51
|
Furukawa Y, Okuyama S, Amakura Y, Sawamoto A, Nakajima M, Yoshimura M, Igase M, Fukuda N, Tamai T, Yoshida T. Isolation and Characterization of Neuroprotective Components from Citrus Peel and Their Application as Functional Food. Chem Pharm Bull (Tokyo) 2021; 69:2-10. [PMID: 33390517 DOI: 10.1248/cpb.c20-00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The elderly experience numerous physiological alterations. In the brain, aging causes degeneration or loss of distinct populations of neurons, resulting in declining cognitive function, locomotor capability, etc. The pathogenic factors of such neurodegeneration are oxidative stress, mitochondrial dysfunction, inflammation, reduced energy homeostatis, decreased levels of neurotrophic factor, etc. On the other hand, numerous studies have investigated various biologically active substances in fruit and vegetables. We focused on the peel of citrus fruit to search for neuroprotective components and found that: 1) 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF) and auraptene (AUR) in the peel of Kawachi Bankan (Citrus kawachiensis) exert neuroprotective effects; 2) both HMF and AUR can pass through the blood-brain barrier, suggesting that they act directly in the brain; 3) the content of AUR in the peel of K. Bankan was exceptionally high, and consequently the oral administration of the dried peel powder of K. Bankan exerts neuroprotective effects; and 4) intake of K. Bankan juice, which was enriched in AUR by adding peel paste to the raw juice, contributed to the prevention of cognitive dysfunction in aged healthy volunteers. This review summarizes our studies in terms of the isolation/characterization of HMF and AUR in K. Bankan peel, analysis of their actions in the brain, mechanisms of their actions, and trials to develop food that retains their functions.
Collapse
Affiliation(s)
- Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | - Michiya Igase
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine
| | | | | | - Takashi Yoshida
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University.,Department of Pharmaceutical Sciences, Okayama University
| |
Collapse
|
52
|
Matsuzaki K, Ohizumi Y. Beneficial Effects of Citrus-Derived Polymethoxylated Flavones for Central Nervous System Disorders. Nutrients 2021; 13:E145. [PMID: 33406641 PMCID: PMC7824236 DOI: 10.3390/nu13010145] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The number of patients with central nervous system disorders is increasing. Despite diligent laboratory and clinical research over the past 30 years, most pharmacologic options for the prevention and long-term treatment of central nervous system disorders and neurodegenerative disorders have been unsuccessful. Therefore, the development of drugs and/or functional foods to prevent the onset of neurodegenerative disorders is highly expected. Several reports have shown that polymethoxylated flavones (PMFs) derived from citrus fruit, such as nobiletin, tangeretin, and 3,3',4',5,6,7,8-heptamethoxyflavone, are promising molecules for the prevention of neurodegenerative and neurological disorders. In various animal models, PMFs have been shown to have a neuroprotective effect and improve cognitive dysfunction with regard to neurological disorders by exerting favorable effects against their pathological features, including oxidative stress, neuroinflammation, neurodegeneration, and synaptic dysfunction as well as its related mechanisms. In this review, we describe the profitable and ameliorating effects of citrus-derived PMFs on cognitive impairment and neural dysfunction in various rat and murine models or in several models of central nervous system disorders and identify their mechanisms of action.
Collapse
Affiliation(s)
- Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai 989-3201, Japan
| |
Collapse
|
53
|
Mey M, Bhatta S, Casadesus G. Luteinizing hormone and the aging brain. VITAMINS AND HORMONES 2021; 115:89-104. [PMID: 33706966 PMCID: PMC9853463 DOI: 10.1016/bs.vh.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fluctuations in luteinizing hormone (LH) release contribute to the development and maintenance of the reproductive system and become dysregulated during aging. Of note, increasing evidence supports extra-gonadal roles for LH within the CNS, particularly as it relates to cognition and plasticity in aging and age-related degenerative diseases such as Alzheimer's disease (AD). However, despite increasing evidence that supports a link between this hormone and CNS function, the mechanisms underlying LH action within the brain and how they influence cognition and plasticity during the lifespan is poorly understood and, in fact, often in conflict. This chapter aims to provide an up-to-date review of the literature addressing the role of LH signaling in the context of CNS aging and disease and put forward a unifying hypothesis that may explain currently conflicting theories regarding the role of LHCGR signaling in CNS function and dysfunction in aging and disease.
Collapse
Affiliation(s)
- Megan Mey
- Department of Biomedical Science, Kent State University, Cunningham Hall, Kent, OH, United States
| | - Sabina Bhatta
- Department of Biomedical Science, Kent State University, Cunningham Hall, Kent, OH, United States
| | - Gemma Casadesus
- Department of Biological Science, School of Arts and Sciences, Kent State University, Cunningham Hall, Kent, OH, United States,Corresponding author: ;
| |
Collapse
|
54
|
Yeh TY, Luo IW, Hsieh YL, Tseng TJ, Chiang H, Hsieh ST. Peripheral Neuropathic Pain: From Experimental Models to Potential Therapeutic Targets in Dorsal Root Ganglion Neurons. Cells 2020; 9:cells9122725. [PMID: 33371371 PMCID: PMC7767346 DOI: 10.3390/cells9122725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain exerts a global burden caused by the lesions in the somatosensory nerve system, including the central and peripheral nervous systems. The mechanisms of nerve injury-induced neuropathic pain involve multiple mechanisms, various signaling pathways, and molecules. Currently, poor efficacy is the major limitation of medications for treating neuropathic pain. Thus, understanding the detailed molecular mechanisms should shed light on the development of new therapeutic strategies for neuropathic pain. Several well-established in vivo pain models were used to investigate the detail mechanisms of peripheral neuropathic pain. Molecular mediators of pain are regulated differentially in various forms of neuropathic pain models; these regulators include purinergic receptors, transient receptor potential receptor channels, and voltage-gated sodium and calcium channels. Meanwhile, post-translational modification and transcriptional regulation are also altered in these pain models and have been reported to mediate several pain related molecules. In this review, we focus on molecular mechanisms and mediators of neuropathic pain with their corresponding transcriptional regulation and post-translational modification underlying peripheral sensitization in the dorsal root ganglia. Taken together, these molecular mediators and their modification and regulations provide excellent targets for neuropathic pain treatment.
Collapse
Affiliation(s)
- Ti-Yen Yeh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - I-Wei Luo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hostpital, Kaohsiung 80708, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | | | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Brian and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 88182); Fax: +886-223915292
| |
Collapse
|
55
|
Oskouei Z, Mehri S, Kalalinia F, Hosseinzadeh H. Evaluation of the effect of thymoquinone in d-galactose-induced memory impairments in rats: Role of MAPK, oxidative stress, and neuroinflammation pathways and telomere length. Phytother Res 2020; 35:2252-2266. [PMID: 33325602 DOI: 10.1002/ptr.6982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/08/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
D-galactose (d-gal) induces aging and memory impairment via oxidative stress and neuroinflammation pathways. This study evaluated the neuroprotective activity of thymoquinone (TQ) against d-gal. d-gal (400 mg/kg, SC), d-gal plus TQ (2.5, 5, 10 mg/kg, i.p.), and TQ alone (2.5 and 10 mg/kg) for 8 weeks were administered to rats. The effect of TQ on learning and memory were studied using the Morris water maze test. Malondialdehyde (MDA) and glutathione (GSH) levels were determined in the hippocampus. The levels of MAPKs (p-ERK/ERK, p-P38/P38), cAMP response elements binding (p-CREB/CREB), advanced glycation end products (AGEs), inflammatory markers (TNFα, IL-1β), glial fibrillary acidic protein (GFAP), and brain-derived neurotrophic factor (BDNF) were analyzed by western blotting. Telomere length was evaluated using real-time PCR. Memory and learning impairment, MDA enhancement, GSH reduction, and neuroinflammation via increasing the TNFα, IL-1β, and GFAP contents were observed in d-gal group. TQ with d-gal, improved memory impairment, reduced oxidative stress, and alleviated neuroinflammation. The elevated level of AGEs decreased by TQ compared to d-gal. No changes were observed in the levels of p-ERK/ERK, p-CREB/CREB, p-P38/P38, BDNF, and telomere length following administration of d-gal or TQ plus d-gal. TQ improved memory deficits of d-gal through anti-oxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Zahra Oskouei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
56
|
Active Transition of Fear Memory Phase from Reconsolidation to Extinction through ERK-Mediated Prevention of Reconsolidation. J Neurosci 2020; 41:1288-1300. [PMID: 33293359 DOI: 10.1523/jneurosci.1854-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
The retrieval of fear memory induces two opposite memory process, i.e., reconsolidation and extinction. Brief retrieval induces reconsolidation to maintain or enhance fear memory, while prolonged retrieval extinguishes this memory. Although the mechanisms of reconsolidation and extinction have been investigated, it remains unknown how fear memory phases are switched from reconsolidation to extinction during memory retrieval. Here, we show that an extracellular signal-regulated kinase (ERK)-dependent memory transition process after retrieval regulates the switch of memory phases from reconsolidation to extinction by preventing induction of reconsolidation in an inhibitory avoidance (IA) task in male mice. First, the transition memory phase, which cancels the induction of reconsolidation, but is insufficient for the acquisition of extinction, was identified after reconsolidation, but before extinction phases. Second, the reconsolidation, transition, and extinction phases after memory retrieval showed distinct molecular and cellular signatures through cAMP responsive element binding protein (CREB) and ERK phosphorylation in the amygdala, hippocampus, and medial prefrontal cortex (mPFC). The reconsolidation phase showed increased CREB phosphorylation, while the extinction phase displayed several neural populations with various combinations of CREB and/or ERK phosphorylation, in these brain regions. Interestingly, the three memory phases, including the transition phase, showed transient ERK activation immediately after retrieval. Most importantly, the blockade of ERK in the amygdala, hippocampus, or mPFC at the transition memory phase disinhibited reconsolidation-induced enhancement of IA memory. These observations suggest that the ERK-signaling pathway actively regulates the transition of memory phase from reconsolidation to extinction and this process functions as a switch that cancels reconsolidation of fear memory.SIGNIFICANCE STATEMENT Retrieval of fear memory induces two opposite memory process; reconsolidation and extinction. Reconsolidation maintains/enhances fear memory, while extinction weakens fear memory. It remains unknown how memory phases are switched from reconsolidation to extinction during retrieval. Here, we identified an active memory transition process functioning as a switch that inhibits reconsolidation. This memory transition phase showed a transient increase of extracellular signal-regulated kinase (ERK) phosphorylation in the amygdala, hippocampus and medial prefrontal cortex (mPFC). Interestingly, inhibition of ERK in these regions at the transition phase disinhibited the reconsolidation-mediated enhancement of inhibitory avoidance (IA) memory. These findings suggest that the transition memory process actively regulates the switch of fear memory phases of fear memory by preventing induction of reconsolidation through the activation of the ERK-signaling pathway.
Collapse
|
57
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|
58
|
Solés-Tarrés I, Cabezas-Llobet N, Vaudry D, Xifró X. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide Against Cognitive Decline in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:221. [PMID: 32765225 PMCID: PMC7380167 DOI: 10.3389/fncel.2020.00221] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Cognitive impairment is one of the major symptoms in most neurodegenerative disorders such as Alzheimer’s (AD), Parkinson (PD), and Huntington diseases (HD), affecting millions of people worldwide. Unfortunately, there is no treatment to cure or prevent the progression of those diseases. Cognitive impairment has been related to neuronal cell death and/or synaptic plasticity alteration in important brain regions, such as the cerebral cortex, substantia nigra, striatum, and hippocampus. Therefore, compounds that can act to protect the neuronal loss and/or to reestablish the synaptic activity are needed to prevent cognitive decline in neurodegenerative diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two highly related multifunctional neuropeptides widely distributed in the central nervous system (CNS). PACAP and VIP exert their action through two common receptors, VPAC1 and VPAC2, while PACAP has an additional specific receptor, PAC1. In this review article, we first presented evidence showing the therapeutic potential of PACAP and VIP to fight the cognitive decline observed in models of AD, PD, and HD. We also reviewed the main transduction pathways activated by PACAP and VIP receptors to reduce cognitive dysfunction. Furthermore, we identified the therapeutic targets of PACAP and VIP, and finally, we evaluated different novel synthetic PACAP and VIP analogs as promising pharmacological tools.
Collapse
Affiliation(s)
- Irene Solés-Tarrés
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| | - Núria Cabezas-Llobet
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Normandie University, UNIROUEN, Inserm, Rouen, France
| | - Xavier Xifró
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
59
|
Jacob PF, Waddell S. Spaced Training Forms Complementary Long-Term Memories of Opposite Valence in Drosophila. Neuron 2020; 106:977-991.e4. [PMID: 32289250 PMCID: PMC7302427 DOI: 10.1016/j.neuron.2020.03.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/25/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Forming long-term memory (LTM) often requires repetitive experience spread over time. Studies in Drosophila suggest aversive olfactory LTM is optimal after spaced training, multiple trials of differential odor conditioning with rest intervals. Memory after spaced training is frequently compared to that after the same number of trials without intervals. Here we show that, after spaced training, flies acquire additional information and form an aversive memory for the shock-paired odor and a slowly emerging and more persistent "safety-memory" for the explicitly unpaired odor. Safety-memory acquisition requires repetition, order, and spacing of the training trials and relies on triggering specific rewarding dopaminergic neurons. Co-existence of aversive and safety memories is evident as depression of odor-specific responses at different combinations of junctions in the mushroom body output network; combining two outputs appears to signal relative safety. Having complementary aversive and safety memories augments LTM performance after spaced training by making the odor preference more certain.
Collapse
Affiliation(s)
- Pedro F Jacob
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
60
|
Choi BY, Hong DK, Jeong JH, Lee BE, Koh JY, Suh SW. Zinc transporter 3 modulates cell proliferation and neuronal differentiation in the adult hippocampus. Stem Cells 2020; 38:994-1006. [PMID: 32346941 PMCID: PMC7496127 DOI: 10.1002/stem.3194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
The subgranular zone of the dentate gyrus is a subregion of the hippocampus that has two uniquely defining features; it is one of the most active sites of adult neurogenesis as well as the location where the highest concentrations of synaptic zinc are found, the mossy fiber terminals. Therefore, we sought to investigate the idea that vesicular zinc plays a role as a modulator of hippocampal adult neurogenesis. Here, we used ZnT3−/− mice, which are depleted of synaptic‐vesicle zinc, to test the effect of targeted deletion of this transporter on adult neurogenesis. We found that this manipulation reduced progenitor cell turnover as well as led to a marked defect in the maturation of newborn cells that survive in the DG toward a neuronal phenotype. We also investigated the effects of zinc (ZnCl2), n‐acetyl cysteine (NAC), and ZnCl2 plus 2NAC (ZN) supplement on adult hippocampal neurogenesis. Compared with ZnCl2 or NAC, administration of ZN resulted in an increase in proliferation of progenitor cells and neuroblast. ZN also rescued the ZnT3 loss‐associated reduction of neurogenesis via elevation of insulin‐like growth factor‐1 and ERK/CREB activation. Together, these findings reveal that ZnT3 plays a highly important role in maintaining adult hippocampal neurogenesis and supplementation by ZN has a beneficial effect on hippocampal neurogenesis, as well as providing a therapeutic target for enhanced neuroprotection and repair after injury as demonstrated by its ability to prevent aging‐dependent cognitive decline in ZnT3−/− mice. Therefore, the present study suggests that ZnT3 and vesicular zinc are essential for adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dae Ki Hong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jeong Hyun Jeong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bo Eun Lee
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| |
Collapse
|
61
|
Tripathi S, Verma A, Jha SK. Training on an Appetitive Trace-Conditioning Task Increases Adult Hippocampal Neurogenesis and the Expression of Arc, Erk and CREB Proteins in the Dorsal Hippocampus. Front Cell Neurosci 2020; 14:89. [PMID: 32362814 PMCID: PMC7181388 DOI: 10.3389/fncel.2020.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) plays an essential role in hippocampal-dependent memory consolidation. Increased neurogenesis enhances learning, whereas its ablation causes memory impairment. In contrast, few reports suggest that neurogenesis reduces after learning. Although the interest in exploring the role of adult neurogenesis in learning has been growing, the evidence is still limited. The role of the trace- and delay-appetitive-conditioning on AHN and its underlying mechanism are not known. The consolidation of trace-conditioned memory requires the hippocampus, but delay-conditioning does not. Moreover, the dorsal hippocampus (DH) and ventral hippocampus (VH) may have a differential role in these two conditioning paradigms. Here, we have investigated the changes in: (A) hippocampal cell proliferation and their progression towards neuronal lineage; and (B) expression of Arc, Erk1, Erk2, and CREB proteins in the DH and VH after trace- and delay-conditioning in the rat. The number of newly generated cells significantly increased in the trace-conditioned but did not change in the delay-conditioned animals compared to the control group. Similarly, the expression of Arc protein significantly increased in the DH but not in the VH after trace-conditioning. Nonetheless, it remains unaltered in the delay-conditioned group. The expression of pErk1, pErk2, and pCREB also increased in the DH after trace-conditioning. Whereas, the expression of only pErk1 pErk2 and pCREB proteins increased in the VH after delay-conditioning. Our results suggest that appetitive trace-conditioning enhances AHN. The increased DH neuronal activation and pErk1, pErk2, and pCREB in the DH may be playing an essential role in learning-induced cell-proliferation after appetitive trace-conditioning.
Collapse
Affiliation(s)
- Shweta Tripathi
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Anita Verma
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Sushil K Jha
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
62
|
A G-protein coupled receptor 39 agonist stimulates proliferation of keratinocytes via an ERK-dependent pathway. Biomed Pharmacother 2020; 127:110160. [PMID: 32371316 DOI: 10.1016/j.biopha.2020.110160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022] Open
Abstract
Keratinocyte proliferation serves as a crucial process in skin wound healing. The zinc-sensing G-protein coupled receptor 39 (GPR39), which is highly expressed in keratinocytes, has been shown to promote skin wound healing. The aim of this study was to investigate the effect of GPR39 activation on proliferation of keratinocytes and its underlying mechanism using immortalized human keratinocytes (HaCaT) as an in vitro model. GPR39 was functionally expressed in HaCaT cells. BrdU proliferation assays showed that treatment with GPR39 agonist TC-G 1008 (100 nM and 1 μM) increased cell proliferation. TC-G 1008 also enhanced ERK phosphorylation in time- and concentration-dependent manners. This effect was suppressed by co-treatment with wortmannin (PI3K inhibitor) and U0126 (MKK inhibitor). Of note, neither inhibition of Gαq-phospholipase C (PLC)-[Ca2+]i nor Gαs-PKA pathway affected GPR39 stimulation-induced ERK phosphorylation. Similarly, barbadin, an inhibitor of G-protein-independent β-arrestin pathway, did not suppress ERK phosphorylation induced by GPR39 activation. Of particular importance, wortmannin, U0126, and FR180204 (ERK inhibitor) abrogated the effect of TC-G 1008-induced cell proliferation. Taken together, this study reveals novel insights into the role of GPR39 in regulating keratinocyte proliferation via a PI3K-MKK-ERK-dependent mechanism. GPR39 agonists may be used in enhancing keratinocyte proliferation, which may be beneficial for the cutaneous wound treatment.
Collapse
|
63
|
Dasgupta A, Lim YJ, Kumar K, Baby N, Pang KLK, Benoy A, Behnisch T, Sajikumar S. Group III metabotropic glutamate receptors gate long-term potentiation and synaptic tagging/capture in rat hippocampal area CA2. eLife 2020; 9:e55344. [PMID: 32310084 PMCID: PMC7170650 DOI: 10.7554/elife.55344] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) play an important role in synaptic plasticity and memory and are largely classified based on amino acid sequence homology and pharmacological properties. Among group III metabotropic glutamate receptors, mGluR7 and mGluR4 show high relative expression in the rat hippocampal area CA2. Group III metabotropic glutamate receptors are known to down-regulate cAMP-dependent signaling pathways via the activation of Gi/o proteins. Here, we provide evidence that inhibition of group III mGluRs by specific antagonists permits an NMDA receptor- and protein synthesis-dependent long-lasting synaptic potentiation in the apparently long-term potentiation (LTP)-resistant Schaffer collateral (SC)-CA2 synapses. Moreover, long-lasting potentiation of these synapses transforms a transient synaptic potentiation of the entorhinal cortical (EC)-CA2 synapses into a stable long-lasting LTP, in accordance with the synaptic tagging/capture hypothesis (STC). Furthermore, this study also sheds light on the role of ERK/MAPK protein signaling and the downregulation of STEP protein in the group III mGluR inhibition-mediated plasticity in the hippocampal CA2 region, identifying them as critical molecular players. Thus, the regulation of group III mGluRs provides a conducive environment for the SC-CA2 synapses to respond to events that could lead to activity-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Ananya Dasgupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| | - Yu Jia Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Krishna Kumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| | - Nimmi Baby
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| | - Ka Lam Karen Pang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| | - Amrita Benoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| |
Collapse
|
64
|
Malakooti N, Pritchard MA, Chen F, Yu Y, Sgambelloni C, Adlard PA, Finkelstein DI. The Long Isoform of Intersectin-1 Has a Role in Learning and Memory. Front Behav Neurosci 2020; 14:24. [PMID: 32161523 PMCID: PMC7052523 DOI: 10.3389/fnbeh.2020.00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
Down syndrome is caused by partial or total trisomy of chromosome 21 and is characterized by intellectual disability and other disorders. Although it is difficult to determine which of the genes over-expressed on the supernumerary chromosome contribute to a specific abnormality, one approach is to study each gene in isolation. This can be accomplished either by using an over-expression model to study increased gene dosage or a gene-deficiency model to study the biological function of the gene. Here, we extend our examination of the function of the chromosome 21 gene, ITSN1. We used mice in which the long isoform of intersectin-1 was knocked out (ITSN1-LKO) to understand how a lack of the long isoform of ITSN1 affects brain function. We examined cognitive and locomotor behavior as well as long term potentiation (LTP) and the mitogen-activated protein kinase (MAPK) and 3'-kinase-C2β-AKT (AKT) cell signaling pathways. We also examined the density of dendritic spines on hippocampal pyramidal neurons. We observed that ITSN1-LKO mice had deficits in learning and long term spatial memory. They also exhibited impaired LTP, and no changes in the levels of the phosphorylated extracellular signal-regulated kinase (ERK) 1/2. The amount of phosphorylated AKT was reduced in the ITSN1-LKO hippocampus and there was a decrease in the number of apical dendritic spines in hippocampal neurons. Our data suggest that the long isoform of ITSN1 plays a part in normal learning and memory.
Collapse
Affiliation(s)
- Nakisa Malakooti
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Melanie A Pritchard
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, Australia
| | - Feng Chen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Yong Yu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, Australia
| | - Charlotte Sgambelloni
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Paul A Adlard
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - David I Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
65
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
66
|
Vassilev P, Avvisati R, Koya E, Badiani A. Distinct Populations of Neurons Activated by Heroin and Cocaine in the Striatum as Assessed by catFISH. eNeuro 2020; 7:ENEURO.0394-19.2019. [PMID: 31937522 PMCID: PMC7005257 DOI: 10.1523/eneuro.0394-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Despite the still prevailing notion of a shared substrate of action for all addictive drugs, there is evidence suggesting that opioid and psychostimulant drugs differ substantially in terms of their neurobiological and behavioral effects. These differences may reflect separate neural circuits engaged by the two drugs. Here we used the catFISH (cellular compartment analysis of temporal activity by fluorescence in situ hybridization) technique to investigate the degree of overlap between neurons engaged by heroin versus cocaine in adult male Sprague Dawley rats. The catFISH technique is a within-subject procedure that takes advantage of the different transcriptional time course of the immediate-early genes homer 1a and arc to determine to what extent two stimuli separated by an interval of 25 min engage the same neuronal population. We found that throughout the striatal complex the neuronal populations activated by noncontingent intravenous injections of cocaine (800 μg/kg) and heroin (100 and 200 μg/kg), administered at an interval of 25 min from each other, overlapped to a much lesser extent than in the case of two injections of cocaine (800 μg/kg), also 25 min apart. The greatest reduction in overlap between populations activated by cocaine and heroin was in the dorsomedial and dorsolateral striatum (∼30% and ∼22%, respectively, of the overlap observed for the sequence cocaine-cocaine). Our results point toward a significant separation between neuronal populations activated by heroin and cocaine in the striatal complex. We propose that our findings are a proof of concept that these two drugs are encoded differently in a brain area believed to be a common neurobiological substrate to drug abuse.
Collapse
Affiliation(s)
- Philip Vassilev
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Riccardo Avvisati
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Eisuke Koya
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Aldo Badiani
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton BN1 9RH, United Kingdom
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
67
|
Cryptotanshinone enhances neurite outgrowth and memory via extracellular signal-regulated kinase 1/2 signaling. Food Chem Toxicol 2020; 136:111011. [DOI: 10.1016/j.fct.2019.111011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/11/2023]
|
68
|
Sharma G, Parihar A, Talaiya T, Dubey K, Porwal B, Parihar MS. Cognitive impairments in type 2 diabetes, risk factors and preventive strategies. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0105/jbcpp-2019-0105.xml. [PMID: 31967962 DOI: 10.1515/jbcpp-2019-0105] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Mild cognitive impairment (MCI) is a modifiable risk factor in progression of several diseases including dementia and type 2 diabetes. If cognitive impairments are not reversed at an early stage of appearance of symptoms, then the prolonged pathogenesis can lead to dementia and Alzheimer's disease (AD). Therefore, it is necessary to detect the risk factors and mechanism of prevention of cognitive dysfunction at an early stage of disease. Poor lifestyle, age, hyperglycemia, hypercholesterolemia, and inflammation are some of the major risk factors that contribute to cognitive and memory impairments in diabetic patients. Mild cognitive impairment was seen in those individuals of type 2 diabetes, who are on an unhealthy diet. Physical inactivity, frequent alcohol consumptions, and use of packed food products that provides an excess of cheap calories are found associated with cognitive impairment and depression in diabetic patients. Omega fatty acids (FAs) and polyphenol-rich foods, especially flavonoids, can reduce the bad effects of an unhealthy lifestyle; therefore, the consumption of omega FAs and flavonoids may be beneficial in maintaining normal cognitive function. These functional foods may improve cognitive functions by targeting many enzymes and molecules in cells chiefly through their anti-inflammatory, antioxidant, or signaling actions. Here, we provide the current concepts on the risk factors of cognitive impairments in type 2 diabetes and the mechanism of prevention, using omega FAs and bioactive compounds obtained from fruits and vegetables. The knowledge derived from such studies may assist physicians in managing the health care of patients with cognitive difficulties.
Collapse
Affiliation(s)
- Garima Sharma
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Arti Parihar
- Department of Science, Bellingham Technical College, Bellingham, WA, USA
| | - Tanay Talaiya
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Kirti Dubey
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Bhagyesh Porwal
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Mordhwaj S Parihar
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India, Phone: +91-734-2511317
| |
Collapse
|
69
|
Furukawa Y, Hara RI, Nakaya M, Okuyama S, Sawamoto A, Nakajima M. Citrus Auraptene Induces Glial Cell Line-Derived Neurotrophic Factor in C6 Cells. Int J Mol Sci 2019; 21:ijms21010253. [PMID: 31905925 PMCID: PMC6981972 DOI: 10.3390/ijms21010253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
We previously demonstrated that auraptene (AUR), a natural coumarin derived from citrus plants, exerts anti-inflammatory effects in the brain, resulting in neuroprotection in some mouse models of brain disorders. The present study showed that treatment with AUR significantly increased the release of glial cell line-derived neurotrophic factor (GDNF), in a dose- and time-dependent manner, by rat C6 glioma cells, which release was associated with increased expression of GDNF mRNA. These results suggest that AUR acted as a neuroprotective agent in the brain via not only its anti-inflammatory action but also its induction of neurotrophic factor. We also showed that (1) the AUR-induced GDNF production was inhibited by U0126, a specific inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2, and by H89, a specific inhibitor of protein kinase A (PKA); and (2) AUR induced the phosphorylation of cAMP response element-binding protein (CREB), a transcription factor located within the nucleus. These results suggest that AUR-stimulated gdnf gene expression was up-regulated through the PKA/ERK/CREB pathway in C6 cells.
Collapse
|
70
|
Shin J, Kong C, Lee J, Choi BY, Sim J, Koh CS, Park M, Na YC, Suh SW, Chang WS, Chang JW. Focused ultrasound-induced blood-brain barrier opening improves adult hippocampal neurogenesis and cognitive function in a cholinergic degeneration dementia rat model. ALZHEIMERS RESEARCH & THERAPY 2019; 11:110. [PMID: 31881998 PMCID: PMC6933667 DOI: 10.1186/s13195-019-0569-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Background The persistence of adult hippocampal neurogenesis (AHN) is sharply decreased in Alzheimer’s disease (AD). The neuropathologies of AD include the presence of amyloid-β deposition in plaques, tau hyperphosphorylation in neurofibrillary tangles, and cholinergic system degeneration. The focused ultrasound (FUS)-mediated blood-brain barrier opening modulates tau hyperphosphorylation, the accumulation of amyloid-β proteins, and increases in AHN. However, it remains unclear whether FUS can modulate AHN in cholinergic-deficient conditions. In this study, we investigated the effect of FUS on AHN in a cholinergic degeneration rat model of dementia. Methods Adult male Sprague-Dawley rats (n = 48; 200–250 g) were divided into control (phosphate-buffered saline injection), 192 IgG-saporin (SAP), and SAP+FUS groups; in the two latter groups, SAP was injected bilaterally into the lateral ventricle. We applied FUS to the bilateral hippocampus with microbubbles. Immunohistochemistry, enzyme-linked immunosorbent assay, immunoblotting, 5-bromo-2′-deoxyuridine labeling, an acetylcholinesterase assay, and the Morris water maze test were performed to assess choline acetyltransferase, acetylcholinesterase activity, brain-derived neurotrophic factor expression, neural proliferation, and spatial memory, respectively. Statistical significance of differences in between groups was calculated using one-way and two-way analyses of variance followed by Tukey’s multiple comparison test to determine the individual and interactive effects of FUS on immunochemistry and behavioral analysis. P < 0.05 was considered significant. Results Cholinergic degeneration in rats significantly decreased the number of choline acetyltransferase neurons (P < 0.05) in the basal forebrain, as well as AHN and spatial memory function. Rats that underwent FUS-mediated brain-blood barrier opening exhibited significant increases in brain-derived neurotrophic factor (BDNF; P < 0.05), early growth response protein 1 (EGR1) (P < 0.01), AHN (P < 0.01), and acetylcholinesterase activity in the frontal cortex (P < 0.05) and hippocampus (P < 0.01) and crossing over (P < 0.01) the platform in the Morris water maze relative to the SAP group after sonication. Conclusions FUS treatment increased AHN and improved spatial memory. This improvement was mediated by increased hippocampal BDNF and EGR1. FUS treatment may also restore AHN and protect against neurodegeneration, providing a potentially powerful therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jaewoo Shin
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chanho Kong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jihyeon Lee
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Jiyeon Sim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Young Cheol Na
- Department of Neurosurgery, Catholic Kwandong University College of Medicine, International St Mary's Hospital, Incheon Metropolitan City, 22771, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
71
|
Bedioune I, Lefebvre F, Lechêne P, Varin A, Domergue V, Kapiloff MS, Fischmeister R, Vandecasteele G. PDE4 and mAKAPβ are nodal organizers of β2-ARs nuclear PKA signalling in cardiac myocytes. Cardiovasc Res 2019; 114:1499-1511. [PMID: 29733383 DOI: 10.1093/cvr/cvy110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
Aims β1- and β2-adrenergic receptors (β-ARs) produce different acute contractile effects on the heart partly because they impact on different cytosolic pools of cAMP-dependent protein kinase (PKA). They also exert different effects on gene expression but the underlying mechanisms remain unknown. The aim of this study was to understand the mechanisms by which β1- and β2-ARs regulate nuclear PKA activity in cardiomyocytes. Methods and results We used cytoplasmic and nuclear targeted biosensors to examine cAMP signals and PKA activity in adult rat ventricular myocytes upon selective β1- or β2-ARs stimulation. Both β1- and β2-AR stimulation increased cAMP and activated PKA in the cytoplasm. Although the two receptors also increased cAMP in the nucleus, only β1-ARs increased nuclear PKA activity and up-regulated the PKA target gene and pro-apoptotic factor, inducible cAMP early repressor (ICER). Inhibition of phosphodiesterase (PDE)4, but not Gi, PDE3, GRK2 nor caveolae disruption disclosed nuclear PKA activation and ICER induction by β2-ARs. Both nuclear and cytoplasmic PKI prevented nuclear PKA activation and ICER induction by β1-ARs, indicating that PKA activation outside the nucleus is required for subsequent nuclear PKA activation and ICER mRNA expression. Cytoplasmic PKI also blocked ICER induction by β2-AR stimulation (with concomitant PDE4 inhibition). However, in this case nuclear PKI decreased ICER up-regulation by only 30%, indicating that other mechanisms are involved. Down-regulation of mAKAPβ partially inhibited nuclear PKA activation upon β1-AR stimulation, and drastically decreased nuclear PKA activation upon β2-AR stimulation in the presence of PDE4 inhibition. Conclusions β1- and β2-ARs differentially regulate nuclear PKA activity and ICER expression in cardiomyocytes. PDE4 insulates a mAKAPβ-targeted PKA pool at the nuclear envelope that prevents nuclear PKA activation upon β2-AR stimulation.
Collapse
Affiliation(s)
- Ibrahim Bedioune
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Florence Lefebvre
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Patrick Lechêne
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Audrey Varin
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Valérie Domergue
- Institut Paris Saclay d'Innovation Thérapeutique, UMS IPSIT, Univ. Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry Cedex, France
| | - Michael S Kapiloff
- Cardiac Signal Transduction and Cellular Biology Laboratory, Departments of Pediatrics and Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, USA
| | - Rodolphe Fischmeister
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM.,Institut Paris Saclay d'Innovation Thérapeutique, UMS IPSIT, Univ. Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry Cedex, France
| | | |
Collapse
|
72
|
Maekawa T, Tsushima H, Kawakami F, Kawashima R, Kodo M, Imai M, Ichikawa T. Leucine-Rich Repeat Kinase 2 Is Associated With Activation of the Paraventricular Nucleus of the Hypothalamus and Stress-Related Gastrointestinal Dysmotility. Front Neurosci 2019; 13:905. [PMID: 31555076 PMCID: PMC6727664 DOI: 10.3389/fnins.2019.00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/13/2019] [Indexed: 01/27/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a molecule associated with familial and sporadic Parkinson's disease. It regulates many central neuronal functions, such as cell proliferation, apoptosis, autophagy, and axonal extension. Recently, it has been revealed that LRRK2 is related to anxiety/depression-like behavior, implying an association between LRRK2 and stress. In the present study, we investigated for the first time the stress pathway and its relationship to gastrointestinal motility in LRRK2-knockout (KO) mice. The mice were subjected to acute restraint stress, and analyzed for activation of the paraventricular nucleus of the hypothalamus (PVN) using an immunohistochemical approach. Phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) was assessed by Western blotting. The KO mice showed a lower number of c-Fos-positive cells and disruption of the ERK signaling pathway in the PVN in the presence of restraint stress. Stress responses in terms of both upper and lower gastrointestinal motility were alleviated in the mice, accompanied by lower c-Fos immunoreactivity in enteric excitatory neurons. Our present findings suggest that LRRK2 is a newly recognized molecule regulating the stress pathway in the PVN, playing a role in stress-related gastrointestinal dysmotility.
Collapse
Affiliation(s)
- Tatsunori Maekawa
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Hiromichi Tsushima
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Behavioral Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Rei Kawashima
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Masaru Kodo
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Motoki Imai
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
73
|
Tyebji S, Seizova S, Garnham AL, Hannan AJ, Tonkin CJ. Impaired social behaviour and molecular mediators of associated neural circuits during chronic Toxoplasma gondii infection in female mice. Brain Behav Immun 2019; 80:88-108. [PMID: 30807837 DOI: 10.1016/j.bbi.2019.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a neurotropic parasite that is associated with various neuropsychiatric disorders. Rodents infected with T. gondii display a plethora of behavioural alterations, and Toxoplasma infection in humans has been strongly associated with disorders such as schizophrenia, in which impaired social behaviour is an important feature. Elucidating changes at the cellular level relevant to neuropsychiatric conditions can lead to effective therapies. Here, we compare changes in behaviour during an acute and chronic T. gondii infection in female mice. Further, we notice that during chronic phase of infection, mice display impaired sociability when exposed to a novel conspecific. Also, we show that T. gondii infected mice display impaired short-term social recognition memory. However, object recognition memory remains intact. Using c-Fos as a marker of neuronal activity, we show that infection leads to an impairment in neuronal activation in the medial prefrontal cortex, hippocampus as well as the amygdala when mice are exposed to a social environment and a change in functional connectivity between these regions. We found changes in synaptic proteins that play a role in the process of neuronal activation such as synaptophysin, PSD-95 and changes in downstream substrates of cell activity such as cyclic AMP, phospho-CREB and BDNF. Our results point towards an imbalance in neuronal activity that can lead to a wider range of neuropsychiatric problems upon T. gondii infection.
Collapse
Affiliation(s)
- Shiraz Tyebji
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Victoria, Australia.
| | - Simona Seizova
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne 3052, Australia.
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne 3052, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3052, Victoria, Australia.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne 3052, Australia.
| |
Collapse
|
74
|
Sawamoto A, Okuyama S, Nakajima M, Furukawa Y. Citrus flavonoid 3,5,6,7,8,3',4'-heptamethoxyflavone induces BDNF via cAMP/ERK/CREB signaling and reduces phosphodiesterase activity in C6 cells. Pharmacol Rep 2019; 71:653-658. [PMID: 31195342 DOI: 10.1016/j.pharep.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/13/2019] [Accepted: 03/11/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is associated with onset of several central nervous system disorders, e.g., Parkinson's disease, Alzheimer's disease, depression, epilepsy, and chronic pain. In our previous in vivo studies using ischemic and depression mouse models, we revealed that citrus flavonoid 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF) exerts neuroprotective effects by enhancing the expression of BDNF in astrocytes within the hippocampus. Therefore, in the present study, we examined the mechanism of BDNF induction by HMF in vitro using rat C6 glioma cells. METHODS C6 glioma cells were treated with HMF (10 μM) or HMF + U0126 (10 μM), HMF + H89 (1 μM), or HMF + K252a (200 nM) for 48 h. The protein level of mature BDNF (m-BDNF), phosphorylated-ERK (p-ERK) and phosphorylated-cAMP-response element binding protein (p-CREB) were measured using western blot analysis. To clarify the mechanism of HMF for increasing m-BDNF, the inhibitory effect of phosphodiesterase 4B (PDE4B) and PDE4D, and intracellular cAMP levels were examined by ELISA. RESULTS Our findings revealed that the m-BDNF-inducing activity of HMF was abolished by U0126 but not by H89 or K252a. HMF was found to phosphorylate (activate) ERK and cAMP-response element binding protein (CREB), a BDNF transcription factor. HMF inhibited PDE4B and PDE4D activity. Moreover, 10 μM HMF elevated intracellular cAMP levels in C6 cells. CONCLUSIONS These findings suggest that HMF might exert its neuroprotective effects by inducing m-BDNF expression in C6 cells, model cell line of astrocytes, via the activation of cAMP/ERK/CREB signaling and inhibiting PDE4B or PDE4D.
Collapse
Affiliation(s)
- Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| |
Collapse
|
75
|
Hassan Z, Suhaimi FW, Ramanathan S, Ling KH, Effendy MA, Müller CP, Dringenberg HC. Mitragynine (Kratom) impairs spatial learning and hippocampal synaptic transmission in rats. J Psychopharmacol 2019; 33:908-918. [PMID: 31081443 DOI: 10.1177/0269881119844186] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Mitragynine is the major alkaloid of Mitragyna speciosa (Korth.) or Kratom, a psychoactive plant widely abused in Southeast Asia. While addictive effects of the substance are emerging, adverse cognitive effects of this drug and neuropharmacological actions are insufficiently understood. AIMS In the present study, we investigated the effects of mitragynine on spatial learning and synaptic transmission in the CA1 region of the hippocampus. METHODS Male Sprague Dawley rats received daily (for 12 days) training sessions in the Morris water maze, with each session followed by treatment either with mitragynine (1, 5, or 10 mg/kg; intraperitoneally), morphine (5 mg/kg; intraperitoneally) or a vehicle. In the second experiment, we recorded field excitatory postsynaptic potentials in the hippocampal CA1 area in anesthetized rats and assessed the effects of mitragynine on baseline synaptic transmission, paired-pulse facilitation, and long-term potentiation. Gene expression of major memory- and addiction-related genes was investigated and the effects of mitragynine on Ca2+ influx was also examined in cultured primary neurons from E16-E18 rats. RESULTS/OUTCOMES Escape latency results indicate that animals treated with mitragynine displayed a slower rate of acquisition as compared to their control counterparts. Further, mitragynine treatment significantly reduced the amplitude of baseline (i.e. non-potentiated) field excitatory postsynaptic potentials and resulted in a minor suppression of long-term potentiation in CA1. Bdnf and αCaMKII mRNA expressions in the brain were not affected and Ca2+ influx elicited by glutamate application was inhibited in neurons pre-treated with mitragynine. CONCLUSIONS/INTERPRETATION These data suggest that high doses of mitragynine (5 and 10 mg/kg) cause memory deficits, possibly via inhibition of Ca2+ influx and disruption of hippocampal synaptic transmission and long-term potentiation induction.
Collapse
Affiliation(s)
- Zurina Hassan
- 1 Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Farah W Suhaimi
- 1 Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Surash Ramanathan
- 1 Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - King-Hwa Ling
- 2 Department of Biomedical Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohamad A Effendy
- 1 Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Christian P Müller
- 3 Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hans C Dringenberg
- 4 Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
76
|
Sanati M, Khodagholi F, Aminyavari S, Ghasemi F, Gholami M, Kebriaeezadeh A, Sabzevari O, Hajipour MJ, Imani M, Mahmoudi M, Sharifzadeh M. Impact of Gold Nanoparticles on Amyloid β-Induced Alzheimer's Disease in a Rat Animal Model: Involvement of STIM Proteins. ACS Chem Neurosci 2019; 10:2299-2309. [PMID: 30933476 DOI: 10.1021/acschemneuro.8b00622] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative amyloid disorder causing progressive cognitive decline and memory loss. A considerable number of therapies for AD rely on inhibition/delay/dissociation of amyloid beta (Aβ) oligomers and fibrils. In this case, nanoparticles (NPs) demonstrated substantial effects on the Aβ fibrillation process; however, their effects on progressive cognitive decline and memory have been poorly investigated in vivo. In this study, acquisition and retention of spatial learning and memory are studied in a rat animal model of AD after intrahippocampal (IH) and intraperitoneal (IP) injections of a model NP, i.e., gold NPs (AuNPs). The outcomes revealed that the AuNPs could improve the acquisition and retention of spatial learning and memory in Aβ treated rats as indicated by decreased time (Aβ: 39.60 ± 3.23 s vs Aβ+AuNPs: 25.78 ± 2.80 s) and distance (Aβ: 917.98 ± 50.81 cm vs Aβ+AuNPs: 589.09 ± 65.96 cm) of finding the hidden platform during training days and by increased time spent in the target quadrant (Aβ: 19.40 ± 0.98 s vs Aβ+AuNPs: 29.36 ± 1.14 s) in the probe test in Morris water maze (MWM). Expression of brain-derived neurotrophic factor, BDNF, cAMP response element binding protein, CREB, and stromal interaction molecules, e.g., STIM1 and STIM2 was also increased, supporting improved neural survival. Our outcomes may pave a way for mechanistic insights toward the role of NPs on retrieval of the deteriorated behavioral functions in brain tissue after AD outbreak.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Toxicology & Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre , Tehran University of Medical Sciences , Tehran 1416753955 , Iran
| | - Fariba Khodagholi
- Neuroscience Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran 1416753955 , Iran
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj 3135933151 , Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre , Tehran University of Medical Sciences , Tehran 1416753955 , Iran
| | - Abbas Kebriaeezadeh
- Department of Toxicology & Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre , Tehran University of Medical Sciences , Tehran 1416753955 , Iran
| | - Omid Sabzevari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre , Tehran University of Medical Sciences , Tehran 1416753955 , Iran
| | - Mohammad Javad Hajipour
- The Persian Gulf Biomedical Sciences Research Institute, Persian Gulf Marine Biotechnology Research Center , Bushehr University of Medical Sciences , Bushehr 47263 , Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute , Tehran University of Medical Sciences , Tehran 1416753955 , Iran
| | - Mohammad Imani
- Department of Novel Drug Delivery Systems , Iran Polymer and Petrochemical Institute , Tehran , Iran
| | - Morteza Mahmoudi
- Nanotechnology Research Center, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran 1416753955 , Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology & Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre , Tehran University of Medical Sciences , Tehran 1416753955 , Iran
| |
Collapse
|
77
|
Hamidkhaniha S, Bashiri H, Omidi A, Hosseini‐Chegeni A, Tavangar SM, Sabouri S, Montazeri H, Sahebgharani M. Effect of pretreatment with intracerebroventricular injection of minocycline on morphine‐induced memory impairment in passive avoidance test: Role of P‐
CREB
and c‐Fos expression in the dorsal hippocampus and basolateral amygdala regions. Clin Exp Pharmacol Physiol 2019; 46:711-722. [DOI: 10.1111/1440-1681.13090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/24/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Shokouh Hamidkhaniha
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology Afzalipour School of Medicine Kerman University of Medical Sciences Kerman Iran
| | - Ameneh Omidi
- Department of Anatomical Sciences Medical Sciences Faculty Tarbiat Modares University Tehran Iran
| | | | - Seyed Mohammad Tavangar
- Department of Pathology Dr. Shariati Hospital Tehran University of Medical Sciences Tehran Iran
| | - Salehe Sabouri
- Department of Pharmacognosy and Pharmaceutical Biotechnology Faculty of Pharmacy Kerman University of Medical Sciences Kerman Iran
| | - Hamed Montazeri
- School of Pharmacy‐ International Campus Iran University of Medical Sciences Tehran Iran
| | - Mousa Sahebgharani
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
78
|
Krawczyk MC, Millan J, Blake MG, Feld M, Boccia MM. Relevance of ERK1/2 Post-retrieval Participation on Memory Processes: Insights in Their Particular Role on Reconsolidation and Persistence of Memories. Front Mol Neurosci 2019; 12:95. [PMID: 31057366 PMCID: PMC6478671 DOI: 10.3389/fnmol.2019.00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Back in 1968, Misanin and his group posited that reactivation of consolidated memories could support changes in that trace, similar to what might happen during the consolidation process. Not until 2000, when Nader et al. (2000) studied the behavioral effect of a protein synthesis inhibitor on retrieved memories, could this previous statement be taken under consideration once again; suggesting that consolidated memories can become labile after reactivation. The process of strengthening after memory labilization was named memory reconsolidation. In recent years, many studies pointed towards a critical participation of the extracellular signal-regulated kinase (ERK)/mitogen activated protein kinases (MAPKs) pathway in different memory processes (e.g., consolidation, extinction, reconsolidation, among others). In this review article, we will focus on how this system might be modulating the processes triggered after retrieval of well-consolidated memories in mice.
Collapse
Affiliation(s)
- Maria C Krawczyk
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Julieta Millan
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Mariano G Blake
- Instituto de Fisiología y Biofísica (IFIBIO UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Mariana Feld
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CABA, Argentina
| | - Mariano M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
79
|
McCarthy MJ. Missing a beat: assessment of circadian rhythm abnormalities in bipolar disorder in the genomic era. Psychiatr Genet 2019; 29:29-36. [PMID: 30516584 DOI: 10.1097/ypg.0000000000000215] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Circadian rhythm abnormalities have been recognized as a central feature of bipolar disorder (BD) but a coherent biological explanation for them remains lacking. Using genetic mutation of 'clock genes', robust animal models of mania and depression have been developed that elucidate key aspects of circadian rhythms and the circadian clock-mood connection. However, translation of this knowledge into humans remains incomplete. In recent years, very large genome-wide association studies (GWAS) have been conducted and the genetic underpinnings of BD are beginning to emerge. However, these genetic studies in BD do not match well with the evidence from animal studies that implicate the circadian clock in mood regulation. Even larger GWAS have been conducted for circadian phenotypes including chronotype, rhythm amplitude, sleep duration, and insomnia. These studies have identified a diverse set of associated genes, including a minority with previously well-characterized functions in the circadian clock. Taken together, the data from recent GWAS of BD and circadian phenotypes indicate that the genetic organization of the circadian clock, both in health and in BD is complex. The findings from GWAS elucidate potentially novel circadian mechanism that may be partly distinct from those identified in animal models. Pleiotropy, epistasis and nongenetic factors may play important roles in regulating circadian rhythms, some of which may underlie circadian rhythm disturbances in BD.
Collapse
Affiliation(s)
- Michael J McCarthy
- Department of Psychiatry, Center for Circadian Biology, VA San Diego Healthcare System, University of California San Diego, San Diego, California, USA
| |
Collapse
|
80
|
Pagani MR, Merlo E. Kinase and Phosphatase Engagement Is Dissociated Between Memory Formation and Extinction. Front Mol Neurosci 2019; 12:38. [PMID: 30842725 PMCID: PMC6391346 DOI: 10.3389/fnmol.2019.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/31/2019] [Indexed: 01/18/2023] Open
Abstract
Associative long-term memories (LTMs) support long-lasting behavioral changes resulting from sensory experiences. Retrieval of a stable LTM by means of a large number of conditioned stimulus (CS) alone presentations produces inhibition of the original memory through extinction. Currently, there are two opposing hypotheses to account for the neural mechanisms supporting extinction. The unlearning hypothesis posits that extinction affects the original memory trace by reverting the synaptic changes supporting LTM. On the contrary, the new learning hypothesis proposes that extinction is simply the formation of a new associative memory that inhibits the expression of the original one. We propose that detailed analysis of extinction-associated molecular mechanisms could help distinguish between these hypotheses. Here we will review experimental evidence regarding the role of protein kinases and phosphatases (K&P) on LTM formation and extinction. Even though K&P regulate both memory processes, their participation appears to be dissociated. LTM formation recruits kinases, but is constrained by phosphatases. Memory extinction presents a more diverse molecular landscape, requiring phosphatases and some kinases, but also being constrained by kinase activity. Based on the available evidence, we propose a new theoretical model for memory extinction: a neuronal segregation of K&P supports a combination of time-dependent reversible inhibition of the original memory [CS-unconditioned stimulus (US)], with establishment of a new associative memory trace (CS-noUS).
Collapse
Affiliation(s)
- Mario Rafael Pagani
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-Houssay, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Emiliano Merlo
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-Houssay, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
81
|
Blair JA, Bhatta S, Casadesus G. CNS luteinizing hormone receptor activation rescues ovariectomy-related loss of spatial memory and neuronal plasticity. Neurobiol Aging 2019; 78:111-120. [PMID: 30925299 DOI: 10.1016/j.neurobiolaging.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Ovariectomy (OVX), a menopause model, leads to cognition and neuronal plasticity deficits that are rescued by estrogen administration or downregulation of pituitary luteinizing hormone (LH). LH is present in the brain. However, whether LH levels differ across brain regions, change across reproductive stages, or whether brain-specific LHR signaling play a role in OVX-related cognitive and neuroplasticity losses is completely unknown. To address this, we measured brain LH in cycling and OVX C57Bl/6 across brain regions and determined whether OVX-related functional and plasticity deficits could be rescued by intracerebroventricular administration of the LHR agonist (hCG). Here, we show that while pituitary LH is increased in OVX, brain LH is decreased, primarily in spatial memory and navigation areas. Furthermore, intracerebroventricular hCG delivery after OVX rescued dendritic spine density and spatial memory. In vitro, we show that hCG increased neurite outgrowth in primary hippocampal neurons in a receptor-specific manner. Taken together, our data suggest that loss of brain LH signaling is involved in cognitive and plasticity losses associated with OVX and loss of ovarian hormones.
Collapse
Affiliation(s)
- Jeffrey A Blair
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Sabina Bhatta
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
82
|
Bettio L, Thacker JS, Hutton C, Christie BR. Modulation of synaptic plasticity by exercise. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:295-322. [DOI: 10.1016/bs.irn.2019.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
83
|
McClatchy DB, Yu NK, Martínez-Bartolomé S, Patel R, Pelletier AR, Lavalle-Adam M, Powell SB, Roberto M, Yates JR. Structural Analysis of Hippocampal Kinase Signal Transduction. ACS Chem Neurosci 2018; 9:3072-3085. [PMID: 30053369 PMCID: PMC6374210 DOI: 10.1021/acschemneuro.8b00284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kinases are a major clinical target for human diseases. Identifying the proteins that interact with kinases in vivo will provide information on unreported substrates and will potentially lead to more specific methods for therapeutic kinase regulation. Here, endogenous immunoprecipitations of evolutionally distinct kinases (i.e., Akt, ERK2, and CAMK2) from rodent hippocampi were analyzed by mass spectrometry to generate three highly confident kinase protein-protein interaction networks. Proteins of similar function were identified in the networks, suggesting a universal model for kinase signaling complexes. Protein interactions were observed between kinases with reported symbiotic relationships. The kinase networks were significantly enriched in genes associated with specific neurodevelopmental disorders providing novel structural connections between these disease-associated genes. To demonstrate a functional relationship between the kinases and the network, pharmacological manipulation of Akt in hippocampal slices was shown to regulate the activity of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel(HCN1), which was identified in the Akt network. Overall, the kinase protein-protein interaction networks provide molecular insight of the spatial complexity of in vivo kinase signal transduction which is required to achieve the therapeutic potential of kinase manipulation in the brain.
Collapse
Affiliation(s)
- Daniel B McClatchy
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Nam-Kyung Yu
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Salvador Martínez-Bartolomé
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Reesha Patel
- Department of Neuroscience , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Alexander R Pelletier
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology , University of Ottawa , Ottawa , ON K1H 8M5 , Canada
| | - Mathieu Lavalle-Adam
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology , University of Ottawa , Ottawa , ON K1H 8M5 , Canada
| | - Susan B Powell
- Department of Psychiatry , UCSD , La Jolla , California 92093 , United States
| | - Marisa Roberto
- Department of Neuroscience , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - John R Yates
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
84
|
Epstein I, Finkbeiner S. The Arc of cognition: Signaling cascades regulating Arc and implications for cognitive function and disease. Semin Cell Dev Biol 2018; 77:63-72. [PMID: 29559111 DOI: 10.1016/j.semcdb.2017.09.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022]
Abstract
The activity-regulated cytoskeletal (Arc) gene is implicated in numerous synaptic plasticity paradigms, including long-term potentiation and depression and homeostatic plasticity, and is critical for consolidating memory. How Arc facilitates these forms of plasticity is not fully understood. Unlike other neuronal immediate-early genes, Arc encodes a protein that shuttles between the somatodendritic and nuclear compartments to regulate synaptic plasticity. Little attention has been paid to Arc's role in the nucleus. Here, we highlight the regulatory elements and signaling cascades required to induce Arc transcription and discuss the significance of Arc nuclear localization for synaptic plasticity and scaling. We integrate these findings into the context of cognitive function and disease and propose a model in which Arc mediates an effect on memory as a "chaser" of synaptic activity through homeostatic scaling.
Collapse
Affiliation(s)
- Irina Epstein
- Gladstone Institutes,1650 Owens Street, San Francisco, CA 94158, USA.
| | - Steven Finkbeiner
- Gladstone Institutes,1650 Owens Street, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
85
|
Miyashita T, Kikuchi E, Horiuchi J, Saitoe M. Long-Term Memory Engram Cells Are Established by c-Fos/CREB Transcriptional Cycling. Cell Rep 2018; 25:2716-2728.e3. [DOI: 10.1016/j.celrep.2018.11.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/13/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
|
86
|
Kawahata I, Xu H, Takahashi M, Murata K, Han W, Yamaguchi Y, Fujii A, Yamaguchi K, Yamakuni T. Royal jelly coordinately enhances hippocampal neuronal expression of somatostatin and neprilysin genes conferring neuronal protection against toxic soluble amyloid-β oligomers implicated in Alzheimer’s disease pathogenesis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
87
|
Diet-induced adaptive thermogenesis requires neuropeptide FF receptor-2 signalling. Nat Commun 2018; 9:4722. [PMID: 30413707 PMCID: PMC6226433 DOI: 10.1038/s41467-018-06462-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 09/07/2018] [Indexed: 11/24/2022] Open
Abstract
Excess caloric intake results in increased fat accumulation and an increase in energy expenditure via diet-induced adaptive thermogenesis; however, the underlying mechanisms controlling these processes are unclear. Here we identify the neuropeptide FF receptor-2 (NPFFR2) as a critical regulator of diet-induced thermogenesis and bone homoeostasis. Npffr2−/− mice exhibit a stronger bone phenotype and when fed a HFD display exacerbated obesity associated with a failure in activating brown adipose tissue (BAT) thermogenic response to energy excess, whereas the activation of cold-induced BAT thermogenesis is unaffected. NPFFR2 signalling is required to maintain basal arcuate nucleus NPY mRNA expression. Lack of NPFFR2 signalling leads to a decrease in BAT thermogenesis under HFD conditions with significantly lower UCP-1 and PGC-1α levels in the BAT. Together, these data demonstrate that NPFFR2 signalling promotes diet-induced thermogenesis via a novel hypothalamic NPY-dependent circuitry thereby coupling energy homoeostasis with energy partitioning to adipose and bone tissue. Excess caloric intake leads to increased thermogenesis in brown adipose tissue, to limit weight gain. Here, the authors show that neuropeptide FF receptor-2 signalling promotes thermogenesis via control of NPY expression in the arcuate nucleus, and that it absence in mice leads to a failure of activation of diet-induced thermogenesis and the development of exacerbated obesity.
Collapse
|
88
|
Abstract
The MAPK pathway is a prominent intracellular signaling pathway regulating various intracellular functions. Components of this pathway are mutated in a related collection of congenital syndromes collectively referred to as neuro-cardio-facio-cutaneous syndromes (NCFC) or Rasopathies. Recently, it has been appreciated that these disorders are associated with autism spectrum disorders (ASD). In addition, idiopathic ASD has also implicated the MAPK signaling cascade as a common pathway that is affected by many of the genetic variants that have been found to be linked to ASDs. This chapter describes the components of the MAPK pathway and how it is regulated. Furthermore, this chapter will highlight the various functions of the MAPK pathway during both embryonic development of the central nervous system (CNS) and its roles in neuronal physiology and ultimately, behavior. Finally, we will summarize the perturbations to MAPK signaling in various models of autism spectrum disorders and Rasopathies to highlight how dysregulation of this pivotal pathway may contribute to the pathogenesis of autism.
Collapse
|
89
|
Molosh AI, Shekhar A. Neurofibromatosis type 1 as a model system to study molecular mechanisms of autism spectrum disorder symptoms. PROGRESS IN BRAIN RESEARCH 2018; 241:37-62. [PMID: 30447756 DOI: 10.1016/bs.pbr.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurofibromatosis type 1 (NF1) is monogenic neurodevelopmental disorder caused by mutation of NF1 gene, which leads to increased susceptibility to various tumors formations. Additionally, majority of patients with NF1 are experience high incidence of cognitive deficits. Particularly, we review the growing number of reports demonstrated a higher incidence of autism spectrum disorder (ASD) in individuals with NF1. In this review we also discuss face validity of preclinical Nf1 mouse models. Then we describe discoveries from these animal models that have uncovered the deficiencies in the regulation of Ras and other intracellular pathways as critical mechanisms underlying the Nf1 cognitive problems. We also summarize and interpret recent preclinical and clinical studies that point toward potential pharmacological therapies for NF1 patients.
Collapse
Affiliation(s)
- Andrei I Molosh
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States.
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States; Department of Pharmacology & Toxicology, IU School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translational Institute, IU School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
90
|
Ren X, Engler-Chiurazzi EB, Russell AE, Sarkar SN, Rellick SL, Lewis S, Corbin D, Clapper J, Simpkins JW. MiR-34a and stroke: Assessment of non-modifiable biological risk factors in cerebral ischemia. Neurochem Int 2018; 127:73-79. [PMID: 30365981 DOI: 10.1016/j.neuint.2018.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023]
Abstract
Aging of the nervous system, and the occurrence of age-related brain diseases such as stroke, are associated with changes to a variety of cellular processes controlled by many distinct genes. MicroRNAs (miRNAs), short non-coding functional RNAs that can induce translational repression or site-specific cleavage of numerous target mRNAs, have recently emerged as important regulators of cellular senescence, aging, and the response to neurological insult. Here, we focused on the assessment of the role of miR-34a in stroke. We noted increases in miR-34a expression in the blood of stroke patients as well as in blood and brain of mice subjected to experimental stroke. Our methodical genetic manipulation of miR-34a expression substantially impacted stroke-associated preclinical outcomes and we have in vitro evidence that these changes may be driven at least in part by disruptions to blood brain barrier integrity and mitochondrial oxidative phosphorylation in endothelial cells. Finally, aging, independent of brain injury, appears to be associated with shifts in circulating miRNA profiles. Taken together, these data support a role for miRNAs, and specifically miR-34a, in brain aging and the physiological response to age-related neurological insult, and lay the groundwork for future investigation of this novel therapeutic target.
Collapse
Affiliation(s)
- Xuefang Ren
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - Stephanie L Rellick
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - Sara Lewis
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - Deborah Corbin
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Jared Clapper
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
91
|
Vashisht A, Bach SV, Fetterhoff D, Morgan JW, McGee M, Hegde AN. Proteasome limits plasticity-related signaling to the nucleus in the hippocampus. Neurosci Lett 2018; 687:31-36. [PMID: 30219486 DOI: 10.1016/j.neulet.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 01/22/2023]
Abstract
Proteolysis by the ubiquitin-proteasome pathway has pleiotropic effects on both induction and maintenance of long-term synaptic plasticity. In this study, we examined the effect of proteasome inhibition on signaling to the nucleus during late-phase long-term potentiation. When a subthreshold L-LTP induction protocol was used, proteasome inhibition led to a significant increase in phosphorylated CREB (pCREB) in the nucleus. Inhibitors of cAMP-dependent protein kinase/protein kinase A, extracellular signal-regulated kinase and cGMP-dependent protein kinase/protein kinase G all blocked the proteasome-inhibition-mediated increase in nuclear pCREB after subthreshold stimulation. These results lay the groundwork for understanding a novel role for the proteasome in limiting signaling to the nucleus in the absence of adequate synaptic stimulation.
Collapse
Affiliation(s)
- Anirudh Vashisht
- Department of Neurobiology and Anatomy & Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA; Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, 31061, USA
| | - Svitlana V Bach
- Department of Neurobiology and Anatomy & Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Dustin Fetterhoff
- Department of Neurobiology and Anatomy & Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - James W Morgan
- Department of Neurobiology and Anatomy & Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Maria McGee
- Plastic and Reconstructive Surgery Research, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Ashok N Hegde
- Department of Neurobiology and Anatomy & Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA; Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, 31061, USA.
| |
Collapse
|
92
|
Xiao X, Zhang C, Grigoroiu-Serbanescu M, Wang L, Li L, Zhou D, Yuan TF, Wang C, Chang H, Wu Y, Li Y, Wu DD, Yao YG, Li M. The cAMP responsive element-binding (CREB)-1 gene increases risk of major psychiatric disorders. Mol Psychiatry 2018; 23:1957-1967. [PMID: 29158582 DOI: 10.1038/mp.2017.243] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/25/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BPD), schizophrenia (SCZ) and unipolar major depressive disorder (MDD) are primary psychiatric disorders sharing substantial genetic risk factors. We previously reported that two single-nucleotide polymorphisms (SNPs) rs2709370 and rs6785 in the cAMP responsive element-binding (CREB)-1 gene (CREB1) were associated with the risk of BPD and abnormal hippocampal function in populations of European ancestry. In the present study, we further expanded our analyses of rs2709370 and rs6785 in multiple BPD, SCZ and MDD data sets, including the published Psychiatric Genomics Consortium (PGC) genome-wide association study, the samples used in our previous CREB1 study, and six additional cohorts (three new BPD samples, two new SCZ samples and one new MDD sample). Although the associations of both CREB1 SNPs with each illness were not replicated in the new cohorts (BPD analysis in 871 cases and 1089 controls (rs2709370, P=0.0611; rs6785, P=0.0544); SCZ analysis in 1273 cases and 1072 controls (rs2709370, P=0.230; rs6785, P=0.661); and MDD analysis in 129 cases and 100 controls (rs2709370, P=0.114; rs6785, P=0.188)), an overall meta-analysis of all included samples suggested that both SNPs were significantly associated with increased risk of BPD (11 105 cases and 51 331 controls; rs2709370, P=2.33 × 10-4; rs6785, P=6.33 × 10-5), SCZ (34 913 cases and 44 528 controls; rs2709370, P=3.96 × 10-5; rs6785, P=2.44 × 10-5) and MDD (9369 cases and 9619 controls; rs2709370, P=0.0144; rs6785, P=0.0314), with the same direction of allelic effects across diagnostic categories. We then examined the impact of diagnostic status on CREB1 mRNA expression using data obtained from independent brain tissue samples, and observed that the mRNA expression of CREB1 was significantly downregulated in psychiatric patients compared with healthy controls. The protein-protein interaction analyses showed that the protein encoded by CREB1 directly interacted with several risk genes of psychiatric disorders identified by GWAS. In conclusion, the current study suggests that CREB1 might be a common risk gene for major psychiatric disorders, and further investigations are necessary.
Collapse
Affiliation(s)
- X Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - C Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - M Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania.
| | - L Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - L Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - D Zhou
- Ningbo Kangning Hospital, Ningbo, China
| | - T-F Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, China
| | - H Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Y Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Y Li
- Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, China
| | - D-D Wu
- State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming, China
| | - Y-G Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - M Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
93
|
Das M, Das S. Docosahexaenoic Acid (DHA) Induced Morphological Differentiation of Astrocytes Is Associated with Transcriptional Upregulation and Endocytosis of β 2-AR. Mol Neurobiol 2018; 56:2685-2702. [PMID: 30054857 DOI: 10.1007/s12035-018-1260-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Docosahexaenoic acid (DHA), an important ω-3 fatty acid, is abundantly present in the central nervous system and is important in every step of brain development. Much of this knowledge has been based on studies of the role of DHA in the function of the neurons, and reports on its effect on the glial cells are few and far between. We have previously reported that DHA facilitates astrocyte differentiation in primary culture. We have further explored the signaling mechanism associated with this event. It was observed that a sustained activation of the extracellular signal-regulated kinase (ERK) appeared to be critical for DHA-induced differentiation of the cultured astrocytes. Prior exposure to different endocytic inhibitors blocked both ERK activation and differentiation of the astrocytes during DHA treatment suggesting that the observed induction of ERK-2 was purely endosomal. Unlike the β1-adrenergic receptor (β1-AR) antagonist, atenolol, pre-treatment of the cells with the β2-adrenergic receptor (β2-AR) antagonist, ICI-118,551 inhibited the DHA-induced differentiation process, indicating a downstream involvement of β2-AR in the differentiation process. qRT-PCR and western blot analysis demonstrated a significant induction in the mRNA and protein expression of β2-AR at 18-24 h of DHA treatment, suggesting that the induction of β2-AR may be due to transcriptional upregulation. Moreover, DHA caused activation of PKA at 6 h, followed by activation of downstream cAMP response element-binding protein, a known transcription factor for β2-AR. Altogether, the observations suggest that DHA upregulates β2-AR in astrocytes, which undergo endocytosis and signals for sustained endosomal ERK activation to drive the differentiation process.
Collapse
Affiliation(s)
- Moitreyi Das
- Neurobiology Division, Cell Biology & Physiology Department, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sumantra Das
- Neurobiology Division, Cell Biology & Physiology Department, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
94
|
Zhu B, Zhao L, Luo D, Xu D, Tan T, Dong Z, Tang Y, Min Z, Deng X, Sun F, Yan Z, Chen G. Furin promotes dendritic morphogenesis and learning and memory in transgenic mice. Cell Mol Life Sci 2018; 75:2473-2488. [PMID: 29302702 PMCID: PMC11105492 DOI: 10.1007/s00018-017-2742-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 01/14/2023]
Abstract
Furin is a proprotein convertase implicated in a variety of pathological processes including neurodegenerative diseases. However, the role of furin in neuronal plasticity and learning and memory remains to be elucidated. Here, we report that in brain-specific furin transgenic (Furin-Tg) mice, the dendritic spine density and proliferation of neural progenitor cells were significantly increased. These mice exhibited enhanced long-term potentiation (LTP) and spatial learning and memory performance, without alterations of miniature excitatory/inhibitory postsynaptic currents. In the cortex and hippocampus of Furin-Tg mice, the ratio of mature brain-derived neurotrophic factor (mBDNF) to pro-BDNF, and the activities of extracellular signal-related kinase (ERK) and cAMP response element-binding protein (CREB) were significantly elevated. We also found that hippocampal knockdown of CREB diminished the facilitation of LTP and cognitive function in Furin-Tg mice. Together, our results demonstrate that furin enhances dendritic morphogenesis and learning and memory in transgenic mice, which may be associated with BDNF-ERK-CREB signaling pathway.
Collapse
Affiliation(s)
- Binglin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Lige Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Dong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Demei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Tao Tan
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Lu, Chongqing, 400014, China
| | - Zhifang Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Lu, Chongqing, 400014, China
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Zhuo Min
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xiaojuan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
95
|
Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms. Neural Plast 2018; 2018:7292540. [PMID: 29593785 PMCID: PMC5822921 DOI: 10.1155/2018/7292540] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Circadian modulation of learning and memory efficiency is an evolutionarily conserved phenomenon, occurring in organisms ranging from invertebrates to higher mammalian species, including humans. While the suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master mammalian pacemaker, recent evidence suggests that forebrain regions, including the hippocampus, exhibit oscillatory capacity. This finding, as well as work on the cellular signaling events that underlie learning and memory, has opened promising new avenues of investigation into the precise cellular, molecular, and circuit-based mechanisms by which clock timing impacts plasticity and cognition. In this review, we examine the complex molecular relationship between clock timing and memory, with a focus on hippocampal-dependent tasks. We evaluate how the dysregulation of circadian timing, both at the level of the SCN and at the level of ancillary forebrain clocks, affects learning and memory. Further, we discuss experimentally validated intracellular signaling pathways (e.g., ERK/MAPK and GSK3β) and potential cellular signaling mechanisms by which the clock affects learning and memory formation. Finally, we examine how long-term potentiation (LTP), a synaptic process critical to the establishment of several forms of memory, is regulated by clock-gated processes.
Collapse
|
96
|
Xiong W, Wu Y, Xian W, Song L, Hu L, Pan S, Liu M, Yao S, Pei L, Shang Y. DAPK1-ERK signal mediates oxygen glucose deprivation reperfusion induced apoptosis in mouse N2a cells. J Neurol Sci 2018; 387:210-219. [PMID: 29571866 DOI: 10.1016/j.jns.2018.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 11/28/2022]
Abstract
AIMS Death-associated protein kinase 1 (DAPK1) is a kinase found to promote neuronal apoptosis induced by ischemia. Extracellular signal-regulated kinase (ERK) was identified as a key molecule in DAPK1 signaling. However, the mechanisms of neuronal ischemia reperfusion injury remain unknown. Here, we investigate the influence of DAPK1-ERK signal on neuronal apoptosis following ischemia reperfusion. METHODS Mouse N2a cells were used in this study and primary cultured neurons along with mice were adopted as supplements. Oxygen glucose deprivation (OGD) or administration of N-methyl-d-aspartate (NMDA) and glycine was performed on cells while middle cerebral artery occlusion (MCAO) model on mice. DAPK1 knocking down was achieved by lentiviral-delivered shRNA. Protein expressions were evaluated by western blots. Protein-protein binding was confirmed by co-immunoprecipitation and immunofluorescent assay. Apoptosis of cells was measured by flow cytometry and lacate dehydrogenase (LDH) leakage assay. RESULTS Ischemia reperfusion resulted in increased DAPK1 and ERK activation as well as aggravated apoptosis in a time-dependent manner. DAPK1 was proved to bind to ERK during reperfusion following OGD, MCAO and excitotoxicity model. Interception of this binding by knocking down DAPK1 led to nuclear translocation of ERK and reduced apoptosis. CONCLUSION Our study revealed the DAPK1-ERK signal as a potential mechanism contributing to neuronal apoptosis in response to ischemia reperfusion. Disruption of this signal pathway could be a promising therapeutic target against stroke.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Xian
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Song
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisha Hu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Liu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
97
|
Wild AR, Dell'Acqua ML. Potential for therapeutic targeting of AKAP signaling complexes in nervous system disorders. Pharmacol Ther 2017; 185:99-121. [PMID: 29262295 DOI: 10.1016/j.pharmthera.2017.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A common feature of neurological and neuropsychiatric disorders is a breakdown in the integrity of intracellular signal transduction pathways. Dysregulation of ion channels and receptors in the cell membrane and the enzymatic mediators that link them to intracellular effectors can lead to synaptic dysfunction and neuronal death. However, therapeutic targeting of these ubiquitous signaling elements can lead to off-target side effects due to their widespread expression in multiple systems of the body. A-kinase anchoring proteins (AKAPs) are multivalent scaffolding proteins that compartmentalize a diverse range of receptor and effector proteins to streamline signaling within nanodomain signalosomes. A number of essential neurological processes are known to critically depend on AKAP-directed signaling and an understanding of the role AKAPs play in nervous system disorders has emerged in recent years. Selective targeting of AKAP protein-protein interactions may be a means to uncouple pathologically active signaling pathways in neurological disorders with a greater degree of specificity. In this review we will discuss the role of AKAPs in both regulating normal nervous system function and dysfunction associated with disease, and the potential for therapeutic targeting of AKAP signaling complexes.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
98
|
Cai CY, Wu HY, Luo CX, Zhu DY, Zhang Y, Zhou QG, Zhang J. Extracellular regulated protein kinaseis critical for the role of 5-HT1a receptor in modulating nNOS expression and anxiety-related behaviors. Behav Brain Res 2017; 357-358:88-97. [PMID: 29246772 DOI: 10.1016/j.bbr.2017.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/04/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Our previous study found that serotonin 1A receptor (5-HT1aR) is an endogenous suppressor of nNOS expression in the hippocampus, which accounts for anxiolytic effect of fluoxetine. However, the precise molecular mechanism remains unknown. By using 8-OH-DPAT, a selective 5-HT1aR agonist, NAN-190, a selective 5-HT1aR antagonist, and U0126, an Extracellular Regulated Protein Kinases (ERK) phosphorylation inhibitor, we investigated the role of ERK in 5-HT1aR-nNOS pathway. Western blots analysis demonstrated that 5-HT1aR activation up-regulated the level of phosphorylated ERK (P-ERK) beginning at 5 min and down-regulated the expression of nNOS beginning at 20 min. Meanwhile, blockage of 5-HT1aR resulted in a decrease in P-ERK beginning at 20 min and caused an increase in nNOS expression beginning at 6 h. Although U0126 itself did not alter nNOS expression and activity, NO level, and anxiety-related behaviors, the treatment totally reversed 8-OH-DPAT-induced reduction in nNOS expression and function, and anxiolytic effect. Besides, our data showed that ERK phosphorylation was essential for 5-HT1aR activation-induced cAMP responsive element binding protein (CREB) phosphorylation, hippocampal neurogenesis and synaptogenesis of newborn neuron. Our study suggests a crucial role of ERK phosphorylation in the regulation of nNOS expression by 5-HT1aR, which is helpful for understanding the mechanism of 5-HT1aR-based anxiolytic treatment.
Collapse
Affiliation(s)
- Cheng-Yun Cai
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Hai-Yin Wu
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Chun-Xia Luo
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Dong-Ya Zhu
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, 211166, People's Republic of China
| | - Yu Zhang
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Qi-Gang Zhou
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Jing Zhang
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
99
|
Abstract
Habits are an essential and pervasive component of our daily lives that allow us to efficiently perform routine tasks. But their disruption contributes to the symptoms that underlie many psychiatric diseases. Emerging data are revealing the cellular and molecular mechanisms of habit formation in the dorsal striatum. New data suggest that in both the dorsolateral and dorsomedial striatum histone deacetylase (HDAC) activity acts as a critical negative regulator of the transcriptional processes underlying habit formation. In this review, we discuss this recent work and draw conclusions relevant to the treatment of diseases marked by maladaptive habits.
Collapse
Affiliation(s)
| | - Kate M Wassum
- Dept. of Psychology, UCLA, Los Angeles, CA 90095, USA.,Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
100
|
Davis BT, Voigt RM, Shaikh M, Forsyth CB, Keshavarzian A. CREB Protein Mediates Alcohol-Induced Circadian Disruption and Intestinal Permeability. Alcohol Clin Exp Res 2017; 41:2007-2014. [PMID: 28960346 DOI: 10.1111/acer.13513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is commonly associated with intestinal permeability. An unanswered question is why only a subset of heavy alcohol drinkers develop endotoxemia. Recent studies suggest that circadian disruption is the susceptibility factor for alcohol-induced gut leakiness to endotoxins. The circadian protein PER2 is increased after exposure to alcohol and siRNA knockdown of PER2 in vitro blocks alcohol-induced intestinal barrier dysfunction. We have shown that blocking CYP2E1 (i.e., important for alcohol metabolism) with siRNA inhibits the alcohol-induced increase in PER2 and suggesting that oxidative stress may mediate alcohol-induced increase in PER2 in intestinal epithelial cells. The aim of this study was to elucidate whether a mechanism incited by alcohol-derived oxidative stress mediates the transcriptional induction of PER2 and subsequent intestinal hyperpermeability. METHODS Caco-2 cells were exposed to 0.2% alcohol with or without pretreatment with modulators of oxidative stress or PKA activity. Permeability of the Caco-2 monolayer was assessed by transepithelial electrical resistance. Protein expression was measured by Western blot and mRNA with real-time polymerase chain reaction. Wild-type C57BL/6J mice were fed with alcohol diet (29% of total calories, 4.5% v/v) for 8 weeks. Western blot was used to analyze PER2 expression in mouse proximal colon tissue. RESULTS Alcohol increased oxidative stress, caused Caco-2 cell monolayer dysfunction, and increased levels of the circadian clock proteins PER2 and CLOCK. These effects were mitigated by pretreatment of Caco-2 cells with an antioxidant scavenger. Alcohol-derived oxidative stress activated cAMP response element-binding (CREB) via the PKA pathway and increased PER2 mRNA and protein. Inhibiting CREB prevented the increase in PER2 and Caco-2 cell monolayer hyperpermeability. CONCLUSIONS Taken together, these data suggest that strategies to reduce alcohol-induced oxidative stress may alleviate alcohol-mediated circadian disruption and intestinal leakiness, critical drivers of ALD.
Collapse
Affiliation(s)
| | | | | | | | - Ali Keshavarzian
- Division of Digestive Disease and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|