51
|
Windels F, Kiyatkin EA. GABA, not glutamate, controls the activity of substantia nigra reticulata neurons in awake, unrestrained rats. J Neurosci 2005; 24:6751-4. [PMID: 15282278 PMCID: PMC6729717 DOI: 10.1523/jneurosci.1528-04.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Substantia nigra pars reticulata (SNr) receives both GABAergic and glutamatergic (GLU) inputs that are believed to act together to regulate neuronal activity in this structure. To examine the role of these inputs, single-unit recording was coupled with iontophoresis of GLU and GABA in rats under two conditions: awake, unrestrained and under chloral hydrate anesthesia. Although GABA potently inhibited SNr cells in both conditions, freely moving rats showed lower sensitivity than anesthetized animals. Likewise, GLU effectively induced excitations in most SNr neurons in anesthetized animals but was much less effective in awake, unrestrained animals in terms of both the number of sensitive cells and the magnitude of GLU-induced excitation. These findings, along with consistent excitations induced by bicuculline in awake, unrestrained rats, suggest that modulation of GABA inhibitory input, not the opposing actions of GLU and GABA, is the primary factor that regulates the activity state of SNr neurons.
Collapse
Affiliation(s)
- François Windels
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
52
|
Koyama S, Kanemitsu Y, Weight FF. Spontaneous activity and properties of two types of principal neurons from the ventral tegmental area of rat. J Neurophysiol 2005; 93:3282-93. [PMID: 15659533 DOI: 10.1152/jn.00776.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the spontaneous activity and properties of freshly isolated ventral tegmental area (VTA) principal neurons by whole cell recording and single-cell RT-PCR. The VTA principal neurons, which were tyrosine hydroxylase-positive and glutamic acid decarboxylase (GAD67)-negative, exhibited low firing frequency and a long action potential (AP) duration. The VTA principal neurons exhibited a calretinin-positive and parvalbumin-negative Ca2+-binding protein mRNA expression pattern. The VTA principal neurons were classified into two subpopulations based on their firing frequency coefficient of variation (CV) at room temperature (21-23 degrees C): irregular-type neurons with a large CV and tonic-type neurons with a small CV. These two firing patterns were also recorded at the temperature of 34 degrees C and in nystatin-perforated patch recording. In VTA principal neurons, the AP afterhyperpolarization (AHP) amplitude contributed to the firing regularity and AHP decay slope contributed to the firing frequency. The AHP amplitude in the irregular-type VTA principal neurons was smaller than that in the tonic-type VTA principal neurons. There was no significant difference in the AHP decay slope between the two-types of VTA principal neurons. Apamin-sensitive small-conductance Ca2+-activated K+ (SK) channels contributed to the AHP and the regular firing of the tonic-type neurons but contributed little to the AHP and firing of the irregular-type neurons. In voltage-clamp tail-current analysis, in both conventional and nystatin-perforated whole cell recording, the apamin-sensitive AHP current density of the tonic-type neurons was significantly larger than that of the irregular-type neurons. We suggest that apamin-sensitive SK current contributes to intrinsic firing differences between the two subpopulations of VTA principal neurons.
Collapse
Affiliation(s)
- Susumu Koyama
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
53
|
Korotkova TM, Ponomarenko AA, Brown RE, Haas HL. Functional diversity of ventral midbrain dopamine and GABAergic neurons. Mol Neurobiol 2004; 29:243-59. [PMID: 15181237 DOI: 10.1385/mn:29:3:243] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 11/14/2003] [Indexed: 12/21/2022]
Abstract
Recent findings indicate that VTA and SN dopaminergic (DA) and GABAergic neurons form subpopulations that are divergent in their electrophysiological features, vulnerability to neurodegeneration, and regulation by neuropeptides. This diversity can be correlated with the anatomical organization of the VTA and SN and their inputs and outputs. In this review we describe the heterogeneity in ion channels and firing patterns, especially burst firing, in subpopulations of dopamine neurons. We go on to describe variations in vulnerability to neurotoxic damage in models of Parkinson's disease in subgroups of DA neurons and its possible relationship to developmental gene regulation, the expression of different ion channels, and the expression of different protein markers, such as the neuroprotective marker calbindin. The electrophysiological properties of subgroups of GABAergic midbrain neurons, patterns of expression of protein markers and receptors, possible involvement of GABAergic neurons in a number of processes that are usually attributed exclusively to dopaminergic neurons, and the characteristics of a subgroup of neurons that contains both dopamine and GABA are also discussed.
Collapse
Affiliation(s)
- Tatiana M Korotkova
- Institute of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany.
| | | | | | | |
Collapse
|
54
|
Kiyatkin EA, Brown PL. Brain temperature fluctuations during passive vs. active cocaine administration: clues for understanding the pharmacological determination of drug-taking behavior. Brain Res 2004; 1005:101-16. [PMID: 15044070 DOI: 10.1016/j.brainres.2004.01.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2004] [Indexed: 11/21/2022]
Abstract
While it is generally assumed that cocaine self-administration (SA) is determined and maintained by the pharmacological actions of cocaine in the brain, it is also a drug-motivated and drug-reinforced goal-directed behavior, which is determined by concurrent learning and behavioral performance. To dissociate the contributions of pharmacological and behavioral factors to cocaine SA, it is important to compare cocaine SA with its pharmacological copy, passive intravenous (iv) cocaine administration. This approach was employed in the present study with respect to brain temperatures, a dynamic parameter that reflects metabolic neural activity and shows consistent fluctuations during cocaine SA. Passive cocaine injections performed with the same dose/pattern as SA induced brain temperature fluctuations similar in many ways to those in behaving animals. The initial passive drug administration of a session elevated brain temperature, while subsequent repeated injections were associated with biphasic temperature fluctuations that maintained at a relatively stable plateau. Although the magnitude of these fluctuations was twofold smaller than in behaving animals, passive animals had the same pattern; brain temperatures transiently decreased after cocaine injection, then increased, and were inhibited again by the next cocaine infusion. In contrast to self-administering animals, rats exposed to passive cocaine injections had significantly lower basal temperatures and never showed gradual temperature increases preceding the initial injection. Striking differences in brain temperature dynamics seen in the beginning of a session suggest that during the development of drug-taking behavior the initial cocaine-induced neural activation becomes transformed into behavior-related "anticipatory" neural activation (motivational arousal) that fuels drug seeking and results in the initial drug intake. While this activation is triggered by drug-related cues and enhanced by the initial cocaine intake, subsequent highly cyclical cocaine intakes appear to be primarily pharmacologically determined.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
55
|
Fà M, Mereu G, Ghiglieri V, Meloni A, Salis P, Gessa GL. Electrophysiological and pharmacological characteristics of nigral dopaminergic neurons in the conscious, head-restrained rat. Synapse 2003; 48:1-9. [PMID: 12557266 DOI: 10.1002/syn.10177] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Extracellular single-unit recordings of nigral dopamine (DA) neurons were obtained from conscious rats habituated to having their body suspended in a cloth jacket and their head immobilized in the stereotaxic frame by means of a "restraining platform" permanently fixed to the skull. The electrophysiological characteristics of DA neurons from head-restrained rats and their responses to apomorphine and haloperidol were compared with single-unit recordings obtained from rats lightly and deeply anesthetized with chloral hydrate and from mesencephalic slices. Head-restrained rats showed a higher number of spontaneously active DA neurons and a higher percentage of bursting neurons than lightly and deeply anesthetized rats. Indeed, bursting activity was rare in deeply anesthetized rats and was totally absent in slices. Haloperidol was more potent and effective in stimulating the firing rate and bursting activity in head-restrained than in lightly anesthetized rats, while it was virtually ineffective in deeply anesthetized rats and totally ineffective in slices. On the other hand, DA neurons in head-restrained rats showed the same average firing rate as DA neurons in lightly and deeply anesthetized rats and in slices. The potency of apomorphine in inhibiting the firing rate, and that of haloperidol in reversing apomorphine effect, did not vary among the different in vivo preparations. The results suggest that chloral hydrate anesthesia blunts or suppresses not only the excitatory inputs which normally sustain the number of spontaneously active DA neurons and their bursting activity, but also the feedback excitation of DA neurons following haloperidol-induced D(2) receptor blockade. On the other hand, chloral hydrate anesthesia modifies neither D(2) autoreceptor sensitivity to apomorphine and haloperidol nor the automatic genesis of action potentials. The head-restrained rat appears to be an important model for studies into the pharmacology and physiology of DA neurons.
Collapse
Affiliation(s)
- Mauro Fà
- Department of Neuroscience, University of Cagliari, 09042 Monserrato, Italy
| | | | | | | | | | | |
Collapse
|
56
|
Lai YY, Siegel JM. Physiological and anatomical link between Parkinson-like disease and REM sleep behavior disorder. Mol Neurobiol 2003; 27:137-52. [PMID: 12777684 PMCID: PMC8801047 DOI: 10.1385/mn:27:2:137] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that is caused by a loss of neurons in the ventral midbrain. Parkinsonian patients often experience insomnia, parasomnias, and daytime somnolence. REM sleep behavior disorder (RBD) is characterized by vigorous movements during REM sleep, and may also be caused by neuronal degeneration in the central nervous system (CNS); however, the site of degeneration remains unclear. Both Parkinsonism and RBD become more prevalent with aging, with onset usually occurring in the sixties. Recent findings show that many individuals with RBD eventually develop Parkinsonism. Conversely, it is also true that certain patients diagnosed with Parkinsonism subsequently develop RBD. Postmortem examination reveals that Lewy bodies, Lewy neurites, and alpha-synuclein are found in brainstem nuclei in both Parkinsonism and RBD patients. In this article, we will discuss evidence that Parkinsonism and RBD are physiologically and anatomically linked, based on our animal experiments and other studies on human patients.
Collapse
Affiliation(s)
- Yuan-Yang Lai
- Department of Psychiatry, School of Medicine, UCLA and Neurobiology Research (151A3) VAGLAHS Sepulveda, North Hills, CA 91343, USA.
| | | |
Collapse
|
57
|
Coizet V, Comoli E, Westby GWM, Redgrave P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: an electrophysiological investigation in the rat. Eur J Neurosci 2003; 17:28-40. [PMID: 12534966 DOI: 10.1046/j.1460-9568.2003.02415.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The source of short-latency visual input to midbrain dopaminergic (DA) neurons is not currently known; however, the superior colliculus (SC) is a subcortical visual structure which has response latencies consistently shorter than those recorded for DA neurons in substantia nigra and the ventral tegmental area. To test whether the SC represents a plausible route by which visual information may gain short latency access to the ventral midbrain, the present study examined whether experimental stimulation of the SC can influence the activity of midbrain DA neurons. In urethane-anaesthetized rats, 63 pairs of extracellular recordings were obtained from neurons in the SC and ipsilateral ventral midbrain, before and after local disinhibitory injections of the GABA antagonist bicuculline (20-40 ng/200-400 nL saline) into the SC. Neurons recorded from substantia nigra and the ventral tegmental area were classified as putative DA (25/63, 39.7%) or putative non-DA (38/63, 60.3%). In nearly half the cases (27/63, 42.8%), chemical stimulation of the SC evoked a corresponding increase in neural activity in the ventral midbrain. This excitatory effect did not distinguish between DA and non-DA neurons. In 6/63 cases (9.5%), SC activation elicited a reliable suppression of activity, while the remaining 30/63 cases (47.6%) were unaffected. In almost a third of cases (16/57, 28.1%) intense phasic activation of the SC was associated with correlated phasic activation of neurons in substantia nigra and the ventral tegmental area. These data suggest that the SC is in a position to play an important role in discriminating the appropriate stimulus qualities required to activate DA cells at short latency.
Collapse
Affiliation(s)
- Véronique Coizet
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | | | | | | |
Collapse
|
58
|
Garris PA, Rebec GV. Modeling fast dopamine neurotransmission in the nucleus accumbens during behavior. Behav Brain Res 2002; 137:47-63. [PMID: 12445715 DOI: 10.1016/s0166-4328(02)00284-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent advances in electrophysiology and voltammetry permit monitoring of dopamine (DA) neuronal activity in real time in the brain of awake animals. Studies using these approaches demonstrate that behaviorally relevant events elicit characteristic patterns of electrical activity in midbrain DA neurons as well as large, transient changes in extracellular DA in the nucleus accumbens (NAc). In addition to providing insight into the role of the DA system in the processing of motor, motivational, and sensory information, the new findings also shed light on fast DA neurotransmission in a behavioral context. This report, (1). summarizes the information obtained by electrophysiological and real-time voltammetric approaches and (2). describes a general model of phasic DA signaling in the NAc that links the observed changes in DA electrical activity and extracellular dynamics. The analysis demonstrates that the behaviorally evoked DA transients are governed by similar mechanisms as those produced by short trains of electrical stimulation. Thus, action potential-dependent release and presynaptic uptake are primary determinants of functional DA levels in the brain during behavior. Interestingly, the model predicts that the same burst of electrical activity generated at DA cell bodies produces markedly different DA dynamics in forebrain projection fields. The distinct changes result from heterogeneous release and uptake rates and may underlie region-specific effects of DA. Auto- and heteroreceptors, as well as other sites of presynaptic control, could further modulate the DA transients.
Collapse
Affiliation(s)
- Paul A Garris
- Department of Biological Sciences, Illinois State University, 244 SLB, Normal, IL 61790-4120, USA.
| | | |
Collapse
|
59
|
Kiyatkin EA. Dopamine in the nucleus accumbens: cellular actions, drug- and behavior-associated fluctuations, and a possible role in an organism's adaptive activity. Behav Brain Res 2002; 137:27-46. [PMID: 12445714 DOI: 10.1016/s0166-4328(02)00283-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review expounds the idea that the analysis of dopamine (DA) action on target cells under behaviorally relevant conditions and behavior-related changes in DA activity can offer new information to clarify the functional significance of mesocorticolimbic DA. In contrast to the traditional association of DA with certain behavioral processes and mechanisms (activation, arousal, conditioning, motivation, reinforcement, sensorimotor integration, etc.), evaluation of DA activity during well-controlled behaviors established by different reinforcers can provide important clues for determining the role of DA in the development and regulation of goal-directed behavior. This review summarizes the results of our microiontophoretic studies of striatal neurons in awake, unrestrained rats, particularly the action of DA on spontaneously active and glutamate (GLU)-stimulated cells, the pattern of DA-GLU interaction, and the role of tonic DA release in regulating the activity and afferent responsiveness of these units. We present the results of our iontophoretic studies of ventral tegmental area (VTA) neurons in freely moving animals suggesting the complexity and limitations in their identification as DA- and non-DA cells under behaviorally relevant conditions. We also consider technical and methodological problems related to electrophysiological and electrochemical evaluation of DA transmission in behaving animals. Finally, we discuss parallels and differences in the activity of presumed DA VTA neurons and changes of nucleus accumbens DA-dependent electrochemical signal during heroin self-administration (SA) behavior.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, MD 21224 USA.
| |
Collapse
|
60
|
Hyland BI, Reynolds JNJ, Hay J, Perk CG, Miller R. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 2002; 114:475-92. [PMID: 12204216 DOI: 10.1016/s0306-4522(02)00267-1] [Citation(s) in RCA: 375] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is a large body of data on the firing properties of dopamine cells in anaesthetised rats or rat brain slices. However, the extent to which these data relate to more natural conditions is uncertain, as there is little quantitative information available on the firing properties of these cells in freely moving rats. We examined this by recording from the midbrain dopamine cell fields using chronically implanted microwire electrodes. (1) In most cases, slowly firing cells with broad action potentials were profoundly inhibited by the dopamine agonist apomorphine, consistent with previously accepted criteria. However, a small group of cells was found that were difficult to classify because of ambiguous combinations of properties. (2) Presumed dopamine cells could be divided into low and high bursting (>40% of their spikes in bursts) groups, with the majority having low bursting rates. The distribution of burst incidence was similar to that previously reported with chloral hydrate anaesthesia, but the average intraburst frequency was higher in the conscious animal at rest and was higher again in bursts triggered by salient stimuli. (3) There was no evidence for spike frequency adaptation within bursts on average, consistent with the hypothesis that afterhyperpolarisation currents may be disabled during behaviourally induced bursting. (4) Presumed dopamine cells responded to reward-related stimuli with increased bursting rates and significantly higher intraburst frequencies compared to bursts emitted outside task context, indicating that modulation of afferent activity might not only trigger bursting, but may also regulate burst intensity. (5) In addition to the irregular single spike and bursting modes we found that extremely regular (clock-like) firing, previously only described for dopamine cells in reduced preparations, can also be expressed in the freely moving animal. (6) Cross-correlation analysis of activity recorded from simultaneously recorded neurones revealed coordinated activity in a quarter of dopamine cell pairs consistent with at least "functional" connectivity. On the other hand, most dopamine cell pairs showed no correlation, leaving open the possibility of functional sub-groupings within the dopamine cell fields. Taken together, the data suggest that the basic firing modes described for dopamine cells in reduced or anaesthetised preparations do reflect natural patterns of activity for these neurones, but also that the details of this activity are dependent upon modulation of afferent inputs by behavioural stimuli.
Collapse
Affiliation(s)
- B I Hyland
- Department of Physiology, School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
61
|
Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study. J Neurosci 2002. [PMID: 12122086 DOI: 10.1523/jneurosci.22-14-06272.2002] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Receptor-mediated feedback control plays an important role in dopamine (DA) neurotransmission. Recent evidence suggests that release and uptake, key mechanisms determining brain extracellular levels of the neurotransmitter, are governed by presynaptic autoreceptors. The goal of this study was to investigate whether autoreceptors regulate both mechanisms concurrently. Extracellular DA in the caudate-putamen and nucleus accumbens, evoked by electrical stimulation of the medial forebrain bundle, was monitored in the anesthetized rat by real-time voltammetry. Effects of the D2 antagonist haloperidol (0.5 mg/kg, i.p.) on evoked DA levels were measured to evaluate autoreceptor control mechanisms. Two strategies were used to resolve individual contributions of release and uptake to the robust increases in DA signals observed after acute haloperidol challenge in naive animals: pretreatment with 3beta-(p-chlorophenyl)tropan-2beta-carboxylic acid p-isothiocyanatophenylmethyl ester hydrochloride (RTI-76; 100 nmol, i.c.v.), an irreversible inhibitor of the DA transporter, and kinetic analysis of extracellular DA dynamics. RTI-76 effectively removed the uptake component from recorded signals. In RTI-76-pretreated rats, haloperidol induced only modest increases in DA elicited by low frequencies and had little or no effect at high frequencies. These results suggest that D2 antagonism alters uptake at all frequencies but only release at low frequencies. Kinetic analysis similarly demonstrated that haloperidol decreased V(max) for DA uptake and increased DA release at low (10-30 Hz) but not high (40-60 Hz) stimulus frequencies. We conclude that presynaptic DA autoreceptors concurrently downregulate release and upregulate uptake, and that the mechanisms are also independently controlled during neurotransmission.
Collapse
|
62
|
Abstract
Mesolimbic dopaminergic neurons modulate complex circuitry in the ventral forebrain involved in reward processing, although the precise function of the dopaminergic input is debated. Electrophysiological measurements have revealed that mesolimbic dopaminergic neurons can fire in either tonic or phasic modes, and that phasic firing accompanies the alerting or anticipatory phases of reward. However, the neurochemical relevance of this rapid neuronal discharge within the reward processing circuitry is not yet clear, in part because of difficulty in interpretation of extracellular dopamine measurements. Herein, the nature of the information provided by different neurochemical techniques is critically discussed. Classical methods of monitoring dopamine reveal changes in extracellular dopamine resulting from tonic neuronal activity, but do not have the temporal resolution to distinguish concentration transients. However, recent advances in dopamine sensors now enable transient dopamine concentrations resulting from phasic firing to be positively identified and followed on a physiologically relevant timescale. This has enabled demonstrations of discrete, phasic dopamine signals accompanying rewarding or alerting stimuli. Thus, enhanced dopamine release at terminals appears to be coincident with phasic electrical activity at cell bodies. These accumulating data promise to help unravel the precise role of phasic dopamine transmission in reward processing.
Collapse
Affiliation(s)
- R Mark Wightman
- Department of Chemistry, Neuroscience Center, and Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
63
|
Giorgetti M, Hotsenpiller G, Froestl W, Wolf ME. In vivo modulation of ventral tegmental area dopamine and glutamate efflux by local GABA(B) receptors is altered after repeated amphetamine treatment. Neuroscience 2002; 109:585-95. [PMID: 11823068 DOI: 10.1016/s0306-4522(01)00510-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activity of dopamine neurons in the ventral tegmental area is modulated by excitatory (glutamatergic) and inhibitory (GABAergic) afferents. GABA, released by intrinsic neurons and by projection neurons originating in the nucleus accumbens and other regions, inhibits dopamine neurons via activation of GABA(A) and GABA(B) receptor subtypes. Using in vivo microdialysis in freely moving rats, we investigated the role of ventral tegmental area GABA(B) receptors in modulating levels of dopamine and glutamate within the ventral tegmental area, both in naive rats and in rats treated repeatedly with saline or amphetamine (5 mg/kg i.p., for 5 days). In naive rats, administration of a potent and selective GABA(B) receptor antagonist (CGP 55845A) into the ventral tegmental area elicited a concentration-dependent increase in dopamine levels, but did not alter glutamate levels. In rats tested 3 days after discontinuing repeated amphetamine administration, 50 microM CGP 55845A increased dopamine levels to a greater extent than in saline controls. This difference was no longer present in rats tested 10-14 days after discontinuing repeated amphetamine injections. CGP 55845A (50 microM) had no effect on glutamate levels in the ventral tegmental area of saline-treated rats. However, it produced a robust increase in glutamate levels in rats tested 3 days, but not 10-14 days, after discontinuing repeated amphetamine injections. These results suggest that somatodendritic dopamine release is normally under strong tonic inhibitory control by GABA(B) receptors. Repeated amphetamine administration enhances GABA(B) receptor transmission in the ventral tegmental area during the early withdrawal period, increasing inhibitory tone on both dopamine and glutamate levels. This is the first demonstration, in an intact animal, that drugs of abuse alter GABA(B) receptor transmission in the ventral tegmental area.
Collapse
Affiliation(s)
- M Giorgetti
- Department of Neuroscience, FUHS/The Chicago Medical School, North Chicago, IL 60064-3095, USA
| | | | | | | |
Collapse
|
64
|
Abstract
Intravenous heroin self-administration in trained rats was accompanied by robust brain hyperthermia (+2.0-2.5 degrees C); parallel changes were found in the dorsal and ventral striatum, mediodorsal thalamus, and deep temporal muscle. Temperature began to increase at variable latency after a signal of drug availability, increased reliably (approximately 0.4 degrees C) before the first lever press for heroin, increased further (approximately 1.2 degrees C) after the first heroin injection, and rose more slowly after the second and third injections to stabilize at an elevated plateau (39-40 degrees C) for the remainder of the session. Brain and body temperature declined slowly when drug self-administration was terminated; naloxone precipitated a much more rapid decrease to baseline levels. Changes in temperature were similar across repeated daily sessions, except for the increase associated with the first self-administration of each session, which had progressively shorter latency and greater acceleration. Despite consistent biphasic fluctuations in movement activity associated with heroin self-administrations (gradual increase preceding the lever press, followed by an abrupt hypodynamia after drug infusion), mean brain temperature was very stable at an elevated plateau. Only mean muscle temperature showed evidence of biphasic fluctuations (+/-0.2 degrees C) that were time locked to and correlated with lever pressing and associated movements. Drug- and behavior-related changes in brain temperature thus appear to reflect some form of neuronal activation, and, because temperature is a factor capable of affecting numerous neural functions, it may be an important variable in the control of behavior by drugs of abuse.
Collapse
|
65
|
I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci 2002. [PMID: 11850457 DOI: 10.1523/jneurosci.22-04-01290.2002] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dopaminergic (DA) midbrain neurons in the substantia nigra (SN) and ventral tegmental area (VTA) are involved in various brain functions such as voluntary movement and reward and are targets in disorders such as Parkinson's disease and schizophrenia. To study the functional properties of identified DA neurons in mouse midbrain slices, we combined patch-clamp recordings with either neurobiotin cell-filling and triple labeling confocal immunohistochemistry, or single-cell RT-PCR. We discriminated four DA subpopulations based on anatomical and neurochemical differences: two calbindin D28-k (CB)-expressing DA populations in the substantia nigra (SN/CB+) or ventral tegmental area (VTA/CB+), and respectively, two calbindin D28-k negative DA populations (SN/CB-, VTA/CB-). VTA/CB+ DA neurons displayed significantly faster pacemaker frequencies with smaller afterhyperpolarizations compared with other DA neurons. In contrast, all four DA populations possessed significant differences in I(h) channel densities and I(h) channel-mediated functional properties like sag amplitudes and rebound delays in the following order: SN/CB- --> VTA/CB- --> SN/CB+ --> VTA/CB+. Single-cell RT-multiplex PCR experiments demonstrated that differential calbindin but not calretinin expression is associated with differential I(h) channel densities. Only in SN/CB- DA neurons, however, I(h) channels were actively involved in pacemaker frequency control. In conclusion, diversity within the DA system is not restricted to distinct axonal projections and differences in synaptic connectivity, but also involves differences in postsynaptic conductances between neurochemically and topographically distinct DA neurons.
Collapse
|
66
|
Robinson DL, Phillips PE, Budygin EA, Trafton BJ, Garris PA, Wightman RM. Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuroreport 2001; 12:2549-52. [PMID: 11496146 DOI: 10.1097/00001756-200108080-00051] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transient (200--900 ms), high concentrations (200--500 nM) of dopamine, measured using fast-scan cyclic voltammetry, occurred in the nucleus accumbens core of male rats at the presentation of a receptive female. Additional dopamine signals were observed during subsequent approach behavior. Background-subtracted cyclic voltammograms of the naturally-evoked signals matched those of electrically-evoked dopamine measured at the same recording sites. Administration of nomifensine amplified natural and evoked dopamine release, and increased the frequency of detectable signals. While gradual changes in dopamine concentration during sexual behavior have been well established, these findings dramatically improve the time resolution. The observed dopamine transients, probably resulting from neuronal burst firing, represent the first direct correlation of dopamine with sexual behavior on a sub-second time scale.
Collapse
Affiliation(s)
- D L Robinson
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
67
|
Kiyatkin EA, Rebec GV. Impulse activity of ventral tegmental area neurons during heroin self-administration in rats. Neuroscience 2001; 102:565-80. [PMID: 11226694 DOI: 10.1016/s0306-4522(00)00492-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To assess the pattern of mesocorticolimbic dopamine activity associated with drug-seeking and drug-taking behavior, we recorded impulse activity of ventral tegmental area neurons during intravenous heroin self-administration in trained rats. Although these neurons had considerable variability, two major groups-units with triphasic long-duration spikes and biphasic short-duration spikes-were identified. Relative to a slow and irregular basal activity of long-spike units, the first self-administration of each session was preceded by a phasic neuronal activation and followed by a more sustained drug-induced activation that reached a maximum at the time of the second self-injection. After each subsequent heroin self-injection, the discharge rate transiently decreased, correlating with the blockade of preceding motor activation and the appearance of freezing, but slowly and gradually increased again in parallel with searching behavior, reaching a maximum at the time of the next self-injection. Passive drug injections in either drug-naive, freely moving or drug-experienced, anesthetized rats caused much smaller, tonic increases in activity of long-spike units; these monophasic increases changed into biphasic responses with repeated injections. Although short-spike units had highly varying discharge rate and showed phasic activation during movement, during heroin self-injections they generally mimicked the activity pattern seen in long-spike units. Our results indicate that in behaving animals indirect "identification" of dopamine cells based on their distinctive electrophysiological features is more complex than in vitro and in anesthetized preparations. With respect to long-spike units, a candidate group of presumed dopamine neurons, our data agree with the view that mesocorticolimbic dopamine activation is important for the activational and/or motivational aspects of heroin-taking behavior and suggest the role of an abrupt termination of dopamine activation for drug reinforcement (reward). Although the neurochemical nature of long- and short-spike units is obviously different, similar changes in their activity may indicate that they are regulated by similar afferent inputs and that these inputs change similarly during drug-taking behavior.
Collapse
Affiliation(s)
- E A Kiyatkin
- Program in Neural Science, Department of Psychology, Indiana University, Bloomington, USA.
| | | |
Collapse
|
68
|
Abstract
Ascorbate (vitamin C) is found in high concentrations in the striatum in which it may play a role in behavioral activation. To test this hypothesis, freely behaving rats received bilateral intrastriatal infusions of ascorbate oxidase (AAO) to inactivate extracellular ascorbate. Slow-scan voltammetry was used simultaneously to assess changes in ascorbate and 3,4-dihydroxyphenylacetic acid (DOPAC), a major dopamine metabolite, near the infusion site. Intrastriatal AAO, but not saline vehicle, caused a rapid decline in both ascorbate and behavioral activation. Within 20 min, an ascorbate loss of 50-70% led to a near-total inhibition of all recorded behavior, including open-field locomotion, approach of novel objects, and social interactions with other rats. DOPAC levels remained stable, arguing against an AAO-induced disruption of dopamine transmission. Consistent with this interpretation, subsequent injection of 1.0 mg/kg d-amphetamine, an indirect dopamine agonist, quickly restored behavioral activation, which also was accompanied by a marked rise in extracellular ascorbate. Bilateral AAO infusions into dorsal hippocampus, which also has a high level of extracellular ascorbate, failed to alter behavioral activation, indicating that a loss of brain ascorbate per se does not suppress behavior. Collectively, these results implicate ascorbate in the behavioral operations of the striatum and suggest that the extracellular level of this vitamin plays a critical role in behavioral activation.
Collapse
|
69
|
Cheer JF, Marsden CA, Kendall DA, Mason R. Lack of response suppression follows repeated ventral tegmental cannabinoid administration: an in vitro electrophysiological study. Neuroscience 2001; 99:661-7. [PMID: 10974429 DOI: 10.1016/s0306-4522(00)00241-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cannabinoid compounds have been reported to excite ventral tegmental neurons through activation of cannabinoid CB1 receptors. More recently, biochemical and whole-cell voltage-clamp studies carried out on CB1-transfected AtT20 cells have shown a rapid desensitization of these receptors following activation of protein kinase C by 4-alpha-phorbol. To investigate the possible physiological correlates of this phenomenon, we have studied the effects of repeated cannabinoid treatment on ventral tegmental area dopaminergic neuronal firing in vitro. Rat brain slices containing the ventral tegmental area were used for single-unit extracellular recordings. Only neurons meeting established electrophysiological and pharmacological criteria for dopaminergic neurons were used in the study (firing neurons were detected either using tungsten or glass microelectrodes). The high-affinity cannabinoid agonist HU210 produced a concentration-dependent increase in firing (1-15 microM; EC(50) approximately 7 microM). Initial HU210 exposure produced a significant increase in cell firing rate in the ventral tegmental area, with a maximum approximately 3.5-fold increase over pre-drug basal firing; a subsequent exposure to HU210 produced an approximately threefold increase over basal firing. Nevertheless, the duration and onset of excitation produced by the cannabinoid differed significantly between the first and second exposures; the first excitation lasted significantly longer than the second and required less time to reach a comparable change in firing rate. The increases in firing rate and the time to return to basal firing were not significantly different between exposures. Furthermore, the cannabinoid antagonist SR141716A completely prevented the HU210-induced excitation whilst having no effect on its own, thus indicating a CB1-receptor mediated mechanism for the observed increase in firing. Ventral tegmental area neurons are also excited by the GABA(A) receptor antagonist bicuculline. To assess the role of GABA in cannabinoid-mediated excitation, HU210 was added in the presence of bicuculline. HU210 did not affect the initial bicuculline-induced increase in firing, suggesting different sites of action for the two compounds. Our data fail to support previously reported findings using repeated cannabinoid administration and cell preparations. The maintained increase in DA drive elicited by the potent cannabinoid agonist HU210 in the in vitro ventral tegmental circuit could explain some of the behavioural properties of cannabinoids, such as the lack of tolerance for the psychotropic effects of marijuana seen in human users.
Collapse
Affiliation(s)
- J F Cheer
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, NG7 2UH, Nottingham, UK.
| | | | | | | |
Collapse
|
70
|
Feenstra MG. Dopamine and noradrenaline release in the prefrontal cortex in relation to unconditioned and conditioned stress and reward. PROGRESS IN BRAIN RESEARCH 2001; 126:133-63. [PMID: 11105645 DOI: 10.1016/s0079-6123(00)26012-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M G Feenstra
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| |
Collapse
|
71
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
72
|
Hillegaart V, Magnusson O, Ahlenius S. A9 and A10 dopamine nuclei as a site of action for effects of 8-OH-DPAT on locomotion in the rat. Pharmacol Biochem Behav 2000; 67:55-63. [PMID: 11113484 DOI: 10.1016/s0091-3057(00)00292-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 5-hydroxytryptamine (5-HT) 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) was applied locally (0-5 microg bilaterally) into either the substantia nigra (A9) or the ventral tegmental area (A10) of adult male Wistar rats, and 10 min later spontaneous motor activity was observed in an open field ( approximately 0.5 m(2)) for 30 min. The rate of dopamine synthesis was estimated in neostriatal areas, the amygdala, and the prefrontal cortex, by measuring the accumulation of DOPA, following inhibition of cerebral decarboxylase by means of 3-hydroxybenzylhydrazine (NSD-1015). The A10 application of 8-OH-DPAT resulted in an increase in all aspects of spontaneous motor activity in the open field. A9 application of 8-OH-DPAT produced a stereotyped forward locomotion, characterized by a modest decrease in total horizontal activity, almost complete inhibition of rearing activity and an increase in proportion forward locomotion along the perimeter of the open-field arena. The injection of 8-OH-DPAT into the A9 was accompanied by an increased neostriatal DA rate of synthesis, whereas the A10 injection was followed by a decreased DA rate of synthesis in the amygdala and in the prefrontal cortex. It is concluded that mesencephalic dopaminergic mechanisms are involved in the stereotyped forward locomotion characteristically seen after systemic administration of the 5-HT(1A) receptor agonist 8-OH-DPAT.
Collapse
Affiliation(s)
- V Hillegaart
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77, Stockholm, Sweden.
| | | | | |
Collapse
|
73
|
Soulière F, Urbain N, Gervasoni D, Schmitt P, Guillemort C, Fort P, Renaud B, Luppi PH, Chouvet G. Single-unit and polygraphic recordings associated with systemic or local pharmacology: a multi-purpose stereotaxic approach for the awake, anaesthetic-free, and head-restrained rat. J Neurosci Res 2000; 61:88-100. [PMID: 10861804 DOI: 10.1002/1097-4547(20000701)61:1<88::aid-jnr11>3.0.co;2-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to avoid any artifactual pharmacological interferences with anaesthetic agents, a procedure has been developed for working on the awake, anaesthetic-free rat in a head-restrained condition. It allows, on the same animal and over several consecutive days, single-unit recordings in combination with systemic or local pharmacology (microiontophoresis or micropressure ejections), as well as monitoring vigilance states via the electroencephalogram and the electromyogram. After the cementing of a special "U"-shaped device on its skull under general anaesthesia, the animal is progressively habituated to stay daily, for several hours, under a painless corresponding stereotaxic restraint. This system can be easily adapted to different stereotaxic frames and, because of its spatial flexibility for targetting the desired rostrocaudal or lateral positions, allows access to a large number of cerebral structures. Experiments performed on Globus Pallidus, Substantia Nigra, and Locus Coeruleus neurons, combining the different possibilities of this system, are reported. They demonstrate, on the awake anaesthetic-free head-restrained rat, and under suitable ethical conditions, the feasibility of single-unit recordings of identified neurons associated with the study of their pharmacological reactivity after systemic or local drug administrations without any other drug interferences, and in physiologically relevant conditions such as the spontaneous alternance of vigilance states.
Collapse
Affiliation(s)
- F Soulière
- Laboratoire de Neuropharmacologie et Neurochimie, INSERM U512, Université Claude Bernard Lyon 1, Lyon-Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Walker QD, Rooney MB, Wightman RM, Kuhn CM. Dopamine release and uptake are greater in female than male rat striatum as measured by fast cyclic voltammetry. Neuroscience 2000; 95:1061-70. [PMID: 10682713 DOI: 10.1016/s0306-4522(99)00500-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present studies investigated sexual dimorphisms in dopamine release and uptake using fast-scan cyclic voltammetry in anesthetized rats and in brain slices. Electrical stimulation of the medial forebrain bundle of anesthetized rats at high frequency (60 Hz) elicited significantly more extracellular dopamine in the caudate nucleus of females than males. This sex difference was apparent over a range of current intensities applied to the stimulating electrode. Local electrical stimulation of brain slices in vitro verified in vivo results as more extracellular dopamine was elicited by single and 10 pulse stimulations in the caudate nucleus of females. Kinetic analysis of in vivo and in vitro dopamine overflow data indicated that dopamine release (the concentration of dopamine released per stimulus pulse) and the maximal velocity of dopamine uptake are greater in female rats, but the affinity of the transporter for dopamine was the same in males and females. None of these three parameters varied across the female estrous cycle. Linear regression analysis of dopamine release versus maximal uptake velocity data indicated a significant association of release and uptake sites in each sex and regression lines for males and females virtually overlapped. One explanation for these results is greater dopamine neuron terminal density in female caudate nucleus. These sexual dimorphisms in dopaminergic neurotransmission provide a novel, plausible mechanism to explain robust sex differences in behavioral responses of rats to psychostimulant drugs and may have implications for human neurological disorders and drug abuse.
Collapse
Affiliation(s)
- Q D Walker
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
75
|
Striatal neuronal activity and responsiveness to dopamine and glutamate after selective blockade of D1 and D2 dopamine receptors in freely moving rats. J Neurosci 1999. [PMID: 10212318 DOI: 10.1523/jneurosci.19-09-03594.1999] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although striatal neurons receive continuous dopamine (DA) input, little information is available on the role of such input in regulating normal striatal functions. To clarify this issue, we assessed how systemic administration of selective D1 and D2 receptor blockers or their combination alters striatal neuronal processing in freely moving rats. Single-unit recording was combined with iontophoresis to monitor basal impulse activity of dorsal and ventral striatal neurons and their responses to glutamate (GLU), a major source of excitatory striatal drive, and DA. SCH-23390 (0.2 mg/kg), a D1 antagonist, strongly elevated basal activity and attenuated neuronal responses to DA compared with control conditions, but GLU-induced excitations were enhanced relative to control as indicated by a reduction in response threshold, an increase in response magnitude, and a more frequent appearance of apparent depolarization inactivation. In contrast, the D2 antagonist eticlopride (0.2 mg/kg) had a weak depressing effect on basal activity and was completely ineffective in blocking the neuronal response to DA. Although eticlopride reduced the magnitude of the GLU response, the response threshold was lower, and depolarization inactivation occurred more often relative to control. The combined administration of these drugs resembled the effects of SCH-23390, but whereas the change in basal activity and the GLU response was weaker, the DA blocking effect was stronger than SCH-23390 alone. Our data support evidence for DA as a modulator of striatal function and suggest that under behaviorally relevant conditions tonically released DA acts mainly via D1 receptors to provide a continuous inhibiting or restraining effect on both basal activity and responsiveness of striatal neurons to GLU-mediated excitatory input.
Collapse
|
76
|
Kiyatkin EA, Rebec GV. Modulation of striatal neuronal activity by glutamate and GABA: iontophoresis in awake, unrestrained rats. Brain Res 1999; 822:88-106. [PMID: 10082887 DOI: 10.1016/s0006-8993(99)01093-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To examine the effects of glutamate (GLU) and gamma-aminobutyric acid (GABA) and their interactions in the striatum under behaviorally relevant conditions, single-unit recording was combined with microiontophoresis in awake, unrestrained rats. Iontophoretically applied GLU (0-40 nA, 20 s) excited all spontaneously active neurons in dorsal (caudate-putamen) and ventral (accumbens, core) striatum; phasic GLU-induced excitations (mean threshold 19.7 nA) were dose-dependent, inversely correlated with rate of basal activity (excitation limit approximately 65 imp/s), and highly stable during repeated GLU applications. GLU also excited silent and sporadically active units, which greatly outnumbered spontaneously active cells, and enhanced neuronal excitations associated with movement. Both spontaneously active and GLU-stimulated striatal neurons were highly sensitive to GABA (0-40 nA, 20 s); most showed short-latency inhibitions during GABA diffusion from the pipette (0 nA) and the response quickly progressed to complete silence with a small increase in current. The GABA-induced inhibition was current-dependent, equally strong on spontaneously active and GLU-stimulated units, and independent of neuronal discharge rate, but less stable than the GLU-induced excitation during repeated drug applications. Prolonged GABA application (0-20 nA, 2-4 min) reduced basal impulse activity, but was less effective in attenuating the neuronal excitations induced by GLU or associated with movement. Our data support the role of GLU afferents in the phasic activation of striatal neurons and suggest that the effects of GLU strongly depend on the level of ongoing neuronal activity. The ability of GABA to modulate both basal and GLU-evoked activity suggests that GABA, released from efferent collaterals and interneurons, plays a critical role in regulating neuronal activity and responsiveness to phasic changes in excitatory input.
Collapse
Affiliation(s)
- E A Kiyatkin
- Program in Neural Science, Department of Psychology, Psychology Building, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|