51
|
Evidence for different origins of sex chromosomes in closely related Oryzias fishes: substitution of the master sex-determining gene. Genetics 2007; 177:2075-81. [PMID: 17947439 DOI: 10.1534/genetics.107.075598] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The medaka Oryzias latipes and its two sister species, O. curvinotus and O. luzonensis, possess an XX-XY sex-determination system. The medaka sex-determining gene DMY has been identified on the orthologous Y chromosome [O. latipes linkage group 1 (LG1)] of O. curvinotus. However, DMY has not been discovered in other Oryzias species. These results and molecular phylogeny suggest that DMY was generated recently [approximately 10 million years ago (MYA)] by gene duplication of DMRT1 in a common ancestor of O. latipes and O. curvinotus. We identified seven sex-linked markers from O. luzonensis (sister species of O. curvinotus) and constructed a sex-linkage map. Surprisingly, all seven sex-linked markers were located on an autosomal linkage group (LG12) of O. latipes. As suggested by the phylogenetic tree, the sex chromosomes of O. luzonensis should be "younger" than those of O. latipes. In the lineage leading to O. luzonensis after separation from O. curvinotus approximately 5 MYA, a novel sex-determining gene may have arisen and substituted for DMY. Oryzias species should provide a useful model for evolution of the master sex-determining gene and differentiation of sex chromosomes from autosomes.
Collapse
|
52
|
Kawasaki K, Weiss KM. Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binding phosphoprotein family. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 306:295-316. [PMID: 16358265 DOI: 10.1002/jez.b.21088] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three principal mineralized tissues are present in teeth; a highly mineralized surface layer (enamel or enameloid), body dentin, and basal bone. Similar tissues have been identified in the dermal skeleton of Paleozoic jawless vertebrates, suggesting their ancient origin. These dental tissues form on protein matrix and their mineralization is controlled by distinctive proteins. We have shown that many secretory calcium-binding phosphoproteins (SCPPs) are involved in tetrapod tissue mineralization. These SCPPs all originated from the common ancestral gene SPARCL1 (secreted protein, acidic, cysteine-rich like 1) that initially arose from SPARC. The SCPP family also includes a bird eggshell matrix protein, mammalian milk casein, and salivary proteins. The eggshell SCPP plays crucial roles in rigid eggshell production, milk SCPPs in efficient lactation and in the evolution of complex dentition, and salivary SCPPs in maintaining tooth integrity. A comparative analysis of the mammalian, avian, and amphibian genomes revealed a tandem duplication history of the SCPP genes in tetrapods. Although these tetrapod SCPP genes are fewer in teleost genomes, independent parallel duplication has created distinct SCPP genes in this lineage. These teleost SCPPs are also used for enameloid and dentin mineralization, implying essential roles of SCPPs for dental tissue mineralization in osteichthyans. However, the SCPPs used for tetrapod enamel and teleost enameloid, as well as tetrapod dentin and teleost dentin, are all different. Thus, the evolution of vertebrate mineralized tissues seems to be explained by phenogenetic drift: while mineralized tissues are retained during vertebrate evolution, the underlying genetic basis has extensively drifted.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
53
|
Iwase M, Kaneko S, Kim H, Satta Y, Takahata N. Evolutionary History of Sex-Linked Mammalian Amelogenin Genes. Cells Tissues Organs 2007; 186:49-59. [PMID: 17627118 DOI: 10.1159/000102680] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amelogenin (AMEL) arose prior to the emergence of tetrapods and transposed into an intron of the Rho GTPase-activating protein 6 gene. In the mammalian lineage leading to eutherians, a pair of homologous autosomes with this nested gene structure fused with the then already differentiating sex chromosomes by suppressing homologous recombination. As sex-chromosomal differentiation extended to the fused region, a pair of homologous AMEL genes too differentiated from each other in two steps; first in the 5' region (the promoter region to transposon MER5 in intron 2) and second in the remaining 3' region. This resulted in gametologous AMELX and AMELY in the eutherian sex chromosomes. Although the early differentiation of the 5' region between AMELX and AMELY is consistent with the lowered expression level of AMELY, there is no indication for deterioration of AMELY at the amino acid level. Rather, both AMELX and AMELY in particular lineages might undergo positive selection, followed by negative selection to preserve established function. Based on patterns and levels of AMELX and AMELY polymorphisms in the human population, it is also argued that a recombination cold spot near AMELX might be related to the cause of the ancient pseudoautosomal boundary.
Collapse
Affiliation(s)
- Mineyo Iwase
- Department of Biosystems Science, Graduate University for Advanced Studies, Hayama, Japan
| | | | | | | | | |
Collapse
|
54
|
Takehana Y, Naruse K, Hamaguchi S, Sakaizumi M. Evolution of ZZ/ZW and XX/XY sex-determination systems in the closely related medaka species, Oryzias hubbsi and O. dancena. Chromosoma 2007; 116:463-70. [PMID: 17882464 DOI: 10.1007/s00412-007-0110-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 11/26/2022]
Abstract
A DM-domain gene on the Y chromosome was identified as the sex-determining gene in the medaka, Oryzias latipes, and named DMY (also known as dmrt1bY). However, this gene is absent in most Oryzias fishes, suggesting that closely related species have another sex-determining gene. In fact, it has been demonstrated that the Y chromosome in O. dancena is not homologous to that in O. latipes, whereas both species have an XX/XY sex-determination system. Through a progeny test of sex-reversed fish and a linkage analysis of isolated sex-linked DNA markers, we show that O. hubbsi, which is one of the most closely related species to O. dancena, has a ZZ/ZW system. In addition, genetic and fluorescence in situ hybridization mapping of the sex-linked markers revealed that sex chromosomes in O. hubbsi and O. dancena are not homologous, indicating different origins of these ZW and XY sex chromosomes. Furthermore, we found that O. hubbsi has morphologically heteromorphic sex chromosomes, in which the W chromosome has 4,6-diamidino-2-phenylindole (DAPI)-positive heterochromatin blocks and is larger than the Z chromosome, although such differentiated sex chromosomes have not been observed in other Oryzias species. These findings suggest that a variety of sex-determining mechanisms and sex chromosomes have evolved in Oryzias.
Collapse
Affiliation(s)
- Yusuke Takehana
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181, Japan.
| | | | | | | |
Collapse
|
55
|
King V, Goodfellow PN, Pearks Wilkerson AJ, Johnson WE, O'Brien SJ, Pecon-Slattery J. Evolution of the male-determining gene SRY within the cat family Felidae. Genetics 2007; 175:1855-67. [PMID: 17277366 PMCID: PMC1855139 DOI: 10.1534/genetics.106.066779] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 01/16/2007] [Indexed: 11/18/2022] Open
Abstract
In most placental mammals, SRY is a single-copy gene located on the Y chromosome and is the trigger for male sex determination during embryonic development. Here, we present comparative genomic analyses of SRY (705 bp) along with the adjacent noncoding 5' flank (997 bp) and 3' flank (948 bp) in 36 species of the cat family Felidae. Phylogenetic analyses indicate that the noncoding genomic flanks and SRY closely track species divergence. However, several inconsistencies are observed in SRY. Overall, the gene exhibits purifying selection to maintain function (omega = 0.815) yet SRY is under positive selection in two of the eight felid lineages. SRY has low numbers of nucleotide substitutions, yet most encode amino acid changes between species, and four different species have significantly altered SRY due to insertion/deletions. Moreover, fixation of nonsynonymous substitutions between sister taxa is not consistent and may occur rapidly, as in the case of domestic cat, or not at all over long periods of time, as observed within the Panthera lineage. The former resembles positive selection during speciation, and the latter purifying selection to maintain function. Thus, SRY evolution in cats likely reflects the different phylogeographic histories, selection pressures, and patterns of speciation in modern felids.
Collapse
Affiliation(s)
- V King
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
56
|
Bhowmick BK, Satta Y, Takahata N. The origin and evolution of human ampliconic gene families and ampliconic structure. Genes Dev 2007; 17:441-50. [PMID: 17185645 PMCID: PMC1832091 DOI: 10.1101/gr.5734907] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 11/01/2006] [Indexed: 11/25/2022]
Abstract
Out of the nine male-specific gene families in the human Y chromosome amplicons, we investigate the origin and evolution of seven families for which gametologous and orthologous sequences are available. Proto-X/Y gene pairs in the original mammalian sex chromosomes played major roles in origins and gave rise to five gene families: XKRY, VCY, HSFY, RBMY, and TSPY. The divergence times between gametologous X- and Y-linked copies in these families are well correlated with the former X-chromosomal locations. The CDY and DAZ families originated exceptionally by retroposition and transposition of autosomal copies, respectively, but CDY possesses an X-linked copy of enigmatic origin. We also investigate the evolutionary relatedness among Y-linked copies of a gene family in light of their ampliconic locations (palindromes, inverted repeats, and the TSPY array). Although any pair of copies located at the same arm positions within a palindrome is identical or nearly so by frequent gene conversion, copies located at different arm positions are distinctively different. Since these and other distinct copies in various gene families were amplified almost simultaneously in the stem lineage of Catarrhini, we take these simultaneous amplifications as evidence for the elaborate formation of Y ampliconic structure. Curiously, some copies in a gene family located at different palindromes exhibit high sequence similarity, and in most cases, such similarity greatly extends to repeat units that harbor these copies. It appears that such palindromic repeat units have evolved by and large en bloc, but they have undergone frequent exchanges between palindromes.
Collapse
Affiliation(s)
- Bejon Kumar Bhowmick
- Department of Biosystems Science, The Graduate University for Advance Studies (Sokendai), Kanagawa 240-0193, Japan
| | - Yoko Satta
- Department of Biosystems Science, The Graduate University for Advance Studies (Sokendai), Kanagawa 240-0193, Japan
| | - Naoyuki Takahata
- Department of Biosystems Science, The Graduate University for Advance Studies (Sokendai), Kanagawa 240-0193, Japan
| |
Collapse
|
57
|
Abstract
Arguably the most defining moment in our lives is fertilization, the point at which we inherit either an X or a Y chromosome from our father. The profoundly different journeys of male and female life are thus decided by a genetic coin toss. These differences begin to unfold during fetal development, when the Y-chromosomal Sry ("sex-determining region Y") gene is activated in males and acts as a switch that diverts the fate of the undifferentiated gonadal primordia, the genital ridges, towards testis development. This sex-determining event sets in train a cascade of morphological changes, gene regulation, and molecular interactions that directs the differentiation of male characteristics. If this does not occur, alternative molecular cascades and cellular events drive the genital ridges toward ovary development. Once testis or ovary differentiation has occurred, our sexual fate is further sealed through the action of sex-specific gonadal hormones. We review here the molecular and cellular events (differentiation, migration, proliferation, and communication) that distinguish testis and ovary during fetal development, and the changes in gene regulation that underpin these two alternate pathways. The growing body of knowledge relating to testis development, and the beginnings of a picture of ovary development, together illustrate the complex mechanisms by which these organ systems develop, inform the etiology, diagnosis, and management of disorders of sexual development, and help define what it is to be male or female.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Division of Molecular Genetics and Development and Australian Research Council Centre of Excellence in Biotechnology and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
58
|
Polanco JC, Koopman P. Sry and the hesitant beginnings of male development. Dev Biol 2007; 302:13-24. [PMID: 16996051 DOI: 10.1016/j.ydbio.2006.08.049] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 08/14/2006] [Accepted: 08/21/2006] [Indexed: 01/01/2023]
Abstract
In mammals, Sry (sex-determining region Y gene) is the master regulator of male sex determination. The discovery of Sry in 1990 was expected to provide the key to unravelling the network of gene regulation underlying testis development. Intriguingly, no target gene of SRY protein has yet been discovered, and the mechanisms by which it mediates its developmental functions are still elusive. What is clear is that instead of the robust gene one might expect as the pillar of male sexual development, Sry function hangs by a thin thread, a situation that has profound biological, medical and evolutionary implications.
Collapse
Affiliation(s)
- Juan Carlos Polanco
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
59
|
Wang Z, Miyake T, Edwards SV, Amemiya CT. Tuatara (Sphenodon) Genomics: BAC Library Construction, Sequence Survey, and Application to the DMRT Gene Family. J Hered 2006; 97:541-8. [PMID: 17135461 DOI: 10.1093/jhered/esl040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The tuatara (Sphenodon punctatus) is of "extraordinary biological interest" as the most distinctive surviving reptilian lineage (Rhyncocephalia) in the world. To provide a genomic resource for an understanding of genome evolution in reptiles, and as part of a larger project to produce genomic resources for various reptiles (evogen.jgi.doe.gov/second_levels/BACs/our_libraries.html), a large-insert bacterial artificial chromosome (BAC) library from a male tuatara was constructed. The library consists of 215 424 individual clones whose average insert size was empirically determined to be 145 kb, yielding a genomic coverage of approximately 6.3x. A BAC-end sequencing analysis of 121 420 bp of sequence revealed a genomic GC content of 46.8%, among the highest observed thus far for vertebrates, and identified several short interspersed repetitive elements (mammalian interspersed repeat-type repeats) and long interspersed repetitive elements, including chicken repeat 1 element. Finally, as a quality control measure the arrayed library was screened with probes corresponding to 2 conserved noncoding regions of the candidate sex-determining gene DMRT1 and the DM domain of the related DMRT2 gene. A deep coverage contig spanning nearly 300 kb was generated, supporting the deep coverage and utility of the library for exploring tuatara genomics.
Collapse
Affiliation(s)
- Zhenshan Wang
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
60
|
Schultheis C, Zhou Q, Froschauer A, Nanda I, Selz Y, Schmidt C, Matschl S, Wenning M, Veith AM, Naciri M, Hanel R, Braasch I, Dettai A, Böhne A, Ozouf-Costaz C, Chilmonczyk S, Ségurens B, Couloux A, Bernard-Samain S, Schmid M, Schartl M, Volff JN. Molecular Analysis of the Sex-Determining Region of the PlatyfishXiphophorus maculatus. Zebrafish 2006; 3:299-309. [DOI: 10.1089/zeb.2006.3.299] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Qingchun Zhou
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
- Present address: Department of Zoology and Stephenson Research and Technology Center, University of Oklahoma, Norman, Oklahoma
| | - Alexander Froschauer
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
- Present address: Institut für Zoologie, Technische Universität Dresden, Dresden, Germany
| | - Indrajit Nanda
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Yvonne Selz
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Cornelia Schmidt
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Sabine Matschl
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Marina Wenning
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Anne-Marie Veith
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Mariam Naciri
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
- Present address: Université Mohamed V, Faculté des Sciences, Rabat, Morocco
| | - Reinhold Hanel
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
- Present address: Leibniz Institut für Meereswissenschaften, IFM-GEOMAR, Kiel, Germany
| | - Ingo Braasch
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Agnès Dettai
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France
| | - Astrid Böhne
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Catherine Ozouf-Costaz
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France
| | - Stefan Chilmonczyk
- Laboratoire de Virologie et Immunologie Molécularies, INRA, Jouy en Josas, France
| | | | - Arnaud Couloux
- Genoscope/Centre National de Séquençage, CNRS-UMR, Evry, France
| | | | - Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Manfred Schartl
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Jean-Nicolas Volff
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| |
Collapse
|
61
|
Karwacki V, Kovac J, Mauceri G, Backhaus A, Föhse L, Schmidtke J, Schubert S. Tspy is nonfunctional in the Mongolian gerbil but functional in the Syrian hamster. Genomics 2006; 88:65-73. [PMID: 16626932 DOI: 10.1016/j.ygeno.2006.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 03/06/2006] [Accepted: 03/10/2006] [Indexed: 11/18/2022]
Abstract
The TSPY gene is conserved in placental mammals and encodes the testis-specific protein, Y encoded. Within the testis, TSPY expression is restricted to germ cells, and it is assumed that TSPY plays a role in the proliferation of germ cells. Since it was first discovered in humans, TSPY orthologous gene families have been subsequently characterized in many mammalian lineages. In contrast to the situation in cattle and primates, in which TSPY is organized in a moderately repetitive cluster, including functional members and pseudogenes, a peculiar situation is observed in rodents, in which Tspy has been become low or single copy and degenerated to a pseudogene in some species of the subgenus Mus. We have extended this approach and investigated Tspy gene evolution in the Syrian hamster (Mesocricetus auratus) and the Mongolian gerbil (Meriones unguiculatus). Whereas the Syrian hamster Tspy is functionally conserved, organized in multiple copies, and expressed only in testis, the closely related Mongolian gerbil possesses a single-copy pseudogene that is unable to generate a functional transcript. Thus, the Tspy locus has degenerated at least twice at different points of rodent evolution, strongly supporting the hypothesis that the decay of Y-chromosomal genes is an intrinsic evolutionary process. TSPY is the first example of a Y-chromosomal tandem repetitive gene whose decay could be studied in two independent mammalian lineages.
Collapse
Affiliation(s)
- Violetta Karwacki
- Institute of Human Genetics, Medical School Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
62
|
Graves JAM, Koina E, Sankovic N. How the gene content of human sex chromosomes evolved. Curr Opin Genet Dev 2006; 16:219-24. [PMID: 16650758 DOI: 10.1016/j.gde.2006.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 04/18/2006] [Indexed: 11/24/2022]
Abstract
The X and Y chromosomes of humans and other mammals both have very atypical gene contents. The degenerate Y bears only a handful of genes that are specialized for male sex and reproduction. Now it seems that the X over-represents genes controlling reproductive traits and intelligence. This is hard to explain in terms of function but makes excellent sense in terms of evolution. Comparisons between the gene content of the X and Y in humans, distantly related mammals, and other vertebrates, define the evolutionary past of our sex chromosomes and suggest how special selective forces act on the X and Y.
Collapse
|
63
|
Ermakov OA, Surin VL, Titov SV, Zborovsky SS, Formozov NA. A search for Y-chromosomal species-specific markers and their use for hybridization analysis in ground squirrels (Spermophilus: Rodentia, sciuridae). RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406040107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
64
|
Abstract
Sex chromosomes--particularly the human Y--have been a source of fascination for decades because of their unique transmission patterns and their peculiar cytology. The outpouring of genomic data confirms that their atypical structure and gene composition break the rules of genome organization, function, and evolution. The X has been shaped by dosage differences to have a biased gene content and to be subject to inactivation in females. The Y chromosome seems to be a product of a perverse evolutionary process that does not select the fittest Y, which may cause its degradation and ultimate extinction.
Collapse
Affiliation(s)
- Jennifer A Marshall Graves
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
65
|
Bourcier C, Jacquel A, Hess J, Peyrottes I, Angel P, Hofman P, Auberger P, Pouysségur J, Pagès G. p44 Mitogen-Activated Protein Kinase (Extracellular Signal-Regulated Kinase 1)–Dependent Signaling Contributes to Epithelial Skin Carcinogenesis. Cancer Res 2006; 66:2700-7. [PMID: 16510590 DOI: 10.1158/0008-5472.can-05-3129] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular signal-regulated kinases (ERK) regulate cellular functions in response to a variety of external signals. However, the specific functions of individual ERK isoforms are largely unknown. Hence, we have investigated the specific function of ERK1 in skin homeostasis and tumorigenesis in ERK1 knockout mice. They spontaneously develop cutaneous lesions and hyperkeratosis with epidermis thickness. Skin hyperproliferation and inflammation induced by application of 12-O-tetradecanoylphorbol-13-acetate (TPA) is strongly reduced in mutant mice. ERK1(-/-) mice are resistant to development of skin papillomas induced by 7,12-dimethylbenz(a)anthracene (DMBA) and promoted by TPA. Tumor appearance was delayed, their formation was less frequent, and their number and size were reduced. Keratinocytes obtained from knockout mice showed reduced growth and resistance to apoptotic signals, accompanied by an impaired expression of genes implicated in growth control and invasiveness. These results highlight the importance of ERK1 in skin homeostasis and in the process of skin tumor development.
Collapse
Affiliation(s)
- Christine Bourcier
- Institute of Signaling, Developmental Biology and Cancer Research, UMR Centre National de la Recherche Scientifique, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Woolcock B, Kazianis S, Lucito R, Walter R, Kallman K, Morizot D, Vielkind J. Allele-Specific Marker Generation and Linkage Mapping on theXiphophorusSex Chromosomes. Zebrafish 2006; 3:23-37. [DOI: 10.1089/zeb.2006.3.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- B. Woolcock
- British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - S. Kazianis
- The Wistar Institute, Program of Molecular and Cellular Oncogenesis, Philadelphia, Pennsylvania
| | - R. Lucito
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - R.B. Walter
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marco, Texas
| | - K.D. Kallman
- Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, New York, New York
| | - D.C. Morizot
- Science Park Research Division, MD Anderson Cancer Center, Smithville, Texas
| | - J.R. Vielkind
- British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
67
|
Boyer A, Pilon N, Raiwet DL, Lussier JG, Silversides DW. Human and pigSRY 5′ flanking sequences can direct reporter transgene expression to the genital ridge and to migrating neural crest cells. Dev Dyn 2006; 235:623-32. [PMID: 16411204 DOI: 10.1002/dvdy.20670] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms for sex determination vary greatly between animal groups, and include chromosome dosage and haploid-diploid mechanisms as seen in insects, temperature and environmental cues as seen in fish and reptiles, and gene-based mechanisms as seen in birds and mammals. In eutherian mammals, sex determination is genetic, and SRY is the Y chromosome located gene representing the dominant testes determining factor. How SRY took over this function from ancestral mechanisms is not known, nor is it known what those ancestral mechanisms were. What is known is that SRY is haploid and thus poorly protected from mutations, and consequently is poorly conserved between mammalian species. To functionally compare SRY promoter sequences, we have generated transgenic mice with fluorescent reporter genes under the control of various lengths of human and pig SRY 5' flanking sequences. Human SRY 5' flanking sequences (5 Kb) supported reporter transgene expression within the genital ridge of male embryos at the time of sex determination and also supported expression within migrating truncal neural crest cells of both male and female embryos. The 4.6 Kb of pig SRY 5' flanking sequences supported reporter transgene expression within the male genital ridge but not within the neural crest; however, 2.6 Kb and 1.6 Kb of pig SRY 5' flanking sequences retained male genital ridge expression and now supported extensive expression within cells of the neural crest in embryos of both sexes. When 2 Kb of mouse SRY 5' flanking sequences (-3 to -1 Kb) were placed in front of the 1.6 Kb of pig SRY 5' flanking sequences and this transgene was introduced into mice, reporter transgene expression within the male genital ridge was retained but neural crest expression was lost. These observations suggest that SRY 5' flanking sequences from at least two mammalian species contain elements that can support transgene expression within cells of the migrating neural crest and that additional SRY 5' flanking sequences can extinguish this expression.
Collapse
Affiliation(s)
- Alexandre Boyer
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | | | | | | | | |
Collapse
|
68
|
Nakashima K, Hirota T, Obara K, Shimizu M, Jodo A, Kameda M, Doi S, Fujita K, Shirakawa T, Enomoto T, Kishi F, Yoshihara S, Matsumoto K, Saito H, Suzuki Y, Nakamura Y, Tamari M. An association study of asthma and related phenotypes with polymorphisms in negative regulator molecules of the TLR signaling pathway. J Hum Genet 2006; 51:284-291. [PMID: 16432636 DOI: 10.1007/s10038-005-0358-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 12/07/2005] [Indexed: 12/29/2022]
Abstract
Although associations between endotoxin exposure or respiratory infection and asthma have been recognized, the genetic effects in these conditions are unclear. Toll-like receptors (TLRs) play an essential role in innate host defense and in the control of adaptive immune responses. IL-1R-associated kinase-M (IRAK-M) and single immunoglobulin IL-1R-related molecule (SIGIRR) negatively regulate TLR-signaling pathways. To investigate whether polymorphisms in these genes were associated with asthma or asthma-related phenotypes, we screened these genes for polymorphisms by direct sequencing of 24 asthmatics and identified 19 variants in IRAK-M and 12 variants in SIGIRR. We next conducted linkage disequilibrium mapping of the genes, and examined the association of polymorphisms and haplotypes using 391 child patients with asthma, 462 adult patients with asthma, and 639 controls. None of the alleles or haplotypes of IRAK-M and SIGIRR were associated with asthma susceptibility or asthma-related phenotype. Our results indicate that polymorphisms in IRAK-M and SIGIRR are not likely to be associated with the development of asthma in the Japanese population.
Collapse
Affiliation(s)
- Kazuko Nakashima
- Laboratory for Genetics of Allergic Diseases, RIKEN SNP Research Center, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Health Promotion and Human Behavior, Kyoto University School of Public Health, Kyoto, Japan
| | - Tomomitsu Hirota
- Laboratory for Genetics of Allergic Diseases, RIKEN SNP Research Center, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Microbiology and Immunology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Kazuhiko Obara
- Laboratory for Genetics of Allergic Diseases, RIKEN SNP Research Center, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Makiko Shimizu
- Laboratory for Genetics of Allergic Diseases, RIKEN SNP Research Center, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Aya Jodo
- Laboratory for Genetics of Allergic Diseases, RIKEN SNP Research Center, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Kameda
- Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Osaka, Japan
| | - Satoru Doi
- Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Osaka, Japan
| | - Kimie Fujita
- School of Human Nursing, The University of Shiga Prefecture, Shiga, Japan
| | - Taro Shirakawa
- Department of Health Promotion and Human Behavior, Kyoto University School of Public Health, Kyoto, Japan
| | - Tadao Enomoto
- Department of Otolaryngology, Japanese Red Cross Society, Wakayama Medical Center, Wakayama, Japan
| | - Fumio Kishi
- Department of Microbiology and Immunology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Shigemi Yoshihara
- Department of Pediatrics, Dokkyo University School of Medicine, Dokkyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Immunology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Yoichi Suzuki
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mayumi Tamari
- Laboratory for Genetics of Allergic Diseases, RIKEN SNP Research Center, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
69
|
Gvozdev VA, Kogan GL, Usakin LA. The Y chromosome as a target for acquired and amplified genetic material in evolution. Bioessays 2006; 27:1256-62. [PMID: 16299764 DOI: 10.1002/bies.20321] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The special properties of the Y chromosome stem form the fact that it is a non-recombining degenerate derivative of the X chromosome. The absence of homologous recombination between the X and the Y chromosome leads to gradual degeneration of various Y chromosome genes on an evolutionary timescale. The absence of recombination, however, also favors the accumulation of transposable elements on the Y chromosome during its evolution, as seen with both Drosophila and mammalian Y chromosomes. Alongside these processes, the acquisition and amplification of autosomal male benefit genes occur. This review will focus on recent studies that reveal the autosome-acquired genes on the Y chromosome of both Drosophila and humans. The evolution of the acquired and amplified genes on the Y chromosome is also discussed. Molecular and comparative analyses of Y-linked repeats in the Drosophila melanogaster genome demonstrate that there was a period of their degeneration followed by a period of their integration into RNAi silencing, which was beneficial for male fertility. Finally, the function of non-coding RNA produced by amplified Y chromosome genetic elements will be discussed.
Collapse
Affiliation(s)
- Vladimir A Gvozdev
- Institute of Molecular Genetic of the Russian Academy of Science, Russia.
| | | | | |
Collapse
|
70
|
Park DJ, Pask AJ, Huynh K, Harley VR, Renfree MB, Graves JAM. Characterisation of the marsupial-specific ATRY gene: Implications for the evolution of male-specific function. Gene 2005; 362:29-36. [PMID: 16209912 DOI: 10.1016/j.gene.2005.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/19/2005] [Accepted: 08/01/2005] [Indexed: 11/30/2022]
Abstract
Many or most genes on the mammal Y chromosome evolved a testis-specific function after diverging from an X-borne copy with a general function in both sexes. In marsupial but not eutherian mammals, a testis-specific orthologue (ATRY) of the widely expressed X-borne ATRX gene lies on the Y chromosome. Since mutations in human ATRX cause sex reversal, it is possible that one function of ATRY in marsupials is testicular differentiation. We report here the isolation and sequencing of the tammar wallaby (Macropus eugenii) ATRY cDNA, and comparison of its sequence with that of tammar ATRX. The evolution of a testis-specific function for the ATRY protein distinct from the general role of ATRX in both sexes has been accompanied by sequence changes in many protein domains that would alter protein binding partners. A large open reading frame encodes a 1771 amino acid ATRY protein that has diverged extensively from ATRX. The conservation and loss of particular motifs identify those required for testicular function (ATRY) and function in other tissues (ATRX).
Collapse
Affiliation(s)
- Daniel J Park
- Department of Zoology, The University of Melbourne, Melbourne Vic. 3010, Australia.
| | | | | | | | | | | |
Collapse
|
71
|
Geraldes A, Rogel-Gaillard C, Ferrand N. High levels of nucleotide diversity in the European rabbit (Oryctolagus cuniculus) SRY gene. Anim Genet 2005; 36:349-51. [PMID: 16026347 DOI: 10.1111/j.1365-2052.2005.01300.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have sequenced 2,388 bp of the European rabbit sex determining region Y (SRY) gene. These data provide a 10-fold increase in the coverage of the Y chromosome in this species, including the entire open reading frame of the SRY, the polyadenylation signal, and two repetitive sequences in the 5' -region. A survey of 2021 bp of this gene in eight domestic breeds and four wild individuals revealed a total of nine single nucleotide polymorphisms and one indel, defining two deeply divergent lineages. The resulting estimation of nucleotide diversity (pi=1.34 x10(-3)) is very high when compared with other species, but no variability was detected among the domestic breeds. This study represents a first step in the characterization of the European rabbit Y chromosome and its variability. These sequences can be used in additional phylogeographical analyses of the European rabbit and other Leporid species, as well as in evolutionary studies of sex determination and the Y chromosome in wild species.
Collapse
Affiliation(s)
- A Geraldes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, and Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Portugal.
| | | | | |
Collapse
|
72
|
Pigozzi MI, Solari AJ. Meiotic recombination in the ZW pair of a tinamid bird shows a differential pattern compared with neognaths. Genome 2005; 48:286-90. [PMID: 15838551 DOI: 10.1139/g04-117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tinamid bird Nothura maculosa, along with other species of the order Tinamiformes and all of the existent ratites, form the infraclass Paleognathae, the most primitive living birds. Previous work has shown that in all studied Neognathae, the ZW pair shows strictly localized recombination in a very short pseudoautosomal region, while in paleognath birds, the ZW pairs have mostly free recombination. The present observations show that the ZW pair of N. maculosa has a recombination pattern departing from both neognaths and other Paleognath birds, as there is a single crossover but occurring at random points along a significant part of the long arm of the W chromosome. This recombination pattern agrees with the presence of intercalary and terminal heterochromatin in the W chromosome, suggesting an exceptional, additional step of recombination suppression.
Collapse
Affiliation(s)
- M I Pigozzi
- CIR, Facultad de Medicina, Buenos Aires, Argentina
| | | |
Collapse
|
73
|
Turner JMA. Sex chromosomes make their mark. Chromosoma 2005; 114:300-6. [PMID: 16025338 DOI: 10.1007/s00412-005-0007-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/02/2005] [Accepted: 05/07/2005] [Indexed: 10/25/2022]
Affiliation(s)
- James M A Turner
- MRC National Institute for Medical Research Division, Stem Cell Research and Developmental Genetics, London, UK.
| |
Collapse
|
74
|
Abstract
Teleost fish, which roughly make up half of the extant vertebrate species, exhibit an amazing level of biodiversity affecting their morphology, ecology and behaviour as well as many other aspects of their biology. This huge variability makes fish extremely attractive for the study of many biological questions, particularly of those related to evolution. New insights gained from different teleost species and sequencing projects have recently revealed several peculiar features of fish genomes that might have played a role in fish evolution and speciation. There is now substantial evidence that a round of tetraploidization/rediploidization has taken place during the early evolution of the ray-finned fish lineage, and that hundreds of duplicate pairs generated by this event have been maintained over hundreds of millions of years of evolution. Differential loss or subfunction partitioning of such gene duplicates might have been involved in the generation of fish variability. In contrast to mammalian genomes, teleost genomes also contain multiple families of active transposable elements, which might have played a role in speciation by affecting hybrid sterility and viability. Finally, the amazing diversity of sex determination systems and the plasticity of sex chromosomes observed in teleost might have been involved in both pre- and postmating reproductive isolation. Comparison of data generated by current and future genome projects as well as complementary studies in other species will allow one to approach the molecular and evolutionary mechanisms underlying genome diversity in fish, and will certainly significantly contribute to our understanding of gene evolution and function in humans and other vertebrates.
Collapse
Affiliation(s)
- J-N Volff
- BioFuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
75
|
Schmid M, Nanda I, Hoehn H, Schartl M, Haaf T, Buerstedde JM, Arakawa H, Caldwell RB, Weigend S, Burt DW, Smith J, Griffin DK, Masabanda JS, Groenen MAM, Crooijmans RPMA, Vignal A, Fillon V, Morisson M, Pitel F, Vignoles M, Garrigues A, Gellin J, Rodionov AV, Galkina SA, Lukina NA, Ben-Ari G, Blum S, Hillel J, Twito T, Lavi U, David L, Feldman MW, Delany ME, Conley CA, Fowler VM, Hedges SB, Godbout R, Katyal S, Smith C, Hudson Q, Sinclair A, Mizuno S. Second report on chicken genes and chromosomes 2005. Cytogenet Genome Res 2005; 109:415-79. [PMID: 15905640 DOI: 10.1159/000084205] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- M Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Takebayashi N, Newbigin E, Uyenoyama MK. Maximum-likelihood estimation of rates of recombination within mating-type regions. Genetics 2005; 167:2097-109. [PMID: 15342543 PMCID: PMC1471000 DOI: 10.1534/genetics.103.021535] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Features common to many mating-type regions include recombination suppression over large genomic tracts and cosegregation of genes of various functions, not necessarily related to reproduction. Model systems for homomorphic self-incompatibility (SI) in flowering plants share these characteristics. We introduce a method for the exact computation of the joint probability of numbers of neutral mutations segregating at the determinant of mating type and at a linked marker locus. The underlying Markov model incorporates strong balancing selection into a two-locus coalescent. We apply the method to obtain a maximum-likelihood estimate of the rate of recombination between a marker locus, 48A, and S-RNase, the determinant of SI specificity in pistils of Nicotiana alata. Even though the sampled haplotypes show complete allelic linkage disequilibrium and recombinants have never been detected, a highly significant deficiency of synonymous substitutions at 48A compared to S-RNase suggests a history of recombination. Our maximum-likelihood estimate indicates a rate of recombination of perhaps 3 orders of magnitude greater than the rate of synonymous mutation. This approach may facilitate the construction of genetic maps of regions tightly linked to targets of strong balancing selection.
Collapse
Affiliation(s)
- Naoki Takebayashi
- Department of Biology, Duke University, Durham, North Carolina 27708-0338, USA
| | | | | |
Collapse
|
77
|
Kondo M, Nanda I, Hornung U, Schmid M, Schartl M. Evolutionary origin of the medaka Y chromosome. Curr Biol 2005; 14:1664-9. [PMID: 15380069 DOI: 10.1016/j.cub.2004.09.026] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/26/2004] [Accepted: 08/06/2004] [Indexed: 11/26/2022]
Abstract
Genetic sex determination in an XX-XY chromosome system can be realized through a locus on the Y chromosome that makes the undifferentiated gonad develop into a testis. Although this mechanism is widespread, only in two cases so far have the corresponding master male sex-determining genes been identified. One is Sry, which initiates testes determination in most mammals. The other is dmrt1bY (syn. dmy), from the fish medaka, Oryzias latipes. The mammalian Y is roughly estimated to be over 200 million years old. The medaka Y may be considerably younger. A comparative analysis of the genus Oryzias revealed that one sister species of the medaka has dmrt1bY on a homologous Y chromosome, whereas in another closely related species only a non-sex-linked pseudogene is present. In all other species, dmrt1bY was not detected. The divergence time for the different species was determined with mitochondrial DNA sequences. The timing was confirmed by independent calculations based on dmrt1 sequences. We show that the medaka sex-determining gene originated approximately 10 million years ago. This makes dmrt1bY and the corresponding Y chromosome the youngest male sex-determining system, at least in vertebrates, known so far.
Collapse
Affiliation(s)
- Mariko Kondo
- Department of Physiological Chemistry I, University of Würzburg, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
78
|
Carmichael LE, Krizan P, Polischuk Blum S, Strobeck C. GENOTYPING OF PSEUDOHERMAPHRODITE POLAR BEARS IN NUNAVUT AND ADVANCES IN DNA SEXING TECHNIQUES. J Mammal 2005. [DOI: 10.1644/1545-1542(2005)086<0160:goppbi>2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
79
|
Verkaar ELC, Zijlstra C, van 't Veld EM, Boutaga K, van Boxtel DCJ, Lenstra JA. Organization and concerted evolution of the ampliconic Y-chromosomal TSPY genes from cattle. Genomics 2005; 84:468-74. [PMID: 15498454 DOI: 10.1016/j.ygeno.2004.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
The Y-chromosomal gene TSPY (testis-specific protein Y-encoded) is probably involved in early spermatogenesis and has a variable copy number in different mammalian species. Analysis of bovine BAC clones leads to an estimate of 90 TSPY loci on the bovine Y chromosome. Half of these loci (TSPY-M1 and TSPY-M2) contain a single copy, while the other loci (TSPY-C) contain a cluster of three, possibly four, truncated pseudogenes. Fluorescence in situ hybridization indicated that the TSPY loci are located mainly on the short arm (Yp). The TSPY genes appear to account for about 2.5% of the Y chromosome and contain several published bovine Y-chromosomal microsatellites. The homology of TSPY and the major Y-chromosomal repetitive elements BRY.2 from cattle and OY.1 from sheep (80-85% similarity) further illustrates how the Y chromosome is shaped by rearrangements and horizontal spreading of the most abundant sequences. A comparison of TSPY-M1 sequences from different BAC clones and from related bovine species suggests concerted evolution as one of the mechanisms of the rapid evolution of the mammalian Y chromosome.
Collapse
Affiliation(s)
- Edward L C Verkaar
- Faculty of Veterinary Medicine, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
80
|
|
81
|
Kellermayer R, Czakó M, Kiss-László Z, Gyuris P, Kozári A, Melegh B, Kosztolányi G. α-thalassemia/mental retardation syndrome in a 45,X male. Am J Med Genet A 2005; 132A:431-3. [PMID: 15633163 DOI: 10.1002/ajmg.a.30499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An unbalanced Y;autosome translocation leading to a male with a 45,X karyotype is rare with about 30 published cases. A male with a 45,X karyotype as a result of a unique, submicroscopic, unbalanced Y;16 translocation is presented with alpha-thalassemia/mental retardation syndrome.
Collapse
Affiliation(s)
- Richard Kellermayer
- Department of Medical Genetics and Child Development, University of Pécs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
82
|
REPRODUCTION AND DEVELOPMENT. Mol Med 2005. [DOI: 10.1016/b978-012699057-7/50007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
83
|
Carvalho-Silva DR, O'Neill RJW, Brown JD, Huynh K, Waters PD, Pask AJ, Delbridge ML, Graves JAM. Molecular characterization and evolution of X and Y-borne ATRX homologues in American marsupials. Chromosome Res 2004; 12:795-804. [PMID: 15702418 DOI: 10.1007/s10577-005-5376-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2004] [Accepted: 09/25/2004] [Indexed: 12/01/2022]
Abstract
In eutherians, the sex-reversing ATRX gene on the X has no homologue on the Y chromosome. However, testis-specific and ubiquitously expressed X-borne genes have been identified in Australian marsupials. We studied nucleotide sequence and chromosomal location of ATRX homologues in two American marsupials, the opossums Didelphis virginiana and Monodelphis domestica. A PCR fragment of M. domestica ATRX was used to probe Southern blots and to screen male genomic libraries. Southern analysis demonstrated ATRX homologues on both X and Y in D. virginiana, and two clones were isolated which hybridized to a single position on the Y chromosome in male-derived cells but to multiple sites of the X in female cells. In M. domestica, there was a single clone that mapped to the X but not to the Y, suggesting that it represents the M. domestica ATRX. However a male-specific band was detected in Southern blots probed with the D. virginiana ATRY and with a mouse ATRX clone, which implies that the Y copy in M. domestica has diverged further from other ATRX homologues. Thus there appears to be a Y-borne copy of ATRY in American, as well as Australian marsupials, although it has diverged in sequence, as have other Y genes that are testis-specific in both eutherian and marsupial lineages.
Collapse
Affiliation(s)
- Denise R Carvalho-Silva
- Research School of Biological Science, Australian National University, ACT 0200, Canberra, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Rens W, Grützner F, O'brien PCM, Fairclough H, Graves JAM, Ferguson-Smith MA. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci U S A 2004; 101:16257-61. [PMID: 15534209 PMCID: PMC528943 DOI: 10.1073/pnas.0405702101] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Indexed: 01/10/2023] Open
Abstract
The platypus (2n = 52) has a complex karyotype that has been controversial over the last three decades. The presence of unpaired chromosomes and an unknown sex-determining system especially has defied attempts at conventional analysis. This article reports on the preparation of chromosome-specific probes from flow-sorted chromosomes and their application in the identification and classification of all platypus chromosomes. This work reveals that the male karyotype has 21 pairs of chromosomes and 10 unpaired chromosomes (E1-E10), which are linked by short regions of homology to form a multivalent chain in meiosis. The female karyotype differs in that five of these unpaired elements (E1, E3, E5, E7, and E9) are each present in duplicate, whereas the remaining five unpaired elements (E2, E4, E6, E8, and E10) are absent. This finding indicates that sex is determined by the alternate segregation of the chain of 10 during spermatogenesis so that equal numbers of sperm bear either one of the two groups of five elements, i.e., five X and five Y chromosomes. Chromosome painting reveals that these X and Y chromosomes contain pairing (XY shared) and differential (X- or Y-specific) segments. Y differential regions must contain male-determining genes, and X differential regions should be dosage-compensated in the female. Two models for the evolution of the sex-determining system are presented. The resolution of the longstanding debate over the platypus karyotype is an important step toward the understanding of mechanisms of sex determination, dosage compensation, and karyotype evolution.
Collapse
Affiliation(s)
- Willem Rens
- Centre for Veterinary Science, University of Cambridge, Cambridge CB3 OES, United Kingdom.
| | | | | | | | | | | |
Collapse
|
85
|
Clawson ML, Heaton MP, Fox JM, Chitko-McKown CG, Smith TPL, Laegreid WW. Male-specific SRY and ZFY haplotypes in US beef cattle. Anim Genet 2004; 35:246-9. [PMID: 15147402 DOI: 10.1111/j.1365-2052.2004.01122.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- M L Clawson
- United States Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center (MARC), State Spur 18D, PO Box 166, Clay Center, NE 68933, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Schartl M. A comparative view on sex determination in medaka. Mech Dev 2004; 121:639-45. [PMID: 15210173 DOI: 10.1016/j.mod.2004.03.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 02/18/2004] [Accepted: 03/03/2004] [Indexed: 11/26/2022]
Abstract
In fish, an amazing variety of sex determination mechanisms are known, ranging from hermaphroditism to gonochorism and from environmental to genetic sex determination. This makes fish especially suited for studying sex determination from the evolutionary point of view. In several fish groups, different sex determination mechanisms are found in closely related species, and evolution of this process is still ongoing in recent organisms. The medaka (Oryzias latipes) has an XY-XX genetic sex determination system. The Y-chromosome in this species is at an early stage of evolution. The molecular differences between X and Y are only very subtle and the Y-specific segment is very small. The sex-determining region has accumulated duplicated sequences from elsewhere in the genome, leading to recombinational isolation. The region contains a candidate for the male sex-determining gene named dmrt1bY. This gene arose through duplication of an autosomal chromosome fragment of linkage group 9. While all other genes degenerated, dmrt1bY is the only functional gene in the Y-specific region. The duplication leading to dmrt1bY occurred recently during evolution of the genus Oryzias. This suggests that different genes might be the master sex-determining gene in other fish.
Collapse
Affiliation(s)
- Manfred Schartl
- Physiological Chemistry I, Biocenter, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
87
|
Lee BY, Hulata G, Kocher TD. Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity (Edinb) 2004; 92:543-9. [PMID: 15100706 DOI: 10.1038/sj.hdy.6800453] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sex determination in the blue tilapia (Oreochromis aureus) is thought to be a WZ-ZZ (female heterogametic) system controlled by a major gene. We searched for DNA markers linked to this major gene using the technique of bulked segregant analysis. We identified 11 microsatellite markers on linkage group 3 which were linked to phenotypic sex. The putative W chromosome haplotype correctly predicts the sex of 97% of male and 85% of female individuals. Our results suggest the W locus lies within a few centimorgans of markers GM354, UNH168, GM271 and UNH131. Markers on LG1 also showed a strong association with sex, and indicate the segregation of a male-determining allele in this region. Analysis of epistatic interactions among the loci suggests the action of a dominant male repressor (the W haplotype on LG 3) and a dominant male determiner (the Y haplotype on LG1). These markers have immediate utility for studying the strength of different sex chromosome alleles, and for identifying broodstock carrying copies of the W haplotype.
Collapse
Affiliation(s)
- B-Y Lee
- Hubbard Center for Genome Studies, Suite 400, Environmental Technology Building, 35 Colovos Road, University of New Hampshire, Durham, NH 03824, USA
| | | | | |
Collapse
|
88
|
Vilain E. Dead chromosome walking. Pediatr Res 2004; 55:539-40. [PMID: 14999104 DOI: 10.1203/01.pdr.0000123762.03212.b1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
89
|
Kim TM, Hong SJ, Rhyu MG. Periodic explosive expansion of human retroelements associated with the evolution of the hominoid primate. J Korean Med Sci 2004; 19:177-85. [PMID: 15082888 PMCID: PMC2822296 DOI: 10.3346/jkms.2004.19.2.177] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five retroelement families, L1 and L2 (long interspersed nuclear element, LINE), Alu and MIR (short interspersed nuclear element, SINE), and LTR (long terminal repeat), comprise almost half of the human genome. This genome-wide analysis on the time-scaled expansion of retroelements sheds light on the chronologically synchronous amplification peaks of each retroelement family in variable heights across human chromosomes. Especially, L1s and LTRs in the highest density on sex chromosomes Xq and Y, respectively, disclose peak activities that are obscured in autosomes. The periods of young L1, Alu, LTR, and old L1 peak activities calibrated based on sequence divergence coincide with the divergence of the three major hominoid divergence as well as early eutherian radiation while the amplification peaks of old MIR and L2 account for the marsupial-placental split. Overall, the peaks of autonomous LINE (young and old L1s and L2s) peaks and non-autonomous SINE (Alus and MIRs) have alternated repeatedly for 150 million years. In addition, a single burst of LTR parallels the Cretaceous-Tertiary (K-T) boundary, an exceptional global event. These findings suggest that the periodic explosive expansions of LINEs and SINEs and an exceptional burst of LTR comprise the genome dynamics underlying the macroevolution of the hominoid primate lineage.
Collapse
Affiliation(s)
- Tae-Min Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
90
|
Miller D, Summers J, Silber S. Environmental versus genetic sex determination: a possible factor in dinosaur extinction? Fertil Steril 2004; 81:954-64. [PMID: 15066448 DOI: 10.1016/j.fertnstert.2003.09.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 09/26/2003] [Accepted: 09/26/2003] [Indexed: 11/25/2022]
Abstract
This study examined the possibility that genetically based sex-determination mechanisms have evolved to ensure a balanced male/female ratio and that this temperature-independent checkpoint might have been unavailable to long-extinct reptiles, notably the dinosaurs. A review of the literature on molecular and phylogenetic relationships between modes of reproduction and sex determination in extant animals was conducted. Mammals, birds, all snakes and most lizards, amphibians, and some gonochoristic fish use specific sex-determining chromosomes or genes (genetic sex determination, GSD). Some reptiles, however, including all crocodilians studied to date, many turtle and tortoise species, and some lizards, use environmental or temperature-dependent sex determination (TSD). We show that various modes of GSD have evolved many times, independently in different orders. Animals using TSD would be at risk of rapid reproductive failure due to a skewed sex ratio favoring males in response to sustained environmental temperature change and favoring the selection of sex-determining genes. The disadvantage to the evolving male sex-determining chromosome, however, is its decay due to nonrecombination and the subsequent loss of spermatogenesis genes. Global temperature change can skew the sex ratio of TSD animals and might have played a significant role in the demise of long-extinct species, notably the dinosaurs, particularly if the temperature change resulted in a preponderance of males. Current global warming also represents a risk for extant TSD species.
Collapse
|
91
|
Galay-Burgos M, Llewellyn L, Mylonas CC, Canario AVM, Zanuy S, Sweeney GE. Analysis of the Sox gene family in the European sea bass (Dicentrarchus labrax). Comp Biochem Physiol B Biochem Mol Biol 2004; 137:279-84. [PMID: 14990224 DOI: 10.1016/j.cbpc.2003.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 12/03/2003] [Accepted: 12/07/2003] [Indexed: 10/26/2022]
Abstract
Sox (SRY-related genes containing a HMG box) genes encode a family of transcription factors that are involved in a variety of developmental processes including sex determination. Twenty Sox genes are present in the genomes of humans and mice, but far less is known about the Sox gene family in other vertebrate types. We have obtained clones representing the HMG boxes of twelve Sox genes from European sea bass (Dicentrarchus labrax), a fish species whose farming is complicated by a heavily skewed sex ratio, with between 70% and 99% of offspring typically being male. The cloned Sox genes are members of the SoxB, SoxC, SoxE and SoxF groups. Sequence analysis shows that some of the clones represent genes duplicated in sea bass with respect to the mammalian Sox gene family.
Collapse
|
92
|
Abstract
The human Y chromosome is running out of time. In the last 300 million years, it has lost 1393 of its original 1438 genes, and at this rate it will lose the last 45 in a mere 10 million years. But there has been a proposal that perhaps rescue is at hand in the form of recently discovered gene conversion within palindromes. However, I argue here that although conversion will increase the frequency of variation of the Y (particularly amplification) between Y chromosomes in a population, it will not lead to a drive towards a more functional Y. The forces of evolution have made the Y a genetically isolated, non-recombining entity, vulnerable to genetic drift and selection for favourable new variants sharing the Y with damaging mutations. Perhaps it will even speed up the decline of the Y chromosome and the onset of a new round of sex-chromosome differentiation. The struggle to preserve males may perhaps lead to hominid speciation.
Collapse
|
93
|
Grützner F, Deakin J, Rens W, El-Mogharbel N, Marshall Graves JA. The monotreme genome: a patchwork of reptile, mammal and unique features? Comp Biochem Physiol A Mol Integr Physiol 2003; 136:867-81. [PMID: 14667850 DOI: 10.1016/j.cbpb.2003.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The first specimen of platypus (Ornithorhynchus anatinus) that reached Britain in the late 18th century was regarded a scientific hoax. Over decades the anatomical characteristics of these unique mammals, such as egg laying and the existence of mammary glands, were hotly debated before they were accepted. Within the last 40 years, more and more details of monotreme physiology, histology, reproduction and genetics have been revealed. Some show similarities with birds or reptiles, some with therian mammals, but many are very specific to monotremes. The genome is no exception to monotreme uniqueness. An early opinion was that the karyotype, composed of a few large chromosomes and many small ones, resembled bird and reptile macro- and micro-chromosomes. However, the platypus genome also features characteristics that are not present in other mammals, such as a complex translocation system. The sex chromosome system is still not resolved. Nothing is known about dosage compensation and, unlike in therian mammals, there seems to be no genomic imprinting. In this article we will recount the mysteries of the monotreme genome and describe how we are using recently developed technology to identify chromosomes in mitosis, meiosis and sperm, to map genes to chromosomes, to unravel the sex chromosome system and the translocation chain and investigate X inactivation and genomic imprinting in monotremes.
Collapse
Affiliation(s)
- Frank Grützner
- Research School of Biological Sciences, Australian National University, G.P.O. Box 475, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | |
Collapse
|
94
|
GORELICK ROOT. Evolution of dioecy and sex chromosomes via methylation driving Muller's ratchet. Biol J Linn Soc Lond 2003. [DOI: 10.1046/j.1095-8312.2003.00244.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
95
|
Rao BJ, Sengupta K. Human Y-chromosome: a hall of mirrors. J Biosci 2003; 28:533-4. [PMID: 14517355 DOI: 10.1007/bf02703327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road,Mumbai 400 005, India.
| | | |
Collapse
|
96
|
Schubert S, Skawran B, Dechend F, Nayernia K, Meinhardt A, Nanda I, Schmid M, Engel W, Schmidtke J. Generation and characterization of a transgenic mouse with a functional human TSPY. Biol Reprod 2003; 69:968-75. [PMID: 12773407 DOI: 10.1095/biolreprod.103.016501] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To generate an animal model that is suitable for the analysis of regulation and expression of human testis-specific protein, Y-encoded TSPY, a transgenic mouse line, TgTSPY9, harboring a complete structural human TSPY gene was generated. Fluorescence in situ hybridization and Southern analyses show that approximately 50 copies of the human TSPY transgene are integrated at a single chromosomal site that maps to the distal long arm of the Y chromosome. The transgene is correctly transcribed and spliced according to the human pattern and is mainly expressed in testicular tissue, with spermatogonia and early primary spermatocytes (leptotene and zygotene) as expressing germ cells. TSPY transgenic mice are phenotypically normal, and spermatogenesis is neither impaired nor enhanced by the human transgene. The present study shows that a human TSPY gene integrated into the mouse genome follows the human expression pattern although murine tspy had lost its function in rodent evolution millions of years ago.
Collapse
Affiliation(s)
- S Schubert
- Institute of Human Genetics, Hannover Medical School, D-30623 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Suh KS, Tatunchak TT, Crutchley JM, Edwards LE, Marin KG, Yuspa SH. Genomic structure and promoter analysis of PKC-delta. Genomics 2003; 82:57-67. [PMID: 12809676 DOI: 10.1016/s0888-7543(03)00072-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein kinase C-delta (PKC-delta) is a ubiquitously expressed kinase involved in a variety of cellular signaling pathways including cell growth, differentiation, apoptosis, tumor promotion, and carcinogenesis. While signaling pathways downstream of PKC-delta are well studied, the regulation of the gene has not been extensively analyzed. A mouse genomic DNA fragment containing the PKC-delta gene was sequenced by the primer-walking method, and the subsequent DNA sequence data were used as a query to clone Caenorhabditis elegans and human genomic homologs from the publicly available genomic databases. The genomic structures of C. elegans, mouse, rat, and human PKC-delta were analyzed, and the result revealed that PKC-delta genes comprise 12, 18, 19, and 18 exons for C. elegans, mouse, rat, and human, respectively. The translation start methionine resides in the second exon in mouse and human and in the third exon in rat. The first intron between the first exon and the exon with the translation start methionine in mammalian genes represents a very large gap, as long as 17 kb in human, indicating a complexity involved in gene splicing. Overall exon-intron genomic structure is highly conserved among mammals, while significantly diverged in C. elegans. Putative transcription factor binding sites on the 1.7-kb promoter region of the mouse gene suggest that PKC-delta might be involved in spermatogenesis, embryogenesis, development, brain generation, immune response, oxidative environment, and oncogenesis. Studies on the promoter and subsequent biological testing on mouse keratinocytes indicate that tumor necrosis factor (TNF)-alpha increases the expression of PKC-delta, and this correlates with the time of NFkappaB nuclear translocation and activation. This TNF-alpha-mediated upregulation of PKC-delta is repressed in keratinocytes that are preinfected with IkappaB superrepressor adenovirus, suggesting that NFkappaB is involved directly in PKC-delta expression.
Collapse
Affiliation(s)
- Kwang S Suh
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
98
|
|
99
|
Itoh Y, Mizuno S. Molecular and cytological characterization of SspI-family repetitive sequence on the chicken W chromosome. Chromosome Res 2003; 10:499-511. [PMID: 12489831 DOI: 10.1023/a:1020944414750] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A genomic clone, pWS44, isolated from the chicken W chromosome-specific genomic library contained a partial (226-bp) sequence of a novel SspI-family repetitive sequence. A genomic clone, pWPRS09, containing a 508-bp SspI fragment (a repeating unit of the family) was subsequently obtained and sequenced. This 0.5-kb unit is tandemly repeated about 11,300 times. FISH to mitotic and lampbrush W chromosomes indicates that the SspI-family is located on the chromomere 6 between heterochromatic and distal non-heterochromatic regions on the short arm. The SspI-family sequence was proved to be a good positional marker in FISH mapping of active genes in the non-heterochromatic region on the lampbrush W chromosome. The presence of SspI-family repetitive sequence is limited to the genus Gallus (chickens and jungle fowls). The 0.5-kb repeating unit contains a 120-bp stretch of polypurine/polypyrimidine sequence (GGAGA repeats), shows no DNA curvature, and rapid electrophoretic mobility in 4% polyacrylamide gel at 4 degrees C. The SspI-family forms a relatively diffused chromatin structure in nuclei. These features are distinctly different from those of XhoI- and EcoRI-family sequences on the W chromosome. The total amount of non-repetitive DNA in the chicken W chromosome is estimated to be about 10 Mb.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | |
Collapse
|
100
|
Iwase M, Satta Y, Hirai Y, Hirai H, Imai H, Takahata N. The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species. Proc Natl Acad Sci U S A 2003; 100:5258-63. [PMID: 12672962 PMCID: PMC154332 DOI: 10.1073/pnas.0635848100] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mammalian amelogenin (AMEL) genes are found on both the X and Y chromosomes (gametologous). Comparison of the genomic AMEL sequences in five primates and three other mammals reveals that the 5' portion of the gametologous AMEL loci began to differentiate in the common ancestor of extant mammals, whereas the 3' portion differentiated independently within species of different mammals. The boundary is marked by a transposon insertion in intron 2 and is shared by all species examined. In addition, 540-kb DNA sequences from the short arm of the human X chromosome are aligned with their Y gametologous sequences. The pattern and extent of sequence differences in the 5' portion of the AMEL loci extend to a proximal region that contains the ZFX locus, and those in the 3' portion extend all the way down to the pseudoautosomal boundary (PAB)1. We concluded that the AMEL locus spans an ancient PAB, and that both the ancient and present PABs were determined by chance events during the evolution of mammals and primates. Sex chromosome differentiation likely took place in a region that contains the male-determining loci by suppressing homologous recombination.
Collapse
Affiliation(s)
- Mineyo Iwase
- Department of Biosystems Science, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| | | | | | | | | | | |
Collapse
|