondria towards the germ plasm, and participation in the formation of lipid droplets. Here, we present the results of a computer-aided 3D reconstruction of the Bb in the growing oocytes of an insect, Thermobia domestica. Our analyses have shown that, in Thermobia, the central part of each fully developed Bb comprises a single intricate mitochondrial network. This “core” network is surrounded by several isolated bean-shaped mitochondrial units that display lowered membrane potential and clear signs of degeneration. In light of the above results and recent theoretical models of mitochondrial quality control, the role of the Bb is discussed. We suggest that, in addition to the aforementioned functions, the Bb is implicated in the selective elimination of dysfunctional mitochondria during oogenesis.
Collapse
Affiliation(s)
- Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| | - Elzbieta Kisiel
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Wladyslawa Jankowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Alicja Witwicka
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
79
|
Haig D. Intracellular evolution of mitochondrial DNA (mtDNA) and the tragedy of the cytoplasmic commons. Bioessays 2016; 38:549-55. [DOI: 10.1002/bies.201600003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA USA
| |
Collapse
|
80
|
Kaufman OH, Marlow FL. Methods to study maternal regulation of germ cell specification in zebrafish. Methods Cell Biol 2016; 134:1-32. [PMID: 27312489 DOI: 10.1016/bs.mcb.2016.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4-5h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology.
Collapse
Affiliation(s)
- O H Kaufman
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - F L Marlow
- Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
81
|
Elkouby YM, Jamieson-Lucy A, Mullins MC. Oocyte Polarization Is Coupled to the Chromosomal Bouquet, a Conserved Polarized Nuclear Configuration in Meiosis. PLoS Biol 2016; 14:e1002335. [PMID: 26741740 PMCID: PMC4704784 DOI: 10.1371/journal.pbio.1002335] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/19/2015] [Indexed: 12/02/2022] Open
Abstract
The source of symmetry breaking in vertebrate oocytes is unknown. Animal—vegetal oocyte polarity is established by the Balbiani body (Bb), a conserved structure found in all animals examined that contains an aggregate of specific mRNAs, proteins, and organelles. The Bb specifies the oocyte vegetal pole, which is key to forming the embryonic body axes as well as the germline in most vertebrates. How Bb formation is regulated and how its asymmetric position is established are unknown. Using quantitative image analysis, we trace oocyte symmetry breaking in zebrafish to a nuclear asymmetry at the onset of meiosis called the chromosomal bouquet. The bouquet is a universal feature of meiosis where all telomeres cluster to one pole on the nuclear envelope, facilitating chromosomal pairing and meiotic recombination. We show that Bb precursor components first localize with the centrosome to the cytoplasm adjacent to the telomere cluster of the bouquet. They then aggregate around the centrosome in a specialized nuclear cleft that we identified, assembling the early Bb. We show that the bouquet nuclear events and the cytoplasmic Bb precursor localization are mechanistically coordinated by microtubules. Thus the animal—vegetal axis of the oocyte is aligned to the nuclear axis of the bouquet. We further show that the symmetry breaking events lay upstream to the only known regulator of Bb formation, the Bucky ball protein. Our findings link two universal features of oogenesis, the Bb and the chromosomal bouquet, to oocyte polarization. We propose that a meiotic—vegetal center couples meiosis and oocyte patterning. Our findings reveal a novel mode of cellular polarization in meiotic cells whereby cellular and nuclear polarity are aligned. We further reveal that in zygotene nests, intercellular cytoplasmic bridges remain between oocytes and that the position of the cytoplasmic bridge coincides with the location of the centrosome meiotic—vegetal organizing center. These results suggest that centrosome positioning is set by the last mitotic oogonial division plane. Thus, oocytes are polarized in two steps: first, mitotic divisions preset the centrosome with no obvious polarization yet, then the meiotic—vegetal center forms at zygotene bouquet stages, when symmetry is, in effect, broken. This study traces symmetry breaking in zebrafish oocytes to a cellular organizer that controls the configuration of the meiotic polarized chromosomal bouquet, thereby coupling meiosis and oocyte patterning at the nexus of oocyte differentiation. In most vertebrates, an early event in egg development involves the establishment of the so-called animal—vegetal axis; this sets up the embryonic body axes and contributes to germ-line specification, and therefore, is key to embryonic development. The animal—vegetal axis is established during oogenesis by the Balbiani body (Bb), an aggregate of specific mRNAs, proteins, and mitochondria, which forms adjacent to the nucleus and ultimately defines one pole of the oocyte, the vegetal pole. Despite its universal conservation, how the Bb forms and how its position is determined is unknown. Here, we show that Bb formation is initiated at the onset of meiosis, and its position coincides with a previously known meiotic polarized nuclear configuration, the chromosomal bouquet, which gathers the chromosome ends, the telomeres, asymmetrically on the nuclear membrane to assist in homologous chromosome pairing. We reveal that a global cellular organizer functioning via microtubules generates the bouquet and aggregates the Bb precursors asymmetrically towards the centrosome. We determined that these events lie functionally upstream to the Bb regulator Bucky ball. Further upstream, we found that the centrosome appears prepositioned by an intercellular cytoplasmic bridge derived from the last presumptive cell division plane of the premeiotic oogonial cell. Thus, oocyte polarity and the chromosomal bouquet are linked through a common cellular polarization mechanism.
Collapse
Affiliation(s)
- Yaniv M. Elkouby
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Allison Jamieson-Lucy
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
82
|
Abstract
Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.
Collapse
Affiliation(s)
- Florence Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA
| |
Collapse
|
83
|
Yakovlev KV. Localization of germ plasm-related structures during sea urchin oogenesis. Dev Dyn 2015; 245:56-66. [PMID: 26385846 DOI: 10.1002/dvdy.24348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/12/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Animal germ cells have specific organelles that are similar to ribonucleoprotein complex, called germ plasm, which is accumulated in eggs. Germ plasm is essential for inherited mechanism of germ line segregation in early embryogenesis. Sea urchins have early germ line segregation in early embryogenesis. Nevertheless, organization of germ plasm-related organelles and their molecular composition are still unclear. Another issue is whether maternally accumulated germ plasm exists in the sea urchin eggs. RESULTS I analyzed intracellular localization of germ plasm during oogenesis in sea urchin Strongylocentrotus intermedius by using morphological approach and immunocytochemical detection of Vasa, a germ plasm marker. All ovarian germ cells have germ plasm-related organelles in the form of germ granules, Balbiani bodies, and perinuclear nuage found previously in germ cells in other animals. Maternal germ plasm is accumulated in late oogenesis at the cell periphery. Cytoskeletal drug treatment showed an association of Vasa-positive granules with actin filaments in the egg cortex. CONCLUSIONS All female germ cells of sea urchins have germ plasm-related organelles. Eggs have a maternally accumulated germ plasm associated with cortical cytoskeleton. These findings correlate with early segregation of germ line in sea urchins.
Collapse
Affiliation(s)
- Konstantin V Yakovlev
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
84
|
Milani L, Ghiselli F, Pecci A, Maurizii MG, Passamonti M. The Expression of a Novel Mitochondrially-Encoded Gene in Gonadic Precursors May Drive Paternal Inheritance of Mitochondria. PLoS One 2015; 10:e0137468. [PMID: 26339998 PMCID: PMC4560408 DOI: 10.1371/journal.pone.0137468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/17/2015] [Indexed: 12/02/2022] Open
Abstract
Mitochondria have an active role in germ line development, and their inheritance dynamics are relevant to this process. Recently, a novel protein (RPHM21) was shown to be encoded in sperm by the male-transmitted mtDNA of Ruditapes philippinarum, a species with Doubly Uniparental Inheritance (DUI) of mitochondria. In silico analyses suggested a viral origin of RPHM21, and we hypothesized that the endogenization of a viral element provided sperm mitochondria of R. philippinarum with the ability to invade male germ line, thus being transmitted to the progeny. In this work we investigated the dynamics of germ line development in relation to mitochondrial transcription and expression patterns using qPCR and specific antibodies targeting the germ line marker VASPH (R. philippinarum VASA homolog), and RPHM21. Based on the experimental results we conclude that both targets are localized in the primordial germ cells (PGCs) of males, but while VASPH is detected in all PGCs, RPHM21 appears to be expressed only in a subpopulation of them. Since it has been predicted that RPHM21 might have a role in cell proliferation and migration, we here suggest that PGCs expressing it might gain advantage over others and undertake spermatogenesis, accounting for RPHM21 presence in all spermatozoa. Understanding how foreign sequence endogenization and co-option can modify the biology of an organism is of particular importance to assess the impact of such events on evolution.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Andrea Pecci
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
85
|
Campbell PD, Heim AE, Smith MZ, Marlow FL. Kinesin-1 interacts with Bucky ball to form germ cells and is required to pattern the zebrafish body axis. Development 2015; 142:2996-3008. [PMID: 26253407 PMCID: PMC4582183 DOI: 10.1242/dev.124586] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/16/2015] [Indexed: 12/31/2022]
Abstract
In animals, specification of the primordial germ cells (PGCs), the stem cells of the germ line, is required to transmit genetic information from one generation to the next. Bucky ball (Buc) is essential for germ plasm (GP) assembly in oocytes, and its overexpression results in excess PGCs in zebrafish embryos. However, the mechanistic basis for the excess PGCs in response to Buc overexpression, and whether endogenous Buc functions during embryogenesis, are unknown. Here, we show that endogenous Buc, like GP and overexpressed Buc-GFP, accumulates at embryonic cleavage furrows. Furthermore, we show that the maternally expressed zebrafish Kinesin-1 Kif5Ba is a binding partner of Buc and that maternal kif5Ba (Mkif5Ba) plays an essential role in germline specification in vivo. Specifically, Mkif5Ba is required to recruit GP to cleavage furrows and thereby specifies PGCs. Moreover, Mkif5Ba is required to enrich Buc at cleavage furrows and for the ability of Buc to promote excess PGCs, providing mechanistic insight into how Buc functions to assemble embryonic GP. In addition, we show that Mkif5Ba is also essential for dorsoventral (DV) patterning. Specifically, Mkif5Ba promotes formation of the parallel vegetal microtubule array required to asymmetrically position dorsal determinants (DDs) towards the prospective dorsal side. Interestingly, whereas Syntabulin and wnt8a translocation depend on kif5Ba, grip2a translocation does not, providing evidence for two distinct mechanisms by which DDs might be asymmetrically distributed. These studies identify essential roles for maternal Kif5Ba in PGC specification and DV patterning, and provide mechanistic insight into Buc functions during early embryogenesis.
Collapse
Affiliation(s)
- Philip D Campbell
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Amanda E Heim
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Mordechai Z Smith
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| |
Collapse
|
86
|
Riemer S, Bontems F, Krishnakumar P, Gömann J, Dosch R. A functional Bucky ball-GFP transgene visualizes germ plasm in living zebrafish. Gene Expr Patterns 2015; 18:44-52. [PMID: 26143227 DOI: 10.1016/j.gep.2015.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/08/2015] [Accepted: 05/09/2015] [Indexed: 10/23/2022]
Abstract
In many animals, the germline is specified by maternal RNA-granules termed germ plasm. The correct localization of germ plasm during embryogenesis is therefore crucial for the specification of germ cells. In zebrafish, we previously identified Bucky ball (Buc) as a key regulator of germ plasm formation. Here, we used a Buc antibody to describe its continuous germ plasm localization. Moreover, we generated a transgenic Buc-GFP line for live imaging, which visualizes germ plasm from its assembly during oogenesis up to the larval stages. Live imaging of Buc-GFP generated stunning movies, as they highlighted the dynamic details of germ plasm movements. Moreover, we discovered that Buc was still detected in primordial germ cells 2 days after fertilization. Interestingly, the transgene rescued buc mutants demonstrating genetically that the Buc-GFP fusion protein is functional. These results show that Buc-GFP exerts all biochemical interactions essential for germline development and highlight the potential of this line to analyze the molecular regulation of germ plasm formation.
Collapse
Affiliation(s)
- Stephan Riemer
- Institut für Entwicklungsbiochemie, GZMB, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen, Germany
| | - Franck Bontems
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Switzerland
| | - Pritesh Krishnakumar
- Institut für Entwicklungsbiochemie, GZMB, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen, Germany
| | - Jasmin Gömann
- Institut für Entwicklungsbiochemie, GZMB, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen, Germany
| | - Roland Dosch
- Institut für Entwicklungsbiochemie, GZMB, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen, Germany.
| |
Collapse
|
87
|
Milani L, Ghiselli F. Mitochondrial activity in gametes and transmission of viable mtDNA. Biol Direct 2015; 10:22. [PMID: 25981894 PMCID: PMC4435915 DOI: 10.1186/s13062-015-0057-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The retention of a genome in mitochondria (mtDNA) has several consequences, among which the problem of ensuring a faithful transmission of its genetic information through generations despite the accumulation of oxidative damage by reactive oxygen species (ROS) predicted by the free radical theory of ageing. A division of labour between male and female germ line mitochondria was proposed: since mtDNA is maternally inherited, female gametes would prevent damages by repressing oxidative phosphorylation, thus being quiescent genetic templates. We assessed mitochondrial activity in gametes of an unusual biological system (doubly uniparental inheritance of mitochondria, DUI), in which also sperm mtDNA is transmitted to the progeny, thus having to overcome the problem of maintaining genetic information viability while producing ATP for swimming. RESULTS Ultrastructural analysis shows no difference in the conformation of mitochondrial cristae in male and female mature gametes, while mitochondria in immature oocytes exhibit a simpler internal structure. Our data on transcriptional activity in germ line mitochondria show variability between sexes and different developmental stages, but we do not find evidence for transcriptional quiescence of mitochondria. Our observations on mitochondrial membrane potential are consistent with mitochondria being active in both male and female gametes. CONCLUSIONS Our findings and the literature we discussed may be consistent with the hypothesis that template mitochondria are not functionally silenced, on the contrary their activity might be fundamental for the inheritance mechanism. We think that during gametogenesis, fertilization and embryo development, mitochondria undergo selection for different traits (e.g. replication, membrane potential), increasing the probability of the transmission of functional organelles. In these phases of life cycle, the great reduction in mtDNA copy number per organelle/cell and the stochastic segregation of mtDNA variants would greatly improve the efficiency of selection. When a higher mtDNA copy number per organelle/cell is present, selection on mtDNA deleterious mutants is less effective, due to the buffering effect of wild-type variants. In our opinion, a combination of drift and selection on germ line mtDNA population, might be responsible for the maintenance of viable mitochondrial genetic information through generations, and a mitochondrial activity would be necessary for the selective process.
Collapse
Affiliation(s)
- Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
88
|
Abstract
The Drosophila melanogaster ovary has served as a popular and successful model for understanding a wide range of biological processes: stem cell function, germ cell development, meiosis, cell migration, morphogenesis, cell death, intercellular signaling, mRNA localization, and translational control. This review provides a brief introduction to Drosophila oogenesis, along with a survey of its diverse biological topics and the advanced genetic tools that continue to make this a popular developmental model system.
Collapse
|
89
|
Dosch R. Next generation mothers: Maternal control of germline development in zebrafish. Crit Rev Biochem Mol Biol 2014; 50:54-68. [DOI: 10.3109/10409238.2014.985816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
90
|
Martin MV, Distéfano AM, Bellido A, Córdoba JP, Soto D, Pagnussat GC, Zabaleta E. Role of mitochondria during female gametophyte development and fertilization in A. thaliana. Mitochondrion 2014; 19 Pt B:350-6. [DOI: 10.1016/j.mito.2014.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
|
91
|
Dwarakanath M, Lim M, Xu H, Hong Y. Differential expression of boule and dazl in adult germ cells of the Asian seabass. Gene 2014; 549:237-42. [PMID: 25084124 DOI: 10.1016/j.gene.2014.07.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 07/06/2014] [Accepted: 07/24/2014] [Indexed: 12/22/2022]
Abstract
Fertility genes boule and dazl constitute the evolutionarily conserved DAZ (Deleted in AZoospermia) family of RNA binding proteins essential for germline development across animal phyla. Here we report the cloning and expression analysis of boule and dazl from the Asian seabass (Lates calcarifer), a marine fish that undergoes sequential male-to-female sex reversal. Molecular cloning and sequence comparison led to the identification of boule and dazl cDNAs. RT-PCR analysis showed that both boule and dazl RNAs were restricted to the gonads among adult organs examined. Chromogenic in situ hybridization revealed germ cell-specific expression for both boule and dazl in female and male adults. Importantly, distinct differences were found between boule and dazl in terms of temporospatial expression and subcellular distribution. The boule RNA was abundant in late gametogenic cells except sperm. Interestingly, dazl expression increases in early oocytes and concentrates in a perinuclear speckle that appears to develop ultimately into the Balbiani body in advanced oocytes. The dazl RNA was found to be abundant in spermatocytes but hardly detectable in sperm. These data demonstrate that boule and dazl are germ cell markers in the adult Asian seabass, and that bisexual germline-specific expression has been conserved for boule and dazl in fish.
Collapse
Affiliation(s)
- Manali Dwarakanath
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Menghuat Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Hongyan Xu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
92
|
Kloc M, Jedrzejowska I, Tworzydlo W, Bilinski SM. Balbiani body, nuage and sponge bodies--term plasm pathway players. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:341-8. [PMID: 24398038 DOI: 10.1016/j.asd.2013.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 05/14/2023]
Abstract
In many animal species, germ cells are specified by maternally provided, often asymmetrically localized germ cell determinant, termed the germ plasm. It has been shown that in model organisms such as Xenopus laevis, Danio rerio and Drosophila melanogaster germ plasm components (various proteins, mRNAs and mitochondria) are delivered to the proper position within the egg cell by germline specific organelles, i.e. Balbiani bodies, nuage accumulations and/or sponge bodies. In the present article, we review the current knowledge on morphology, molecular composition and functioning of these organelles in main lineages of arthropods and different ovary types on the backdrop of data derived from the studies of the model vertebrate species.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Hospital, The Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - Izabela Jedrzejowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
93
|
Tworzydlo W, Kisiel E, Jankowska W, Bilinski SM. Morphology and ultrastructure of the germarium in panoistic ovarioles of a basal “apterygotous” insect, Thermobia domestica. ZOOLOGY 2014; 117:200-6. [DOI: 10.1016/j.zool.2014.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023]
|
94
|
In mouse oocytes the mitochondrion-originated germinal body-like structures accumulate mouse Vasa homologue (MVH) protein. ZYGOTE 2014; 23:501-6. [DOI: 10.1017/s0967199414000124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryMouse Vasa homologue (MVH) antibodies were applied to mouse Graafian oocytes to clarify if mitochondrion-originated germinal body-like structures, described previously by conventional electron microscopy, were associated with the germ plasm. It was found that both the mitochondrion-like structures with cristae and the germinal body-like structures that lacked any signs of cristae were labelled specifically by the anti-MVH antibody. Moreover, some granules were MVH-positive ultrastructural hybrids of the mitochondria and germinal body-like structures, the presence of which clearly supported the idea of a mitochondrial origin for the germinal body-like structures. This finding is the first evidence that mitochondrion-originated germinal body-like granules represent mouse germ plasm.
Collapse
|
95
|
Webb SE, Miller AL. Calcium signaling in extraembryonic domains during early teleost development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 304:369-418. [PMID: 23809440 DOI: 10.1016/b978-0-12-407696-9.00007-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
It is becoming recognized that the extraembryonic domains of developing vertebrates, that is, those that make no cellular contribution to the embryo proper, act as important signaling centers that induce and pattern the germ layers and help establish the key embryonic axes. In the embryos of teleost fish, in particular, significant progress has been made in understanding how signaling activity in extraembryonic domains, such as the enveloping layer, the yolk syncytial layer, and the yolk cell, might help regulate development via a combination of inductive interactions, cellular dynamics, and localized gene expression. Ca(2+) signaling in a variety of forms that include propagating waves and standing gradients is a feature found in all three teleostean extraembryonic domains. This leads us to propose that in addition to their other well-characterized signaling activities, extraembryonic domains are well suited (due to their relative stability and continuity) to act as Ca(2+) signaling centers and conduits.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | | |
Collapse
|
96
|
Heim AE, Hartung O, Rothhämel S, Ferreira E, Jenny A, Marlow FL. Oocyte polarity requires a Bucky ball-dependent feedback amplification loop. Development 2014; 141:842-54. [PMID: 24496621 DOI: 10.1242/dev.090449] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, the first asymmetries are established along the animal-vegetal axis during oogenesis, but the underlying molecular mechanisms are poorly understood. Bucky ball (Buc) was identified in zebrafish as a novel vertebrate-specific regulator of oocyte polarity, acting through unknown molecular interactions. Here we show that endogenous Buc protein localizes to the Balbiani body, a conserved, asymmetric structure in oocytes that requires Buc for its formation. Asymmetric distribution of Buc in oocytes precedes Balbiani body formation, defining Buc as the earliest marker of oocyte polarity in zebrafish. Through a transgenic strategy, we determined that excess Buc disrupts polarity and results in supernumerary Balbiani bodies in a 3'UTR-dependent manner, and we identified roles for the buc introns in regulating Buc activity. Analyses of mosaic ovaries indicate that oocyte pattern determines the number of animal pole-specific micropylar cells that are associated with an egg via a close-range signal or direct cell contact. We demonstrate interactions between Buc protein and buc mRNA with two conserved RNA-binding proteins (RNAbps) that are localized to the Balbiani body: RNA binding protein with multiple splice isoforms 2 (Rbpms2) and Deleted in azoospermia-like (Dazl). Buc protein and buc mRNA interact with Rbpms2; buc and dazl mRNAs interact with Dazl protein. Cumulatively, these studies indicate that oocyte polarization depends on tight regulation of buc: Buc establishes oocyte polarity through interactions with RNAbps, initiating a feedback amplification mechanism in which Buc protein recruits RNAbps that in turn recruit buc and other RNAs to the Balbiani body.
Collapse
Affiliation(s)
- Amanda E Heim
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
97
|
Hill JH, Chen Z, Xu H. Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat Genet 2014; 46:389-92. [PMID: 24614072 PMCID: PMC3976679 DOI: 10.1038/ng.2920] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/14/2014] [Indexed: 11/09/2022]
Abstract
Although mitochondrial DNA (mtDNA) is prone to mutation and few mtDNA repair mechanisms exist, crippling mitochondrial mutations are exceedingly rare. Recent studies have demonstrated strong purifying selection in the mouse female germline. However, the mechanisms underlying positive selection of healthy mitochondria remain to be elucidated. We visualized mtDNA replication during Drosophila melanogaster oogenesis, finding that mtDNA replication commenced before oocyte determination during the late germarium stage and was dependent on mitochondrial fitness. We isolated a temperature-sensitive lethal mtDNA allele, mt:CoI(T300I), which resulted in reduced mtDNA replication in the germarium at the restrictive temperature. Additionally, the frequency of the mt:CoI(T300I) allele in heteroplasmic flies was decreased, both during oogenesis and over multiple generations, at the restrictive temperature. Furthermore, we determined that selection against mt:CoI(T300I) overlaps with the timing of selective replication of mtDNA in the germarium. These findings establish a previously uncharacterized developmental mechanism for the selective amplification of wild-type mtDNA, which may be evolutionarily conserved to limit the transmission of deleterious mutations.
Collapse
Affiliation(s)
- Jahda H Hill
- 1] Laboratory of Molecular Genetics, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA. [2]
| | - Zhe Chen
- 1] Laboratory of Molecular Genetics, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA. [2]
| | - Hong Xu
- Laboratory of Molecular Genetics, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
98
|
Schisa JA. Effects of stress and aging on ribonucleoprotein assembly and function in the germ line. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:231-46. [PMID: 24523207 DOI: 10.1002/wrna.1204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/03/2013] [Accepted: 10/09/2013] [Indexed: 11/08/2022]
Abstract
In a variety of cell types, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. The germ line contains RNPs found also in somatic cells, such as processing (P) bodies and stress granules, as well as several RNPs unique to the germ line, including germ granules, nuage, Balbiani bodies, P granules, U bodies, and sponge bodies. Recent advances have identified a conserved response of germ line RNPs to environmental stresses such as nutritional stress and heat shock. The RNPs increase significantly in size based on cytology; their morphology and subcellular localization changes, and their composition changes. These dynamic changes are reversible when stresses diminish, and similar changes occur in response to aging or extended meiotic arrest prior to fertilization of oocytes. Intriguing correlations exist between the dynamics of the RNPs and the microtubule cytoskeleton and its motor proteins, suggesting a possible mechanism for the assembly and dissociation of the large RNP granules. Similarly, coordinated changes of the nuclear membrane and endoplasmic reticulum may also help unravel the regulatory mechanisms of RNP dynamics. Based on their composition, the RNPs are thought to regulate mRNA decay and/or translation, and initial support for some of these roles is now at hand. Ultimately, the question of why RNP remodeling occurs to such a large extent during a variety of stresses and aging remains to be fully answered, but a current attractive hypothesis is that the plasticity promotes the maintenance of oocyte quality.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
99
|
Milani L, Ghiselli F, Nuzhdin SV, Passamonti M. Nuclear genes with sex bias in Ruditapes philippinarum (Bivalvia, veneridae): Mitochondrial inheritance and sex determination in DUI species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:442-54. [PMID: 23873694 DOI: 10.1002/jez.b.22520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Revised: 05/16/2013] [Accepted: 06/03/2013] [Indexed: 01/13/2023]
Abstract
Mitochondria are inherited maternally in most metazoans, but in bivalves with Doubly Uniparental Inheritance (DUI) a mitochondrial lineage is transmitted through eggs (F-type), and another through sperm (M-type). In DUI species, a sex-ratio distortion of the progeny was observed: some females produce a female-biased offspring (female-biased family), others a male-biased progeny (male-biased family), and others a 50:50 sex-ratio. A peculiar segregation pattern of M-type mitochondria in DUI organisms appears to be correlated with the sex bias of these families. According to a proposed model for the inheritance of M-type mitochondria in DUI, the transmission of sperm mitochondria is controlled by three nuclear genes, named W, X, and Z. An additional S gene with different dosage effect would be involved in sex determination. In this study, we analyzed structure and localization of three transcripts (psa, birc, and anubl1) with specific sex and family biases in the Manila clam Ruditapes philippinarum. In situ hybridization confirmed the localization of these transcripts in gametogenic cells. In other animals, homologs of these genes are involved in reproduction and ubiquitination. We hypothesized that these genes may have a role in sex determination and could also be responsible for the maintenance/degradation of spermatozoon mitochondria during embryo development of the DUI species R. philippinarum, so that we propose them as candidate factors of the W/X/Z/S system.
Collapse
Affiliation(s)
- Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
100
|
Rodler D, Sinowatz F. Expression of intermediate filaments in the Balbiani body and ovarian follicular wall of the Japanese quail (Coturnix japonica). Cells Tissues Organs 2013; 197:298-311. [PMID: 23391820 DOI: 10.1159/000346048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
In the present study, we examined the distribution of 6 groups of intermediate filaments (IFs; cytokeratins, CKs, vimentin, synemin, desmin, glial fibrillary acidic protein and lamins) in oocytes and follicular walls of the Japanese quail (Coturnix japonica) during their development using immunohistochemical and ultrastructural techniques. A distinctly vimentin- and synemin-positive Balbiani body, which is a transient accumulation of organelles (mitochondria, Golgi complex and endoplasmic reticulum) that occurs in the oocytes of all vertebrates including birds, could be detected in the oocytes of primordial and early pre-vitellogenic follicles. In larger pre-vitellogenic follicles, the Balbiani body has dispersed and the positivity of the granulosa cells appeared to concentrate in the basal portion of their cytoplasm. Our ultrastructural data demonstrated that the matrix of the Bal-biani body consists of fine IFs, which may play a role in the formation and dispersion of the Balbiani body. Of the CKs studied (panCK, CK5, CK7, CK8, CK14, CK15, CK18 and CK19), only CK5 showed a slight positive staining in both the theca externa and the Balbiani bodies of pre-vitellogenic oocytes. In conclusion, our data, which describe the changes in avian IF protein expression during folliculogenesis, suggest that the functions of the IFs (vimentin and synemin) of oocytes and follicular walls are not primarily mechanical but may be involved in the transient tethering of mitochondria in the area of the Balbiani body and in the gain of endocrine competence during the differentiation of granulosa cells.
Collapse
Affiliation(s)
- Daniela Rodler
- Department of Veterinary Sciences, Institute of Anatomy, Histology and Embryology, University of Munich, DE–80539 Munich, Germany
| | | |
Collapse
|