51
|
Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 2002; 9:53-64. [PMID: 11803374 DOI: 10.1038/sj.cdd.4400952] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2001] [Revised: 07/23/2001] [Accepted: 08/31/2001] [Indexed: 11/08/2022] Open
Abstract
In the present study we have demonstrated some features characterizing programmed cell death (PCD) in the unicellular protozoan parasite Leishmania donovani, the causative agent of visceral Leishmaniasis. We report that PCD is initiated in stationary phase cultures of promastigotes and both in actively growing cultures of axenic amastigotes and promastigotes upon treatment with anti Leishmanial drugs (Pentostam and amphotericin B). However, the two cell types respond to antileishmanial drugs differently. The features of PCD in L. donovani promastigotes are nuclear condensation, nicked DNA in the nucleus, DNA ladder formation, increase in plasma membrane permeability, decrease in the mitochondrial membrane potential (DeltaPsi m) and induction of a PhiPhiLux (PPL)-cleavage activity. PCD in both stationary phase culture and upon induction by amphotericin B resulted first in the decrease of mitochondrial membrane potential followed by simultaneous change in plasma membrane permeability and induction of PPL-cleavage activity. Of the total PPL-cleavage activity, several caspase inhibitors inhibited a significant amount (21-34%). Inhibitors of cathepsin or calpain did not inhibit PPL-cleavage activity. Taken together this study demonstrates that the characteristic features of PCD exist in unicellular protozoan Leishmania donovani. The implication of PCD on the Leishmania pathogenesis is discussed.
Collapse
Affiliation(s)
- N Lee
- Division of Emerging and Transfusion Transmitted Diseases, OBRR, CBER, FDA, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
52
|
Lüder CG, Gross U, Lopes MF. Intracellular protozoan parasites and apoptosis: diverse strategies to modulate parasite-host interactions. Trends Parasitol 2001; 17:480-6. [PMID: 11587962 DOI: 10.1016/s1471-4922(01)02016-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Programmed cell death (apoptosis) is an important regulator of the host's response during infection with a variety of intracellular protozoan parasites. Parasitic pathogens have evolved diverse strategies to induce or inhibit host-cell apoptosis, thereby modulating the host's immune response, aiding dissemination within the host or facilitating intracellular survival. Here, we review the molecular and cell-biological mechanisms of the pathogen-induced modulation of host-cell apoptosis and its effects on the parasite-host interaction and the pathogenesis of parasitic diseases. We also discuss the previously unrecognized phenomenon of apoptotic cell death in (unicellular) protozoan parasites and its potential implications.
Collapse
Affiliation(s)
- C G Lüder
- Department Bacteriology, Georg August University of Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
53
|
Montalvetti A, Bailey BN, Martin MB, Severin GW, Oldfield E, Docampo R. Bisphosphonates are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase. J Biol Chem 2001; 276:33930-7. [PMID: 11435429 DOI: 10.1074/jbc.m103950200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We report the cloning and sequencing of a gene encoding the farnesyl pyrophosphate synthase of Trypanosoma cruzi. The protein (T. cruzi farnesyl pyrophosphate synthase, TcFPPS) is an attractive target for drug development, since the growth of T. cruzi is inhibited by carbocation transition state/reactive intermediate analogs of its substrates, the nitrogen-containing bisphosphonates currently in use in bone resorption therapy. The protein predicted from the nucleotide sequence of the gene has 362 amino acids and a molecular mass of 41.2 kDa. Several sequence motifs found in other FPPSs are present in TcFPPS. Heterologous expression of TcFPPS in Escherichia coli produced a functional enzyme that was inhibited by the nitrogen-containing bisphosphonates alendronate, pamidronate, homorisedronate, and risedronate but was less sensitive to the non-nitrogen-containing bisphosphonate etidronate, which, unlike the nitrogen-containing bisphosphonates, does not affect parasite growth. The protein contains a unique 11-mer insertion located near the active site, together with other sequence differences that may facilitate the development of novel anti-Chagasic agents.
Collapse
MESH Headings
- Alkyl and Aryl Transferases/antagonists & inhibitors
- Alkyl and Aryl Transferases/chemistry
- Alkyl and Aryl Transferases/genetics
- Amino Acid Motifs
- Amino Acid Sequence
- Amino Acids/chemistry
- Animals
- Binding Sites
- Birds
- Blotting, Northern
- Blotting, Southern
- Calcium Channel Blockers/pharmacology
- Cations
- Cells, Cultured
- Cloning, Molecular
- Crystallography, X-Ray
- Diphosphonates/chemistry
- Dose-Response Relationship, Drug
- Escherichia coli/metabolism
- Etidronic Acid/analogs & derivatives
- Etidronic Acid/pharmacology
- Geranyltranstransferase
- Hydrogen-Ion Concentration
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Polyisoprenyl Phosphates/chemistry
- Protein Binding
- Recombinant Proteins/metabolism
- Risedronic Acid
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sesquiterpenes
- Trypanosoma cruzi/enzymology
Collapse
Affiliation(s)
- A Montalvetti
- Laboratory of Molecular Parasitology, Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | | | |
Collapse
|
54
|
Nasirudeen AM, Tan KS, Singh M, Yap EH. Programmed cell death in a human intestinal parasite, Blastocystis hominis. Parasitology 2001; 123:235-46. [PMID: 11578087 DOI: 10.1017/s0031182001008332] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although programmed cell death (PCD) has been associated with multicellular organisms, there have been more reports of its presence in some protozoans. Our study shows the existence of PCD in an intestinal protozoan, Blastocystis hominis. Light and electron microscopy, biochemical and flow cytometry studies showed apoptosis-like death in B. hominis cells exposed to a cytotoxic monoclonal antibody (MAb 1D5). B. hominis cells displayed key morphological and biochemical features of apoptosis, namely, nuclear condensation and in situ fragmentation, reduced cytoplasmic volume, some externalization of phosphatidylserine and maintenance of plasma membrane integrity. No oligonucleosomal DNA laddering was observed in gel electrophoresis. This study supports earlier observations that the cellular machinery that is required to carry out PCD may have existed before the advent of multicellularity. Our study also ascribes a novel function for the B. hominis central vacuole in apoptosis; it acts as a repository where apoptotic bodies are stored before being released into the extracellular space.
Collapse
Affiliation(s)
- A M Nasirudeen
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
55
|
Das M, Mukherjee SB, Shaha C. Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 2001; 114:2461-9. [PMID: 11559754 DOI: 10.1242/jcs.114.13.2461] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania donovani promastigotes introduced into the bloodstream by sandfly vectors, are exposed to reactive oxygen species like H2O2 during phagocytosis by the host macrophages. H2O2 can induce promastigote death, but the mechanism of induction of this death is not known. Studies presented in this paper demonstrate that exposure to 4 mM H2O2 results in a pattern of promastigote death that shares many features with metazoan apoptosis. Motility and cell survival in these parasites show a gradual decline with increasing doses of H2O2. Features common to metazoan apoptosis, such as nuclear condensation, DNA fragmentation with accompanying DNA ladder formation and loss of cell volume, are observed after exposure to 4 mM H2O2. Within 30 minutes of the exposure, there is a significant increase in the ability of the cell lysates to cleave the fluorogenic tetrapeptide acetyl-Asp-Glu-Val-Asp-7-amino-4-trifluoromethyl coumarin, which is a substrate for the CED-3/CPP32 group of proteases. Pretreatment of cells with a specific inhibitor of CED-3/CPP32 group of proteases, Z-DEVD-FMK, reduces the number of cells showing apoptosis-like features, prevents DNA breakage and inhibits cleavage of a PARP-like protein. Activation of the caspase-like proteases is followed at 2 hours by the cleavage of a poly(ADP)ribose-polymerase-like protein and a reduction in intracellular glutathione concentration. DNA breakdown as detected by TdT labelling of cells and agarose gel electrophoresis is visible at 6 hours. Taken together, the above data show for the first time that there is a distinct pathway for apoptosis-like death in L. donovani.
Collapse
Affiliation(s)
- M Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
56
|
Sereno D, Holzmuller P, Mangot I, Cuny G, Ouaissi A, Lemesre JL. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother 2001; 45:2064-9. [PMID: 11408224 PMCID: PMC90601 DOI: 10.1128/aac.45.7.2064-2069.2001] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basic treatment of leishmaniasis consists in the administration of pentavalent antimonials. The mechanisms that contribute to pentavalent antimonial toxicity against the intracellular stage of the parasite (i.e., amastigote) are still unknown. In this study, the combined use of several techniques including DNA fragmentation assay and in situ and cytofluorometry terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling methods and YOPRO-1 staining allowed us to demonstrate that potassium antimonyl tartrate, an Sb(III)-containing drug, was able to induce cell death associated with DNA fragmentation in axenic amastigotes of Leishmania infantum at low concentrations (10 microg/ml). This observation was in close correlation with the toxicity of Sb(III) species against axenic amastigotes (50% inhibitory concentration of 4.75 microg/ml). Despite some similarities to apoptosis, nuclease activation was not a consequence of caspase-1, caspase-3, calpain, cysteine protease, or proteasome activation. Altogether, our results demonstrate that the antileishmanial toxicity of Sb(III) antimonials is associated with parasite oligonucleosomal DNA fragmentation, indicative of the occurrence of late events in the overall process of apoptosis. The elucidation of the biochemical pathways leading to cell death could allow the isolation of new therapeutic targets.
Collapse
Affiliation(s)
- D Sereno
- Laboratoire de Biologie Parasitaire, Centre IRD (Institut de Recherche pour le Développement), 34032 Montpellier Cedex 1, France
| | | | | | | | | | | |
Collapse
|
57
|
Welburn SC, Maudlin I. Tsetse-trypanosome interactions: rites of passage. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:399-403. [PMID: 10481151 DOI: 10.1016/s0169-4758(99)01512-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trypanosomes that cause sleeping sickness (Trypanosoma brucei rhodesiense and T. b. gambiense) are entirely dependent on tsetse for their transmission between hosts, but the flies are not easily infected. This situation has not arisen by chance - the tsetse has evolved an efficient defence system against trypanosome invasion. In this review, Susan Welburn and Ian Maudlin chart the progress of trypanosomes through the fly and identify some of the hazards faced by both parasite and fly that affect vector competence of tsetse.
Collapse
Affiliation(s)
- S C Welburn
- Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian, UK EH25 9RG.
| | | |
Collapse
|
58
|
Masaninga F, Mihok S. Host influence on adaptation of Trypanosoma congolense metacyclics to vertebrate hosts. MEDICAL AND VETERINARY ENTOMOLOGY 1999; 13:330-332. [PMID: 10514061 DOI: 10.1046/j.1365-2915.1999.00151.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- F Masaninga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | |
Collapse
|
59
|
Barcinski MA, DosReis GA. Apoptosis in parasites and parasite-induced apoptosis in the host immune system: a new approach to parasitic diseases. Braz J Med Biol Res 1999; 32:395-401. [PMID: 10347800 DOI: 10.1590/s0100-879x1999000400003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apoptosis, a form of programmed cell death (PCD), has been described as essential for normal organogenesis and tissue development, as well as for the proper function of cell-renewal systems in adult organisms. Apoptosis is also pivotal in the pathogenesis of several different diseases. In this paper we discuss, from two different points of view, the role of apoptosis in parasitic diseases. The description of apoptotic death in three different species of heteroxenic trypanosomatids is reviewed, and considerations on the phylogenesis of apoptosis and on the eventual role of PCD on their mechanism of pathogenesis are made. From a different perspective, an increasing body of evidence is making clear that regulation of host cell apoptosis is an important factor on the definition of a host-pathogen interaction. As an example, the molecular mechanisms by which Trypanosoma cruzi is able to induce apoptosis in immunocompetent cells, in a murine model of Chagas' disease, and the consequences of this phenomenon on the outcome of the experimental disease are discussed.
Collapse
Affiliation(s)
- M A Barcinski
- Departamento de Parasitologia, Universidade de São Paulo, Brasil.
| | | |
Collapse
|
60
|
Welburn SC, Lillico S, Murphy NB. Programmed cell death in procyclic form Trypanosoma brucei rhodesiense --identification of differentially expressed genes during con A induced death. Mem Inst Oswaldo Cruz 1999; 94:229-34. [PMID: 10224534 DOI: 10.1590/s0074-02761999000200020] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei rhodesiense can be induced to undergo apoptosis after stimulation with Con A. As cell death in these parasites is associated with de novo gene expression we have applied a differential display technique, Randomly Amplified Differential Expressed Sequence-Polymerase Chain Reaction (RADES-PCR) to the study of gene expression during Con A induced cell death in these organisms. Twenty-two differentially displayed products have been cloned and sequenced. These represent the first endogenous genes to be identified as implicated in cellular death in trypanosomatids (the most primitive eukaryote in which apoptosis has been described). Evidence for an ancestral death machinery, 'proto-apoptosis' in single celled organisms is discussed.
Collapse
Affiliation(s)
- S C Welburn
- Centre for Tropical Veterinary Medicine, University of Edinburgh, Scotland.
| | | | | |
Collapse
|
61
|
Sigler K, Chaloupka J, Brozmanová J, Stadler N, Höfer M. Oxidative stress in microorganisms--I. Microbial vs. higher cells--damage and defenses in relation to cell aging and death. Folia Microbiol (Praha) 1999; 44:587-624. [PMID: 11097021 DOI: 10.1007/bf02825650] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Oxidative stress in microbial cells shares many similarities with other cell types but it has its specific features which may differ in prokaryotic and eukaryotic cells. We survey here the properties and actions of primary sources of oxidative stress, the role of transition metals in oxidative stress and cell protective machinery of microbial cells, and compare them with analogous features of other cell types. Other features to be compared are the action of Reactive Oxygen Species (ROS) on cell constituents, secondary lipid- or protein-based radicals and other stress products. Repair of oxidative injury by microorganisms and proteolytic removal of irreparable cell constituents are briefly described. Oxidative damage of aerobically growing microbial cells by endogenously formed ROS mostly does not induce changes similar to the aging of multiplying mammalian cells. Rapid growth of bacteria and yeast prevents accumulation of impaired macromolecules which are repaired, diluted or eliminated. During growth some simple fungi, such as yeast or Podospora spp., exhibit aging whose primary cause seems to be fragmentation of the nucleolus or impairment of mitochondrial DNA integrity. Yeast cell aging seems to be accelerated by endogenous oxidative stress. Unlike most growing microbial cells, stationary-phase cells gradually lose their viability because of a continuous oxidative stress, in spite of an increased synthesis of antioxidant enzymes. Unlike in most microorganisms, in plant and animal cells a severe oxidative stress induces a specific programmed death pathway--apoptosis. The scant data on the microbial death mechanisms induced by oxidative stress indicate that in bacteria cell death can result from activation of autolytic enzymes (similarly to the programmed mother-cell death at the end of bacillary sporulation). Yeast and other simple eukaryotes contain components of a proapoptotic pathway which are silent under normal conditions but can be activated by oxidative stress or by manifestation of mammalian death genes, such as bak or bax. Other aspects, such as regulation of oxidative-stress response, role of defense enzymes and their control, acquisition of stress tolerance, stress signaling and its role in stress response, as well as cross-talk between different stress factors, will be the subject of a subsequent review.
Collapse
Affiliation(s)
- K Sigler
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague
| | | | | | | | | |
Collapse
|
62
|
Hagen HE, Kläger SL, Williams GT. Is apoptosis involved in mechanisms to eliminate Onchocerca ochengi during Simulium damnosum s.l. immune response? Trop Med Int Health 1998; 3:945-50. [PMID: 9892279 DOI: 10.1046/j.1365-3156.1998.00331.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Co-injection of the parasite Onchocerca ochengi and the caspase inhibitors z-VAD.fmk and boc-D.fmk into the natural vector Simulium damnosum s.l. led to significantly increased survival of the parasites. Subsequent in situ apoptosis detection assays demonstrated that in the case of boc-D.fmk the enhanced survival was due to a diminished apoptosis level of the microfilariae in vivo. Additional assays using O. ochengi microfilariae which were coinjected with serine protease inhibitors into S. damnosum s.l. revealed that certain serine protease inhibitors can reduce the level of apoptosis.
Collapse
Affiliation(s)
- H E Hagen
- Department of Biological Sciences, University of Keele, UK.
| | | | | |
Collapse
|
63
|
Modha J, Redman CA, Thornhill JA, Kusel JR. Schistosomes: Unanswered Questions on the Basic Biology of the Host–Parasite Relationship. ACTA ACUST UNITED AC 1998; 14:396-401. [PMID: 17040829 DOI: 10.1016/s0169-4758(98)01321-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As is the case in many parasite infections, research into schistosomiasis has not yet yielded a vaccine and, although chemotherapy with praziquantel is very effective, the mechanism of action of this drug is unknown. John Kusel and colleagues here suggest that an understanding of basic biological phenomena, such as the role of Ca(2+) in skin penetration and the function of the adult excretory system, might lead to important breakthroughs. Other crucial questions are also addressed, with the hope of stimulating debate. They invite suggestions and correspondence from others working in related fields.
Collapse
Affiliation(s)
- J Modha
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, the Davidson Building, University of Glasgow, Glasgow, UK G12 8QQ
| | | | | | | |
Collapse
|
64
|
Abstract
Programmed cell death (PCD) or apoptosis, an active process of cell death, plays a central role in normal tissue development and organogenesis, as well as in the pathogenesis of different diseases. Although it occurs in diverse cells and tissues under the influence of a remarkable variety of inducing agents, the resultant ultrastructural and biochemical changes are extremely monotonous, indicating the existence of a common biological mechanism underlying its occurrence. It is generally accepted that a developmental program leading to cell death cannot be advantageous to unicellular organisms and that PCD appeared in evolution to fulfill the organizational needs of multicellular life. However, the recent description of apoptotic death occurring in three different species of pathogenic kinetoplastids suggests that the evolutionary origin of PCD precedes the appearence of multicellular organisms. The present study proposes that a population of pathogenic Trypanosomatids is socially organized and that PCD is a prerequisite for this organization and for the fulfillment of the demands of a heteroxenic lifestyle. This proposal includes possible roles for PCD in the development of the parasite in the insect vector and/or in its mammalian host and suggests experimental strategies to localize the evolutionary origin of PCD within the kinetoplastids.
Collapse
|
65
|
Xiong ZH, Ruben L. Trypanosoma brucei: the dynamics of calcium movement between the cytosol, nucleus, and mitochondrion of intact cells. Exp Parasitol 1998; 88:231-9. [PMID: 9562427 DOI: 10.1006/expr.1998.4249] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Targeted aequorins (CYT-AEQ, NUC-AEQ, and MT-AEQ) were used to measure Ca2+ concentrations within organelles of live trypanosomes. We determined that the nuclear envelope is a slight barrier to the free diffusion of Ca2+. This situation was especially evident when Ca2+ influx across the plasma membrane was stimulated with 200 nM melittin ([Ca2+]cyt = 1.2 +/- 0.4 microM and [Ca2+]nuc = 0.85 +/- 0.15 microM). By contrast, the ionophores nigericin (2.7 microM) or monensin (2 microg/ml) were used to induce Ca2+ efflux from the acidic storage compartment. Small transient elevations in [Ca2+]cyt were observed (peaking at 660 +/- 200 and 580 +/- 120 nM, respectively). Parallel and equivalent changes in [Ca2+1]nuc were recorded. Active accumulation of Ca2+ into the nucleus was not observed. Nigericin or monensin did not disrupt mitochondrial Ca2+ transport in vivo. Instead, the mitochondrion actively sequestered large quantities of Ca2+ in the presence of these ionophores, with peak values of 2.7 +/- 1.4 and 4.4 +/- 1.1 microM, respectively. Overall, these data demonstrate that significant quantities of Ca2+ enter the nucleus following influx across the plasma membrane or following efflux from an intracellular acidic storage compartment. However, the magnitude of change for [Ca2+]cyt and [Ca2+]nuc is small compared to the total amount of exchangeable Ca2+ since the majority of released Ca2+ is actively sequestered by the mitochondrion.
Collapse
Affiliation(s)
- Z H Xiong
- Department of Biological Science, Southern Methodist University, Dallas, Texas 75275, USA
| | | |
Collapse
|