51
|
Deepika G, Green R, Frazier R, Charalampopoulos D. Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG. J Appl Microbiol 2009; 107:1230-40. [DOI: 10.1111/j.1365-2672.2009.04306.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Ramiah K, van Reenen CA, Dicks LMT. Expression of the Mucus Adhesion Gene Mub, Surface Layer Protein Slp and Adhesion-Like Factor EF-TU of Lactobacillus acidophilus ATCC 4356 Under Digestive Stress Conditions, as Monitored with Real-Time PCR. Probiotics Antimicrob Proteins 2009; 1:91. [PMID: 26783135 DOI: 10.1007/s12602-009-9009-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 02/20/2009] [Indexed: 11/29/2022]
Abstract
Expression of the mucus adhesion gene Mub, surface layer protein Slp and adhesion-like factor EF-Tu by Lactobacillus acidophilus ATCC 4356 grown in the presence of mucin, bile and pancreatin and at low pH was studied using real-time PCR. None of the genes were up-regulated under increasing concentrations of mucin, while Slp and EF-Tu were up-regulated in the presence of bile and pancreatin at normal concentrations (0.3%, w/v) and under stress conditions (1.0%, w/v).
Collapse
Affiliation(s)
- K Ramiah
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - C A van Reenen
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - L M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
53
|
Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 2009; 72:728-64, Table of Contents. [PMID: 19052326 DOI: 10.1128/mmbr.00017-08] [Citation(s) in RCA: 652] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lactobacilli have been crucial for the production of fermented products for centuries. They are also members of the mutualistic microbiota present in the human gastrointestinal and urogenital tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities. Many human intervention studies demonstrating health effects have been published. However, as not all studies resulted in positive outcomes, scientific interest arose regarding the precise mechanisms of action of probiotics. Many reported mechanistic studies have addressed mainly the host responses, with less attention being focused on the specificities of the bacterial partners, notwithstanding the completion of Lactobacillus genome sequencing projects, and increasing possibilities of genomics-based and dedicated mutant analyses. In this emerging and highly interdisciplinary field, microbiologists are facing the challenge of molecular characterization of probiotic traits. This review addresses the advances in the understanding of the probiotic-host interaction with a focus on the molecular microbiology of lactobacilli. Insight into the molecules and genes involved should contribute to a more judicious application of probiotic lactobacilli and to improved screening of novel potential probiotics.
Collapse
|
54
|
Li XJ, Yue LY, Guan XF, Qiao SY. The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J Appl Microbiol 2007; 104:1082-91. [PMID: 18081774 DOI: 10.1111/j.1365-2672.2007.03636.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS To investigate the adhesion of lactobacilli and their subsequent competitive exclusion ability against pathogens. METHODS AND RESULTS Four species of putative probiotic lactobacilli were studied for their adhesion abilities. First, the adhesion to Caco-2 cells was examined by light and electron microscopy. The four species were then labelled by [methyl-(3)H] thymidine and their adhesion to porcine intestinal mucus was determined by radioactivity. The tested lactobacilli showed best adhesion on ileal mucus compared with duodenal and jejunal mucus. Oxidative compound pre-treatment (NaIO(3) and NaIO(4)) dramatically decreased the adhesion of the lactobacilli to mucus. Pre-treating mucus with proteolytic enzymes (proteinase K and trypsin) resulted in the increase of adhesion in Lactobacillus serotype Reuteri I2021, but the results in the other species were variable. Lactobacillus serotype Fermentum I5007 showed greatest adhesion potential and exerted the best competitive exclusion against Salmonella and Escherichia. CONCLUSIONS Adhesion ability in lactobacilli is species-specific. Lactobacilli with higher adhesion index have better competitive exclusion ability. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests that there is a positive correlation between adhesion and competitive exclusion ability of lactobacilli. Additionally, the in vitro adhesion assay is a feasible way to screen unknown lactobacilli, potentially for future industrial applications.
Collapse
Affiliation(s)
- X J Li
- National Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
55
|
Tallon R, Arias S, Bressollier P, Urdaci MC. Strain- and matrix-dependent adhesion of Lactobacillus plantarum is mediated by proteinaceous bacterial compounds. J Appl Microbiol 2007; 102:442-51. [PMID: 17241350 DOI: 10.1111/j.1365-2672.2006.03086.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS The ability of 31 Lactobacillus plantarum strains to adhere to biological matrixes was evaluated, and the molecules involved in adherence were studied. METHODS AND RESULTS Mucin, basement membrane proteins and Caco-2 cells were used in adhesion tests. These in vitro assays, together with a yeast agglutination test, were found to be discriminative for screening Lact. plantarum strains for adhesion. Some strains, such as 299v, CBE, BMCM12, Col4S and T25, were shown to possess interesting adhesion properties in at least two models. The adhesion of these strains was strongly inhibited when the bacterial cells were pretreated with trypsin. Lithium chloride and methyl-alpha-D-mannoside also inhibited adhesion to a lower extent. CONCLUSIONS The adhesion of Lact. plantarum depends on both the model and the strain used. The chemical and enzymatic pretreatments applied to the bacterial cells suggested that lectin-like adhesins and other proteinaceous cell-surface structures are involved in adhesion of these strains. SIGNIFICANCE AND IMPACT OF THE STUDY We found a great diversity in the adhesion properties between Lact. plantarum strains. Based upon the adhesive property of these strains interesting candidates were identified, that will undergo further study as potential probiotics.
Collapse
Affiliation(s)
- R Tallon
- Laboratoire de Microbiologie et Biochimie Appliquée, ENITA-University of Bordeaux, Gradignan, France
| | | | | | | |
Collapse
|
56
|
Vélez MP, De Keersmaecker SCJ, Vanderleyden J. Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol Lett 2007; 276:140-8. [PMID: 17888009 DOI: 10.1111/j.1574-6968.2007.00908.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Despite the increasing number of scientific reports describing adhesion of Lactobacillus to components of the human intestinal mucosa, information on the surface molecules mediating this adhesion and their corresponding receptors is fragmentary. This MiniReview compiles present knowledge of the genetically and functionally characterized Lactobacillus factors responsible for mediating adhesion to different components of the human gastrointestinal tract. In addition, for the proteins among these factors, the domain structure is discussed, and where appropriate the results of in silico analyses are reported.
Collapse
|
57
|
Collado MC, Meriluoto J, Salminen S. Development of New Probiotics by Strain Combinations: Is It Possible to Improve the Adhesion to Intestinal Mucus? J Dairy Sci 2007; 90:2710-6. [PMID: 17517710 DOI: 10.3168/jds.2006-456] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We evaluated the ability of commercial probiotic strains (Lactobacillus rhamnosus GG, L. rhamnosus LC705, Bifidobacterium breve 99, and Propionibacterium freudenreichii ssp. shermanii JS) to adhere alone or in different combinations to immobilized mucus. Probiotic combinations were clearly able to enhance the adhesion of L. rhamnosus GG, L. rhamnosus LC705, and P. freudenreichii ssp. shermanii JS. For L. rhamnosus GG and P. freudenreichii JS, all the combinations significantly improved adhesion to intestinal mucus, from 29.7 to 34.9% and from 1.9 to 2.3%, respectively. The adhesion of L. rhamnosus LC705 was improved from 0 to 46.4%. The adhesion of B. breve 99 was improved only in combination with L. rhamnosus GG and P. freudenreichii JS. Our results suggest that probiotic combinations could increase the beneficial health effects as compared with individual strains. Combinations of probiotic strains may therefore have synergistic adhesion effects, and such combinations also should be assessed in clinical studies.
Collapse
Affiliation(s)
- M C Collado
- Functional Foods Forum, University of Turku, Itäinen Pitkäkatu 4A, 20520 Turku, Finland.
| | | | | |
Collapse
|
58
|
Myllyluoma E, Kajander K, Mikkola H, Kyrönpalo S, Rasmussen M, Kankuri E, Sipponen P, Vapaatalo H, Korpela R. Probiotic intervention decreases serum gastrin-17 in Helicobacter pylori infection. Dig Liver Dis 2007; 39:516-23. [PMID: 17433799 DOI: 10.1016/j.dld.2007.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 02/07/2007] [Accepted: 02/28/2007] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previously we showed that a probiotic combination with L. rhamnosus GG was beneficial as an adjuvant therapy during H. pylori eradication. AIM To evaluate whether probiotic combination with LGG adheres to the upper gastrointestinal mucosa and modifies H. pylori colonisation and H. pylori induced inflammation. METHODS Thirteen patients referred for gastroduodenoscopy received a drink consisting of equal doses (2.5x10(9)CFU) of LGG, L. rhamnosus LC705, Propionibacterium freudenreichii JS and Bifidobacterium lactis Bb12 daily. Recovery of probiotics in biopsies (antrum, corpus, duodenum) and faecal samples was evaluated by strain-specific quantitative polymerase chain reaction. H. pylori colonization and gastric inflammation was investigated by urease activity ((13)C-urea breath test), histology and serum pepsinogen I, II and gastrin-17 measurements. RESULTS Twelve patients were fully investigated; of these three of the patients had LGG adhering to the biopsies at end of the intervention. Other probiotic strains were not detected, even though the recovery of all individual probiotic strains from the faeces was significantly increased (p<0.01). After the treatment, the level of (13)C-urea breath test (p=0.063) and gastrin-17 (p=0.046) decreased. CONCLUSIONS The decreases in (13)C-urea breath test and gastrin-17 indicate that the probiotic combination exerts a beneficial effect on gastric mucosa in H. pylori infected patients. LGG showed marginal ability to adhere to the upper gastrointestinal tract mucosa.
Collapse
Affiliation(s)
- E Myllyluoma
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Collado MC, Surono I, Meriluoto J, Salminen S. Indigenous Dadih Lactic Acid Bacteria: Cell-Surface Properties and Interactions with Pathogens. J Food Sci 2007; 72:M89-93. [DOI: 10.1111/j.1750-3841.2007.00294.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
60
|
Sun J, Le GW, Shi YH, Su GW. Factors involved in binding of Lactobacillus plantarum Lp6 to rat small intestinal mucus. Lett Appl Microbiol 2007; 44:79-85. [PMID: 17209819 DOI: 10.1111/j.1472-765x.2006.02031.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To investigate the adhesion determinants of Lactobacillus plantarum Lp6, a dairy isolate. METHODS AND RESULTS Small intestinal mucus extracted from rats was used as a substrate for adhesion. Adhesion determinants were studied by physical, chemical and enzymatic pretreatments of the bacteria, and adhesion inhibition assay. The mannose-specific adhesins were explored by studying the effect of d-mannose on adhesion and the yeast-agglutinating ability of the bacteria. It was found that adhesion decreased after bacteria were treated with sodium metaperiodate, protease K, trypsin, lithium chloride and trichloroacetic acid. However, adhesion did not decrease after trypsin-treated bacteria were incubated with cell surface protein extract. Cell surface bound exopolysaccharides were found to inhibit the adhesion. D-mannose inhibited the adhesion in a dose-dependent manner. The bacteria could significantly agglutinate yeast and lost this ability after protease K treatment. CONCLUSIONS Adhesion was mainly mediated by the mannose specific adhesins, which might be proteins that reversibly bind to the cell surface components. Cell surface-bound exopolysaccharides were also involved in adhesion. SIGNIFICANCE AND IMPACT OF THE STUDY The mannose-specific adhesion of Lact. plantarum Lp6 to rat mucus might be important for competing with pathogens-binding sites in gut, which may be used to resist the colonization of the pathogens.
Collapse
Affiliation(s)
- J Sun
- The Key Laboratory of Food Science and Safety, Ministry of Education, Southern Yangtze University, Wuxi, Jiangsu, China
| | | | | | | |
Collapse
|
61
|
Ramiah K, van Reenen CA, Dicks LMT. Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR. Int J Food Microbiol 2007; 116:405-9. [PMID: 17399831 DOI: 10.1016/j.ijfoodmicro.2007.02.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 11/27/2006] [Accepted: 02/27/2007] [Indexed: 11/29/2022]
Abstract
Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA by Lactobacillus plantarum 423, grown in the presence of bile, pancreatin and at low pH, was studied by real-time PCR. Mub, MapA and EF-Tu were up-regulated in the presence of mucus, proportional to increasing concentrations. Expression of MapA was up-regulated in the presence of 3.0 g/l bile and 3.0 g/l pancreatin at pH 6.5. Similar results were recorded in the presence of 10.0 g/l bile and 10.0 g/l pancreatin at pH 6.5. Expression of Mub was down-regulated in the presence of bile and pancreatin, whilst the expression of EF-Tu and plaA remained unchanged. Expression of Mub and MapA remained unchanged at pH 4.0, whilst expression of EF-Tu and plaA were up-regulated. Expression of MapA was down-regulated in the presence of 1.0 g/l l-cysteine HCl, suggesting that the gene is regulated by transcription attenuation that involves cysteine.
Collapse
Affiliation(s)
- K Ramiah
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | | |
Collapse
|
62
|
Kang SS, Conway PL. Characteristics of the adhesion of PCC®Lactobacillus fermentumVRI 003 to Peyer's patches. FEMS Microbiol Lett 2006; 261:19-24. [PMID: 16842353 DOI: 10.1111/j.1574-6968.2006.00315.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The characteristics of the adhesion of PCC Lactobacillus fermentum VRI 003 to Peyer's patches was studied in vitro. The adhesion of L. fermentum 003 was strongly inhibited in the presence of d-mannose and methyl-alpha-d-mannoside although other carbohydrates tested, such as N-acetyl-glucosamine, d-galactose, d-glucose and l-fucose, did not affect the adhesion. Lactobacillus fermentum 003 was shown to strongly attach to mannose immobilized on a surface using BSA, suggesting that L. fermentum 003 specifically adhered to mannose-containing molecule(s). Pretreatment of L. fermentum 003 with proteinase K and trypsin decreased the adhesive capacity and bacterial surface extracts diminished adhesion of L. fermentum 003 indicating that cell surface proteins are involved in adhesion to Peyer's patches. It was concluded that a mannose-specific protein mediated adhesion of L. fermentum 003 to the Peyer's patches.
Collapse
Affiliation(s)
- Seok-Seong Kang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
63
|
Collado MC, Gueimonde M, Sanz Y, Salminen S. Adhesion properties and competitive pathogen exclusion ability of bifidobacteria with acquired acid resistance. J Food Prot 2006; 69:1675-9. [PMID: 16865903 DOI: 10.4315/0362-028x-69.7.1675] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adhesion properties of Bifidobacterium longum and Bifidobacterium catenulatum strains with an acquired resistance to acid and their ability to competitively exclude Salmonella enterica serovar Typhimurium, Escherichia coli, Listeria monocytogenes, Enterobacter sakazakii, and Clostridium difficile from adhering to human intestinal mucus were evaluated and compared with the results when the same experiments were run with the original acid-sensitive strains. In half of the four studied cases, the acid-resistant derivative showed a greater ability to adhere to human intestinal mucus than the original strain. The ability of bifidobacteria to inhibit pathogen adhesion to mucus was not generally improved by the acquisition of acid resistance. In contrast, three of the four acid-resistant strains showed a greater ability to displace preadhered pathogens than the original strains, especially preadhered Salmonella Typhimurium and C. difficile. Overall, the induction of acid resistance in bifidobacteria could be a strategy when selecting strains with enhanced stability and improved surface properties that favor their potential functionality as probiotics against specific pathogens.
Collapse
Affiliation(s)
- M Carmen Collado
- Functional Foods Forum, University of Turku, Itäinen Pitkäkatu 4A 5th Floor, FIN 20520, Turku, Finland
| | | | | | | |
Collapse
|
64
|
Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D, Corthésy-Theulaz IE. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 2006; 74:425-34. [PMID: 16368998 PMCID: PMC1346591 DOI: 10.1128/iai.74.1.425-434.2006] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/31/2005] [Accepted: 10/13/2005] [Indexed: 11/20/2022] Open
Abstract
Heat shock proteins of the GroEL or Hsp60 class are highly conserved proteins essential to all living organisms. Even though GroEL proteins are classically considered intracellular proteins, they have been found at the surface of several mucosal pathogens and have been implicated in cell attachment and immune modulation. The purpose of the present study was to investigate the GroEL protein of a gram-positive probiotic bacterium, Lactobacillus johnsonii La1 (NCC 533). Its presence at the bacterial surface was demonstrated using a whole-cell enzyme-linked immunosorbent assay and could be detected in bacterial spent culture medium by immunoblotting. To assess binding of La1 GroEL to mucins and intestinal epithelial cells, the La1 GroEL protein was expressed in Escherichia coli. We report here that La1 recombinant GroEL (rGroEL) binds to mucins and epithelial cells and that this binding is pH dependent. Immunomodulation studies showed that La1 rGroEL stimulates interleukin-8 secretion in macrophages and HT29 cells in a CD14-dependent mechanism. This property is common to rGroEL from other gram-positive bacteria but not to the rGroEL of the gastric pathogen Helicobacter pylori. In addition, La1 rGroEL mediates the aggregation of H. pylori but not that of other intestinal pathogens. Our in vitro results suggest that GroEL proteins from La1 and other lactic acid bacteria might play a role in gastrointestinal homeostasis due to their ability to bind to components of the gastrointestinal mucosa and to aggregate H. pylori.
Collapse
|
65
|
Collado MC, Gueimonde M, Hernández M, Sanz Y, Salminen S. Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Prot 2005; 68:2672-8. [PMID: 16355841 DOI: 10.4315/0362-028x-68.12.2672] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability of potential probiotic strains to adhere to the intestinal mucosa and exclude and displace pathogens is of utmost importance for therapeutic manipulation of the enteric microbiota. The ability of seven selected human bifidobacterial strains and five human enteropathogenic strains to adhere to human intestinal mucus was analyzed and compared with that of four strains isolated from chicken intestines. The adhesion of the bifidobacterial strains ranged from 3 to 16% depending on the strain. Bifidobacterium strains of animal origin adhered significantly better than did strains of human origin. Of the pathogenic bacteria, Escherichia coli NCTC 8603 had the highest adhesion value (20%), Salmonella Typhimurium ATCC 29631, Enterobacter sakazakii ATCC 29544, and Clostridium difficile ATCC 9689 had adhesion values ranging from 10 to 15%, and Listeria monocytogenes ATCC 15313 had the lowest adhesive value (3%). The ability of these bifidobacteria to inhibit pathogen adhesion and to displace pathogens previously adhering to mucus was also tested. The inhibition of pathogens adhesion by these bifidobacterial strains was variable and clearly strain dependent. In general, bifidobacterial strains of animal origin were better able to inhibit and displace pathogens than were human strains. Preliminary characterization of bacterial adhesion was accomplished using different pretreatments to explore adhesion mechanisms. The results indicate that different molecules are implicated in the adhesion of bifidobacteria to the human intestinal mucus, constituting a multifactorial process.
Collapse
Affiliation(s)
- M Carmen Collado
- Functional Food Forum, University of Turku, Itäinen Pitkäkatu 4A, FIN 20014, Turku, Finland
| | | | | | | | | |
Collapse
|
66
|
Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
67
|
Bavington C, Page C. Stopping Bacterial Adhesion: A Novel Approach to Treating Infections. Respiration 2005; 72:335-44. [PMID: 16088272 DOI: 10.1159/000086243] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adhesion and colonization are prerequisites for the establishment of bacterial pathogenesis. The prevention of adhesion is an attractive target for the development of new therapies in the prevention of infection. Bacteria have developed a multiplicity of adhesion mechanisms commonly targeting surface carbohydrate structures, but our ability to rationally design effective antiadhesives is critically affected by the limitations of our knowledge of the human 'glycome' and of the bacterial function in relation to it. The potential for the future development of carbohydrate-based antiadhesives has been demonstrated by a significant number of in vitro and in vivo studies. Such therapies will be particularly relevant for infections of mucosal surfaces where topical application or delivery is possible.
Collapse
Affiliation(s)
- C Bavington
- GlycoMar Limited, European Centre for Marine Biotechnology, Dunstaffnage Marine Lab, Dunbeg, Oban, Argyll
| | | |
Collapse
|
68
|
Merk K, Borelli C, Korting HC. Lactobacilli – bacteria–host interactions with special regard to the urogenital tract. Int J Med Microbiol 2005; 295:9-18. [PMID: 15861812 DOI: 10.1016/j.ijmm.2004.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Lactobacilli are part of the commensal human mucosal flora. Their application as probiotics in dairy products such as yoghurt has increased during the last century since a health promoting effect has been reported. Much work has been done to study the effects of these bacteria on the immune system and epithelial cells, mainly focused on the intestinal mucosa as the field of first contact. This review is aimed to present and discuss results concerning interactions of lactobacilli and immune system or epithelial cells with focus to urogenital mucosa.
Collapse
Affiliation(s)
- Kathrin Merk
- Klinikum der Universität München, Klinik und Poliklinik für Dermatologie und Allergologie - Innenstadt, Frauenlobstr. 9-11, D-8033 7 München, Germany.
| | | | | |
Collapse
|
69
|
Gratz S, Mykkänen H, Ouwehand AC, Juvonen R, Salminen S, El-Nezami H. Intestinal mucus alters the ability of probiotic bacteria to bind aflatoxin B1 in vitro. Appl Environ Microbiol 2004; 70:6306-8. [PMID: 15466581 PMCID: PMC522068 DOI: 10.1128/aem.70.10.6306-6308.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several probiotics are known to bind aflatoxin B(1) (AFB(1)) to their surfaces and to adhere to intestinal mucus. In this study, preincubation of two probiotic preparations with either AFB(1) or mucus reduced the subsequent surface binding of mucus and AFB(1), respectively, in a strain-dependent manner.
Collapse
Affiliation(s)
- S Gratz
- Department of Clinical Nutrition, University of Kuopio, Harjulantie 1, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
70
|
Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 2004; 101:2512-7. [PMID: 14983040 PMCID: PMC356981 DOI: 10.1073/pnas.0307327101] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactobacillus johnsonii NCC 533 is a member of the acidophilus group of intestinal lactobacilli that has been extensively studied for their "probiotic" activities that include, pathogen inhibition, epithelial cell attachment, and immunomodulation. To gain insight into its physiology and identify genes potentially involved in interactions with the host, we sequenced and analyzed the 1.99-Mb genome of L. johnsonii NCC 533. Strikingly, the organism completely lacked genes encoding biosynthetic pathways for amino acids, purine nucleotides, and most cofactors. In apparent compensation, a remarkable number of uncommon and often duplicated amino acid permeases, peptidases, and phosphotransferase-type transporters were discovered, suggesting a strong dependency of NCC 533 on the host or other intestinal microbes to provide simple monomeric nutrients. Genome analysis also predicted an abundance (>12) of large and unusual cell-surface proteins, including fimbrial subunits, which may be involved in adhesion to glycoproteins or other components of mucin, a characteristic expected to affect persistence in the gastrointestinal tract (GIT). Three bile salt hydrolases and two bile acid transporters, proteins apparently critical for GIT survival, were also detected. In silico genome comparisons with the >95% complete genome sequence of the closely related Lactobacillus gasseri revealed extensive synteny punctuated by clear-cut insertions or deletions of single genes or operons. Many of these regions of difference appear to encode metabolic or structural components that could affect the organisms competitiveness or interactions with the GIT ecosystem.
Collapse
Affiliation(s)
- R David Pridmore
- Department of Nutrition and Health, Nestlé Research Center, PO Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Rojas M, Ascencio F, Conway PL. Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol 2002; 68:2330-6. [PMID: 11976105 PMCID: PMC127527 DOI: 10.1128/aem.68.5.2330-2336.2002] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An adhesion-promoting protein involved in the binding of Lactobacillus fermentum strain 104R to small intestinal mucus from piglets and to partially purified gastric mucin was isolated and characterized. Spent culture supernatant fluid and bacterial cell wall extracts were fractionated by ammonium sulfate precipitation and gel filtration. The active fraction was purified by affinity chromatography. The adhesion-promoting protein was detected in the fractions by adhesion inhibition and dot blot assays and visualized by polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate-PAGE, and Western blotting with horseradish peroxidase-labeled mucus and mucin. The active fraction was characterized by estimating the relative molecular weight and by assessing the presence of carbohydrates in, and heat sensitivity of, the active region of the adhesion-promoting protein. The purified protein was digested with porcine trypsin, and the peptides were purified in a SMART system. The peptides were tested for adhesion to horseradish peroxidase-labeled mucin by using the dot blot adhesion assay. Peptides which bound mucin were sequenced. It was shown that the purified adhesion-promoting protein on the cell surface of L. fermentum 104R is extractable with 1 M LiCl and low concentrations of lysozyme but not with 0.2 M glycine. The protein could be released to the culture supernatant fluid after 24 h of growth and had affinity for both small intestinal mucus and gastric mucin. In the native state this protein was variable in size, and it had a molecular mass of 29 kDa when denatured. The denatured protein did not contain carbohydrate moieties and was not heat sensitive. Alignment of amino acids of the adhering peptides with sequences deposited in the EMBL data library showed poor homology with previously published sequences. The protein represents an important molecule for development of probiotics.
Collapse
Affiliation(s)
- Maurilia Rojas
- Universidad Autónoma de Baja California Sur, 23000 La Paz, Baja California Sur, México.
| | | | | |
Collapse
|
72
|
Jan G, Belzacq AS, Haouzi D, Rouault A, Métivier D, Kroemer G, Brenner C. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 2002; 9:179-88. [PMID: 11840168 DOI: 10.1038/sj.cdd.4400935] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Revised: 07/26/2001] [Accepted: 08/03/2001] [Indexed: 12/13/2022] Open
Abstract
The genus Propionibacterium is composed of dairy and cutaneous bacteria which produce short-chain fatty acids (SCFA), mainly propionate and acetate, by fermentation. Here, we show that P. acidipropionici and freudenreichii, two species which can survive in the human intestine, can kill two human colorectal carcinoma cell lines by apoptosis. Propionate and acetate were identified as the major cytotoxic components secreted by the bacteria. Bacterial culture supernatants as well as pure SCFA induced typical signs of apoptosis including a loss of mitochondrial transmembrane potential, the generation of reactive oxygen species, caspase-3 processing, and nuclear chromatin condensation. The oncoprotein Bcl-2, which is known to prevent apoptosis via mitochondrial effects, and the cytomegalovirus-encoded protein vMIA, which inhibits apoptosis and interacts with the mitochondrial adenine nucleotide translocator (ANT), both inhibited cell death induced by propionibacterial SCFA, suggesting that mitochondria and ANT are involved in the cell death pathway. Accordingly, propionate and acetate induced mitochondrial swelling when added to purified mitochondria in vitro. Moreover, they specifically permeabi-lize proteoliposomes containing ANT, indicating that ANT can be a critical target in SCFA-induced apoptosis. We suggest that propionibacteria could constitute probiotics efficient in digestive cancer prophylaxis via their ability to produce apoptosis-inducing SCFA.
Collapse
Affiliation(s)
- G Jan
- Institut National de la Recherche Agronomique, UR 121, Laboratoire de Recherches de Technologie Laitière, 35042 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|